Phlorizin (BioDeep_00000398016)

Main id: BioDeep_00000000068

 

PANOMIX_OTCML-2023 natural product


代谢物信息卡片


1-[2,4-dihydroxy-6-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]phenyl]-3-(4-hydroxyphenyl)propan-1-one

化学式: C21H24O10 (436.1369)
中文名称: 根皮苷
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C1(O)C=C(O)C(C(=O)CCC2C=CC(O)=CC=2)=C(O[C@H]2[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O2)C=1
InChI: InChI=1S/C21H24O10/c22-9-16-18(27)19(28)20(29)21(31-16)30-15-8-12(24)7-14(26)17(15)13(25)6-3-10-1-4-11(23)5-2-10/h1-2,4-5,7-8,16,18-24,26-29H,3,6,9H2

描述信息

Origin: Plant; Formula(Parent): C21H24O10; Bottle Name:Phloridzin; PRIME Parent Name:Phloretin-2-O-glucoside; PRIME in-house No.:S0307, Glycosides
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.718
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.713
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.714
Acquisition and generation of the data is financially supported by the Max-Planck-Society
IPB_RECORD: 2021; CONFIDENCE confident structure
Phlorizin (Floridzin) is a non-selective SGLT inhibitor with Kis of 300 and 39 nM for hSGLT1 and hSGLT2, respectively. Phlorizin is also a Na+/K+-ATPase inhibitor.
Phlorizin (Floridzin) is a non-selective SGLT inhibitor with Kis of 300 and 39 nM for hSGLT1 and hSGLT2, respectively. Phlorizin is also a Na+/K+-ATPase inhibitor.

同义名列表

56 个代谢物同义名

1-[2,4-dihydroxy-6-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]phenyl]-3-(4-hydroxyphenyl)propan-1-one; 1-[2,4-dihydroxy-6-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-phenyl]-3-(4-hydroxyphenyl)propan-1-one; 1-[2,4-dihydroxy-6-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-methylol-tetrahydropyran-2-yl]oxy-phenyl]-3-(4-hydroxyphenyl)propan-1-one; 1-[2,4-dihydroxy-6-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-phenyl]-3-(4-hydroxyphenyl)propan-1-one; 1-[2,4-dihydroxy-6-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyphenyl]-3-(4-hydroxyphenyl)propan-1-one; 1-Propanone, 1-(2-(beta-D-glucopyranosyloxy)-4,6-dihydroxyphenyl)-3-(4-hydroxyphenyl)-; 1-Propanone, 1-[2-(beta-D-glucopyranosyloxy)-4,6-dihydroxyphenyl]-3-(4-hydroxyphenyl)-; 1-[2-(.beta.-D-Glucopyranosyloxy)-4,6-dihydroxyphenyl]-3-(4-hydroxyphenyl)-1-propanone; 2-(.beta.-D-glucopyranosyloxy)-4,6-dihydroxy-3-(4-hydroxyphenyl)propiophenone; 2-(beta-D-Glucopyranosyloxy)-4,6-dihydroxy-3-(4-hydroxyphenyl)propiophenone; 3,5-dihydroxy-2-[3-(4-hydroxyphenyl)propanoyl]phenyl beta-D-glucopyranoside; 4,6-dihydroxy-2-(beta-D-glucosido)-beta-(p-hydroxyphenyl)propiophenone; Phloretin-2-beta-glucoside; SDCCGMLS-0066626.P001; Phloretin 2-glucoside; Phlorhizin;Phlorizin; EINECS 200-487-1; Spectrum5_000521; Spectrum4_001651; Spectrum2_000701; Spectrum3_001227; Spectrum_001291; NCGC00142423-01; SpecPlus_000325; SPECTRUM300547; DivK1c_006421; BSPBio_002674; KBioGR_002141; KBioSS_001771; SPBio_000881; KBio3_002174; KBio2_001771; ZINC03875408; KBio2_006907; Phloridzosid; KBio1_001365; KBio2_004339; Phlorrhizen; AIDS-009884; 112318-65-7; 16055-86-0; Phloridzin; AIDS009884; 52276-56-9; CHEBI:8113; Phlorhizin; AI3-19835; SBB005924; Phlorizin; Floridzin; NSC 2833; 60-81-1; C01604; 4,2,4,6-Tetrahydroxydihydroxychalcone 2-glucoside; Phlr-2p-Glc; Phlorizin



数据库引用编号

37 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

151 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 8 ANPEP, BCL2, CASP3, CAT, MTOR, POMC, SLC2A2, TYR
Peripheral membrane protein 2 ACHE, MTOR
Endoplasmic reticulum membrane 3 BCL2, HSP90B1, MTOR
Nucleus 5 ACHE, BCL2, CASP3, HSP90B1, MTOR
cytosol 6 BCL2, CASP3, CAT, HSP90B1, MTOR, SLC2A1
dendrite 1 MTOR
phagocytic vesicle 1 MTOR
nucleoplasm 3 ATP2B1, CASP3, MTOR
Cell membrane 7 ACHE, ANPEP, ATP2B1, SLC2A1, SLC2A2, SLC5A2, TNF
Cytoplasmic side 1 MTOR
Multi-pass membrane protein 5 ATP2B1, SLC2A1, SLC2A2, SLC5A1, SLC5A2
Golgi apparatus membrane 1 MTOR
Synapse 2 ACHE, ATP2B1
cell surface 2 ACHE, TNF
glutamatergic synapse 2 ATP2B1, CASP3
Golgi apparatus 2 ACHE, SI
Golgi membrane 3 INS, MTOR, SLC2A1
lysosomal membrane 2 ANPEP, MTOR
neuromuscular junction 1 ACHE
neuronal cell body 2 CASP3, TNF
presynaptic membrane 1 ATP2B1
sarcolemma 1 SLC2A1
smooth endoplasmic reticulum 1 HSP90B1
Lysosome 2 MTOR, TYR
Presynapse 1 SLC2A1
plasma membrane 11 ACHE, ANPEP, ATP2B1, GCG, LCT, SI, SLC2A1, SLC2A2, SLC5A1, SLC5A2, TNF
synaptic vesicle membrane 1 ATP2B1
Membrane 10 ACHE, ATP2B1, BCL2, CAT, HSP90B1, MTOR, SI, SLC2A1, SLC2A2, SLC5A2
apical plasma membrane 5 SI, SLC2A1, SLC2A2, SLC5A1, SLC5A2
basolateral plasma membrane 2 ATP2B1, SLC2A1
brush border 2 SI, SLC2A2
caveola 1 SLC2A1
extracellular exosome 8 ANPEP, ATP2B1, CAT, HSP90B1, SI, SLC2A1, SLC5A1, SLC5A2
Lysosome membrane 1 MTOR
endoplasmic reticulum 2 BCL2, HSP90B1
extracellular space 7 ACHE, ANPEP, GCG, IL6, INS, POMC, TNF
perinuclear region of cytoplasm 4 ACHE, HSP90B1, SLC5A1, TYR
intercalated disc 1 SLC2A1
mitochondrion 2 BCL2, CAT
protein-containing complex 3 BCL2, CAT, HSP90B1
intracellular membrane-bounded organelle 3 ATP2B1, CAT, TYR
Microsome membrane 1 MTOR
postsynaptic density 1 CASP3
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 2 LCT, TYR
Secreted 5 ACHE, GCG, IL6, INS, POMC
