Fraxetin
Fraxetin is a hydroxycoumarin that is 6-methoxycoumarin in which the hydrogens at positions 7 and 8 have been replaced by hydroxy groups. It has a role as an Arabidopsis thaliana metabolite, an antimicrobial agent, an apoptosis inhibitor, an apoptosis inducer, an antioxidant, an anti-inflammatory agent, a hepatoprotective agent, an antibacterial agent and a hypoglycemic agent. It is a hydroxycoumarin and an aromatic ether. Fraxetin is a natural product found in Santolina pinnata, Campanula dolomitica, and other organisms with data available. A hydroxycoumarin that is 6-methoxycoumarin in which the hydrogens at positions 7 and 8 have been replaced by hydroxy groups. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.550 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.543 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.542 Fraxetin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=574-84-5 (retrieved 2024-06-28) (CAS RN: 574-84-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Fraxetin is isolated from Fraxinus rhynchophylla Hance. Fraxetin has antitumor, anti-oxidation effects and anti-inflammory effects. Fraxetin induces apoptosis[1]. Fraxetin is isolated from Fraxinus rhynchophylla Hance. Fraxetin has antitumor, anti-oxidation effects and anti-inflammory effects. Fraxetin induces apoptosis[1].
Kukoamine A
Kukoamine A is an alkaloid from the root bark of Lycium chinense (Chinese boxthorn Kukoamine A is an amine. Kukoamine A is a natural occurring spermine derivative, acts as a potent inhibitor of trypanothione reductase (Ki, 1.8 μM), with antihypertensive activity[1]. Kukoamine A is a natural occurring spermine derivative, acts as a potent inhibitor of trypanothione reductase (Ki, 1.8 μM), with antihypertensive activity[1].
L-Valine
L-valine is the L-enantiomer of valine. It has a role as a nutraceutical, a micronutrient, a human metabolite, an algal metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is a pyruvate family amino acid, a proteinogenic amino acid, a valine and a L-alpha-amino acid. It is a conjugate base of a L-valinium. It is a conjugate acid of a L-valinate. It is an enantiomer of a D-valine. It is a tautomer of a L-valine zwitterion.
Valine is a branched-chain essential amino acid that has stimulant activity. It promotes muscle growth and tissue repair. It is a precursor in the penicillin biosynthetic pathway.
L-Valine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Valine is an aliphatic and extremely hydrophobic essential amino acid in humans related to leucine, Valine is found in many proteins, mostly in the interior of globular proteins helping to determine three-dimensional structure. A glycogenic amino acid, valine maintains mental vigor, muscle coordination, and emotional calm. Valine is obtained from soy, cheese, fish, meats and vegetables. Valine supplements are used for muscle growth, tissue repair, and energy. (NCI04)
Valine (abbreviated as Val or V) is an -amino acid with the chemical formula HO2CCH(NH2)CH(CH3)2. It is named after the plant valerian. L-Valine is one of 20 proteinogenic amino acids. Its codons are GUU, GUC, GUA, and GUG. This essential amino acid is classified as nonpolar. Along with leucine and isoleucine, valine is a branched-chain amino acid. Branched chain amino acids (BCAA) are essential amino acids whose carbon structure is marked by a branch point. These three amino acids are critical to human life and are particularly involved in stress, energy and muscle metabolism. BCAA supplementation as therapy, both oral and intravenous, in human health and disease holds great promise. BCAA denotes valine, isoleucine and leucine which are branched chain essential amino acids. Despite their structural similarities, the branched amino acids have different metabolic routes, with valine going solely to carbohydrates, leucine solely to fats and isoleucine to both. The different metabolism accounts for different requirements for these essential amino acids in humans: 12 mg/kg, 14 mg/kg and 16 mg/kg of valine, leucine and isoleucine respectively. Furthermore, these amino acids have different deficiency symptoms. Valine deficiency is marked by neurological defects in the brain, while isoleucine deficiency is marked by muscle tremors. Many types of inborn errors of BCAA metabolism exist, and are marked by various abnormalities. The most common form is the maple syrup urine disease, marked by a characteristic urinary odor. Other abnormalities are associated with a wide range of symptoms, such as mental retardation, ataxia, hypoglycemia, spinal muscle atrophy, rash, vomiting and excessive muscle movement. Most forms of BCAA metabolism errors are corrected by dietary restriction of BCAA and at least one form is correctable by supplementation with 10 mg of biotin daily. BCAA are decreased in patients with liver disease, such as hepatitis, hepatic coma, cirrhosis, extrahepatic biliary atresia or portacaval shunt; aromatic amino acids (AAA) tyrosine, tryptophan and phenylalanine, as well as methionine are increased in these conditions. Valine in particular, has been established as a useful supplemental therapy to the ailing liver. All the BCAA probably compete with AAA for absorption into the brain. Supplemental BCAA with vitamin B6 and zinc help normalize the BCAA:AAA ratio. In sickle-cell disease, valine substitutes for the hydrophilic amino acid glutamic acid in hemoglobin. Because valine is hydrophobic, the hemoglobin does not fold correctly. Valine is an essential amino acid, hence it must be ingested, usually as a component of proteins.
A branched-chain essential amino acid that has stimulant activity. It promotes muscle growth and ...
Valine (Val) or L-valine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-valine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Valine is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aliphatic amino acid. Valine was first isolated from casein in 1901 by Hermann Emil Fischer. The name valine comes from valeric acid, which in turn is named after the plant valerian due to the presence of valine in the roots of the plant. Valine is essential in humans, meaning the body cannot synthesize it, and it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, beans and legumes. L-valine is a branched chain amino acid (BCAA). The BCAAs consist of leucine, valine and isoleucine (and occasionally threonine). BCAAs are essential amino acids whose carbon structure is marked by a branch point at the beta-carbon position. BCAAs are critical to human life and are particularly involved in stress, energy and muscle metabolism. BCAA supplementation as therapy, both oral and intravenous, in human health and disease holds great promise. BCAAs have different metabolic routes, with valine going solely to carbohydrates (glucogenic), leucine solely to fats (ketogenic) and isoleucine being both a glucogenic and a ketogenic amino acid. The different metabolism accounts for different requirements for these essential amino acids in humans: 12 mg/kg, 14 mg/kg and 16 mg/kg of valine, leucine and isoleucine respectively. Like other branched-chain amino acids, the catabolism of valine starts with the removal of the amino group by transamination, giving alpha-ketoisovalerate, an alpha-keto acid, which is converted to isobutyryl-CoA through oxidative decarboxylation by the branched-chain α-ketoacid dehydrogenase complex. This is further oxidised and rearranged to succinyl-CoA, which can enter the citric acid cycle. Furthermore, these amino acids have different deficiency symptoms. Valine deficiency is marked by neurological defects in the brain, while isoleucine deficiency is marked by muscle tremors. Many types of inborn errors of BCAA metabolism exist, and are marked by various abnormalities. The most common form is the maple syrup urine disease, marked by a characteristic urinary odor. Other abnormalities are associated with a wide range of symptoms, such as mental retardation, ataxia, hypoglycemia, spinal muscle atrophy, rash, vomiting and excessive muscle movement. Most forms of BCAA metabolism errors are corrected by dietary restriction of BCAA and at least one form is correctable by supplementation with 10 mg of biotin daily. BCAA are decreased in patients with liver disease, such as hepatitis, hepatic coma, cirrhosis, extrahepatic biliary atresia or portacaval shunt. Valine in particular, has been established as a useful supplemental therapy to the ailing liver. Valine, like other branched-chain amino acids, is associated with insulin resistance: higher levels of valine are observed in the blood of diabetic mice, rats, and humans (PMID: 25287287). Mice fed a valine deprivation diet for one day have improved insulin sensitivity and feeding of a valine deprivation diet for one week significantly decreases blood glucose levels (PMID: 24684822). In diet-induced obese and insulin resistant mice, a diet with decreased levels of valine and the other branched-chain amino acids results in reduced adiposity and improved insulin sensitivity (PMID: 29266268). In sickle-cell disease, valine substitutes for the hydrophilic amino acid glutamic acid in hemoglobin. Because valine ...
L-valine, also known as (2s)-2-amino-3-methylbutanoic acid or L-(+)-alpha-aminoisovaleric acid, belongs to valine and derivatives class of compounds. Those are compounds containing valine or a derivative thereof resulting from reaction of valine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. L-valine is soluble (in water) and a moderately acidic compound (based on its pKa). L-valine can be found in watermelon, which makes L-valine a potential biomarker for the consumption of this food product. L-valine can be found primarily in most biofluids, including cerebrospinal fluid (CSF), breast milk, urine, and blood, as well as in human epidermis and fibroblasts tissues. L-valine exists in all living species, ranging from bacteria to humans. In humans, L-valine is involved in several metabolic pathways, some of which include streptomycin action pathway, tetracycline action pathway, methacycline action pathway, and kanamycin action pathway. L-valine is also involved in several metabolic disorders, some of which include methylmalonic aciduria due to cobalamin-related disorders, 3-methylglutaconic aciduria type III, isovaleric aciduria, and methylmalonic aciduria. Moreover, L-valine is found to be associated with schizophrenia, alzheimers disease, paraquat poisoning, and hypervalinemia. L-valine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Valine (abbreviated as Val or V) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated −NH3+ form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −COO− form under biological conditions), and a side chain isopropyl group, making it a non-polar aliphatic amino acid. It is essential in humans, meaning the body cannot synthesize it: it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, beans and legumes. In the genetic code it is encoded by all codons starting with GU, namely GUU, GUC, GUA, and GUG (Applies to Valine, Leucine and Isoleucine)
This group of essential amino acids are identified as the branched-chain amino acids, BCAAs. Because this arrangement of carbon atoms cannot be made by humans, these amino acids are an essential element in the diet. The catabolism of all three compounds initiates in muscle and yields NADH and FADH2 which can be utilized for ATP generation. The catabolism of all three of these amino acids uses the same enzymes in the first two steps. The first step in each case is a transamination using a single BCAA aminotransferase, with a-ketoglutarate as amine acceptor. As a result, three different a-keto acids are produced and are oxidized using a common branched-chain a-keto acid dehydrogenase, yielding the three different CoA derivatives. Subsequently the metabolic pathways diverge, producing many intermediates.
The principal product from valine is propionylCoA, the glucogenic precursor of succinyl-CoA. Isoleucine catabolism terminates with production of acetylCoA and propionylCoA; thus isoleucine is both glucogenic and ketogenic. Leucine gives rise to acetylCoA and acetoacetylCoA, and is thus classified as strictly ketogenic.
There are a number of genetic diseases associated with faulty catabolism of the BCAAs. The most common defect is in the branched-chain a-keto acid dehydrogenase. Since there is only one dehydrogenase enzyme for all three amino acids, all three a-keto acids accumulate and are excreted in the urine. The disease is known as Maple syrup urine disease because of the characteristic odor of the urine in afflicted individuals. Mental retardation in these cases is extensive. Unfortunately, since these are essential amino acids, they cannot be heavily restricted in the diet; ultimately, the life of afflicted individuals is short and development is abnormal The main neurological pr...
L-Valine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=7004-03-7 (retrieved 2024-06-29) (CAS RN: 72-18-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
L-Valine (Valine) is a new nonlinear semiorganic material[1].
L-Valine (Valine) is a new nonlinear semiorganic material[1].
griffonin
Lithospermoside is a glycoside. Lithospermoside is a natural product found in Tylosema fassoglense, Semiaquilegia adoxoides, and other organisms with data available. Lithospermoside (Griffonin) is a nature product isolated from the stem bark of Semiaquilegia adoxoides [1]. Lithospermoside (Griffonin) is a nature product isolated from the stem bark of Semiaquilegia adoxoides [1].
Gentisate
Gentisic acid, also known as gentisate or 2,5-dioxybenzoate, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. Gentisic acid is also classified as a dihydroxybenzoic acid. It is a derivative of benzoic acid and a minor (1\\\\\%) product of the metabolic break down of aspirin, which is excreted by the kidneys. Gentisic acid is found in essentially all organisms ranging from bacteria to fungi to plants to animals. Gentisic acid has been associated with a number of useful effects on human health and exhibits anti-inflammatory, antigenotoxic, hepatoprotective, neuroprotective, antimicrobial, and especially antioxidant activities (PMID: 31825145). It is widely distributed in plants as a secondary plant product such as Gentiana spp., Citrus spp., Vitis vinifera, Pterocarpus santalinus, Helianthus tuberosus, Hibiscus rosa-sinensis, Olea europaea, and Sesamum indicum and in fruits such as avocados, batoko plum, kiwi fruits, apple, bitter melon, black berries, pears, and some mushrooms (PMID: 31825145). Gentisic acid is found in higher concentrations in a number of foods such as tarragons, common thymes, and common sages and in a lower concentration in grape wines, rosemaries, and sweet marjorams. Gentisic acid has also been shown to act as a pathogen-inducible signal for the activation of plant defenses in tomato plants and cucumbers (PMID: 16321412; https://doi.org/10.1094/MPMI.1999.12.3.227). Gentisic acid is a dihydroxybenzoic acid. It is a crystalline powder that forms monoclinic prism in water solution. Gentisic acid is an active metabolite of salicylic acid degradation. There is an increasing amount of evidence indicating that gentisic acid has a broad spectrum of biological activity, such as anti-inflammatory, antirheumatic and antioxidant properties. Gentisic acid is also a byproduct of tyrosine and benzoate metabolism. [HMDB]. Gentisic acid is found in many foods, some of which are common sage, common grape, nutmeg, and dill. 2,5-dihydroxybenzoic acid is a dihydroxybenzoic acid having the two hydroxy groups at the 2- and 5-positions. It has a role as a MALDI matrix material, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, a human metabolite, a fungal metabolite and a mouse metabolite. It is functionally related to a benzoic acid. It is a conjugate acid of a 2,5-dihydroxybenzoate. 2,5-Dihydroxybenzoic acid is a natural product found in Persicaria mitis, Tilia tomentosa, and other organisms with data available. D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates A dihydroxybenzoic acid having the two hydroxy groups at the 2- and 5-positions. 2,5-Dihydroxybenzoic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=490-79-9 (retrieved 2024-07-01) (CAS RN: 490-79-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 2,5-Dihydroxybenzoic acid is a derivative of benzoic and a powerful inhibitor of fibroblast growth factors. 2,5-Dihydroxybenzoic acid is a derivative of benzoic and a powerful inhibitor of fibroblast growth factors.
