Artemisinic (BioDeep_00000000267)

 

Secondary id: BioDeep_00000264905

PANOMIX_OTCML-2023


代谢物信息卡片


1-NAPHTHALENEACETIC ACID, 1,2,3,4,4A,5,6,8A-OCTAHYDRO-4,7-DIMETHYL-.ALPHA.-METHYLENE-, (1R-(1.ALPHA.,4.BETA.,4A.BETA.,8A.BETA.))-

化学式: C15H22O2 (234.162)
中文名称: 青蒿酸
谱图信息: 最多检出来源 Viridiplantae(plant) 30.73%

分子结构信息

SMILES: C=C(C(=O)O)C1CCC(C)C2CCC(C)=CC12
InChI: InChI=1S/C15H22O2/c1-9-4-6-12-10(2)5-7-13(14(12)8-9)11(3)15(16)17/h8,10,12-14H,3-7H2,1-2H3,(H,16,17)

描述信息

(+)-artemisinic acid is a monocarboxylic acid that is prop-2-enoic acid which is substituted at position 2 by a 4,7-dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-1-yl group (the 1S,4R,4aS,8aR diastereoisomer). It is a sesquiterpenoid precursor of artemisinin, obtained from sweet wormwood, Artemisia annua. It has a role as a metabolite. It is a monocarboxylic acid, a carbobicyclic compound, a sesquiterpenoid and a member of octahydronaphthalenes. It is functionally related to a (+)-artemisinic alcohol. It is a conjugate acid of a (+)-artemisinate.
Artemisinic acid is a natural product found in Artemisia apiacea, Artemisia annua, and other organisms with data available.
A monocarboxylic acid that is prop-2-enoic acid which is substituted at position 2 by a 4,7-dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-1-yl group (the 1S,4R,4aS,8aR diastereoisomer). It is a sesquiterpenoid precursor of artemisinin, obtained from sweet wormwood, Artemisia annua.
D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides
Artemisinic acid (Qing Hao acid), an amorphane sesquiterpene isolated from Artemisia annua L., possesses a variety of pharmacological activity, such as antimalarial activity, anti-tumor activity, antipyretic effect, antibacterial activity, allelopathy effect and anti-adipogenesis effect[1].
Artemisinic acid (Qing Hao acid), an amorphane sesquiterpene isolated from Artemisia annua L., possesses a variety of pharmacological activity, such as antimalarial activity, anti-tumor activity, antipyretic effect, antibacterial activity, allelopathy effect and anti-adipogenesis effect[1].

同义名列表

26 个代谢物同义名

1-NAPHTHALENEACETIC ACID, 1,2,3,4,4A,5,6,8A-OCTAHYDRO-4,7-DIMETHYL-.ALPHA.-METHYLENE-, (1R-(1.ALPHA.,4.BETA.,4A.BETA.,8A.BETA.))-; 1-Naphthaleneacetic acid, 1,2,3,4,4a,5,6,8a-octahydro-4,7-dimethyl-alpha-methylene-, (1R-(1alpha,4beta,4abeta,8abeta))-; 1-NAPHTHALENEACETIC ACID, 1,2,3,4,4A,5,6,8A-OCTAHYDRO-4,7-DIMETHYL-.ALPHA.-METHYLENE-, (1R,4R,4AS,8AR)-; 2-[(1R,4R,4aS,8aR)-4,7-dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-1-yl]prop-2-enoic acid; 2-((1R,4R,4aS,8aR)-4,7-Dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-1-yl)prop-2-enoic acid; 2-[(1R,4R,4aS,8aR)-4,7-dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-1-yl]prop-2-enoicacid; 2-((1r,4r,4as,8ar)-4,7-dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-1-yl)acrylic acid; Qing Hao acid; Artemisinic acid; Arteannuic acid; 4,11(13)-Cadinadien-12-oic acid;Artemisic acid; 4,11(13)-Amorphadien-12-oic acid; 4,11(13)-Cadinadien-12-oic acid; PLQMEXSCSAIXGB-SAXRGWBVSA-N; SINGLEEX ARTEMISINIC ACID; ARTEMISINIC ACID [INCI]; (+)-artemisinic acid; ARTEMISININIC ACID; Artemisinic acid; Artemisinic-acid; Artemisinicacid; UNII-53N99527G7; Arteannuic acid; artemisic acid; QING HAO ACID; QING HAU ACID; Artemisinic; 53N99527G7