extracellular region 8 ACHE, CAT, GCG, HSP90B1, IL6, INS, POMC, TNF
Mitochondrion outer membrane 2 BCL2, MTOR
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 2 BCL2, MTOR
mitochondrial matrix 1 CAT
Extracellular side 1 ACHE
photoreceptor inner segment 1 SLC2A1
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 ATP2B1
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 2 ANPEP, TNF
Z disc 1 SLC2A1
Melanosome membrane 1 TYR
midbody 2 HSP90B1, SLC2A1
Early endosome 1 SLC5A1
cell-cell junction 1 SLC2A2
Golgi-associated vesicle 1 TYR
recycling endosome 1 TNF
Single-pass type II membrane protein 2 ANPEP, TNF
Apical cell membrane 3 LCT, SLC5A1, SLC5A2
Membrane raft 1 TNF
pore complex 1 BCL2
focal adhesion 2 CAT, HSP90B1
Peroxisome 1 CAT
basement membrane 1 ACHE
intracellular vesicle 1 SLC5A1
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Nucleus, PML body 1 MTOR
PML body 1 MTOR
collagen-containing extracellular matrix 1 HSP90B1
secretory granule 1 POMC
lateral plasma membrane 1 ATP2B1
cell projection 1 ATP2B1
phagocytic cup 1 TNF
brush border membrane 1 SLC5A1
blood microparticle 1 SLC2A1
Basolateral cell membrane 1 ATP2B1
Lipid-anchor, GPI-anchor 1 ACHE
nuclear envelope 1 MTOR
Endomembrane system 1 MTOR
endosome lumen 1 INS
female germ cell nucleus 1 SLC2A1
Melanosome 3 HSP90B1, SLC2A1, TYR
Presynaptic cell membrane 1 ATP2B1
side of membrane 1 ACHE
myelin sheath 1 BCL2
sperm plasma membrane 1 HSP90B1
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 4 CAT, GCG, INS, POMC
secretory granule membrane 1 ANPEP
Golgi lumen 1 INS
endoplasmic reticulum lumen 4 GCG, HSP90B1, IL6, INS
cortical actin cytoskeleton 1 SLC2A1
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
immunological synapse 1 ATP2B1
Sarcoplasmic reticulum lumen 1 HSP90B1
endoplasmic reticulum-Golgi intermediate compartment 1 ANPEP
synaptic cleft 1 ACHE
external side of apical plasma membrane 1 LCT
death-inducing signaling complex 1 CASP3
female pronucleus 1 SLC2A1
Cytoplasmic vesicle, phagosome 1 MTOR
endocytic vesicle lumen 1 HSP90B1
[Glucagon-like peptide 1]: Secreted 1 GCG
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
interleukin-6 receptor complex 1 IL6
endoplasmic reticulum chaperone complex 1 HSP90B1
BAD-BCL-2 complex 1 BCL2
photoreceptor ribbon synapse 1 ATP2B1
glucose transporter complex 1 SLC2A1
intracellular organelle 1 SLC5A1
[Isoform H]: Cell membrane 1 ACHE
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Suping Zeng, Longhua Yu, Ping He, Hui Feng, Jia Wang, Huacong Zhang, Yunxia Song, Ren Liu, Yueqiao Li. Integrated transcriptome and metabolome analysis reveals the regulation of phlorizin synthesis in Lithocarpus polystachyus under nitrogen fertilization. BMC plant biology. 2024 May; 24(1):366. doi: 10.1186/s12870-024-05090-9. [PMID: 38711037]
  • Qian Zhao, Xiaoning Li, Yu Jiao, Ying Chen, Yanfang Yan, Yuzhu Wang, Cyril Hamiaux, Yule Wang, Fengwang Ma, Ross G Atkinson, Pengmin Li. Identification of two key genes involved in flavonoid catabolism and their different roles in apple resistance to biotic stresses. The New phytologist. 2024 May; 242(3):1238-1256. doi: 10.1111/nph.19644. [PMID: 38426393]
  • Chen-Mu Luo, Li-Fan Ke, Xiang-Yu Huang, Xiao-Yan Zhuang, Ze-Wang Guo, Qiong Xiao, Jun Chen, Fu-Quan Chen, Qiu-Ming Yang, Yi Ru, Hui-Fen Weng, An-Feng Xiao, Yong-Hui Zhang. Efficient biosynthesis of prunin in methanol cosolvent system by an organic solvent-tolerant α-L-rhamnosidase from Spirochaeta thermophila. Enzyme and microbial technology. 2024 Apr; 175(?):110410. doi: 10.1016/j.enzmictec.2024.110410. [PMID: 38340378]
  • Virgile Neyman, Maude Quicray, Frédéric Francis, Catherine Michaux. Toxicological, biochemical, and in silico investigations of three trehalase inhibitors for new ways to control aphids. Archives of insect biochemistry and physiology. 2024 Apr; 115(4):e22112. doi: 10.1002/arch.22112. [PMID: 38605672]
  • Xueran Mei, Yi Li, Xiaoyu Zhang, Xiwen Zhai, Yi Yang, Zhengjuan Li, Liping Li. Maternal Phlorizin Intake Protects Offspring from Maternal Obesity-Induced Metabolic Disorders in Mice via Targeting Gut Microbiota to Activate the SCFA-GPR43 Pathway. Journal of agricultural and food chemistry. 2024 Mar; 72(9):4703-4725. doi: 10.1021/acs.jafc.3c06370. [PMID: 38349207]
  • Tongjia Ni, Shuai Zhang, Jia Rao, Jiaqi Zhao, Haiqi Huang, Ying Liu, Yue Ding, Yaqian Liu, Yuchi Ma, Shoujun Zhang, Yang Gao, Liqian Shen, Chuanbo Ding, Yunpeng Sun. Phlorizin, an Important Glucoside: Research Progress on Its Biological Activity and Mechanism. Molecules (Basel, Switzerland). 2024 Feb; 29(3):. doi: 10.3390/molecules29030741. [PMID: 38338482]
  • Hui-Rong Bai, Jing Li, Li-Juan Lang, Yi Hao, Bei Jiang, Chao-Jiang Xiao. Crystal structure of phloridzin and its distribution changes in flowering and fruiting stage of Malus rockii. Zeitschrift fur Naturforschung. C, Journal of biosciences. 2023 Nov; 78(11-12):383-387. doi: 10.1515/znc-2023-0046. [PMID: 37608519]
  • Yong Cheng, Xi Chen, Tian Yang, Zhaojun Wang, Qiuming Chen, Maomao Zeng, Fang Qin, Jie Chen, Zhiyong He. Effects of whey protein isolate and ferulic acid/phloridzin/naringin/cysteine on the thermal stability of mulberry anthocyanin extract at neutral pH. Food chemistry. 2023 Nov; 425(?):136494. doi: 10.1016/j.foodchem.2023.136494. [PMID: 37270886]