Glycocholic acid
Glycocholic acid is an acyl glycine and a bile acid-glycine conjugate. It is a secondary bile acid produced by the action of enzymes existing in the microbial flora of the colonic environment. Bacteroides, Bifidobacterium, Clostridium and Lactobacillus are involved in bile acid metabolism and produce glycocholic acid (PMID: 6265737; 10629797). In hepatocytes, both primary and secondary bile acids undergo amino acid conjugation at the C-24 carboxylic acid on the side chain, and almost all bile acids in the bile duct therefore exist in a glycine conjugated form (PMID: 16949895). More specifically, glycocholic acid or cholylglycine, is a crystalline bile acid involved in the emulsification of fats. It occurs as a sodium salt in the bile of mammals. Its anion is called glycocholate. As the glycine conjugate of cholic acid, this compound acts as a detergent to solubilize fats for absorption and is itself absorbed (PubChem). Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). Glycocholic acid is found to be associated with alpha-1-antitrypsin deficiency, which is an inborn error of metabolism. Glycocholic acid is a bile acid glycine conjugate having cholic acid as the bile acid component. It has a role as a human metabolite. It is functionally related to a cholic acid and a glycochenodeoxycholic acid. It is a conjugate acid of a glycocholate. Glycocholic acid is a natural product found in Caenorhabditis elegans and Homo sapiens with data available. The glycine conjugate of CHOLIC ACID. It acts as a detergent to solubilize fats for absorption and is itself absorbed. Glycocholic acid, or cholylglycine, is a crystalline bile acid involved in the emulsification of fats. It occurs as a sodium salt in the bile of mammals. It is a conjugate of cholic acid with glycine. Its anion is called glycocholate. [Wikipedia] A bile acid glycine conjugate having cholic acid as the bile acid component. Glycocholic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=475-31-0 (retrieved 2024-07-01) (CAS RN: 475-31-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1]. Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1].
L-Tryptophan
Tryptophan (Trp) or L-tryptophan is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-tryptophan is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Tryptophan is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aromatic amino acid. Tryptophan is an essential amino acid, meaning the body cannot synthesize it, and it must be obtained from the diet. The requirement for tryptophan and protein decreases with age. The minimum daily requirement for adults is 3 mg/kg/day or about 200 mg a day. There is 400 mg of tryptophan in a cup of wheat germ. A cup of low-fat cottage cheese contains 300 mg of tryptophan and chicken and turkey contain up to 600 mg of tryptophan per pound (http://www.dcnutrition.com). Tryptophan is particularly plentiful in chocolate, oats, dried dates, milk, yogurt, cottage cheese, red meat, eggs, fish, poultry, sesame, chickpeas, almonds, sunflower seeds, pumpkin seeds, buckwheat, spirulina, and peanuts. Tryptophan is the precursor of both serotonin and melatonin. Melatonin is a hormone that is produced by the pineal gland in animals, which regulates sleep and wakefulness. Serotonin is a brain neurotransmitter, platelet clotting factor, and neurohormone found in organs throughout the body. Metabolism of tryptophan into serotonin requires nutrients such as vitamin B6, niacin, and glutathione. Niacin (also known as vitamin B3) is an important metabolite of tryptophan. It is synthesized via kynurenine and quinolinic acids, which are products of tryptophan degradation. There are a number of conditions or diseases that are characterized by tryptophan deficiencies. For instance, fructose malabsorption causes improper absorption of tryptophan in the intestine, which reduces levels of tryptophan in the blood and leads to depression. High corn diets or other tryptophan-deficient diets can cause pellagra, which is a niacin-tryptophan deficiency disease with symptoms of dermatitis, diarrhea, and dementia. Hartnups disease is a disorder in which tryptophan and other amino acids are not absorbed properly. Symptoms of Hartnups disease include skin rashes, difficulty coordinating movements (cerebellar ataxia), and psychiatric symptoms such as depression or psychosis. Tryptophan supplements may be useful for treating Hartnups disease. Assessment of tryptophan deficiency is done through studying excretion of tryptophan metabolites in the urine or blood. Blood may be the most sensitive test because the amino acid tryptophan is transported in a unique way. Increased urination of tryptophan breakdown products (such as kynurenine) correlates with increased tryptophan degradation, which occurs with oral contraception, depression, mental retardation, hypertension, and anxiety states. Tryptophan plays a role in "feast-induced" drowsiness. Ingestion of a meal rich in carbohydrates triggers the release of insulin. Insulin, in turn, stimulates the uptake of large neutral branched-chain amino acids (BCAAs) into muscle, increasing the ratio of tryptophan to BCAA in the bloodstream. The increased tryptophan ratio reduces competition at the large neutral amino acid transporter (which transports both BCAAs and tryptophan), resulting in greater uptake of tryptophan across the blood-brain barrier into the cerebrospinal fluid (CSF). Once in the CSF, tryptophan is converted into serotonin and the resulting serotonin is further metabolized into melatonin by the pineal gland, which promotes sleep. Because tryptophan is converted into 5-hydroxytryptophan (5-HTP) which is then converted into the neurotransmitter serotonin, it has been proposed th... L-tryptophan is a white powder with a flat taste. An essential amino acid; occurs in isomeric forms. (NTP, 1992) L-tryptophan is the L-enantiomer of tryptophan. It has a role as an antidepressant, a nutraceutical, a micronutrient, a plant metabolite, a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is an erythrose 4-phosphate/phosphoenolpyruvate family amino acid, a proteinogenic amino acid, a tryptophan and a L-alpha-amino acid. It is a conjugate base of a L-tryptophanium. It is a conjugate acid of a L-tryptophanate. It is an enantiomer of a D-tryptophan. It is a tautomer of a L-tryptophan zwitterion. An essential amino acid that is necessary for normal growth in infants and for nitrogen balance in adults. It is a precursor of indole alkaloids in plants. It is a precursor of serotonin (hence its use as an antidepressant and sleep aid). It can be a precursor to niacin, albeit inefficiently, in mammals. L-Tryptophan is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Tryptophan is the least plentiful of all 22 amino acids and an essential amino acid in humans (provided by food), Tryptophan is found in most proteins and a precursor of serotonin. Tryptophan is converted to 5-hydroxy-tryptophan (5-HTP), converted in turn to serotonin, a neurotransmitter essential in regulating appetite, sleep, mood, and pain. Tryptophan is a natural sedative and present in dairy products, meats, brown rice, fish, and soybeans. (NCI04) Tryptophan is an essential amino acid which is the precursor of serotonin. Serotonin is a brain neurotransmitter, platelet clotting factor and neurohormone found in organs throughout the body. Metabolism of tryptophan to serotonin requires nutrients such as vitamin B6, niacin and glutathione. Niacin is an important metabolite of tryptophan. High corn or other tryptophan-deficient diets can cause pellagra, which is a niacin-tryptophan deficiency disease with symptoms of dermatitis, diarrhea and dementia. Inborn errors of tryptophan metabolism exist where a tumor (carcinoid) makes excess serotonin. Hartnups disease is a disease where tryptophan and other amino acids are not absorbed properly. Tryptophan supplements may be useful in each condition, in carcinoid replacing the over-metabolized nutrient and in Hartnups supplementing a malabsorbed nutrient. Some disorders of excess tryptophan in the blood may contribute to mental retardation. Assessment of tryptophan deficiency is done through studying excretion of tryptophan metabolites in the urine or blood. Blood may be the most sensitive test because the amino acid tryptophan is transported in a unique way. Increased urination of tryptophan fragments correlates with increased tryptophan degradation, which occurs with oral contraception, depression, mental retardation, hypertension and anxiety states. The requirement for tryptophan and protein decreases with age. Adults minimum daily requirement is 3 mg/kg/day or about 200 mg a day. This may be an underestimation, for there are 400 mg of tryptophan in just a cup of wheat germ. A cup of low fat cottage cheese contains 300 mg of tryptophan and chicken and turkey contain up to 600 mg per pound. An essential amino acid that is necessary for normal growth in infants and for NITROGEN balance in adults. It is a precursor of INDOLE ALKALOIDS in plants. It is a precursor of SEROTONIN (hence its use as an antidepressant and sleep aid). It can be a precursor to NIACIN, albeit inefficiently, in mammals. See also: Serotonin; tryptophan (component of); Chamomile; ginger; melatonin; thiamine; tryptophan (component of) ... View More ... Constituent of many plants. Enzymatic hydrolysis production of most plant and animal proteins. Dietary supplement, nutrient D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants COVID info from PDB, Protein Data Bank The L-enantiomer of tryptophan. Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA09_Tryptophan_pos_30eV_1-1_01_662.txt [Raw Data] CBA09_Tryptophan_pos_20eV_1-1_01_661.txt [Raw Data] CBA09_Tryptophan_neg_30eV_1-1_01_716.txt [Raw Data] CBA09_Tryptophan_pos_10eV_1-1_01_660.txt [Raw Data] CBA09_Tryptophan_neg_10eV_1-1_01_714.txt [Raw Data] CBA09_Tryptophan_neg_40eV_1-1_01_717.txt [Raw Data] CBA09_Tryptophan_neg_20eV_1-1_01_715.txt [Raw Data] CBA09_Tryptophan_pos_50eV_1-1_01_664.txt [Raw Data] CBA09_Tryptophan_neg_50eV_1-1_01_718.txt [Raw Data] CBA09_Tryptophan_pos_40eV_1-1_01_663.txt IPB_RECORD: 253; CONFIDENCE confident structure KEIO_ID T003 DL-Tryptophan is an endogenous metabolite. L-Tryptophan (Tryptophan) is an essential amino acid that is the precursor of serotonin, melatonin, and vitamin B3[1]. L-Tryptophan (Tryptophan) is an essential amino acid that is the precursor of serotonin, melatonin, and vitamin B3[1].
Isoquercitrin
Quercetin 3-O-beta-D-glucopyranoside is a quercetin O-glucoside that is quercetin with a beta-D-glucosyl residue attached at position 3. Isolated from Lepisorus contortus, it exhibits antineoplastic activityand has been found to decrease the rate of polymerization and sickling of red blood cells It has a role as an antineoplastic agent, a plant metabolite, a bone density conservation agent, an osteogenesis regulator, an antioxidant, a histamine antagonist, an antipruritic drug and a geroprotector. It is a quercetin O-glucoside, a tetrahydroxyflavone, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a beta-D-glucose. It is a conjugate acid of a quercetin 3-O-beta-D-glucopyranoside(1-). Isoquercetin has been used in trials studying the treatment of Kidney Cancer, Renal cell carcinoma, Advanced Renal Cell Carcinoma, Thromboembolism of Vein in Pancreatic Cancer, and Thromboembolism of Vein VTE in Colorectal Cancer, among others. Isoquercitrin is a natural product found in Ficus auriculata, Lotus ucrainicus, and other organisms with data available. Isoquercetin is an orally bioavailable, glucoside derivative of the flavonoid quercetin and protein disulfide isomerase (PDI) inhibitor, with antioxidant and potential antithrombotic activity. As an antioxidant, isoquercetin scavenges free radicals and inhibits oxidative damage to cells. As a PDI inhibitor, this agent blocks PDI-mediated platelet activation, and fibrin generation, which prevents thrombus formation after vascular injury. In addition, isoquercetin is an alpha-glucosidase inhibitor. PDI, an oxidoreductase secreted by activated endothelial cells and platelets, plays a key role in the initiation of the coagulation cascade. Cancer, in addition to other thrombotic disorders, increases the risk of thrombus formation. Isoquercitrin is found in alcoholic beverages. Isoquercitrin occurs widely in plants. Isoquercitrin is present in red wine.Isoquercitin can be isolated from mangoes and from Rheum nobile, the Noble rhubarb or Sikkim rhubarb, a giant herbaceous plant native to the Himalaya. Quercetin glycosides are also present in tea. (Wikipedia A quercetin O-glucoside that is quercetin with a beta-D-glucosyl residue attached at position 3. Isolated from Lepisorus contortus, it exhibits antineoplastic activityand has been found to decrease the rate of polymerization and sickling of red blood cells [Raw Data] CB053_Isoquercitrin_pos_10eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_pos_30eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_pos_50eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_pos_40eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_pos_20eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_neg_40eV_000017.txt [Raw Data] CB053_Isoquercitrin_neg_20eV_000017.txt [Raw Data] CB053_Isoquercitrin_neg_50eV_000017.txt [Raw Data] CB053_Isoquercitrin_neg_30eV_000017.txt [Raw Data] CB053_Isoquercitrin_neg_10eV_000017.txt Quercetin 3-glucoside. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=482-35-9 (retrieved 2024-07-09) (CAS RN: 482-35-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor.
L-2-Amino-3-(oxalylamino)propanoic acid
L-2-Amino-3-(oxalylamino)propanoic acid is found in grass pea. L-2-Amino-3-(oxalylamino)propanoic acid is isolated from Panax notoginseng (sanchi Isolated from Panax notoginseng (sanchi). L-2-Amino-3-(oxalylamino)propanoic acid is found in tea and grass pea. L-2-Amino-3-(oxalylamino)propanoic acid is an alpha-amino acid. N(3)-oxalyl-L-2,3-diaminopropionic acid is an N(beta)-acyl-L-2,3-diaminopropionic acid in which the acyl group is oxalyl. It is functionally related to a propionic acid. It is a conjugate acid of a N(3)-(carboxylatoformyl)-L-2,3-diaminopropionate(1-). Dencichin is a natural product found in Lathyrus latifolius and Lathyrus sativus with data available. See also: Panax notoginseng root (part of). Dencichin is a non-protein amino acid originally extracted from Panax notoginseng, and can inhibit HIF-prolyl hydroxylase-2 (PHD-2) activity.
Atractydin
Atractylodin is a member of furans. Atractylodin is a natural product found in Atractylodes japonica, Atractylodes macrocephala, and other organisms with data available. Atractylodin (Atractydin) is an active component of the essential oil contained in the rhizomes of Atractylodes lancea and A. chinensis. Atractylodin is natural insecticide and is active against Tribolium castaneum[1][2]. Atractylodin is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Atractylodin (Atractydin) is an active component of the essential oil contained in the rhizomes of Atractylodes lancea and A. chinensis. Atractylodin is natural insecticide and is active against Tribolium castaneum[1][2]. Atractylodin is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.