数据库引用编号

15 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

9 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 ADIG, AIMP2, CD36, CEBPB, FDPS, KITLG, MAPK8, MIF, VEGFA
Peripheral membrane protein 2 CYP1B1, LPL
Endoplasmic reticulum membrane 2 CYP1B1, HMGCR
Nucleus 7 ADIG, AIMP2, CEBPA, CEBPB, MAPK8, PPARA, VEGFA
cytosol 5 AIMP2, FDPS, MAPK8, MIF, SLC2A4
phagocytic vesicle 1 CD36
trans-Golgi network 1 SLC2A4
nucleoplasm 6 CEBPA, CEBPB, FDPS, MAPK8, MIF, PPARA
RNA polymerase II transcription regulator complex 2 CEBPA, CEBPB
Cell membrane 5 CD36, KIT, KITLG, LPL, SLC2A4
lamellipodium 1 KITLG
Multi-pass membrane protein 4 CD36, HMGCR, MRGPRX2, SLC2A4
Synapse 2 MAPK8, TAC1
cell surface 4 CD36, LPL, MIF, VEGFA
Golgi apparatus 2 CD36, VEGFA
Golgi membrane 1 INS
neuronal cell body 1 TAC1
sarcolemma 1 SLC2A4
Cytoplasm, cytosol 1 AIMP2
Presynapse 1 SLC2A4
acrosomal vesicle 1 KIT
plasma membrane 7 CD36, KIT, KITLG, LPL, MIF, MRGPRX2, SLC2A4
Membrane 11 ADIG, AIMP2, CD36, CYP1B1, FDPS, HMGCR, KIT, KITLG, MRGPRX2, SLC2A4, VEGFA
apical plasma membrane 1 CD36
axon 2 MAPK8, TAC1
caveola 1 CD36
extracellular exosome 2 MIF, SLC2A4
endoplasmic reticulum 2 HMGCR, VEGFA
extracellular space 9 CD36, IL6, INS, KIT, KITLG, LPL, MIF, TAC1, VEGFA
perinuclear region of cytoplasm 1 SLC2A4
adherens junction 1 VEGFA
mitochondrion 1 CYP1B1
intracellular membrane-bounded organelle 2 CEBPA, CYP1B1
Microsome membrane 1 CYP1B1
filopodium 1 KITLG
Single-pass type I membrane protein 2 KIT, KITLG
Secreted 7 ADIG, IL6, INS, KITLG, LPL, MIF, VEGFA
extracellular region 8 ADIG, IL6, INS, KITLG, LPL, MIF, TAC1, VEGFA
cytoplasmic side of plasma membrane 1 KIT
Single-pass membrane protein 1 ADIG
mitochondrial matrix 1 FDPS
Extracellular side 1 LPL
transcription regulator complex 1 CEBPA
external side of plasma membrane 3 CD36, KIT, SLC2A4
Secreted, extracellular space, extracellular matrix 2 LPL, VEGFA