  • Wasundara Fernando, Rikki F Clark, H P Vasantha Rupasinghe, David W Hoskin, Melanie R Power Coombs. Phloridzin Docosahexaenoate Inhibits Spheroid Formation by Breast Cancer Stem Cells and Exhibits Cytotoxic Effects against Paclitaxel-Resistant Triple Negative Breast Cancer Cells. International journal of molecular sciences. 2023 Sep; 24(19):. doi: 10.3390/ijms241914577. [PMID: 37834020]
  • Yule Wang, Yuduan Ding, Qian Zhao, Chen Wu, Cecilia H Deng, Jingru Wang, Yufan Wang, Yanfang Yan, Rui Zhai, Yar-Khing Yauk, Fengwang Ma, Ross G Atkinson, Pengmin Li. Dihydrochalcone glycoside biosynthesis in Malus is regulated by two MYB-like transcription factors and is required for seed development. The Plant journal : for cell and molecular biology. 2023 Aug; ?(?):. doi: 10.1111/tpj.16444. [PMID: 37648286]
  • Zhengming Xu, Shuang Liu, Huining Lai, Lijun You, Zhengang Zhao. Green-Efficient Enzymatic Synthesis and Characterization of Liposoluble 6'/6″-O-Lauryl Phenolic Glycosides with Enhanced Intestinal Permeability. Journal of agricultural and food chemistry. 2023 May; 71(20):7689-7702. doi: 10.1021/acs.jafc.3c00527. [PMID: 37167604]
  • Shiv Kumar, Jyoti Chhimwal, Suresh Kumar, Rahul Singh, Vikram Patial, Rituraj Purohit, Yogendra S Padwad. Phloretin and phlorizin mitigates inflammatory stress and alleviate adipose and hepatic insulin resistance by abrogating PPARγ S273-Cdk5 interaction in type 2 diabetic mice. Life sciences. 2023 Apr; ?(?):121668. doi: 10.1016/j.lfs.2023.121668. [PMID: 37023949]
  • Yijia Jia, Xinyue Yan, Xiaotian Li, Shuang Zhang, Yuyang Huang, Dongmeng Zhang, Yang Li, Baokun Qi. Soy protein-phlorizin conjugate prepared by tyrosinase catalysis: Identification of covalent binding sites and alterations in protein structure and functionality. Food chemistry. 2023 Mar; 404(Pt A):134610. doi: 10.1016/j.foodchem.2022.134610. [PMID: 36257271]
  • Sukun Lin, Li Zhang, Peiwen Zhang, Rilin Huang, Muhammad Musa Khan, Shah Fahad, Dongmei Cheng, Zhixiang Zhang. Effects of glycosylation on the accumulation and transport of fipronil in earthworm (Eisenia fetida). Environmental science and pollution research international. 2023 Jan; 30(2):3688-3696. doi: 10.1007/s11356-022-22417-x. [PMID: 35953750]
  • Sei Saitoh, Takashi Takaki, Kazuki Nakajima, Bao Wo, Hiroshi Terashima, Satoshi Shimo, Huy Bang Nguyen, Truc Quynh Thai, Kanako Kumamoto, Kazuo Kunisawa, Shizuko Nagao, Akihiro Tojo, Nobuhiko Ohno, Kazuo Takahashi. Treatment of tubular damage in high-fat-diet-fed obese mice using sodium-glucose co-transporter inhibitors. PloS one. 2023; 18(2):e0281770. doi: 10.1371/journal.pone.0281770. [PMID: 36780539]
  • Simón Miranda, Stefano Piazza, Floriana Nuzzo, Mingai Li, Jorge Lagrèze, Axel Mithöfer, Alessandro Cestaro, Danuše Tarkowska, Richard Espley, Andrew Dare, Mickael Malnoy, Stefan Martens. CRISPR/Cas9 genome-editing applied to MdPGT1 in apple results in reduced foliar phloridzin without impacting plant growth. The Plant journal : for cell and molecular biology. 2023 01; 113(1):92-105. doi: 10.1111/tpj.16036. [PMID: 36401738]
  • Yijia Jia, Yishan Fu, Hui Man, Xinyue Yan, Yuyang Huang, Shiyan Sun, Baokun Qi, Yang Li. Comparative study of binding interactions between different dietary flavonoids and soybean β-conglycinin and glycinin: Impact on structure and function of the proteins. Food research international (Ottawa, Ont.). 2022 11; 161(?):111784. doi: 10.1016/j.foodres.2022.111784. [PMID: 36192935]
  • Li-Juan Lang, Min Wang, Chang Lei, Yi Shen, Qi-Jie Zhu, Hong-Mei Diao, Hao Chen, Lei Shen, Xiang Dong, Bei Jiang, Chao-Jiang Xiao. Phloridzin Highly Accumulated in Malus rockii Rehder and Its Structure Revision and Hypolipidemic Activity. Planta medica. 2022 Oct; 88(13):1190-1198. doi: 10.1055/a-1716-0958. [PMID: 34875697]
  • Jinqian Chen, Hao Zhang, Xia Hu, Mengyuan Xu, Yanjun Su, Chunze Zhang, Yuan Yue, Xiaomin Zhang, Xinyu Wang, Wei Cui, Zhenyu Zhao, Xichuan Li. Phloretin exhibits potential food-drug interactions by inhibiting human UDP-glucuronosyltransferases in vitro. Toxicology in vitro : an international journal published in association with BIBRA. 2022 Oct; 84(?):105447. doi: 10.1016/j.tiv.2022.105447. [PMID: 35868516]
  • Lili Tian, Majid Mufaqam Syed-Abdul, Priska Stahel, Gary F Lewis. Enteral glucose, absorbed and metabolized, potently enhances mesenteric lymph flow in chow- and high-fat-fed rats. American journal of physiology. Gastrointestinal and liver physiology. 2022 Oct; 323(4):G331-G340. doi: 10.1152/ajpgi.00095.2022. [PMID: 35916412]
  • Arzu Kavaz, Mesut Işık, Emrah Dikici, Mehmet Yüksel. Anticholinergic, Antioxidant, and Antibacterial Properties of Vitex Agnus-Castus L. Seed Extract: Assessment of Its Phenolic Content by LC/MS/MS. Chemistry & biodiversity. 2022 Oct; 19(10):e202200143. doi: 10.1002/cbdv.202200143. [PMID: 36075867]
  • Mohamed Marghich, Nour Elhouda Daoudi, Ouafa Amrani, Mohamed Addi, Christophe Hano, Jen-Tsung Chen, Hassane Mekhfi, Abderrahim Ziyyat, Mohamed Bnouham, Mohammed Aziz. Antioxidant Activity and Inhibition of Carbohydrate Digestive Enzymes Activities of Artemisia campestris L. Frontiers in bioscience (Scholar edition). 2022 09; 14(4):25. doi: 10.31083/j.fbs1404025. [PMID: 36575835]