Sinapic acid
Sinapic acid, also known as sinapinate, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. Sinapic acid has been detected, but not quantified, in several different foods, such as strawberry guava, purple lavers, common verbena, ryes, and lupines. This could make sinapic acid a potential biomarker for the consumption of these foods. A sinapic acid in which the double bond has trans-configuration. Trans-sinapic acid is a sinapic acid in which the double bond has trans-configuration. It has a role as a MALDI matrix material and a plant metabolite. It is a conjugate acid of a trans-sinapate. Sinapic acid is a matrix for matrix-assisted laser desorption technique for protein MW determination. It is also a constituent of propolis. Sinapic acid is a natural product found in Sida acuta, Limoniastrum guyonianum, and other organisms with data available. A common constituent of plants and fruits. trans-Sinapic acid is found in many foods, some of which are small-leaf linden, redcurrant, malabar spinach, and blackcurrant. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents A sinapic acid in which the double bond has trans-configuration. Acquisition and generation of the data is financially supported in part by CREST/JST. Profile spectrum of this record is given as a JPEG file.; [Profile] MCH00014.jpg Profile spectrum of this record is given as a JPEG file.; [Profile] MCH00015.jpg CONFIDENCE standard compound; INTERNAL_ID 174 Annotation level-1 Annotation level-2 KEIO_ID S028 Sinapinic acid (Sinapic acid) is a phenolic compound isolated from Hydnophytum formicarum Jack. Rhizome, acts as an inhibitor of HDAC, with an IC50 of 2.27 mM[1], and also inhibits ACE-I activity[2]. Sinapinic acid posssess potent anti-tumor activity, induces apoptosis of tumor cells[1]. Sinapinic acid shows antioxidant and antidiabetic activities[2]. Sinapinic acid reduces total cholesterol, triglyceride, and HOMA-IR index, and also normalizes some serum parameters of antioxidative abilities and oxidative damage in ovariectomized rats[3]. Sinapinic acid (Sinapic acid) is a phenolic compound isolated from Hydnophytum formicarum Jack. Rhizome, acts as an inhibitor of HDAC, with an IC50 of 2.27 mM[1], and also inhibits ACE-I activity[2]. Sinapinic acid posssess potent anti-tumor activity, induces apoptosis of tumor cells[1]. Sinapinic acid shows antioxidant and antidiabetic activities[2]. Sinapinic acid reduces total cholesterol, triglyceride, and HOMA-IR index, and also normalizes some serum parameters of antioxidative abilities and oxidative damage in ovariectomized rats[3].
Fucitol
L-fucitol is the L-enantiomer of fucitol. It is found in nutmeg. It has a role as a plant metabolite and an antibacterial agent. It is an enantiomer of a D-fucitol. L-Fucitol is a natural product found in Carum carvi with data available. The L-enantiomer of fucitol. It is found in nutmeg. L-Fucitol (1-Deoxy-D-galactitol) is a sugar alcohol isolated from Nutmeg[1]. L-Fucitol (1-Deoxy-D-galactitol) is a sugar alcohol isolated from Nutmeg[1].
Hernandezine
Hernandezine is a member of isoquinolines and a bisbenzylisoquinoline alkaloid. Hernandezine is a natural product found in Thalictrum delavayi, Thalictrum fendleri, and other organisms with data available. Origin: Plant; SubCategory_DNP: Isoquinoline alkaloids, Benzylisoquinoline alkaloids
alpha-Carotene
alpha-Carotene belongs to the class of organic compounds known as carotenes. These are a type of unsaturated hydrocarbons containing eight consecutive isoprene units. They are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. alpha-Carotene is considered to be an isoprenoid lipid molecule. alpha-Carotene is one of the primary isomers of carotene. Plasma levels of alpha-carotene are positively associated with the detection rate of AFB1-DNA adducts in a dose-dependent manner, whereas plasma lycopene level was inversely related to the presence of the adducts in urine (PMID: 9214602). (6R)-beta,epsilon-carotene is an alpha-carotene. It is an enantiomer of a (6S)-beta,epsilon-carotene. alpha-Carotene is a natural product found in Hibiscus syriacus, Scandix stellata, and other organisms with data available. Widespread carotenoid, e.g. in carrots and palm oil. Has vitamin A activity but less than that of b-Carotene A cyclic carotene with a beta- and an epsilon-ring at opposite ends respectively. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
Capsanthin
Capsanthin is found in green vegetables. Capsanthin is a constituent of paprika (Capsicum annuum) and asparagus (Asparagus officinalis). Potential nutriceutical.Paprika oleoresin (also known as paprika extract) is an oil soluble extract from the fruits of Capsicum Annum Linn or Capsicum Frutescens(Indian red chillies), and is primarily used as a colouring and/or flavouring in food products. It is composed of capsaicin, the main flavouring compound giving pungency in higher concentrations, and capsanthin and capsorubin, the main colouring compounds (among other carotenoids) Capsanthin is a carotenone. It has a role as a plant metabolite. Capsanthin is a natural product found in Capsicum annuum, Lilium lancifolium, and Gallus gallus with data available. See also: Red Pepper (part of). Constituent of paprika (Capsicum annuum) and asparagus (Asparagus officinalis). Potential nutriceutical D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
Yohimbine
Yohimbine is an indole alkaloid with alpha2-adrenoceptor antagonist activity. It is produced by Corynanthe johimbe and Rauwolfia serpentina. It has a role as an alpha-adrenergic antagonist, a serotonergic antagonist and a dopamine receptor D2 antagonist. It is functionally related to a yohimbic acid. A plant alkaloid with alpha-2-adrenergic blocking activity. Yohimbine has been used as a mydriatic and in the treatment of impotence. It is also alleged to be an aphrodisiac. Yohimbine is an indole alkaloid derived from the bark of the Central African yohimbe tree (Pausinystalia yohimbe) that is widely used as therapy for erectile dysfunction. Yohimbine use has been associated with occasional severe adverse events, but has not been linked to serum enzyme elevations or clinically apparent acute liver injury. Yohimbine is a natural product found in Rauvolfia yunnanensis, Tabernaemontana corymbosa, and other organisms with data available. A plant alkaloid with alpha-2-adrenergic blocking activity. Yohimbine has been used as a mydriatic and in the treatment of ERECTILE DYSFUNCTION. See also: Yohimbine Hydrochloride (active moiety of) ... View More ... Yohimbine is only found in individuals that have used or taken this drug. It is a plant alkaloid with alpha-2-adrenergic blocking activity. Yohimbine has been used as a mydriatic and in the treatment of impotence. It is also alleged to be an aphrodisiac. [PubChem]Yohimbine is a pre-synaptic alpha 2-adrenergic blocking agent. The exact mechanism for its use in impotence has not been fully elucidated. However, yohimbine may exert its beneficial effect on erectile ability through blockade of central alpha 2-adrenergic receptors producing an increase in sympathetic drive secondary to an increase in norepinephrine release and in firing rate of cells in the brain noradrenergic nuclei. Yohimbine-mediated norepinephrine release at the level of the corporeal tissues may also be involved. In addition, beneficial effects may involve other neurotransmitters such as dopamine and serotonin and cholinergic receptors. G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BE - Drugs used in erectile dysfunction An indole alkaloid with alpha2-adrenoceptor antagonist activity. It is produced by Corynanthe johimbe and Rauwolfia serpentina. C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D009184 - Mydriatics D000089162 - Genitourinary Agents > D064804 - Urological Agents D001697 - Biomedical and Dental Materials > D003764 - Dental Materials Yohimbine is a potent and relatively nonselective alpha 2-adrenergic receptor (AR) antagonist, with IC50 of 0.6 μM. IC50 value: 0.6 uM [1] Target: alpha 2-adrenergic receptor in vitro: Yohimbine inhibits alpha2-receptor antagonist with Ki of 1.05 nM, 1.19 nM, and 1.19 nM for α2A, α2B, α2C, respectively. Yohimbine also inhibits 5-HT1B with Ki of 19.9 nM. Yohimbine acts to block the lowering of cAMP by alpha-2 adrenoceptor agonists. yohimbine actually causes a pronounced lowering of tyrosinase activity. [3] in vivo: Yohimbine is an antagonist at alpha2-noradrenaline receptors with putative panicogenic effects in human subjects, was administered to Swiss-Webster mice at doses of 0.5, 1.0, and 2.0 mg/kg. Yohimbine potentiates active defensive responses to threatening stimuli in Swiss-Webster mice.[2] Yohimbine is a potent and relatively nonselective alpha 2-adrenergic receptor (AR) antagonist, with IC50 of 0.6 μM. IC50 value: 0.6 uM [1] Target: alpha 2-adrenergic receptor in vitro: Yohimbine inhibits alpha2-receptor antagonist with Ki of 1.05 nM, 1.19 nM, and 1.19 nM for α2A, α2B, α2C, respectively. Yohimbine also inhibits 5-HT1B with Ki of 19.9 nM. Yohimbine acts to block the lowering of cAMP by alpha-2 adrenoceptor agonists. yohimbine actually causes a pronounced lowering of tyrosinase activity. [3] in vivo: Yohimbine is an antagonist at alpha2-noradrenaline receptors with putative panicogenic effects in human subjects, was administered to Swiss-Webster mice at doses of 0.5, 1.0, and 2.0 mg/kg. Yohimbine potentiates active defensive responses to threatening stimuli in Swiss-Webster mice.[2]
Primuliten
5-Hydroxyflavone is a member of flavones. 5-Hydroxyflavone is a natural product found in Conchocarpus heterophyllus, Primula denticulata, and Lophomyrtus bullata with data available. relative retention time with respect to 9-anthracene Carboxylic Acid is 1.263 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.268 5-Hydroxyflavone, a flavonoid ligand, shows no cytotoxic activity against MCF-7, FaDU, MDA-MB-435S, U87, RPE-1, and HEK293 cells[1]. 5-Hydroxyflavone, a flavonoid ligand, shows no cytotoxic activity against MCF-7, FaDU, MDA-MB-435S, U87, RPE-1, and HEK293 cells[1].
Asparagusic acid
Asparagusic acid is a sulfur-containing carboxylic acid, a dithiolanecarboxylic acid and a member of dithiolanes. It is a conjugate acid of an asparagusate. It derives from a hydride of a 1,2-dithiolane. Asparagusic acid is a natural product found in Asparagus officinalis with data available. Asparagusic acid is found in asparagus. Asparagusic acid is isolated from asparagus (Asparagus officinalis Isolated from asparagus (Asparagus officinalis) [DFC] Asparagusic acid is a sulfur-containing flavor component produced by Asparagus officinalis Linn., with anti-parasitic effect. Asparagusic acid is a plant growth inhibitor[1][2][3].
Pantothenic acid
(R)-pantothenic acid is a pantothenic acid having R-configuration. It has a role as an antidote to curare poisoning, a human blood serum metabolite and a geroprotector. It is a vitamin B5 and a pantothenic acid. It is a conjugate acid of a (R)-pantothenate. Pantothenic acid, also called pantothenate or vitamin B5 (a B vitamin), is a water-soluble vitamin discovered by Roger J. Williams in 1919. For many animals, pantothenic acid is an essential nutrient as it is required to synthesize coenzyme-A (CoA), as well as to synthesize and metabolize proteins, carbohydrates, and fats. Pantothenic acid is the amide between pantoic acid and β-alanine and commonly found as its alcohol analog, the provitamin panthenol, and as calcium pantothenate. Small quantities of pantothenic acid are found in nearly every food, with high amounts in whole-grain cereals, legumes, eggs, meat, royal jelly, avocado, and yogurt. Pantothenic acid is an ingredient in some hair and skin care products. Only the dextrorotatory (D) isomer of pantothenic acid possesses biological activity. while the levorotatory (L) form may antagonize the effects of the dextrorotatory isomer. Pantothenic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Pantothenic acid is a natural product found in Chlamydomonas reinhardtii, Arabidopsis thaliana, and other organisms with data available. Pantothenic Acid is a water-soluble vitamin ubiquitously found in plants and animal tissues with antioxidant property. Vitamin B5 is a component of coenzyme A (CoA) and a part of the vitamin B2 complex. Vitamin B5 is a growth factor and is essential for various metabolic functions, including the metabolism of carbohydrates, proteins, and fatty acids. This vitamin is also involved in the synthesis of cholesterol, lipids, neurotransmitters, steroid hormones, and hemoglobin. (R)-Pantothenic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A butyryl-beta-alanine that can also be viewed as pantoic acid complexed with BETA ALANINE. It is incorporated into COENZYME A and protects cells against peroxidative damage by increasing the level of GLUTATHIONE. See also: Broccoli (part of). Pantothenic acid, also called vitamin B5, is a water-soluble vitamin required to sustain life. Pantothenic acid is needed to form coenzyme-A (CoA), and is thus critical in the metabolism and synthesis of carbohydrates, proteins, and fats. Its name is derived from the Greek pantothen meaning "from everywhere" and small quantities of pantothenic acid are found in nearly every food, with high amounts in whole grain cereals, legumes, eggs, meat, and royal jelly. Pantothenic acid is classified as a member of the secondary alcohols. Secondary alcohols are compounds containing a secondary alcohol functional group, with the general structure HOC(R)(R) (R,R=alkyl, aryl). Pantothenic acid is considered to be soluble (in water) and acidic. (r)-pantothenate, also known as (+)-pantothenic acid or vitamin b5, is a member of the class of compounds known as secondary alcohols. Secondary alcohols are compounds containing a secondary alcohol functional group, with the general structure HOC(R)(R) (R,R=alkyl, aryl) (r)-pantothenate is soluble (in water) and a weakly acidic compound (based on its pKa). (r)-pantothenate can be found in a number of food items such as spirulina, nance, cereals and cereal products, and sparkleberry, which makes (r)-pantothenate a potential biomarker for the consumption of these food products (r)-pantothenate can be found primarily in blood and urine (r)-pantothenate exists in all eukaryotes, ranging from yeast to humans. D018977 - Micronutrients > D014815 - Vitamins A pantothenic acid having R-configuration. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID P032; [MS2] KO009182 KEIO_ID P032; [MS3] KO009183 KEIO_ID P032 D-Pantothenic acid (Pantothenate) is an essential trace nutrient that functions as the obligate precursor of coenzyme A (CoA). D-Pantothenic acid plays key roles in myriad biological processes, including many that regulate carbohydrate, lipid, protein, and nucleic acid metabolism[1]. D-Pantothenic acid (Pantothenate) is an essential trace nutrient that functions as the obligate precursor of coenzyme A (CoA). D-Pantothenic acid plays key roles in myriad biological processes, including many that regulate carbohydrate, lipid, protein, and nucleic acid metabolism[1].
Isorhamnetin
3,4,5,7-tetrahydroxy-3-methoxyflavone is a tetrahydroxyflavone having the 4-hydroxy groups located at the 3- 4- 5- and 7-positions as well as a methoxy group at the 2-position. It has a role as a metabolite and an antimicrobial agent. It is a tetrahydroxyflavone and a monomethoxyflavone. It is functionally related to a quercetin. It is a conjugate acid of a 3,4,5-trihydroxy-3-methoxyflavon-7-olate. 3-O-Methylquercetin is a natural product found in Lotus ucrainicus, Wollastonia biflora, and other organisms with data available. See also: Tobacco Leaf (part of). 3-O-Methylquercetin (3-MQ), a main constituent of Rhamnus nakaharai, inhibits total cAMP and cGMP-phosphodiesterase (PDE) of guinea pig trachealis. 3-O-Methylquercetin (3-MQ) exhibits IC50 values ranging from 1.6-86.9 μM for PDE isozymes (PDE1-5)[1]. 3-O-Methylquercetin (3-MQ), a main constituent of Rhamnus nakaharai, inhibits total cAMP and cGMP-phosphodiesterase (PDE) of guinea pig trachealis. 3-O-Methylquercetin (3-MQ) exhibits IC50 values ranging from 1.6-86.9 μM for PDE isozymes (PDE1-5)[1].