chylomicron 1 LPL
multivesicular body 1 SLC2A4
very-low-density lipoprotein particle 1 LPL
T-tubule 1 SLC2A4
nucleolus 1 CEBPA
cell-cell junction 1 KIT
clathrin-coated pit 1 SLC2A4
vesicle 1 MIF
Apical cell membrane 1 CD36
Cell projection, lamellipodium 1 KITLG
Cytoplasm, perinuclear region 1 SLC2A4
Membrane raft 2 CD36, SLC2A4
Cytoplasm, cytoskeleton 1 KITLG
extracellular matrix 1 VEGFA
Peroxisome 1 FDPS
collagen trimer 1 CD36
sarcoplasmic reticulum 1 SLC2A4
peroxisomal membrane 1 HMGCR
secretory granule 1 VEGFA
Cell projection, filopodium 1 KITLG
receptor complex 2 CD36, KIT
chromatin 3 CEBPA, CEBPB, PPARA
cell periphery 1 CD36
cytoskeleton 1 KITLG
brush border membrane 1 CD36
condensed chromosome, centromeric region 1 CEBPB
fibrillar center 1 KIT
Endomembrane system 1 SLC2A4
endosome lumen 1 INS
Lipid droplet 1 ADIG
Cytoplasmic vesicle membrane 1 SLC2A4
specific granule membrane 1 CD36
Peroxisome membrane 1 HMGCR
[Isoform 3]: Cytoplasm 1 KIT
clathrin-coated vesicle 1 SLC2A4
trans-Golgi network transport vesicle 1 SLC2A4
ficolin-1-rich granule lumen 1 MIF
secretory granule lumen 2 INS, MIF
Golgi lumen 1 INS
endoplasmic reticulum lumen 2 IL6, INS
nuclear matrix 1 CEBPB
platelet alpha granule lumen 1 VEGFA
endocytic vesicle membrane 1 CD36
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
[Isoform 2]: Cytoplasm 1 KITLG
vesicle membrane 1 SLC2A4
basal dendrite 1 MAPK8
aminoacyl-tRNA synthetase multienzyme complex 1 AIMP2
platelet alpha granule membrane 1 CD36
catalytic complex 1 LPL
interleukin-6 receptor complex 1 IL6
insulin-responsive compartment 1 SLC2A4
[N-VEGF]: Cytoplasm 1 VEGFA
[VEGFA]: Secreted 1 VEGFA
[Isoform L-VEGF189]: Endoplasmic reticulum 1 VEGFA
[Isoform VEGF121]: Secreted 1 VEGFA
[Isoform VEGF165]: Secreted 1 VEGFA
VEGF-A complex 1 VEGFA
C/EBP complex 2 CEBPA, CEBPB
CHOP-C/EBP complex 2 CEBPA, CEBPB
[Isoform 4]: Nucleus, nucleolus 1 CEBPA