  • Ebrahim Gholamalipour Alamdari, Akram Taleghani. New bioactive compounds characterized by liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry in hydro-methanol and petroleum ether extracts of Prosopis farcta (Banks & Sol.) J. F. Macbr weed. Journal of mass spectrometry : JMS. 2022 Sep; 57(9):e4884. doi: 10.1002/jms.4884. [PMID: 36128672]
  • Shuwen Sun, Mingqian Hao, Chuanbo Ding, Jinping Zhang, Qiteng Ding, Yiwen Zhang, Yingchun Zhao, Wencong Liu. SF/PVP nanofiber wound dressings loaded with phlorizin: preparation, characterization, in vivo and in vitro evaluation. Colloids and surfaces. B, Biointerfaces. 2022 Sep; 217(?):112692. doi: 10.1016/j.colsurfb.2022.112692. [PMID: 35834996]
  • September Numata, Jeff P McDermott, Gladis Sanchez, Amrita Mitra, Gustavo Blanco. The sodium-glucose cotransporter isoform 1 (SGLT-1) is important for sperm energetics, motility, and fertility†. Biology of reproduction. 2022 06; 106(6):1206-1217. doi: 10.1093/biolre/ioac052. [PMID: 35420639]
  • Congjian Ma, Yanjun Deng, Ran Xiao, Fan Xu, Mobai Li, Qihai Gong, Jianmei Gao. Anti-fatigue effect of phlorizin on exhaustive exercise-induced oxidative injury mediated by Nrf2/ARE signaling pathway in mice. European journal of pharmacology. 2022 Mar; 918(?):174563. doi: 10.1016/j.ejphar.2021.174563. [PMID: 34942162]
  • Kun Zhou, Lingyu Hu, Hong Yue, Zhijun Zhang, Jingyun Zhang, Xiaoqing Gong, Fengwang Ma. MdUGT88F1-mediated phloridzin biosynthesis coordinates carbon and nitrogen accumulation in apple. Journal of experimental botany. 2022 01; 73(3):886-902. doi: 10.1093/jxb/erab410. [PMID: 34486649]
  • Wan Yang, Hongdi Li, Jiayi Liu, Hua Shao, Juan Hua, Shihong Luo. Degraded Metabolites of Phlorizin Promote Germination of Valsa mali var. mali in its Host Malus spp. Journal of agricultural and food chemistry. 2022 Jan; 70(1):149-156. doi: 10.1021/acs.jafc.1c06206. [PMID: 34939801]
  • Ernest M Wright. SGLT2 Inhibitors: Physiology and Pharmacology. Kidney360. 2021 12; 2(12):2027-2037. doi: 10.34067/kid.0002772021. [PMID: 35419546]
  • Li Xiang, Mei Wang, Weitao Jiang, Yanfang Wang, Xuesen Chen, Chengmiao Yin, Zhiquan Mao. Key indicators for renewal and reconstruction of perennial trees soil: Microorganisms and phloridzin. Ecotoxicology and environmental safety. 2021 Dec; 225(?):112723. doi: 10.1016/j.ecoenv.2021.112723. [PMID: 34481354]
  • Kento Kitada, Satoshi Kidoguchi, Daisuke Nakano, Akira Nishiyama. Sodium/glucose cotransporter 2 and renoprotection: From the perspective of energy regulation and water conservation. Journal of pharmacological sciences. 2021 Nov; 147(3):245-250. doi: 10.1016/j.jphs.2021.07.006. [PMID: 34507633]
  • Jun-Zhi Wang, Yu Bian, Gai-Gai Deng, Yu Wang, Hua-Ling Yan, Xiao-Lan Zhang, Yong-Mei Huang, Ao Li, Xing-Yue Liao, Tian-Yan Feng. Effects of phloridzin on blood glucose and key enzyme G-6-Pase of gluconeogenesis in mice. Journal of food biochemistry. 2021 11; 45(11):e13956. doi: 10.1111/jfbc.13956. [PMID: 34590315]
  • Huazhen Liu, Yonger Chen, Yifan Wen, Shumin Zhu, Song Huang, Lian He, Shaozhen Hou, Xiaoping Lai, Shuxian Chen, Zhenhua Dai, Jian Liang. Phloridzin Ameliorates Lipid Deposition in High-Fat-Diet-Fed Mice with Nonalcoholic Fatty Liver Disease via Inhibiting the mTORC1/SREBP-1c Pathway. Journal of agricultural and food chemistry. 2021 Aug; 69(31):8671-8683. doi: 10.1021/acs.jafc.1c01645. [PMID: 34342231]
  • Zhenxian Jia, Yuning Xie, Hongjiao Wu, Zhuo Wang, Ang Li, Ze Li, Zhenbang Yang, Zhi Zhang, Zhaobin Xing, Xuemei Zhang. Phlorizin from sweet tea inhibits the progress of esophageal cancer by antagonizing the JAK2/STAT3 signaling pathway. Oncology reports. 2021 Jul; 46(1):. doi: 10.3892/or.2021.8088. [PMID: 34036398]
  • Jan Táborský, Josef Sus, Jaromír Lachman, Barbora Šebková, Anežka Adamcová, Dalibor Šatínský. Dynamics of Phloridzin and Related Compounds in Four Cultivars of Apple Trees during the Vegetation Period. Molecules (Basel, Switzerland). 2021 Jun; 26(13):. doi: 10.3390/molecules26133816. [PMID: 34206687]
  • Jie Xie, Jiang Chen, Xue-Ran Mei, Ming-Jun Zhu, Xue-Li Li, Juan Du, Xiao-Yu Zhang. Biotransformation of Phlorizin by Eurotium cristatum to Increase the Antioxidant and Antibacterial Activity of Docynia indica Leaves. Current microbiology. 2021 Apr; 78(4):1590-1601. doi: 10.1007/s00284-021-02366-3. [PMID: 33686505]
  • Sun-Young Yoon, Jae Sik Yu, Ji Young Hwang, Hae Min So, Seung Oh Seo, Jung Kyu Kim, Tae Su Jang, Sang J Chung, Ki Hyun Kim. Phloridzin Acts as an Inhibitor of Protein-Tyrosine Phosphatase MEG2 Relevant to Insulin Resistance. Molecules (Basel, Switzerland). 2021 Mar; 26(6):. doi: 10.3390/molecules26061612. [PMID: 33799458]
  • Laura Ferté, Alice Marino, Sylvain Battault, Laurent Bultot, Anne Van Steenbergen, Anne Bol, Julien Cumps, Audrey Ginion, Hermann Koepsell, Laure Dumoutier, Louis Hue, Sandrine Horman, Luc Bertrand, Christophe Beauloye. New insight in understanding the contribution of SGLT1 in cardiac glucose uptake: evidence for a truncated form in mice and humans. American journal of physiology. Heart and circulatory physiology. 2021 02; 320(2):H838-H853. doi: 10.1152/ajpheart.00736.2019. [PMID: 33416451]