Castanospermine
Castanospermine is a tetrahydroxyindolizidine alkaloid that consists of octahydroindolizine having four hydroxy substituents located at positions 1, 6, 7 and 8 (the 1S,6S,7R,8R,8aR-diastereomer). It has a role as a metabolite, an anti-HIV-1 agent, an anti-inflammatory agent and an EC 3.2.1.* (glycosidase) inhibitor. Castanospermine is a natural product found in Alexa grandiflora, Alexa wachenheimii, and other organisms with data available. A tetrahydroxyindolizidine alkaloid that consists of octahydroindolizine having four hydroxy substituents located at positions 1, 6, 7 and 8 (the 1S,6S,7R,8R,8aR-diastereomer). D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D007004 - Hypoglycemic Agents > D065089 - Glycoside Hydrolase Inhibitors D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents D004791 - Enzyme Inhibitors KEIO_ID C043 Castanospermine inhibits all forms of α- and β-glucosidases, especially glucosidase L.
Gamma-tocopherol
Gamma-tocopherol is a tocopherol in which the chroman-6-ol core is substituted by methyl groups at positions 7 and 8. It is found particularly in maize (corn) oil and soya bean (soybean) oils. It has a role as a plant metabolite, a food antioxidant and an algal metabolite. It is a vitamin E and a tocopherol. gamma-Tocopherol is under investigation in clinical trial NCT00836368 (In Vitro Basophil Responsiveness to Allergen Challenge After Gamma-tocopherol Supplementation in Allergic Asthmatics). gamma-Tocopherol is a natural product found in Hypericum perfoliatum, Hypericum tomentosum, and other organisms with data available. Gamma-Tocopherol is the orally bioavailable gamma form of the naturally-occurring fat-soluble vitamin E, found in certain nuts and seeds, with potential antioxidant activity. Although the exact mechanism of action of this tocopherol has yet to be fully identified, gamma-tocopherol appears to have the ability to scavenge free radicals, thereby protecting against oxidative damage. A natural tocopherol with less antioxidant activity than ALPHA-TOCOPHEROL. It exhibits antioxidant activity by virtue of the phenolic hydrogen on the 2H-1-benzopyran-6-ol nucleus. As in BETA-TOCOPHEROL, it also has three methyl groups on the 6-chromanol nucleus but at different sites. gamma-Tocopherol, also known as 7,8-dimethyltocol, belongs to the class of organic compounds known as tocopherols. These are vitamin E derivatives containing a saturated trimethyltridecyl chain attached to the carbon C6 atom of a benzopyran ring system. They differ from tocotrienols which contain an unsaturated trimethyltrideca-3,7,11-trien-1-yl chain. It is estimated that 50\\\\\% of gamma-tocopherol is metabolized into gamma-CEHC and excreted into the urine. gamma-Tocopherol is the predominant form of vitamin E in plant seeds and derived products (e.g. nuts and vegetable oils). Unlike alpha-tocopherol, gamma-tocopherol inhibits cyclooxygenase activity and, therefore, exhibit anti-inflammatory properties (PMID: 11722951). Occurs in many nut and other vegetable oils such as soya and sunflower oil. It is used as antioxidant food additive. Member of Vitamin E group. Added to fats and oils to prevent rancidity. The naturally occurring tocopherol is a single steroisomer; synthetic forms are a mixture of all eight possible isomers [DFC] A tocopherol in which the chroman-6-ol core is substituted by methyl groups at positions 7 and 8. It is found particularly in maize (corn) oil and soya bean (soybean) oils. (+)-γ-Tocopherol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=54-28-4 (retrieved 2024-07-01) (CAS RN: 54-28-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). γ-Tocopherol (D-γ-Tocopherol) is a potent cyclooxygenase (COX) inhibitor. γ-Tocopherol is a naturally occurring form of Vitamin E in many plant seeds, such as corn oil and soybeans. γ-Tocopherol possesses antiinflammatory properties and anti-cancer activity[1]. γ-Tocopherol (D-γ-Tocopherol) is a potent cyclooxygenase (COX) inhibitor. γ-Tocopherol is a naturally occurring form of Vitamin E in many plant seeds, such as corn oil and soybeans. γ-Tocopherol possesses antiinflammatory properties and anti-cancer activity[1].
Mezerein
Crystals or white powder. (NTP, 1992) Mezerein is a diterpenoid. D009676 - Noxae > D002273 - Carcinogens D000970 - Antineoplastic Agents
Capsiate
Capsiate is a carboxylic ester obtained by formal condensation of the carboxy group of (6E)-8-methylnon-6-enoic acid with the benzylic hydroxy group of vanillyl alcohol. A non-pungent analogue of capsaicin with a similar biological profile. It has a role as a plant metabolite, a hypoglycemic agent, an anti-allergic agent, an antioxidant, an angiogenesis inhibitor, an anti-inflammatory agent and a capsaicin receptor agonist. It is a carboxylic ester, a monomethoxybenzene and a member of phenols. It is functionally related to a vanillyl alcohol. Capsiate is a natural product found in Apis cerana with data available. A carboxylic ester obtained by formal condensation of the carboxy group of (6E)-8-methylnon-6-enoic acid with the benzylic hydroxy group of vanillyl alcohol. A non-pungent analogue of capsaicin with a similar biological profile. Constituent of fruits of Capsicum annuum. Capsiate is found in many foods, some of which are orange bell pepper, herbs and spices, yellow bell pepper, and italian sweet red pepper. Capsiate is found in fruits. Capsiate is a constituent of fruits of Capsicum annuum Capsiate, as a capsaicin analogue extracted from a non-pungent cultivar of CH-19 sweet red pepper, is an orally active agonist of TRPV1[1]. Capsiate, as a capsaicin analogue extracted from a non-pungent cultivar of CH-19 sweet red pepper, is an orally active agonist of TRPV1[1].
(-)-Limonene
Limonene is a monoterpene with a clear colourless liquid at room temperature, a naturally occurring chemical which is the major component in oil of oranges. Limonene is widely used as a flavour and fragrance and is listed to be generally recognized as safe in food by the Food and Drug Administration (21 CFR 182.60 in the Code of Federal Regulations, U.S.A.). Limonene is a botanical (plant-derived) solvent of low toxicity. Mild skin irritation may occur from exposure to limonene and oxidation products of limonene may produce dermal sensitization, and may have irritative and bronchoconstrictive airway effects; however, data are scant and more studies are required. Limonene has been shown to cause a male rat-specific kidney toxicity referred to as hyaline droplet nephropathy. Furthermore, chronic exposure to limonene causes a significant incidence of renal tubular tumours exclusively in male rats. Limonene is one of the active components of dietary phytochemicals that appears to be protective against cancer (PMID:16563357, 15499193, 15325315, 2024047). (4S)-limonene is an optically active form of limonene having (4S)-configuration. It is an enantiomer of a (4R)-limonene. (-)-Limonene is a natural product found in Poiretia latifolia, Kippistia suaedifolia, and other organisms with data available. A naturally-occurring class of MONOTERPENES which occur as a clear colorless liquid at room temperature. Limonene is the major component in the oil of oranges which has many uses, including as flavor and fragrance. It is recognized as safe in food by the Food and Drug Administration (FDA). See also: Spearmint Oil (part of). An optically active form of limonene having (4S)-configuration. (-)-Limonene ((S)-(-)-Limonene) is a monoterpene found in citrus plants like lemon, orange, and grape. (-)-Limonene can induce a mild bronchoconstrictive effect[1]. (-)-Limonene ((S)-(-)-Limonene) is a monoterpene found in citrus plants like lemon, orange, and grape. (-)-Limonene can induce a mild bronchoconstrictive effect[1]. (-)-Limonene ((S)-(-)-Limonene) is a monoterpene found in citrus plants like lemon, orange, and grape. (-)-Limonene can induce a mild bronchoconstrictive effect[1]. (-)-Limonene ((S)-(-)-Limonene) is a monoterpene found in citrus plants like lemon, orange, and grape. (-)-Limonene can induce a mild bronchoconstrictive effect[1].
Pyridoxate
4-Pyridoxic acid is a member of the class of compounds known as methylpyridines. More specifically it is a 2-methylpyridine derivative substituted by a hydroxy group at C-3, a carboxy group at C-4, and a hydroxymethyl group at C-5. 4-Pyridoxic acid is the catabolic product of vitamin B6 (also known as pyridoxine, pyridoxal and pyradoxamine) and is excreted in the urine. Urinary levels of 4-pyridoxic acid are lower in females than in males and will be reduced even further in persons with a riboflavin deficiency. 4-Pyridoxic acid is formed by the action of aldehyde oxidase I (an endogenous enzyme) and by microbial enzymes (pyridoxal 4-dehydrogenase), an NAD-dependent aldehyde dehydrogenase. 4-pyridoxic acid can be further broken down by the gut microflora via the enzyme known as 4-pyridoxic acid dehydrogenase. This enzyme catalyzes the four-electron oxidation of 4-pyridoxic acid to 3-hydroxy-2-methylpyridine-4,5-dicarboxylate, using nicotinamide adenine dinucleotide (NAD) as a cofactor. 4-Pyridoxic acid is the catabolic product of vitamin B6 (also known as pyridoxine, pyridoxal and pyradoxamine) which is excreted in the urine. Urinary levels of 4-pyridoxic acid are lower in females than in males and will be reduced in persons with riboflavin deficiency. 4-Pyridoxic acid is formed by the action of aldehyde oxidase I (an endogenous enzyme) and by microbial enzymes (pyridoxal 4-dehydrogenase), an NAD-dependent aldehyde dehydrogenase. 4-pyridoxic acid can be further broken down by the gut microflora via 4-pyridoxic acid dehydrogenase. This enzyme catalyzes the four electron oxidation of 4-pyridoxic acid to 3-hydroxy-2-methylpyridine-4,5-dicarboxylate, using nicotinamide adenine dinucleotide as a cofactor. [HMDB] Vitamin B6 is one of the B vitamins, and thus an essential nutrient.[1][2][3][4] The term refers to a group of six chemically similar compounds, i.e., "vitamers", which can be interconverted in biological systems. Its active form, pyridoxal 5′-phosphate, serves as a coenzyme in more than 140 enzyme reactions in amino acid, glucose, and lipid metabolism.[1][2][3] Plants synthesize pyridoxine as a means of protection from the UV-B radiation found in sunlight[5] and for the role it plays in the synthesis of chlorophyll.[6] Animals cannot synthesize any of the various forms of the vitamin, and hence must obtain it via diet, either of plants, or of other animals. There is some absorption of the vitamin produced by intestinal bacteria, but this is not sufficient to meet dietary needs. For adult humans, recommendations from various countries' food regulatory agencies are in the range of 1.0 to 2.0 milligrams (mg) per day. These same agencies also recognize ill effects from intakes that are too high, and so set safe upper limits, ranging from as low as 25 mg/day to as high as 100 mg/day depending on the country. Beef, pork, fowl and fish are generally good sources; dairy, eggs, mollusks and crustaceans also contain vitamin B6, but at lower levels. There is enough in a wide variety of plant foods so that a vegetarian or vegan diet does not put consumers at risk for deficiency.[7] Dietary deficiency is rare. Classic clinical symptoms include rash and inflammation around the mouth and eyes, plus neurological effects that include drowsiness and peripheral neuropathy affecting sensory and motor nerves in the hands and feet. In addition to dietary shortfall, deficiency can be the result of anti-vitamin drugs. There are also rare genetic defects that can trigger vitamin B6 deficiency-dependent epileptic seizures in infants. These are responsive to pyridoxal 5'-phosphate therapy.[8] 4-Pyridoxic acid is a catabolic product of vitamin B6 which is excreted in the urine.
propachlor
D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 708 CONFIDENCE standard compound; INTERNAL_ID 3622 CONFIDENCE standard compound; INTERNAL_ID 8397
2-Pyrocatechuic acid
2-Pyrocatechuic acid is a normal human benzoic acid metabolite found in plasma (PMID 16351159), and is normally found with increased levels after consumption of many nutrients and drugs, i.e.: cranberry juice (PMID 14733499), aspirin ingestion. (PMID 3342084) It has been found associated with idiopathic oro-facial pain due to stress (oxidative stress might enhance the production of free radicals); it has been suggested that OH radicals are responsible for the production of many systemic and local tissue injury diseases which may initially manifest as pain syndrome, and 2-Pyrocatechuic acid is a biological marker for the detection and quantification of OH radicals, and patients had significantly increased circulating levels of 2-Pyrocatechuic acid after aspirin ingestion than control subjects. (PMID 7748148). D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents Occurs in Gentiana lutea (yellow gentian) Pyrocatechuic acid is a normal human benzoic acid metabolite found in plasma, and has increased levels after aspirin ingestion. Pyrocatechuic acid is a normal human benzoic acid metabolite found in plasma, and has increased levels after aspirin ingestion.
Deoxyuridine
Deoxyuridine, also known as dU, belongs to the class of organic compounds known as pyrimidine 2-deoxyribonucleosides. Pyrimidine 2-deoxyribonucleosides are compounds consisting of a pyrimidine linked to a ribose which lacks a hydroxyl group at position 2. It is similar in chemical structure to uridine, but without the 2-hydroxyl group. Deoxyuridine exists in all living organisms, ranging from bacteria to humans. Within humans, deoxyuridine participates in a number of enzymatic reactions. In particular, deoxyuridine can be biosynthesized from deoxycytidine through its interaction with the enzyme cytidine deaminase. In addition, deoxyuridine can be converted into uracil and deoxyribose 1-phosphate through its interaction with the enzyme thymidine phosphorylase. Deoxyuridine is considered to be an antimetabolite that is converted into deoxyuridine triphosphate during DNA synthesis. Laboratory suppression of deoxyuridine is used to diagnose megaloblastic anemia due to vitamin B12 and folate deficiencies. In humans, deoxyuridine is involved in the metabolic disorder called UMP synthase deficiency (orotic aciduria). Outside of the human body, deoxyuridine has been detected, but not quantified in, several different foods, such as lichee, highbush blueberries, agaves, macadamia nut (M. tetraphylla), and red bell peppers. This could make deoxyuridine a potential biomarker for the consumption of these foods. 2-Deoxyuridine is a naturally occurring nucleoside. It is similar in chemical structure to uridine, but without the 2-hydroxyl group. It is considered to be an antimetabolite that is converted to deoxyuridine triphosphate during DNA synthesis. Laboratory suppression of deoxyuridine is used to diagnose megaloblastic anemia due to vitamin B12 and folate deficiencies. [HMDB]. Deoxyuridine is found in many foods, some of which are garden tomato (variety), hickory nut, banana, and hazelnut. Deoxyuridine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=951-78-0 (retrieved 2024-07-01) (CAS RN: 951-78-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 2'-Deoxyuridine could increase chromosome breakage and results in a decreased thymidylate synthetase activity. A known use of 2'-Deoxyuridine is as a precursor in the synthesis of Edoxudine. 2'-Deoxyuridine could increase chromosome breakage and results in a decreased thymidylate synthetase activity. A known use of 2'-Deoxyuridine is as a precursor in the synthesis of Edoxudine. 2'-Deoxyuridine could increase chromosome breakage and results in a decreased thymidylate synthetase activity. A known use of 2'-Deoxyuridine is as a precursor in the synthesis of Edoxudine.