文献列表

  • Tian-Yu Cai, Jian-Bo Ji, Xin Wang, Jie Xing. Targeted screening of the synergistic components in Artemisia annua L. leading to enhanced antiplasmodial potency of artemisinin based on a "top down" PD-PK approach. Journal of ethnopharmacology. 2024 Mar; 322(?):117612. doi: 10.1016/j.jep.2023.117612. [PMID: 38135228]
  • Delong Wang, Min Li, Chunxia Yuan, Yali Fang, Zhijia Zhang. Bioassay-Guided Isolation of Nematicidal Artemisinic Acid and Dihydroartemisinic Acid from Artemisia annua L. and Evaluation of Their Activity against Meloidogyne incognita. Chemistry & biodiversity. 2022 May; 19(5):e202200083. doi: 10.1002/cbdv.202200083. [PMID: 35344268]
  • Tharun K Kotammagari, Sayantan Paul, Ganesh K Barik, Manas K Santra, Asish K Bhattacharya. Synthesis of artemisinic acid derived glycoconjugates and their anticancer studies. Organic & biomolecular chemistry. 2020 03; 18(12):2252-2263. doi: 10.1039/d0ob00216j. [PMID: 32149317]
  • Xiaobo Zhang, Yuping Zhao, Lanping Guo, Zhidong Qiu, Luqi Huang, Xiaobo Qu. Differences in chemical constituents of Artemisia annua L from different geographical regions in China. PloS one. 2017; 12(9):e0183047. doi: 10.1371/journal.pone.0183047. [PMID: 28880869]
  • Paulina Fuentes, Fei Zhou, Alexander Erban, Daniel Karcher, Joachim Kopka, Ralph Bock. A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop. eLife. 2016 06; 5(?):. doi: 10.7554/elife.13664. [PMID: 27296645]
  • Mingxuan Wang, Jiachen Zi, Jianhua Zhu, Shan Chen, Pu Wang, Liyan Song, Rongmin Yu. Artemisinic Acid Serves as a Novel ORCA3 Inducer to Enhance Biosynthesis of Terpenoid Indole Alkaloids in Catharanthus roseus Cambial Meristematic Cells. Natural product communications. 2016 Jun; 11(6):715-7. doi: . [PMID: 27534099]
  • Shazia Khan, Athar Ali, Shahzad Ahmad, Malik Zainul Abdin. Affordable and rapid HPTLC method for the simultaneous analysis of artemisinin and its metabolite artemisinic acid in Artemisia annua L. Biomedical chromatography : BMC. 2015 Oct; 29(10):1594-603. doi: 10.1002/bmc.3465. [PMID: 25829259]
  • Ke Yang, Sajad Rashidi Monfared, Rashidi Sajad Monafared, Hongzhen Wang, Anneli Lundgren, Peter E Brodelius. The activity of the artemisinic aldehyde Δ11(13) reductase promoter is important for artemisinin yield in different chemotypes of Artemisia annua L. Plant molecular biology. 2015 Jul; 88(4-5):325-40. doi: 10.1007/s11103-015-0284-3. [PMID: 25616735]
  • Qing Min, Wei Lu, Man-Yuan Wang, Dong Zhang, Tian-Yan Zhou, Liang Li. [Simultaneous quantitation of artemisinin, arteannuin B, artemisic acid, and scopoletin in mice plasma by HPLC-MS]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2014 Sep; 39(17):3306-10. doi: . [PMID: 25522617]
  • Hugues Renault, Jean-Etienne Bassard, Björn Hamberger, Danièle Werck-Reichhart. Cytochrome P450-mediated metabolic engineering: current progress and future challenges. Current opinion in plant biology. 2014 Jun; 19(?):27-34. doi: 10.1016/j.pbi.2014.03.004. [PMID: 24709279]
  • Bhawna Saxena, Mayavan Subramaniyan, Karan Malhotra, Neel Sarovar Bhavesh, Shobha Devi Potlakayala, Shashi Kumar. Metabolic engineering of chloroplasts for artemisinic acid biosynthesis and impact on plant growth. Journal of biosciences. 2014 Mar; 39(1):33-41. doi: 10.1007/s12038-013-9402-z. [PMID: 24499788]
  • Gaurav Sharma, Himanshi Kapoor, Madhu Chopra, Kaushal Kumar, Veena Agrawal. Strong larvicidal potential of Artemisia annua leaf extract against malaria (Anopheles stephensi Liston) and dengue (Aedes aegypti L.) vectors and bioassay-driven isolation of the marker compounds. Parasitology research. 2014 Jan; 113(1):197-209. doi: 10.1007/s00436-013-3644-4. [PMID: 24158647]