  • Harun Un, Rustem Anil Ugan, Muhammet Ali Gurbuz, Yasin Bayir, Aysenur Kahramanlar, Gokce Kaya, Elif Cadirci, Zekai Halici. Phloretin and phloridzin guard against cisplatin-induced nephrotoxicity in mice through inhibiting oxidative stress and inflammation. Life sciences. 2021 Feb; 266(?):118869. doi: 10.1016/j.lfs.2020.118869. [PMID: 33309722]
  • Yali Yang, Hailiang Shen, Ting Liu, Yaoyao Wen, Furong Wang, Yurong Guo. Mitigation effects of phlorizin immersion on acrylamide formation in fried potato strips. Journal of the science of food and agriculture. 2021 Feb; 101(3):937-946. doi: 10.1002/jsfa.10701. [PMID: 32748961]
  • Lei Tian, Jianxin Cao, Tianrui Zhao, Yaping Liu, Afsar Khan, Guiguang Cheng. The Bioavailability, Extraction, Biosynthesis and Distribution of Natural Dihydrochalcone: Phloridzin. International journal of molecular sciences. 2021 Jan; 22(2):. doi: 10.3390/ijms22020962. [PMID: 33478062]
  • Dong Liu, Yanglin Ji, Yatu Guo, Hui Wang, Zijian Wu, Heyu Li, Hao Wang. Dietary Supplementation of Apple Phlorizin Attenuates the Redox State Related to Gut Microbiota Homeostasis in C57BL/6J Mice Fed with a High-Fat Diet. Journal of agricultural and food chemistry. 2021 Jan; 69(1):198-211. doi: 10.1021/acs.jafc.0c06426. [PMID: 33350821]
  • Wasundara Fernando, Kerry B Goralski, David W Hoskin, H P Vasantha Rupasinghe. Metabolism and pharmacokinetics of a novel polyphenol fatty acid ester phloridzin docosahexaenoate in Balb/c female mice. Scientific reports. 2020 12; 10(1):21391. doi: 10.1038/s41598-020-78369-0. [PMID: 33288802]
  • Xiao-Yu Zhang, Jiang Chen, Kang Yi, Ling Peng, Jie Xie, Xun Gou, Tong Peng, Lin Tang. Phlorizin ameliorates obesity-associated endotoxemia and insulin resistance in high-fat diet-fed mice by targeting the gut microbiota and intestinal barrier integrity. Gut microbes. 2020 11; 12(1):1-18. doi: 10.1080/19490976.2020.1842990. [PMID: 33222603]
  • Yanli Guo, Zheng Ran, Yongwei Zhang, Zhipeng Song, Lifeng Wang, Lan Yao, Minfang Zhang, Jialiang Xin, Xinmin Mao. Marein ameliorates diabetic nephropathy by inhibiting renal sodium glucose transporter 2 and activating the AMPK signaling pathway in db/db mice and high glucose-treated HK-2 cells. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2020 Nov; 131(?):110684. doi: 10.1016/j.biopha.2020.110684. [PMID: 33152903]
  • Emily J Prpa, Christopher P Corpe, Ben Atkinson, Brittany Blackstone, Elizabeth S Leftley, Priya Parekh, Mark Philo, Paul A Kroon, Wendy L Hall. Apple polyphenol-rich drinks dose-dependently decrease early-phase postprandial glucose concentrations following a high-carbohydrate meal: a randomized controlled trial in healthy adults and in vitro studies. The Journal of nutritional biochemistry. 2020 11; 85(?):108466. doi: 10.1016/j.jnutbio.2020.108466. [PMID: 32739411]
  • Catherine P Bondonno, Nicola P Bondonno, Sujata Shinde, Armaghan Shafaei, Mary C Boyce, Ewald Swinny, Steele R Jacob, Kevin Lacey, Richard J Woodman, Kevin D Croft, Michael J Considine, Jonathan M Hodgson. Phenolic composition of 91 Australian apple varieties: towards understanding their health attributes. Food & function. 2020 Aug; 11(8):7115-7125. doi: 10.1039/d0fo01130d. [PMID: 32744555]
  • Laise C da Silva, Mariana C Souza, Beatriz R Sumere, Luiz G S Silva, Diogo T da Cunha, Gerardo F Barbero, Rosangela M N Bezerra, Mauricio A Rostagno. Simultaneous extraction and separation of bioactive compounds from apple pomace using pressurized liquids coupled on-line with solid-phase extraction. Food chemistry. 2020 Jul; 318(?):126450. doi: 10.1016/j.foodchem.2020.126450. [PMID: 32151921]
  • Andrew P Dare, Sumathi Tomes, Tony K McGhie, John W van Klink, Manoharie Sandanayaka, Ian C Hallett, Ross G Atkinson. Overexpression of chalcone isomerase in apple reduces phloridzin accumulation and increases susceptibility to herbivory by two-spotted mites. The Plant journal : for cell and molecular biology. 2020 07; 103(1):293-307. doi: 10.1111/tpj.14729. [PMID: 32096261]
  • Ngoc Anh Nguyen, Jin Jang, Thien-Kim Le, Thi Huong Ha Nguyen, Su-Min Woo, Su-Kyoung Yoo, Young Ju Lee, Ki Deok Park, Soo-Jin Yeom, Geun-Joong Kim, Hyung-Sik Kang, Chul-Ho Yun. Biocatalytic Production of a Potent Inhibitor of Adipocyte Differentiation from Phloretin Using Engineered CYP102A1. Journal of agricultural and food chemistry. 2020 Jun; 68(24):6683-6691. doi: 10.1021/acs.jafc.0c03156. [PMID: 32468814]
  • Young H Seo, Shin-Young Kang, Ji-Sun Shin, Seung M Ryu, A Y Lee, Goya Choi, Byeong C Moon, Dae-Sik Jang, Sang H Shim, Dongho Lee, Kyung-Tae Lee, Jun Lee. Chemical Constituents from the Aerial Parts of Agastache rugosa and Their Inhibitory Activities on Prostaglandin E2 Production in Lipopolysaccharide-Treated RAW 264.7 Macrophages. Journal of natural products. 2019 12; 82(12):3379-3385. doi: 10.1021/acs.jnatprod.9b00697. [PMID: 31747281]
  • Kashif Haider, Ankita Pathak, Ankit Rohilla, Md Rafi Haider, Kamal Ahmad, M Shahar Yar. Synthetic strategy and SAR studies of C-glucoside heteroaryls as SGLT2 inhibitor: A review. European journal of medicinal chemistry. 2019 Dec; 184(?):111773. doi: 10.1016/j.ejmech.2019.111773. [PMID: 31630053]