2-hydroxyphenylacetate
ortho-Hydroxyphenylacetic acid, also known as (o-hydroxyphenyl)acetate or 2-hydroxybenzeneacetic acid, is a member of the class of compounds known as 2(hydroxyphenyl)acetic acids. 2(Hydroxyphenyl)acetic acids are phenylacetic acids that carry a hydroxyl group at the 2-position. ortho-Hydroxyphenylacetic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). ortho-Hydroxyphenylacetic acid can be found in a number of food items such as natal plum, lemon verbena, half-highbush blueberry, and parsley, which makes ortho-hydroxyphenylacetic acid a potential biomarker for the consumption of these food products. ortho-Hydroxyphenylacetic acid can be found primarily in blood, feces, and urine. Moreover, ortho-hydroxyphenylacetic acid is found to be associated with phenylketonuria, which is an inborn error of metabolism. ortho-Hydroxyphenylacetic acid is a substrate of the enzyme oxidoreductases (EC 1.14.13.-) in the pathway styrene degradation (KEGG). ortho-Hydroxyphenylacetic acid is also a microbial metabolite. ortho-Hydroxyphenylacetic acid is a substrate of the enzyme oxidoreductases [EC 1.14.13.-] in the pathway styrene degradation. (KEGG) [HMDB]. 2-Hydroxyphenylacetic acid is found in many foods, some of which are rambutan, common oregano, burbot, and wild leek. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 155 INTERNAL_ID 155; CONFIDENCE standard compound CONFIDENCE standard compound; INTERNAL_ID 46 COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2-Hydroxyphenylacetic acid is a potential biomarker for the food products, and found to be associated with phenylketonuria (PKU). 2-Hydroxyphenylacetic acid is a potential biomarker for the food products, and found to be associated with phenylketonuria (PKU).
1,5-anhydroglucitol (1,5-AG)
1,5-Anhydrosorbitol or 1,5-anhydroglucitol (1,5-AG) is a validated marker of short-term glycemic control. This substance is derived mainly from food, is well absorbed in the intestine, and is distributed to all organs and tissues. It is metabolically stable, being excreted in the urine when its level exceeds the renal threshold. It is reabsorbed in the renal tubules, and is competitively inhibited by glucosuria, which leads to a reduction in its level in serum. The correlation between this reduction and the amount of glucose present in urine is so close that 1,5 AG can be used as a sensitive, day-to-day, real-time marker of glycemic control. It provides useful information on current glycemic control and is superior to both hemoglobin A1C and fructosamine in detecting near-normoglycemia. 1,5-AG in human plasma has been proposed for several years as a short-term, retrospective marker of glycaemic control and seems to be the most suitable parameter for monitoring glucose excursions. The decrease in serum 1,5-AG is very sensitive to urinary glucose excretion. It is a metabolically inert polyol that competes with glucose for reabsorption in the kidneys. Otherwise stable levels of 1,5-AG are rapidly depleted as blood glucose levels exceed the renal threshold for glucosuria. 1,5-AG is also more tightly associated with glucose fluctuations and postprandial glucose. (PMID: 18088226, 12166605, 7783360, 8940824) [HMDB] 1, 5-Anhydrosorbitol or 1,5-anhydroglucitol (1,5-AG) is a validated marker of short-term glycemic control. This substance is derived mainly from food, is well absorbed in the intestine, and is distributed to all organs and tissues. It is metabolically stable, being excreted in the urine when its level exceeds the renal threshold. It is reabsorbed in the renal tubules and is competitively inhibited by glucosuria, which leads to a reduction in its level in serum. The correlation between this reduction and the amount of glucose present in urine is so close that 1,5 AG can be used as a sensitive, day-to-day, real-time marker of glycemic control. It provides useful information on current glycemic control and is superior to both hemoglobin A1C and fructosamine in detecting near-normoglycemia. 1,5-AG in human plasma has been proposed for several years as a short-term, retrospective marker of glycemic control and seems to be the most suitable parameter for monitoring glucose excursions. The decrease in serum 1,5-AG is very sensitive to urinary glucose excretion. It is a metabolically inert polyol that competes with glucose for reabsorption in the kidneys. Otherwise stable levels of 1,5-AG are rapidly depleted as blood glucose levels exceed the renal threshold for glucosuria. 1,5-AG is also more tightly associated with glucose fluctuations and postprandial glucose (PMID:18088226, 12166605, 7783360, 8940824). 1,5-Anhydrosorbitol is a short-term marker for glycemic control. 1,5-Anhydrosorbitol is a short-term marker for glycemic control.
Desaminotyrosine
Desaminotyrosine, also known as 4-hydroxyphenylpropionic acid, is a normal constituent of human urine. It is a product of tyrosine metabolism; its concentration in urine increases in patients with gastrointestinal diseases. Desaminotyrosine is a major phenolic acid breakdown product of proanthocyanidin metabolism (PMID:15315398). Urinary desaminotyrosine is produced by Clostridium sporogenes and C. botulinum (PMID:29168502). Desaminotyrosine is also found in Acinetobacter, Bacteroides, Bifidobacteria, Bifidobacterium, Clostridium, Enterococcus, Escherichia, Eubacterium, Klebsiella, Lactobacillus, Pseudomonas, and Staphylococcus (PMID:29168502, 28393285, 19961416). Desaminotyrosine is a phenolic acid metabolite formed by the gut microflora detected after the consumption of whole grain. A normal constituent of human urine. A product of tyrosine metabolism; concentration in urine increases in patients with gastrointestinal diseases. (Dictionary of Organic Compounds) May also result from phenolic acid metabolism by colonic bacteria. (PMID 15315398) [HMDB]. Phloretic acid is found in many foods, some of which are arrowroot, olive, avocado, and peanut. Desaminotyrosine is a microbially associated metabolite protecting from influenza through augmentation of type I interferon signaling. Desaminotyrosine is a microbially associated metabolite protecting from influenza through augmentation of type I interferon signaling.
3-Hydroxypicolinic acid
3-Hydroxy picolinic acid is a picolinic acid derivative and is a member of the pyridine family. Picolinic acid is an isomer of nicotinic acid, which has the carboxyl side chain at the 3-position. It is a catabolite of the amino acid tryptophan. [HMDB] 3-Hydroxy picolinic acid is a picolinic acid derivative and is a member of the pyridine family. Picolinic acid is an isomer of nicotinic acid, which has the carboxyl side chain at the 3-position. It is a catabolite of the amino acid tryptophan. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 3-Hydroxypicolinic acid is a picolinic acid derivative, and belongs to the pyridine family.
Androstenedione
Androst-4-en-3,17-dione, also known as androstenedione or delta(4)-androsten-3,17-dione, belongs to androgens and derivatives class of compounds. Those are 3-hydroxylated C19 steroid hormones. They are known to favor the development of masculine characteristics. They also show profound effects on scalp and body hair in humans. Thus, androst-4-en-3,17-dione is considered to be a steroid lipid molecule. Androst-4-en-3,17-dione is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Androst-4-en-3,17-dione can be found in a number of food items such as naranjilla, purslane, common cabbage, and oval-leaf huckleberry, which makes androst-4-en-3,17-dione a potential biomarker for the consumption of these food products. Androst-4-en-3,17-dione can be found primarily in blood, cerebrospinal fluid (CSF), and urine, as well as throughout most human tissues. In humans, androst-4-en-3,17-dione is involved in a couple of metabolic pathways, which include androgen and estrogen metabolism and androstenedione metabolism. Androst-4-en-3,17-dione is also involved in a couple of metabolic disorders, which include 17-beta hydroxysteroid dehydrogenase III deficiency and aromatase deficiency. Moreover, androst-4-en-3,17-dione is found to be associated with rheumatoid arthritis, thyroid cancer , cushings Syndrome, and schizophrenia. Androst-4-en-3,17-dione is a non-carcinogenic (not listed by IARC) potentially toxic compound. Androstenedione is a delta-4 19-carbon steroid that is produced not only in the testis, but also in the ovary and the adrenal cortex. Depending on the tissue type, androstenedione can serve as a precursor to testosterone as well as estrone and estradiol. It is the common precursor of male and female sex hormones. Some androstenedione is also secreted into the plasma and may be converted in peripheral tissues to testosterone and estrogens. Androstenedione originates either from the conversion of dehydroepiandrosterone or from 17-hydroxyprogesterone. It is further converted to either testosterone or estrone. The production of adrenal androstenedione is governed by ACTH, while the production of gonadal androstenedione is under control by gonadotropins. CONFIDENCE standard compound; INTERNAL_ID 396; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9081; ORIGINAL_PRECURSOR_SCAN_NO 9076 CONFIDENCE standard compound; INTERNAL_ID 396; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9111; ORIGINAL_PRECURSOR_SCAN_NO 9108 CONFIDENCE standard compound; INTERNAL_ID 396; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9069; ORIGINAL_PRECURSOR_SCAN_NO 9064 CONFIDENCE standard compound; INTERNAL_ID 396; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9077; ORIGINAL_PRECURSOR_SCAN_NO 9075 CONFIDENCE standard compound; INTERNAL_ID 396; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9113; ORIGINAL_PRECURSOR_SCAN_NO 9112 C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones CONFIDENCE standard compound; INTERNAL_ID 2803 INTERNAL_ID 2803; CONFIDENCE standard compound CONFIDENCE standard compound; INTERNAL_ID 4165
5-Methyltetrahydrofolic acid
5 methyltetrahydrofolic acid (5-MTHF) is the most biologically active form of the B-vitamin known as folic acid, also known generically as folate. 5-MTHF functions, in concert with vitamin B12, as a methyl-group donor involved in the conversion of the amino acid homocysteine to methionine. Methyl (CH3) group donation is vital to many bodily processes, including serotonin, melatonin, and DNA synthesis. Therapeutically, 5-MTHF is instrumental in reducing homocysteine levels, preventing neural tube defects, and improving vascular endothelial function. Research on folate supplementation suggests it plays a key role in preventing cervical dysplasia and protecting against neoplasia in ulcerative colitis. Folic acid also shows promise as part of a nutritional protocol to treat vitiligo, and may reduce inflammation of the gingiva. Furthermore, certain neurological, cognitive, and psychiatric presentations may be secondary to folate deficiency. Such presentations include depression, peripheral neuropathy, myelopathy, restless legs syndrome, insomnia, dementia, forgetfulness, irritability, endogenous depression, organic psychosis, and schizophrenia-like syndromes. After ingestion, the process of conversion of folic acid to the metabolically active coenzyme forms is relatively complex. Synthesis of the active forms of folic acid requires several enzymes, adequate liver and intestinal function, and adequate supplies of riboflavin (B2), niacin (B3), pyridoxine (B6), zinc, vitamin C, and serine. After formation of the coenzyme forms of the vitamin in the liver, these metabolically active compounds are secreted into the small intestine with bile (the folate enterohepatic cycle), where they are reabsorbed and distributed to tissues throughout the body. Human pharmacokinetic studies indicate folic acid has high bioavailability, with large oral doses of folic acid substantially raising plasma levels in healthy subjects in a time and dose dependent manner. Red blood cells (RBCs) appear to be the storage depot for folic acid, as RBC levels remain elevated for periods in excess of 40 days following discontinuation of supplementation. Folic acid is poorly transported to the brain and rapidly cleared from the central nervous system. The primary methods of elimination of absorbed folic acid are fecal (through bile) and urinary. Despite the biochemical complexity of this process, evidence suggests oral supplementation with folic acid increases the bodys pool of 5-MTHF in healthy individuals. However, enzyme defects, mal-absorption, digestive system pathology, and liver disease can result in impaired ability to activate folic acid. In fact, some individuals have a severe congenital deficiency of the enzyme Methyl tetrahydrofolate reductase (5-MTHFR), which is needed to convert folic acid to 5-MTHF. Milder forms of this enzyme defect likely interact with dietary folate status to determine risk for some disease conditions. In individuals with a genetic defect of this enzyme (whether mild or severe), supplementation with 5- MTHF might be preferable to folic acid supplementation. (PMID: 17176169). 5 methyltetrahydrofolic acid (5-MTHF) is the most biologically active form of the B-vitamin folic acid, also known generically as folate. 5-MTHF functions, in concert with vitamin B12, as a methyl-group donor involved in the conversion of the amino acid homocysteine to methionine. Methyl (CH3) group donation is vital to many bodily processes, including serotonin, melatonin, and DNA synthesis. Therapeutically, 5-MTHF is instrumental in reducing homocysteine levels, preventing neural tube defects, and improving vascular endothelial function. Research on folate supplementation suggests it plays a key role in preventing cervical dysplasia and protecting against neoplasia in ulcerative colitis. Folic acid also shows promise as part of a nutritional protocol to treat vitiligo, and may reduce inflammation of the gingiva. Furthermore, certain neurological, cognitive, and psychiatric presentations may be secondary to folate deficiency. Such presentations include depression, peripheral neuropathy, myelopathy, restless legs syndrome, insomnia, dementia, forgetfulness, irritability, endogenous depression, organic psychosis, and schizophrenia-like syndromes. After ingestion, the process of conversion of folic acid to the metabolically active coenzyme forms is relatively complex. Synthesis of the active forms of folic acid requires several enzymes, adequate liver and intestinal function, and adequate supplies of riboflavin (B2), niacin (B3), pyridoxine (B6), zinc, vitamin C, and serine. After formation of the coenzyme forms of the vitamin in the liver, these metabolically active compounds are secreted into the small intestine with bile (the folate enterohepatic cycle), where they are reabsorbed and distributed to tissues throughout the body. Human pharmacokinetic studies indicate folic acid has high bioavailability, with large oral doses of folic acid substantially raising plasma levels in healthy subjects in a time and dose dependent manner. Red blood cells (RBCs) appear to be the storage depot for folic acid, as RBC levels remain elevated for periods in excess of 40 days following discontinuation of supplementation. Folic acid is poorly transported to the brain and rapidly cleared from the central nervous system. The primary methods of elimination of absorbed folic acid are fecal (through bile) and urinary. Despite the biochemical complexity of this process, evidence suggests oral supplementation with folic acid increases the bodys pool of 5-MTHF in healthy individuals. However, enzyme defects, mal-absorption, digestive system pathology, and liver disease can result in impaired ability to activate folic acid. In fact, some individuals have a severe congenital deficiency of the enzyme Methyl tetrahydrofolate reductase (5-MTHFR), which is needed to convert folic acid to 5-MTHF. Milder forms of this enzyme defect likely interact with dietary folate status to determine risk for some disease conditions. In individuals with a genetic defect of this enzyme (whether mild or severe), supplementation with 5- MTHF might be preferable to folic acid supplementation. (PMID: 17176169) [HMDB] 5-Methyltetrahydrofolic acid (5-Methyl THF) is a biologically active form of folic acid. 5-Methyltetrahydrofolic acid is a methylated derivate of tetrahydrofolate. 5-Methyltetrahydrofolic acid is the predominant natural dietary folate and the principal form of folate in plasma and cerebrospinal fluid[1]. Levomefolic acid (5-MTHF) is an orally active, brain-penetrant natural active form of folic acid and is one of the most widely used folic acid food supplements[1][2].