  • Xu Lu, Fangyuan Zhang, Qian Shen, Weimin Jiang, Qifang Pan, Zongyou Lv, Tingxiang Yan, Xueqing Fu, Yuliang Wang, Hongmei Qian, Kexuan Tang. Overexpression of allene oxide cyclase improves the biosynthesis of artemisinin in Artemisia annua L. PloS one. 2014; 9(3):e91741. doi: 10.1371/journal.pone.0091741. [PMID: 24642483]
  • Xiao-rong Zhang, Qi-di Deng, Ding-hua Xu, Gong-xi Chen, Li-zhi Xiong, Jiang-ming Lv. [Determination of artemisinic acid in Artemisia annua at different growth stages based on spot area]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2013 Nov; 36(11):1748-51. doi: ". [PMID: 24956812]
  • John Suberu, Lijiang Song, Susan Slade, Neil Sullivan, Guy Barker, Alexei A Lapkin. A rapid method for the determination of artemisinin and its biosynthetic precursors in Artemisia annua L. crude extracts. Journal of pharmaceutical and biomedical analysis. 2013 Oct; 84(?):269-77. doi: 10.1016/j.jpba.2013.06.025. [PMID: 23867088]
  • Hieng-Ming Ting, Bo Wang, Anna-Margareta Rydén, Lotte Woittiez, Teun van Herpen, Francel W A Verstappen, Carolien Ruyter-Spira, Jules Beekwilder, Harro J Bouwmeester, Alexander van der Krol. The metabolite chemotype of Nicotiana benthamiana transiently expressing artemisinin biosynthetic pathway genes is a function of CYP71AV1 type and relative gene dosage. The New phytologist. 2013 Jul; 199(2):352-366. doi: 10.1111/nph.12274. [PMID: 23638869]
  • C J Paddon, P J Westfall, D J Pitera, K Benjamin, K Fisher, D McPhee, M D Leavell, A Tai, A Main, D Eng, D R Polichuk, K H Teoh, D W Reed, T Treynor, J Lenihan, M Fleck, S Bajad, G Dang, D Dengrove, D Diola, G Dorin, K W Ellens, S Fickes, J Galazzo, S P Gaucher, T Geistlinger, R Henry, M Hepp, T Horning, T Iqbal, H Jiang, L Kizer, B Lieu, D Melis, N Moss, R Regentin, S Secrest, H Tsuruta, R Vazquez, L F Westblade, L Xu, M Yu, Y Zhang, L Zhao, J Lievense, P S Covello, J D Keasling, K K Reiling, N S Renninger, J D Newman. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature. 2013 Apr; 496(7446):528-32. doi: 10.1038/nature12051. [PMID: 23575629]
  • Daniel Kopetzki, François Lévesque, Peter H Seeberger. A continuous-flow process for the synthesis of artemisinin. Chemistry (Weinheim an der Bergstrasse, Germany). 2013 Apr; 19(17):5450-6. doi: 10.1002/chem.201204558. [PMID: 23520059]
  • Amita Misra, Chandan S Chanotiya, Madan M Gupta, Upendra N Dwivedi, Ajit K Shasany. Characterization of cytochrome P450 monooxygenases isolated from trichome enriched fraction of Artemisia annua L. leaf. Gene. 2012 Dec; 510(2):193-201. doi: 10.1016/j.gene.2012.09.015. [PMID: 22986332]
  • Ding-Hua Xu, Xiao-Rong Zhang, Gong-Xi Chen, Li-Zhi Xiong, Jiang-Ming Lv, Li Tang. [Variation of content of artemisic acid in different growth stages of Artemisia annua]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2012 Dec; 35(12):1914-7. doi: ". [PMID: 23705352]
  • Jian-Hua Zhu, Wei Wen, Yan-Shan Hu, Yu Tang, Rong-Min Yu. Hydroxyl octadecenoic acids biosynthesized by crown galls of Panax quinquefolium induced by artermisinic acid. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2012 Jun; 35(6):869-72. doi: ". [PMID: 23236817]
  • Wei Wu, Man Yuan, Qing Zhang, Yanming Zhu, Li Yong, Wei Wang, Yan Qi, Dianjing Guo. Chemotype-dependent metabolic response to methyl jasmonate elicitation in Artemisia annua. Planta medica. 2011 Jul; 77(10):1048-53. doi: 10.1055/s-0030-1250744. [PMID: 21267809]