  • Wasundara Fernando, Krysta Coyle, Paola Marcato, H P Vasantha Rupasinghe, David W Hoskin. Phloridzin docosahexaenoate, a novel fatty acid ester of a plant polyphenol, inhibits mammary carcinoma cell metastasis. Cancer letters. 2019 Nov; 465(?):68-81. doi: 10.1016/j.canlet.2019.08.015. [PMID: 31473253]
  • Shalini Dixit, Priyanka Maurya, Madhumita Srivastava, Karuna Shanker, Dnyaneshwar U Bawankule, Madan M Gupta, Lalit Kumar Rai. Quantitation of dietary dihydrochalcones in Indian crabapple (Malus sikkimensis) using validated high-performance liquid chromatography. Journal of chromatographic science. 2019 Aug; 57(8):679-687. doi: 10.1093/chromsci/bmz040. [PMID: 31298265]
  • Kun Zhou, Lingyu Hu, Yangtiansu Li, Xiaofeng Chen, Zhijun Zhang, Bingbing Liu, Pengmin Li, Xiaoqing Gong, Fengwang Ma. MdUGT88F1-Mediated Phloridzin Biosynthesis Regulates Apple Development and Valsa Canker Resistance. Plant physiology. 2019 08; 180(4):2290-2305. doi: 10.1104/pp.19.00494. [PMID: 31227620]
  • Akira Yoshii, Tomohisa Nagoshi, Yusuke Kashiwagi, Haruka Kimura, Yoshiro Tanaka, Yuhei Oi, Keiichi Ito, Takuya Yoshino, Toshikazu D Tanaka, Michihiro Yoshimura. Cardiac ischemia-reperfusion injury under insulin-resistant conditions: SGLT1 but not SGLT2 plays a compensatory protective role in diet-induced obesity. Cardiovascular diabetology. 2019 07; 18(1):85. doi: 10.1186/s12933-019-0889-y. [PMID: 31262297]
  • Danuta Zielinska, José Moisés Laparra-Llopis, Henryk Zielinski, Dorota Szawara-Nowak, Juan Antonio Giménez-Bastida. Role of Apple Phytochemicals, Phloretin and Phloridzin, in Modulating Processes Related to Intestinal Inflammation. Nutrients. 2019 May; 11(5):. doi: 10.3390/nu11051173. [PMID: 31130634]
  • Giancarlo Verardo, Andrea Gorassini, Daniele Fraternale. New triterpenic acids produced in callus culture from fruit pulp of Acca sellowiana (O. Berg) Burret. Food research international (Ottawa, Ont.). 2019 05; 119(?):596-604. doi: 10.1016/j.foodres.2018.10.037. [PMID: 30884693]
  • Zhanguo Wang, Ziyang Gao, Anqi Wang, Lan Jia, Xiaoyu Zhang, Ming Fang, Kang Yi, Qijuan Li, Huiling Hu. Comparative oral and intravenous pharmacokinetics of phlorizin in rats having type 2 diabetes and in normal rats based on phase II metabolism. Food & function. 2019 Mar; 10(3):1582-1594. doi: 10.1039/c8fo02242a. [PMID: 30806398]
  • Hao Wang, Zhenou Sun, Dong Liu, Xiang Li, Rizwan-Ur Rehman, Huali Wang, Zijian Wu. Apple phlorizin attenuates oxidative stress in Drosophila melanogaster. Journal of food biochemistry. 2019 03; 43(3):e12744. doi: 10.1111/jfbc.12744. [PMID: 31353567]
  • Léia Cardoso-Sousa, Emilia Maria Gomes Aguiar, Douglas Carvalho Caixeta, Danielle Diniz Vilela, Danilo Pereira da Costa, Tamires Lopes Silva, Thúlio Marquez Cunha, Paulo Rogério Faria, Foued Salmen Espindola, Ana Carolina Jardim, Alexandre Antônio Vieira, Tales Lyra Oliveira, Luiz Ricardo Goulart, Robinson Sabino-Silva. Effects of salbutamol and phlorizin on acute pulmonary inflammation and disease severity in experimental sepsis. PloS one. 2019; 14(9):e0222575. doi: 10.1371/journal.pone.0222575. [PMID: 31536570]
  • Nicola Busatto, Daiki Matsumoto, Alice Tadiello, Urska Vrhovsek, Fabrizio Costa. Multifaceted analyses disclose the role of fruit size and skin-russeting in the accumulation pattern of phenolic compounds in apple. PloS one. 2019; 14(7):e0219354. doi: 10.1371/journal.pone.0219354. [PMID: 31306452]
  • Paola Bisignano, Chiara Ghezzi, Hyunil Jo, Nicholas F Polizzi, Thorsten Althoff, Chakrapani Kalyanaraman, Rosmarie Friemann, Matthew P Jacobson, Ernest M Wright, Michael Grabe. Inhibitor binding mode and allosteric regulation of Na+-glucose symporters. Nature communications. 2018 12; 9(1):5245. doi: 10.1038/s41467-018-07700-1. [PMID: 30532032]
  • Xiao-Yu Zhang, Kang Yi, Jiang Chen, Rui-Ping Li, Jie Xie, Yan Jin, Xue-Ran Mei, Yao-Jun Li, Gang Liu, Zhan-Guo Wang. Purified Phlorizin from DocynIa Indica (Wall.) Decne by HSCCC, Compared with Whole Extract, Phlorizin and Non-Phlorizin Fragment Ameliorate Obesity, Insulin Resistance, and Improves Intestinal Barrier Function in High-Fat-Diet-Fed Mice. Molecules (Basel, Switzerland). 2018 Oct; 23(10):. doi: 10.3390/molecules23102701. [PMID: 30347741]
  • Hongjuan Li, Guige Hou, Yuanyuan Li, Feng Zhao, Wei Cong, Chunhua Wang. Preparative separation of phloridzin from apple leaves using macroporous resins followed by preparative high-performance liquid chromatography. Journal of separation science. 2018 Oct; 41(20):3918-3924. doi: 10.1002/jssc.201800634. [PMID: 30133160]
  • Chiara Ghezzi, Donald D F Loo, Ernest M Wright. Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2. Diabetologia. 2018 10; 61(10):2087-2097. doi: 10.1007/s00125-018-4656-5. [PMID: 30132032]
  • Timo Rieg, Volker Vallon. Development of SGLT1 and SGLT2 inhibitors. Diabetologia. 2018 10; 61(10):2079-2086. doi: 10.1007/s00125-018-4654-7. [PMID: 30132033]
  • Qingwen Hu, Ying-Ying Chen, Qi-Yang Jiao, Afsar Khan, Jimiao Shan, Gui-Dong Cao, Feng Li, Chao Zhang, Hong-Xiang Lou. Polyphenolic compounds from Malus hupehensis and their free radical scavenging effects. Natural product research. 2018 Sep; 32(18):2152-2158. doi: 10.1080/14786419.2017.1367784. [PMID: 28901161]