5-Sulfosalicylic acid
5-Sulfosalicylic acid is a derivative of salicylic acid, a common anti-inflammatory drug.Sulfosalicylic acid is used in urine tests to determine urine protein content. The chemical causes the precipitation of dissolved proteins, which is measured from the degree of turbidity. It is also used for integral colour anodizing. -Wikipedia [HMDB] 5-Sulfosalicylic acid is a derivative of salicylic acid, a common anti-inflammatory drug. Sulfosalicylic acid is used in urine tests to determine urine protein content. The chemical causes the precipitation of dissolved proteins, which is measured from the degree of turbidity. It is also used for integral colour anodizing. -Wikipedia. D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic
Aminocaproic acid
Aminocaproic acid (marketed as Amicar) is a drug used to treat bleeding disorders. It is an antifibrinolytic agent that acts by inhibiting plasminogen activators which have fibrinolytic properties. It is a derivative of the amino acid lysine. It binds reversibly to the kringle domain of plasminogen and blocks the binding of plasminogen to fibrin and its activation to plasmin. [HMDB] Aminocaproic acid (marketed as Amicar) is a drug used to treat bleeding disorders. It is an antifibrinolytic agent that acts by inhibiting plasminogen activators which have fibrinolytic properties. It is a derivative of the amino acid lysine. It binds reversibly to the kringle domain of plasminogen and blocks the binding of plasminogen to fibrin and its activation to plasmin. B - Blood and blood forming organs > B02 - Antihemorrhagics > B02A - Antifibrinolytics > B02AA - Amino acids Acquisition and generation of the data is financially supported in part by CREST/JST. D006401 - Hematologic Agents > D003029 - Coagulants > D006490 - Hemostatics C78275 - Agent Affecting Blood or Body Fluid > C78311 - Hemostatic Agent D050299 - Fibrin Modulating Agents > D000933 - Antifibrinolytic Agents IPB_RECORD: 266; CONFIDENCE confident structure KEIO_ID A053 6-Aminocaproic acid (EACA), a monoamino carboxylic acid, is a potent and orally active inhibitor of plasmin and plasminogen. 6-Aminocaproic acid is a potent antifibrinolytic agent. 6-Aminocaproic acid prevents clot lysis through the competitive binding of lysine residues on plasminogen, inhibiting plasmin formation and reducing fibrinolysis. 6-Aminocaproic acid can be used for the research of bleeding disorders[1][2].
16a-Hydroxyestrone
16a-Hydroxyestrone or 16alpha-hydroxyestrone (16α-OH-E1 or 16a OHE1), or hydroxyestrone, is an endogenous steroidal estrogen and a major metabolite of estrone and estradiol. 16a-hydroxyestrone belongs to the class of organic compounds known as estrogens and derivatives. These are steroids with a structure containing a 3-hydroxylated estrane. Thus, 16a-hydroxyestrone is considered to be a steroid molecule. 16a-hydroxyestrone is found in all vertebrates. Vertebrates, especially mammals, metabolizes estrogen into two major pathways and one minor. The two major pathways lead to 2-hydroxyestrone and 16a-hydroxyestrone (2-OHE1 and 16a OHE1 respectively). The minor pathway leads to 4-hydroxyestrone (4-OHE1). 2a-hydroxyestrone is considered to be the good metabolite (PMID: 8943806) as 2-hydroxyestrone does not stimulate cell growth and it blocks the action of stronger estrogens that may be carcinogenic. 16a-Hydroxyestrone, on the other hand, has a significantly stronger estrogenic activity, and studies show that it may increase the risk of breast cancer. The binding of 16a-hydroxyestrone to the estrogen receptor is reported to be covalent and irreversible (PMID: 3186693). A low urinary ratio of 2-hydroxyestrone to 16-alpha-hydroxyestrone is a strong predictor of breast cancer risk among women (PMID: 19502596). Estrone (also oestrone) is an estrogenic hormone secreted by the ovary. Its molecular formula is C18H22O2. estrone has a melting point of 254.5 degrees Celsius. estrone is one of the three estrogens, which also include estriol and estradiol. estrone is the least prevalent of the three hormones, estradiol being prevalent almost always in a female body, estriol being prevalent primarily during pregnancy. estrone sulfate is relevant to health and disease due to its conversion to estrone sulfate, a long-lived derivative of estrone. estrone sulfate acts as a pool of estrone which can be converted as needed to the more active estradiol. [HMDB] C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
Cysteinylglycine
Cysteinylglycine is a naturally occurring dipeptide. It is derived from the breakdown of glutathione (a tripeptide). In plasma, cysteinylglycine is in a reduced, oxidized and protein-bound form (aminothiol) and interact via redox and disulphide exchange reactions, in a dynamic system referred to as redox thiol status. (PMID 8642471) Spermatozoa of sub fertile men contain significantly higher thiol concentrations as compared with those of fertile men. The detrimental effect on embryo quality of a high homocysteine (Hcy, another member of the thiol group) concentration in the ejaculate and in follicular fluid is intriguing and may suggest that Hcy is inversely associated with fertility outcome. (PMID 16556671) Rheumatoid arthritis (RA) is a chronic inflammatory disease which involves the synovial membrane of multiple diarthroidal joints causing damage to cartilage and bones. The damage process seems to be related to an overproduction of oxygen reactive species inducing an oxidative perturbation with an increase in some oxidized forms (disulfides and protein mixed disulfides) and a decrease in free thiols. (PMID 15895891) Imipenem (thienamycin formamidine), is a broad-spectrum beta-lactam antibiotic, always used in combination with cilastatin in order to avoid the premature breakdown of imipenem by renal tubular dipeptidase. As this dipeptidase also hydrolyzes the glutathione metabolite cysteinylglycine, the therapeutic association of imipenem and cilastatin causes plasma levels of cysteinylglycine to increase significantly, while cysteine levels are decreased and homocysteine levels are unaffected. Therefore, antibiotic treatment using imipenem-cilastatin induces important metabolic changes that should not remain unrecognized. (PMID 15843241) [HMDB]. Cysteinylglycine is found in many foods, some of which are chinese cabbage, wax apple, garden tomato (variety), and japanese pumpkin. Cysteinylglycine is a naturally occurring dipeptide composed of cysteine and glycine. It is derived from the breakdown of glutathione (a tripeptide). In plasma, cysteinylglycine is in a reduced, oxidized, and protein-bound form (aminothiol) and interacts via redox and disulphide exchange reactions in a dynamic system referred to as redox thiol status (PMID: 8642471). Spermatozoa of sub-fertile men contain significantly higher thiol concentrations as compared with those of fertile men. The detrimental effect on embryo quality of a high homocysteine (Hcy) concentration in the ejaculate and in the follicular fluid is intriguing and may suggest that Hcy is inversely associated with fertility outcome (PMID: 16556671). Rheumatoid arthritis (RA) is a chronic inflammatory disease which involves the synovial membrane of multiple diarthroidal joints causing damage to cartilage and bones. The damage process seems to be related to an overproduction of oxygen reactive species inducing an oxidative perturbation with an increase in some oxidized forms (disulfides and protein mixed disulfides) and a decrease in free thiols (PMID: 15895891). Imipenem (thienamycin formamidine) is a broad-spectrum beta-lactam antibiotic, always used in combination with cilastatin in order to avoid the premature breakdown of imipenem by renal tubular dipeptidase. As this dipeptidase also hydrolyzes the glutathione metabolite cysteinylglycine, the therapeutic association of imipenem and cilastatin causes plasma levels of cysteinylglycine to increase significantly, while cysteine levels are decreased and homocysteine levels are unaffected. Therefore, antibiotic treatment using imipenem-cilastatin induces important metabolic changes that should not remain unrecognized (PMID: 15843241). L-Cysteinylglycine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=19246-18-5 (retrieved 2024-07-02) (CAS RN: 19246-18-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Glycylglycine
The simplest peptide, made of two glycine molecules; used in the synthesis of more complicated peptides. Glycine is a simple, nonessential amino acid, although experimental animals show reduced growth on low-glycine diets. The average adult ingests 3 to 5 grams of glycine daily. Glycine is involved in the bodys production of DNA, phospholipids and collagen, and in release of energy. Glycine levels are effectively measured in plasma in both normal patients and those with inborn errors of glycine metabolism. (http://www.dcnutrition.com/AminoAcids/) Nonketotic hyperglycinaemia (OMIM 606899) is an autosomal recessive condition caused by deficient enzyme activity of the glycine cleavage enzyme system (EC 2.1.1.10). The glycine cleavage enzyme system comprises four proteins: P-, T-, H- and L-proteins (EC 1.4.4.2, EC 2.1.2.10 and EC 1.8.1.4 for P-, T- and L-proteins). Mutations have been described in the GLDC (OMIM 238300), AMT (OMIM 238310), and GCSH (OMIM 238330) genes encoding the P-, T-, and H-proteins respectively. The glycine cleavage system catalyses the oxidative conversion of glycine into carbon dioxide and ammonia, with the remaining one-carbon unit transferred to folate as methylenetetrahydrofolate. It is the main catabolic pathway for glycine and it also contributes to one-carbon metabolism. Patients with a deficiency of this enzyme system have increased glycine in plasma, urine and cerebrospinal fluid (CSF) with an increased CSF: plasma glycine ratio. (PMID 16151895) [HMDB] The simplest peptide, made of two glycine molecules; used in the synthesis of more complicated peptides. Glycine is a simple, nonessential amino acid, although experimental animals show reduced growth on low-glycine diets. The average adult ingests 3 to 5 grams of glycine daily. Glycine is involved in the bodys production of DNA, phospholipids and collagen, and in release of energy. Glycine levels are effectively measured in plasma in both normal patients and those with inborn errors of glycine metabolism. (http://www.dcnutrition.com/AminoAcids/) Nonketotic hyperglycinaemia (OMIM 606899) is an autosomal recessive condition caused by deficient enzyme activity of the glycine cleavage enzyme system (EC 2.1.1.10). The glycine cleavage enzyme system comprises four proteins: P-, T-, H- and L-proteins (EC 1.4.4.2, EC 2.1.2.10 and EC 1.8.1.4 for P-, T- and L-proteins). Mutations have been described in the GLDC (OMIM 238300), AMT (OMIM 238310), and GCSH (OMIM 238330) genes encoding the P-, T-, and H-proteins respectively. The glycine cleavage system catalyses the oxidative conversion of glycine into carbon dioxide and ammonia, with the remaining one-carbon unit transferred to folate as methylenetetrahydrofolate. It is the main catabolic pathway for glycine and it also contributes to one-carbon metabolism. Patients with a deficiency of this enzyme system have increased glycine in plasma, urine and cerebrospinal fluid (CSF) with an increased CSF: plasma glycine ratio. (PMID 16151895). Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID G037 Glycylglycine is the simplest of all peptides and could function as a gamma-glutamyl acceptor. Glycylglycine is the simplest of all peptides and could function as a gamma-glutamyl acceptor.
Hippurate
C254 - Anti-Infective Agent > C255 - Urinary Anti-Infective Agent CONFIDENCE standard compound; INTERNAL_ID 130 KEIO_ID H065 Hippuric Acid (2-Benzamidoacetic acid), an acyl glycine produced by the conjugation of benzoic acid and glycine, is a normal component in urine as a metabolite of aromatic compounds from food. Hippuric Acid (2-Benzamidoacetic acid), an acyl glycine produced by the conjugation of benzoic acid and glycine, is a normal component in urine as a metabolite of aromatic compounds from food.
Salicyluric acid
Salicyluric acid is an aryl glycine conjugate formed by the body to eliminate excess salicylates, including aspirin. Aspirin is rapidly hydrolysed to salicylic acid which is further metabolized to various compounds, including salicyluric acid (SU) as well as various acyl and phenolic glucuronides, and hydroxylated metabolites. SU is the major metabolite of SA excreted in urine and it is present in the urine of people who have not taken salicylate drugs, although it has no anti-inflammatory effects in humans or in animals. More salicyluric acid (SU) is excreted in the urine of vegetarians than in non-vegetarians, primarily because fruits and vegetables are important sources of dietary salicylates. However, significantly less (10-15X) SU is excreted by vegetarians than individuals taking low-dose aspirin (PMID: 12944546). The induction of the salicyluric acid formation is one of the saturable pathways of salicylate elimination. The formation of the methyl ester of salicyluric acid is observed during the quantitation of salicyluric acid and other salicylate metabolites in urine by high-pressure liquid chromatography. This methyl ester formation causes artificially low values for salicyluric acid and high values for salicylic acid. (PMID: 6101164, 6857178). Salicyluric acid has been found to be a microbial metabolite. Constituent of milk KEIO_ID H028 Salicyluric acid is an endogenous metabolite.