  • Yansheng Zhang, Goska Nowak, Darwin W Reed, Patrick S Covello. The production of artemisinin precursors in tobacco. Plant biotechnology journal. 2011 May; 9(4):445-54. doi: 10.1111/j.1467-7652.2010.00556.x. [PMID: 20723135]
  • Jorge F S Ferreira, Devanand L Luthria. Drying affects artemisinin, dihydroartemisinic acid, artemisinic acid, and the antioxidant capacity of Artemisia annua L. leaves. Journal of agricultural and food chemistry. 2010 Feb; 58(3):1691-8. doi: 10.1021/jf903222j. [PMID: 20050663]
  • Gao-Bin Pu, Dong-Ming Ma, Jian-Lin Chen, Lan-Qing Ma, Hong Wang, Guo-Feng Li, He-Chun Ye, Ben-Ye Liu. Salicylic acid activates artemisinin biosynthesis in Artemisia annua L. Plant cell reports. 2009 Jul; 28(7):1127-35. doi: 10.1007/s00299-009-0713-3. [PMID: 19521701]
  • Dae-Kyun Ro, Mario Ouellet, Eric M Paradise, Helcio Burd, Diana Eng, Chris J Paddon, Jack D Newman, Jay D Keasling. Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid. BMC biotechnology. 2008 Nov; 8(?):83. doi: 10.1186/1472-6750-8-83. [PMID: 18983675]
  • Jacob R Lenihan, Hiroko Tsuruta, Don Diola, Neil S Renninger, Rika Regentin. Developing an industrial artemisinic acid fermentation process to support the cost-effective production of antimalarial artemisinin-based combination therapies. Biotechnology progress. 2008 Sep; 24(5):1026-32. doi: 10.1002/btpr.27. [PMID: 19194910]
  • Chenfei Ma, Huahong Wang, Xin Lu, Guowang Xu, Benye Liu. Metabolic fingerprinting investigation of Artemisia annua L. in different stages of development by gas chromatography and gas chromatography-mass spectrometry. Journal of chromatography. A. 2008 Apr; 1186(1-2):412-9. doi: 10.1016/j.chroma.2007.09.023. [PMID: 17915234]
  • Qingping Zeng, Frank Qiu, Ling Yuan. Production of artemisinin by genetically-modified microbes. Biotechnology letters. 2008 Apr; 30(4):581-92. doi: 10.1007/s10529-007-9596-y. [PMID: 18008167]
  • Dong Zhang, Lan Yang, Li-Xin Yang, Man-Yuan Wang, You-You Tu. [Determination of artemisinin, arteannuin B and artemisinic acid in Herba Artemisiae Annuae by HPLC-UV-ELSD]. Yao xue xue bao = Acta pharmaceutica Sinica. 2007 Sep; 42(9):978-81. doi: . [PMID: 18050742]
  • Michelle C Y Chang, Rachel A Eachus, William Trieu, Dae-Kyun Ro, Jay D Keasling. Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nature chemical biology. 2007 May; 3(5):274-7. doi: 10.1038/nchembio875. [PMID: 17438551]
  • Jorge F S Ferreira. Nutrient deficiency in the production of artemisinin, dihydroartemisinic acid, and artemisinic acid in Artemisia annua L. Journal of agricultural and food chemistry. 2007 Mar; 55(5):1686-94. doi: 10.1021/jf063017v. [PMID: 17295513]
  • Pamita Bhandari, Ajai P Gupta, Bikram Singh, Vijay K Kaul. Simultaneous densitometric determination of artemisinin, artemisinic acid and arteannuin-B in Artemisia annua using reversed-phase thin layer chromatography. Journal of separation science. 2005 Nov; 28(17):2288-92. doi: 10.1002/jssc.200500198. [PMID: 16342793]
  • M Kohler, W Haerdi, P Christen, J L Veuthey. Extraction of artemisinin and artemisinic acid from Artemisia annua L. using supercritical carbon dioxide. Journal of chromatography. A. 1997 Oct; 785(1-2):353-60. doi: 10.1016/s0021-9673(97)00403-2. [PMID: 9409011]
  • Y Y Tu. [The constituents of young Artemisia annua]. Zhong yao tong bao (Beijing, China : 1981). 1985 Sep; 10(9):35-6, 18. doi: ". [PMID: 2935314]