  • Marianne K Vormann, Linda Gijzen, Simon Hutter, Lisette Boot, Arnaud Nicolas, Angelique van den Heuvel, Jelle Vriend, Chee Ping Ng, Tom T G Nieskens, Vincent van Duinen, Bjorn de Wagenaar, Rosalinde Masereeuw, Laura Suter-Dick, Sebastiaan J Trietsch, Martijn Wilmer, Jos Joore, Paul Vulto, Henriette L Lanz. Nephrotoxicity and Kidney Transport Assessment on 3D Perfused Proximal Tubules. The AAPS journal. 2018 08; 20(5):90. doi: 10.1208/s12248-018-0248-z. [PMID: 30109442]
  • Xiaoyu Zhang, Xueran Mei, Zhanguo Wang, Jing Wu, Gang Liu, Huiling Hu, Qijuan Li. Chemical Fingerprint and Quantitative Analysis for the Quality Evaluation of Docynia dcne Leaves by High-Performance Liquid Chromatography Coupled with Chemometrics Analysis. Journal of chromatographic science. 2018 Aug; 56(7):575-581. doi: 10.1093/chromsci/bmy007. [PMID: 29800095]
  • Annas Al-Sharea, Andrew J Murphy, L A Huggins, Y Hu, Ira J Goldberg, Prabhakara R Nagareddy. SGLT2 inhibition reduces atherosclerosis by enhancing lipoprotein clearance in Ldlr-/- type 1 diabetic mice. Atherosclerosis. 2018 04; 271(?):166-176. doi: 10.1016/j.atherosclerosis.2018.02.028. [PMID: 29518749]
  • Die Gao, Dan-Dan Wang, Qi-Feng Fu, Lu-Jun Wang, Kai-Lian Zhang, Feng-Qing Yang, Zhi-Ning Xia. Preparation and evaluation of magnetic molecularly imprinted polymers for the specific enrichment of phloridzin. Talanta. 2018 Feb; 178(?):299-307. doi: 10.1016/j.talanta.2017.09.058. [PMID: 29136826]
  • Kyoungmin Park, Qian Li, Net Daş Evcimen, Christian Rask-Madsen, Yasutaka Maeda, Ernesto Maddaloni, Hisashi Yokomizo, Takanori Shinjo, Ronald St-Louis, Jialin Fu, Daniel Gordin, Mogher Khamaisi, David Pober, Hillary Keenan, George L King. Exogenous Insulin Infusion Can Decrease Atherosclerosis in Diabetic Rodents by Improving Lipids, Inflammation, and Endothelial Function. Arteriosclerosis, thrombosis, and vascular biology. 2018 01; 38(1):92-101. doi: 10.1161/atvbaha.117.310291. [PMID: 29162603]
  • Mao-Chia Yuan, Teng-Kuang Yeh, Chiung-Tong Chen, Jen-Shin Song, Yu-Chen Huang, Tsung-Chih Hsieh, Chung-Yu Huang, Yu-Ling Huang, Min-Hsien Wang, Szu-Huei Wu, Chun-Hsu Yao, Yu-Sheng Chao, Jinq-Chyi Lee. Identification of an oxime-containing C-glucosylarene as a potential inhibitor of sodium-dependent glucose co-transporter 2. European journal of medicinal chemistry. 2018 Jan; 143(?):611-620. doi: 10.1016/j.ejmech.2017.11.019. [PMID: 29216560]
  • Kun Zhou, Lingyu Hu, Pengmin Li, Xiaoqing Gong, Fengwang Ma. Genome-wide identification of glycosyltransferases converting phloretin to phloridzin in Malus species. Plant science : an international journal of experimental plant biology. 2017 Dec; 265(?):131-145. doi: 10.1016/j.plantsci.2017.10.003. [PMID: 29223335]
  • Mohamed M A Khalifa, Adel G Bakr, Adel T Osman. Protective effects of phloridzin against methotrexate-induced liver toxicity in rats. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2017 Nov; 95(?):529-535. doi: 10.1016/j.biopha.2017.08.121. [PMID: 28866420]
  • Yongjiao Sun, Lingyun Jia, Zhanbo Huang, Jing Wang, Jincai Lu, Jing Li. Hepatoprotective effect against CCl4-induced acute liver damage in mice and High-performance liquid chromatography mass spectrometric method for analysis of the constituents of extract of Rubus crataegifolius. Natural product research. 2017 Nov; 31(22):2695-2699. doi: 10.1080/14786419.2017.1292264. [PMID: 28322066]
  • Yang Chen, Li-Zi Yin, Ling Zhao, Gang Shu, Zhi-Xiang Yuan, Hua-Lin Fu, Cheng Lv, Ju-Chun Lin. Optimization of the ultrasound-assisted extraction of antioxidant phloridzin from Lithocarpus polystachyus Rehd. using response surface methodology. Journal of separation science. 2017 Nov; 40(22):4329-4337. doi: 10.1002/jssc.201700686. [PMID: 28898533]
  • Gyeong Han Jeong, Jae-Hyeon Cho, Seong-Ho Kim, Tae Hoon Kim. Plasma-induced dimerization of phloridzin as a new class of anti-adipogenic agents. Bioorganic & medicinal chemistry letters. 2017 11; 27(21):4889-4892. doi: 10.1016/j.bmcl.2017.09.035. [PMID: 28958622]
  • Lijun Sun, Dongjie Liu, Jiaojiao Sun, Xingbin Yang, Minghai Fu, Yurong Guo. Simultaneous separation and purification of chlorogenic acid, epicatechin, hyperoside and phlorizin from thinned young Qinguan apples by successive use of polyethylene and polyamide resins. Food chemistry. 2017 Sep; 230(?):362-371. doi: 10.1016/j.foodchem.2017.03.065. [PMID: 28407923]
  • Anke Schloesser, Tuba Esatbeyoglu, Gerhard Schultheiß, Henning Vollert, Kai Lüersen, Alexandra Fischer, Gerald Rimbach. Antidiabetic Properties of an Apple/Kale Extract In Vitro, In Situ, and in Mice Fed a Western-Type Diet. Journal of medicinal food. 2017 Sep; 20(9):846-854. doi: 10.1089/jmf.2017.0019. [PMID: 28622482]
  • Emily W Sun, Dayan de Fontgalland, Philippa Rabbitt, Paul Hollington, Luigi Sposato, Steven L Due, David A Wattchow, Christopher K Rayner, Adam M Deane, Richard L Young, Damien J Keating. Mechanisms Controlling Glucose-Induced GLP-1 Secretion in Human Small Intestine. Diabetes. 2017 08; 66(8):2144-2149. doi: 10.2337/db17-0058. [PMID: 28385801]