Parathion
Parathion is a highly toxic cholinesterase inhibitor that is used as an acaricide and as an insecticide. D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors A highly toxic cholinesterase inhibitor that is used as an acaricide and as an insecticide. [HMDB] C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals
Sepiapterin
Sepiapterin, also known as 2-amino-6-lactoyl-7,8-dihydropteridin-4(3H)-one, belongs to the class of organic compounds known as pterins and derivatives. These are polycyclic aromatic compounds containing a pterin moiety, which consist of a pteridine ring bearing a ketone and an amine group to form 2-aminopteridin-4(3H)-one. Sepiapterin is also classified as a member of the pteridine class of organic chemicals. It is a yellow fluorescing pigment. Sepiapterin is an intermediate in the salvage pathway of tetrahydrobiopterin (BH(4)). More specifically, sepiapterin can be metabolized into tetrahydrobiopterin via the BH(4) salvage pathway. Tetrahydrobiopterin is an essential cofactor in humans for breakdown of phenylalanine and a catalyst of the metabolism of phenylalanine, tyrosine, and tryptophan to the neurotransmitters dopamine and serotonin. A deficiency of tetrahydrobiopterin can cause toxic buildup of phenylalanine (phenylketonuria) as well as deficiencies of dopamine, norepinephrine, and epinephrine, leading to dystonia and other neurological illnesses. Sepiapterin accumulates in the brain of patients with sepiapterin reductase (SR) deficiency, an inborn error of metabolism. Sepiapterin reductase deficiency is a condition characterized by movement problems, most often a pattern of involuntary, sustained muscle contractions known as dystonia. Other movement problems can include muscle stiffness (spasticity), tremors, problems with coordination and balance (ataxia), and involuntary jerking movements (chorea). People with sepiapterin reductase deficiency can experience episodes called oculogyric crises. These episodes involve abnormal rotation of the eyeballs; extreme irritability and agitation; and pain, muscle spasms, and uncontrolled movements, especially of the head and neck. Movement abnormalities are often worse late in the day. Most affected individuals have delayed development of motor skills such as sitting and crawling, and they typically are not able to walk unassisted. The problems with movement tend to worsen over time. Within humans, sepiapterin participates in a number of enzymatic reactions. In particular, sepiapterin can be converted into 7,8-dihydroneopterin; which is mediated by the enzyme sepiapterin reductase. In addition, sepiapterin can be converted into 7,8-dihydroneopterin through its interaction with the enzyme carbonyl reductase [NADPH] 1. Sepiapterin is an intermediate in the salvage pathway of tetrahydrobiopterin (BH(4)). It is a yellow fluorescing pigment. Sepiapterin accumulates in the brain of patients with sepiapterin reductase (SR) deficiency. [HMDB] C307 - Biological Agent
Sulfadoxine
Sulfadoxine is only found in individuals that have used or taken this drug. It is a long acting sulfonamide that is used, usually in combination with other drugs, for respiratory, urinary tract, and malarial infections. [PubChem]Sulfadoxine is a sulfa drug, often used in combination with pyrimethamine to treat malaria. This medicine may also be used to prevent malaria in people who are living in, or will be traveling to, an area where there is a chance of getting malaria. Sulfadoxine targets Plasmodium dihydropteroate synthase and dihydrofolate reductase. Sulfa drugs or Sulfonamides are antimetabolites. They compete with para-aminobenzoic acid (PABA) for incorporation into folic acid. The action of sulfonamides exploits the difference between mammal cells and other kinds of cells in their folic acid metabolism. All cells require folic acid for growth. Folic acid (as a vitamin) diffuses or is transported into human cells. However, folic acid cannot cross bacterial (and certain protozoan) cell walls by diffusion or active transport. For this reason bacteria must synthesize folic acid from p-aminobenzoic acid. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent D000890 - Anti-Infective Agents > D013424 - Sulfanilamides CONFIDENCE standard compound; INTERNAL_ID 1010
Thyrotropin releasing hormone
Thyrotropin-releasing hormone (TRH), also called thyrotropin-releasing factor (TRF), thyroliberin or protirelin, is a tripeptide hormone that stimulates the release of thyroid-stimulating hormone and prolactin by the anterior pituitary. In humans, it also acts as a prolactin-releasing factor. It is also a neurotransmitter in the central nervous system. TRH is produced by the hypothalamus and travels across the median eminence to the pituitary via the hypophyseal portal system. In addition to the brain, TRH can also be detected in other areas of the body including the gastrointestinal system and pancreatic islets. Medical preparations of TRH are used in diagnostic tests of thyroid disorders and in acromegaly. [HMDB] This compound belongs to the family of N-acyl-alpha Amino Acids and Derivatives. These are compounds containing an alpha amino acid which bears an acyl group at his terminal nitrogen atom. C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C76367 - Thyrotropin-Releasing Hormone Analogue V - Various > V04 - Diagnostic agents > V04C - Other diagnostic agents > V04CJ - Tests for thyreoidea function D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones KEIO_ID G117; [MS2] KO008963 KEIO_ID G117 Protirelin is a highly conserved neuropeptide that exerts the hormonal control of thyroid-stimulating hormone (TSH) levels as well as neuromodulatory functions.
Glutethimide
Glutethimide is only found in individuals that have used or taken this drug. It is a hypnotic and sedative. Its use has been largely superseded by other drugs. [PubChem]Glutethimide seems to be a GABA agonist which helps induced sedation. It also induces CYP 2D6. When taken with codeine, it enables the body to convert higher amounts of the codeine (higher than the average 5 - 10\\%) to morphine. The general sedative effect also adds to the power of the combination. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CE - Piperidinedione derivatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic
Chlorpheniramine
Chlorpheniramine is a histamine H1 antagonist used in allergic reactions, hay fever, rhinitis, urticaria, and asthma. It has also been used in veterinary applications. One of the most widely used of the classical antihistaminics, it generally causes less drowsiness and sedation than Promethazine. -- Pubchem; Chlorphenamine or chlorpheniramine, commonly marketed as its salt chlorphenamine maleate (Chlor- Trimeton, Piriton, Chlor- Tripolon), is a first generation antihistamine used in the prevention of the symptoms of allergic conditions such as rhinitis and urticaria.- wikipedia. A histamine H1 antagonist used in allergic reactions, hay fever, rhinitis, urticaria, and asthma. It has also been used in veterinary applications. One of the most widely used of the classical antihistaminics, it generally causes less drowsiness and sedation than Promethazine. -- Pubchem; Chlorphenamine or chlorpheniramine, commonly marketed as its salt chlorphenamine maleate (Chlor- Trimeton, Piriton, Chlor- Tripolon), is a first generation antihistamine used in the prevention of the symptoms of allergic conditions such as rhinitis and urticaria.- wikipedia [HMDB] R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AB - Substituted alkylamines D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D003879 - Dermatologic Agents > D000982 - Antipruritics D018926 - Anti-Allergic Agents
Nitrazepam
Nitrazepam is only found in individuals that have used or taken this drug. It is a benzodiazepine derivative used as an anticonvulsant and hypnotic.Nitrazepam belongs to a group of medicines called benzodiazepines. It acts on benzodiazepine receptors in the brain which are associated with the GABA receptors causing an enhanced binding of GABA (gamma amino butyric acid) to GABAA receptors. GABA is a major inhibitory neurotransmitter in the brain, involved in inducing sleepiness, muscular relaxation and control of anxiety and fits, and slows down the central nervous system. The anticonvulsant properties of nitrazepam and other benzodiazepines may be in part or entirely due to binding to voltage-dependent sodium channels rather than benzodiazepine receptors. Sustained repetitive firing seems to be limited by benzodiazepines effect of slowing recovery of sodium channels from inactivation. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CD - Benzodiazepine derivatives D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants CONFIDENCE standard compound; EAWAG_UCHEM_ID 3683
Imazamox
2-(4-isopropyl-4-methyl-5-oxo-4,5-dihydro-1H-imidazol-2-yl)-5-(methoxymethyl)nicotinic acid is a pyridinemonocarboxylic acid that is nicotinic acid which is substituted substituted at position 5 by a methoxymethyl group and at position 2 by a 4,5-dihydro-1H-imidazol-2-yl group, that in turn is substituted by isopropyl, methyl, and oxo groups at positions 4, 4, and 5, respectively. It is a pyridinemonocarboxylic acid, an ether, an imidazolone and a member of imidazolines. Imazamox is a member of the imidazolinone class of herbicides. It is registered for post-emergence control of broadleaf weeds and grass in alfalfa, edible legumes and soybeans. It is a systemic herbicide that moves throughout the plant tissue and prevents plants from producing an essential enzyme, acetolactate synthase (ALS), which is not found in animals. This enzyme is key for the biosynthesis of branched chain amino acids. Susceptible plants will stop growing soon after treatment, but plant death and decomposition will occur over several weeks.
Sulfanilic acid
CONFIDENCE standard compound; EAWAG_UCHEM_ID 652 KEIO_ID S073
Phenacetin
CONFIDENCE standard compound; INTERNAL_ID 800; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7488; ORIGINAL_PRECURSOR_SCAN_NO 7485 CONFIDENCE standard compound; INTERNAL_ID 800; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7488; ORIGINAL_PRECURSOR_SCAN_NO 7486 CONFIDENCE standard compound; INTERNAL_ID 800; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7450; ORIGINAL_PRECURSOR_SCAN_NO 7449 CONFIDENCE standard compound; INTERNAL_ID 800; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7440; ORIGINAL_PRECURSOR_SCAN_NO 7439 CONFIDENCE standard compound; INTERNAL_ID 800; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7504; ORIGINAL_PRECURSOR_SCAN_NO 7499 CONFIDENCE standard compound; INTERNAL_ID 800; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7480; ORIGINAL_PRECURSOR_SCAN_NO 7478 N - Nervous system > N02 - Analgesics > N02B - Other analgesics and antipyretics > N02BE - Anilides D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics [Raw Data] CBA18_Phenacetin_pos_40eV_1-10_01_709.txt [Raw Data] CBA18_Phenacetin_pos_20eV_1-10_01_707.txt [Raw Data] CBA18_Phenacetin_pos_10eV_1-10_01_706.txt [Raw Data] CBA18_Phenacetin_pos_50eV_1-10_01_710.txt [Raw Data] CBA18_Phenacetin_pos_30eV_1-10_01_708.txt
Homogentisic acid
Homogentisic acid, also known as melanic acid, is an intermediate in the breakdown or catabolism of tyrosine and phenylalanine. It is generated from the compound p-hydroxyphenylpyruvate through the enzyme p-hydroxyphenylpyruvate dehydrogenase. The resulting homogentisic acid is then broken down into 4-maleylacetoacetate via the enzyme homogentisate 1,2-dioxygenase. Homogentisic acid is also found in other organisms. For instance, it can found in Arbutus unedo (strawberry-tree) honey, in the bacterial plant pathogen Xanthomonas campestris as well as in the yeast Yarrowia lipolytica where it is associated with the production of brown pigments. Homogentisic acid can be oxidatively dimerized to form hipposudoric acid, one of the main constituents of the blood sweat of hippopotamuses. When present in sufficiently high levels, homogentisic acid can function as an osteotoxin and a renal toxin. An osteotoxin is a substance that causes damage to bones and/or joints. A renal toxin causes damage to the kidneys. Chronically high levels of homogentisic acid are associated with alkaptonuria (OMIM: 203500), an inborn error of metabolism. Alkaptonuria is a rare inherited genetic disorder in which the body cannot process the amino acids phenylalanine and tyrosine. It is caused by a mutation in the enzyme homogentisate 1,2-dioxygenase (EC 1.13.11.5), which leads to an accumulation of homogentisic acid in the blood and tissues. Homogentisic acid and its oxidized form benzoquinone acetic acid are excreted in the urine, giving it an unusually dark color. The accumulating homogentisic acid (and benzoquinone acetic acid) causes damage to cartilage (ochronosis, leading to osteoarthritis) and heart valves as well as precipitating as kidney stones and stones in other organs. More specifically, homogentisic acid can be converted to benzoquinone acetic acid (BQA), and the resulting BQA can be readily converted to polymers that resemble the dark skin pigment melanin. These polymers are deposited in the collagen, a connective tissue protein, of particular tissues such as cartilage. This process is called ochronosis (as the tissue looks ochre); ochronotic tissue is stiffened and unusually brittle, impairing its normal function and causing damage. Homogentisic acid is the primary precursor of melanin synthesis in Vibrio cholerae. 2-(3,6-dihydroxyphenyl)acetic acid, also known as homogentisic acid or homogentisate, is a member of the class of compounds known as 2(hydroxyphenyl)acetic acids. 2(hydroxyphenyl)acetic acids are phenylacetic acids that carry a hydroxyl group at the 2-position. 2-(3,6-dihydroxyphenyl)acetic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). 2-(3,6-dihydroxyphenyl)acetic acid can be found in a number of food items such as gooseberry, angelica, chinese broccoli, and cucumber, which makes 2-(3,6-dihydroxyphenyl)acetic acid a potential biomarker for the consumption of these food products. 2-(3,6-dihydroxyphenyl)acetic acid can be found primarily in blood, feces, and urine, as well as in human cartilage, connective tissue and kidney tissues. In humans, 2-(3,6-dihydroxyphenyl)acetic acid is involved in few metabolic pathways, which include disulfiram action pathway, phenylalanine and tyrosine metabolism, and tyrosine metabolism. 2-(3,6-dihydroxyphenyl)acetic acid is also involved in several metabolic disorders, some of which include dopamine beta-hydroxylase deficiency, tyrosinemia type 3 (TYRO3), alkaptonuria, and tyrosinemia type 2 (or richner-hanhart syndrome). Moreover, 2-(3,6-dihydroxyphenyl)acetic acid is found to be associated with alkaptonuria. 2-(3,6-dihydroxyphenyl)acetic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Apart from treatment of the complications (such as pain relief using NSAIDs and joint replacement for the cartilage damage), vitamin C has been used to reduce the ochronosis and lowering of the homogentisic acid levels may be attempted with a low-protein diet. Recently the drug nitisinone has been found to suppress homogentisic acid production. Nitrisinone inhibits the enzyme, 4-hydroxyphenylpyruvate dioxygenase, responsible for converting tyrosine to homogentisic acid, thereby blocking the production and accumulation of homogentisic acid. Nitisinone treatment has been shown to cause a 95\\\\% reduction in plasma and urinary homogentisic acid (T3DB). Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 118 KEIO_ID H060 Homogentisic acid is a specific metabolite in urine and serum, which is used for diagnosis of alkaptonuria. Homogentisic acid is a specific metabolite in urine and serum, which is used for diagnosis of alkaptonuria.
L-Cysteine
Cysteine (Cys), also known as L-cysteine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-alanine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Cysteine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aliphatic, non-polar, sulfur-containing amino acid. Cysteine is an important source of sulfur in human metabolism, and although it is classified as a non-essential amino acid, cysteine may be essential for infants, the elderly, and individuals with certain metabolic disease or who suffer from malabsorption syndromes. Cysteine can occasionally be considered as an essential or conditionally essential amino acid. Cysteine is unique amongst the twenty natural amino acids as it contains a thiol group. Thiol groups can undergo oxidation/reduction (redox) reactions; when cysteine is oxidized it can form cystine, which is two cysteine residues joined by a disulfide bond. This reaction is reversible since the reduction of this disulphide bond regenerates two cysteine molecules. The disulphide bonds of cystine are crucial to defining the structures of many proteins. Cysteine is often involved in electron-transfer reactions, and help the enzyme catalyze its reaction. Cysteine is also part of the antioxidant glutathione. N-Acetyl-L-cysteine (NAC) is a form of cysteine where an acetyl group is attached to cysteines nitrogen atom and is sold as a dietary supplement. Cysteine is named after cystine, which comes from the Greek word kustis meaning bladder (cystine was first isolated from kidney stones). Oxidation of cysteine can produce a disulfide bond with another thiol and further oxidation can produce sulphfinic or sulfonic acids. The cysteine thiol group is also a nucleophile and can undergo addition and substitution reactions. Thiol groups become much more reactive when they are ionized, and cysteine residues in proteins have pKa values close to neutrality, so they are often in their reactive thiolate form in the cell. The thiol group also has a high affinity for heavy metals and proteins containing cysteine will bind metals such as mercury, lead, and cadmium tightly. Due to this ability to undergo redox reactions, cysteine has antioxidant properties. Cysteine is important in energy metabolism. As cystine, it is a structural component of many tissues and hormones. Cysteine has clinical uses ranging from treating baldness to psoriasis to preventing smokers hack. In some cases, oral cysteine therapy has proved excellent for treatment of asthmatics, enabling them to stop theophylline and other medications. Cysteine also enhances the effect of topically applied silver, tin, and zinc salts in preventing dental cavities. In the future, cysteine may play a role in the treatment of cobalt toxicity, diabetes, psychosis, cancer, and seizures (http://www.dcnutrition.com/AminoAcids/). Cysteine has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). [Spectral] L-Cysteine (exact mass = 121.01975) and D-2-Aminobutyrate (exact mass = 103.06333) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] L-Cysteine (exact mass = 121.01975) and Creatine (exact mass = 131.06948) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Detoxicant, dietary supplement, dough strengthener, yeast nutrient for leavened bakery products. Flavouring agent. Enzymic browning inhibitor. L-Cysteine is found in many foods, some of which are bilberry, mugwort, cowpea, and sweet bay. L-(+)-Cysteine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=52-90-4 (retrieved 2024-07-01) (CAS RN: 52-90-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Cysteine is a conditionally essential amino acid, which acts as a precursor for biologically active molecules such as hydrogen sulphide (H2S), glutathione and taurine. L-Cysteine suppresses ghrelin and reduces appetite in rodents and humans[1]. L-Cysteine is a conditionally essential amino acid, which acts as a precursor for biologically active molecules such as hydrogen sulphide (H2S), glutathione and taurine. L-Cysteine suppresses ghrelin and reduces appetite in rodents and humans[1].