  • Emi Ishida, Ja Young Kim-Muller, Domenico Accili. Pair Feeding, but Not Insulin, Phloridzin, or Rosiglitazone Treatment, Curtails Markers of β-Cell Dedifferentiation in db/db Mice. Diabetes. 2017 08; 66(8):2092-2101. doi: 10.2337/db16-1213. [PMID: 28506962]
  • Michael J Coady, Bernadette Wallendorff, Jean-Yves Lapointe. Characterization of the transport activity of SGLT2/MAP17, the renal low-affinity Na+-glucose cotransporter. American journal of physiology. Renal physiology. 2017 Aug; 313(2):F467-F474. doi: 10.1152/ajprenal.00628.2016. [PMID: 28592437]
  • Ya Zhao, ChunPing Liu, XiaoPing Lai, ShaoZhen Hou, Xing Zeng, Xiong Li. Immunomodulatory activities of phlorizin metabolites in lipopolysaccharide-stimulated RAW264.7 cells. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2017 Jul; 91(?):49-53. doi: 10.1016/j.biopha.2017.04.066. [PMID: 28448869]
  • Andrew P Dare, Yar-Khing Yauk, Sumathi Tomes, Tony K McGhie, Ria S Rebstock, Janine M Cooney, Ross G Atkinson. Silencing a phloretin-specific glycosyltransferase perturbs both general phenylpropanoid biosynthesis and plant development. The Plant journal : for cell and molecular biology. 2017 Jul; 91(2):237-250. doi: 10.1111/tpj.13559. [PMID: 28370633]
  • Lijun Sun, Jiaojiao Sun, Pridhuvi Thavaraj, Xingbin Yang, Yurong Guo. Effects of thinned young apple polyphenols on the quality of grass carp (Ctenopharyngodon idellus) surimi during cold storage. Food chemistry. 2017 Jun; 224(?):372-381. doi: 10.1016/j.foodchem.2016.12.097. [PMID: 28159283]
  • Volker Vallon, Scott C Thomson. Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition. Diabetologia. 2017 02; 60(2):215-225. doi: 10.1007/s00125-016-4157-3. [PMID: 27878313]
  • Hyun Ah Jung, Md Yousof Ali, Himanshu Kumar Bhakta, Byung-Sun Min, Jae Sue Choi. Prunin is a highly potent flavonoid from Prunus davidiana stems that inhibits protein tyrosine phosphatase 1B and stimulates glucose uptake in insulin-resistant HepG2 cells. Archives of pharmacal research. 2017 Jan; 40(1):37-48. doi: 10.1007/s12272-016-0852-3. [PMID: 27798765]
  • Chakravarthi Chintalapati, Thorsten Keller, Thomas D Mueller, Valentin Gorboulev, Nadine Schäfer, Ilona Zilkowski, Maike Veyhl-Wichmann, Dietmar Geiger, Jürgen Groll, Hermann Koepsell. Protein RS1 (RSC1A1) Downregulates the Exocytotic Pathway of Glucose Transporter SGLT1 at Low Intracellular Glucose via Inhibition of Ornithine Decarboxylase. Molecular pharmacology. 2016 Nov; 90(5):508-521. doi: 10.1124/mol.116.104521. [PMID: 27555600]
  • Ruta Muceniece, Jana Namniece, Ilva Nakurte, Kaspars Jekabsons, Una Riekstina, Baiba Jansone. Pharmacological research on natural substances in Latvia: Focus on lunasin, betulin, polyprenol and phlorizin. Pharmacological research. 2016 11; 113(Pt B):760-770. doi: 10.1016/j.phrs.2016.03.040. [PMID: 27109319]
  • Xueran Mei, Xiaoyu Zhang, Zhanguo Wang, Ziyang Gao, Gang Liu, Huiling Hu, Liang Zou, Xueli Li. Insulin Sensitivity-Enhancing Activity of Phlorizin Is Associated with Lipopolysaccharide Decrease and Gut Microbiota Changes in Obese and Type 2 Diabetes (db/db) Mice. Journal of agricultural and food chemistry. 2016 Oct; 64(40):7502-7511. doi: 10.1021/acs.jafc.6b03474. [PMID: 27635781]
  • Chang-Ik Choi. Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors from Natural Products: Discovery of Next-Generation Antihyperglycemic Agents. Molecules (Basel, Switzerland). 2016 Aug; 21(9):. doi: 10.3390/molecules21091136. [PMID: 27618891]
  • Cheng-Can Lu, Lin Zhao, Yong-Xin Huang, Xin Shao, Wen-Yi Kang. [Simultaneous determination of quercitrin, phloridzin and 3-hydroxyl phloridzin in leaves of Malus halliana by ultrasound-assisted ionic liquid-reversed phase liquid chromatography]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2016 Jun; 41(11):2131-2136. doi: 10.4268/cjcmm20161125. [PMID: 28901112]
  • P L Reshma, Neethu S Sainu, Anil K Mathew, K G Raghu. Mitochondrial dysfunction in H9c2 cells during ischemia and amelioration with Tribulus terrestris L. Life sciences. 2016 May; 152(?):220-30. doi: 10.1016/j.lfs.2016.03.055. [PMID: 27049116]
  • Mayanka Walia, Shiv Kumar, Vijai K Agnihotri. UPLC-PDA quantification of chemical constituents of two different varieties (golden and royal) of apple leaves and their antioxidant activity. Journal of the science of food and agriculture. 2016 Mar; 96(5):1440-50. doi: 10.1002/jsfa.7239. [PMID: 25914106]
  • Su-Kyung Shin, Su-Jung Cho, Un Ju Jung, Ri Ryu, Myung-Sook Choi. Phlorizin Supplementation Attenuates Obesity, Inflammation, and Hyperglycemia in Diet-Induced Obese Mice Fed a High-Fat Diet. Nutrients. 2016 Feb; 8(2):92. doi: 10.3390/nu8020092. [PMID: 26891322]
  • Alina Sowa, Grażyna Zgórka, Aleksandra Szykuła, Roman Franiczek, Beata Żbikowska, Andrzej Gamian, Zbigniew Sroka. Analysis of Polyphenolic Compounds in Extracts from Leaves of Some Malus domestica Cultivars: Antiradical and Antimicrobial Analysis of These Extracts. BioMed research international. 2016; 2016(?):6705431. doi: 10.1155/2016/6705431. [PMID: 28097143]
  • Sunder Mudaliar, David Polidori, Brian Zambrowicz, Robert R Henry. Sodium-Glucose Cotransporter Inhibitors: Effects on Renal and Intestinal Glucose Transport: From Bench to Bedside. Diabetes care. 2015 Dec; 38(12):2344-53. doi: 10.2337/dc15-0642. [PMID: 26604280]