Porphobilinogen
Porphobilinogen (PBG) is a pyrrole-containing intermediate in the biosynthesis of porphyrins. It is generated from aminolevulinate (ALA) by the enzyme ALA dehydratase. Porphobilinogen is then converted into hydroxymethylbilane by the enzyme porphobilinogen deaminase (also known as hydroxymethylbilane synthase). Under certain conditions, porphobilinogen can act as a phototoxin, a neurotoxin, and a metabotoxin. A phototoxin leads to cell damage upon exposure to light. A neurotoxin causes damage to nerve cells and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of porphyrins are associated with porphyrias such as porphyria variegate, acute intermittent porphyria, and hereditary coproporphyria (HCP). There are several types of porphyrias (most are inherited). Hepatic porphyrias are characterized by acute neurological attacks (seizures, psychosis, extreme back and abdominal pain, and an acute polyneuropathy), while the erythropoietic forms present with skin problems (usually a light-sensitive blistering rash and increased hair growth). The neurotoxicity of porphyrins may be due to their selective interactions with tubulin, which disrupt microtubule formation and cause neural malformations (PMID: 3441503). Porphobilinogen is a pyrrole involved in porphyrin metabolism. -- Wikipedia; It consists of a pyrrole ring with acetyl, propionyl, and aminomethyl side chains; It is a key monopyrrolic intermediate in porphyrin, chlorophyll and vitamin B12 biosynthesis. Porphobilinogen is generated by the enzyme ALA dehydratase by combining two molecules of dALA together, and converted into hydroxymethyl bilane by the enzyme porphobilinogen deaminase. 4 molecules of porphobilinogen are condensed to form one molecule of uroporphyrinogen III, which is then converted successively to coproporphyrinogen III, protoporphyrin IX, and heme. Porphobilinogen is produced in excess and excreted in the urine in acute intermittent porphyria and several other porphyrias. [HMDB]. Porphobilinogen is found in many foods, some of which are strawberry guava, amaranth, parsnip, and ostrich fern.
N-Glycolylneuraminic acid
N-Glycolylneuraminic acid (Neu5Gc) is a widely expressed sialic acid found in most mammalian cells. Although humans are genetically deficient in producing Neu5Gc, small amounts are present in human cells and biofluids. Humans cannot synthesize Neu5Gc because the human gene CMAH is irreversibly mutated, though it is found in apes. This loss of the CMAH gene was estimated to have occurred two to three million years ago, just before the emergence of the genus Homo. A dietary origin of Neu5Gc was suggested by human volunteer studies. These trace amounts of Neu5Gc were determined to come from the consumption of animals in the human diet (i.e. red meats such as lamb, pork, and beef). Neu5Gc can also be found in dairy products, but to a lesser extent. Neu5Gc is not found in poultry and is found in only trace amounts in fish (Wikipedia). Isolated from beef serum KEIO_ID G062
5-Methyldeoxycytidine
5-Methyldeoxycytidine is a dinucleotide. Methylation of cytosine-guanine dinucleotide sequences (CpG dinucleotides) catalyzed by DNA methyltransferase, particularly in the 5′-promoter regions of mammalian genes, forms 5-methyldeoxycytidine (5-mdc) whose levels may regulate gene expression. Levels of 5-mdc and the expression of nm23-H1 (an anti-metastatic gene identified in and human cancer lines) are highly correlated with human hepatoma cells with different invasion activities. DNA hypermethylation is a common finding in malignant cells and has been explored as a therapeutic target for hypomethylating agents. The levels of 5-mdc in the urine of patients with breast cancer is not significantly different than controls. (PMID: 17044778, 17264127, 16799933) [HMDB] 5-Methyldeoxycytidine is a dinucleotide. Methylation of cytosine-guanine dinucleotide sequences (CpG dinucleotides) catalyzed by DNA methyltransferase, particularly in the 5′-promoter regions of mammalian genes, forms 5-methyldeoxycytidine (5-mdc) whose levels may regulate gene expression. Levels of 5-mdc and the expression of nm23-H1 (an anti-metastatic gene identified in and human cancer lines) are highly correlated with human hepatoma cells with different invasion activities. DNA hypermethylation is a common finding in malignant cells and has been explored as a therapeutic target for hypomethylating agents. The levels of 5-mdc in the urine of patients with breast cancer is not significantly different than controls. (PMID: 17044778, 17264127, 16799933). 5-Methyl-2'-deoxycytidine in single-stranded DNA can act in cis to signal de novo DNA methylation[1][2]. 5-Methyl-2'-deoxycytidine in single-stranded DNA can act in cis to signal de novo DNA methylation[1][2].
4-tert-Butylphenol
4-tert-Butylphenol, also known as butylphen or PTBP, belongs to the class of organic compounds known as phenylpropanes. These are organic compounds containing a phenylpropane moiety. 4-tert-Butylphenol is a leather and oakmoss tasting compound. 4-tert-Butylphenol has been detected, but not quantified, in herbs and spices. 4-Tert-butylphenol is structurally similar to the melanin precursor tyrosine, and acts as a substrate for tyrosinase. 4-tert-Butylphenol is a potentially toxic compound. Tyrosinase oxidizes 4-tert-butylphenol to a quinone (4-tert-butylcyclohexa-3,5-diene-1,2-dione) which in turn rapidly reacts with glutathione (GSH). A depletion of the GSH defence system may allow the quinone to generate reactive oxygen species that damage melanocytes and induce apoptosis, leading to leukoderma/vitiligo.
Bromadiolone
D006401 - Hematologic Agents > D000925 - Anticoagulants > D015110 - 4-Hydroxycoumarins D010575 - Pesticides > D012378 - Rodenticides D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 3656
Dibutyl succinate
P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents
Dicloxacillin
Dicloxacillin is only found in individuals that have used or taken this drug. It is one of the penicillins which is resistant to penicillinase. [PubChem]Dicloxacillin exerts a bactericidal action against penicillin-susceptible microorganisms during the state of active multiplication. All penicillins inhibit the biosynthesis of the bacterial cell wall. By binding to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, dicloxacillin inhibits the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins; it is possible that dicloxacillin interferes with an autolysin inhibitor. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CF - Beta-lactamase resistant penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
Chlorzoxazone
A centrally acting central muscle relaxant with sedative properties. It is claimed to inhibit muscle spasm by exerting an effect primarily at the level of the spinal cord and subcortical areas of the brain. (From Martindale, The Extra Pharmacopoea, 30th ed, p1202) M - Musculo-skeletal system > M03 - Muscle relaxants > M03B - Muscle relaxants, centrally acting agents > M03BB - Oxazol, thiazine, and triazine derivatives D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant D002491 - Central Nervous System Agents COVID info from PDB, Protein Data Bank Corona-virus KEIO_ID C042 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Brompheniramine
Brompheniramine (also known as Bromfed, Bromfenex, and Dimetane) is an antihistamine drug of the propylamine class. It is commonly available over the counter and is indicated for the treatment of the symptoms of the common cold and allergic rhinitis, such as runny nose, itchy eyes, watery eyes, and sneezing. It is a first-generation antihistamine; Brompheniramine (also known as Bromfed, Bromfenex, and Dimetane) is an antihistamine drug of the propylamine class. It is commonly available over the counter and is indicated for the treatment of the symptoms of the common cold and allergic rhinitis, such as runny nose, itchy eyes, watery eyes, and sneezing. It is a first-generation antihistamine. -- Wikipedia; Histamine H1 antagonist used in treatment of allergies, rhinitis, and urticaria. [HMDB] Brompheniramine (also known as Bromfed, Bromfenex, and Dimetane) is an antihistamine drug of the propylamine class. It is commonly available over the counter and is indicated for the treatment of the symptoms of the common cold and allergic rhinitis, such as runny nose, itchy eyes, watery eyes, and sneezing. It is a first-generation antihistamine; Brompheniramine (also known as Bromfed, Bromfenex, and Dimetane) is an antihistamine drug of the propylamine class. It is commonly available over the counter and is indicated for the treatment of the symptoms of the common cold and allergic rhinitis, such as runny nose, itchy eyes, watery eyes, and sneezing. It is a first-generation antihistamine. -- Wikipedia; Histamine H1 antagonist used in treatment of allergies, rhinitis, and urticaria. R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AB - Substituted alkylamines D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018926 - Anti-Allergic Agents
Cannabinol
C308 - Immunotherapeutic Agent > C574 - Immunosuppressant
Disopyramide
A class I anti-arrhythmic agent (one that interferes directly with the depolarization of the cardiac membrane and thus serves as a membrane-stabilizing agent) with a depressant action on the heart similar to that of guanidine. It also possesses some anticholinergic and local anesthetic properties. [PubChem] C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BA - Antiarrhythmics, class ia D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker
Felbamate
Felbamate is an anticonvulsant drug used in the treatment of epilepsy. It is used to treat partial seizures (with and without generalization) in adults and partial and generalized seizures associated with Lennox-Gastaut syndrome in children. It has a weak inhibitory effect on GABA receptor binding sites. D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics Felbamate (W-554) is a potent nonsedative anticonvulsant whose clinical effect may be related to the inhibition of N-methyl-D-aspartate (NMDA).
Thiamcol
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01B - Amphenicols > J01BA - Amphenicols D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic C784 - Protein Synthesis Inhibitor
Testosterone cypionate
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D000728 - Androgens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid
Sparteine
Sparteine is a quinolizidine alkaloid and a quinolizidine alkaloid fundamental parent. Sparteine is a plant alkaloid derived from Cytisus scoparius and Lupinus mutabilis which may chelate calcium and magnesium. It is a sodium channel blocker, so it falls in the category of class 1a antiarrhythmic agents. Sparteine is not currently FDA-approved for human use, and its salt, sparteine sulfate, is one of the products that have been withdrawn or removed from the market for reasons of safety or effectiveness. Sparteine is a natural product found in Ormosia coarctata, Thermopsis chinensis, and other organisms with data available. A quinolizidine alkaloid isolated from several FABACEAE including LUPINUS; SPARTIUM; and CYTISUS. It has been used as an oxytocic and an anti-arrhythmia agent. It has also been of interest as an indicator of CYP2D6 genotype. See also: Cytisus scoparius flowering top (part of). C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BA - Antiarrhythmics, class ia C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D012102 - Reproductive Control Agents > D010120 - Oxytocics Annotation level-1 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 53 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 39 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 32 INTERNAL_ID 24; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 24 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 17 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 9 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.395 beta-Isosparteine is a natural product found in Ulex airensis, Ulex densus, and other organisms with data available. A quinolizidine alkaloid isolated from several FABACEAE including LUPINUS; SPARTIUM; and CYTISUS. It has been used as an oxytocic and an anti-arrhythmia agent. It has also been of interest as an indicator of CYP2D6 genotype. (+)-Sparteine is a natural product found in Baptisia australis, Dermatophyllum secundiflorum, and other organisms with data available. A quinolizidine alkaloid isolated from several FABACEAE including LUPINUS; SPARTIUM; and CYTISUS. It has been used as an oxytocic and an anti-arrhythmia agent. It has also been of interest as an indicator of CYP2D6 genotype. (-)-Sparteine is a natural alkaloid isolated from beans. (-)-Sparteine is a natural alkaloid isolated from beans. (+)-Sparteine is a natural alkaloid acting as a ganglionic blocking agent. (+)-Sparteine competitively blocks nicotinic ACh receptor in the neurons. (+)-Sparteine is a natural alkaloid acting as a ganglionic blocking agent. (+)-Sparteine competitively blocks nicotinic ACh receptor in the neurons. (+)-Sparteine is a natural alkaloid acting as a ganglionic blocking agent. (+)-Sparteine competitively blocks nicotinic ACh receptor in the neurons.
Pendimethalin
CONFIDENCE standard compound; EAWAG_UCHEM_ID 3116 CONFIDENCE standard compound; INTERNAL_ID 2549 CONFIDENCE standard compound; INTERNAL_ID 4059 CONFIDENCE standard compound; INTERNAL_ID 8435 D010575 - Pesticides > D006540 - Herbicides KEIO_ID P183; [MS2] KO009157 KEIO_ID P183; [MS3] KO009158 D016573 - Agrochemicals KEIO_ID P183
Netilmicin
Netilmicin is a semisynthetic 1-N-ethyl derivative of sisomycin, an aminoglycoside antibiotic with action similar to gentamicin, but less ear and kidney toxicity. [PubChem] Netilmicin inhibits protein synthesis in susceptible organisms by binding to the bacterial 30S ribosomal subunit and interfering with mRNA binding and the acceptor tRNA site. The bactericidal effect of netilmiicin is not fully understood. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01G - Aminoglycoside antibacterials S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AA - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D005839 - Gentamicins C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors C254 - Anti-Infective Agent > C258 - Antibiotic
Proguanil
Proguanil is a prophylactic antimalarial drug, which works by stopping the malaria parasite, Plasmodium falciparum and Plasmodium vivax, from reproducing once it is in the red blood cells. It does this by inhibiting the enzyme, dihydrofolate reductase, which is involved in the reproduction of the parasite. P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01B - Antimalarials > P01BB - Biguanides D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent C471 - Enzyme Inhibitor > C2153 - Dihydrofolate Reductase Inhibitor D007004 - Hypoglycemic Agents > D001645 - Biguanides D009676 - Noxae > D000963 - Antimetabolites
Nilutamide
Nilutamide is an antineoplastic hormonal agent primarily used in the treatment of prostate cancer. Nilutamide is a pure, nonsteroidal anti-androgen with affinity for androgen receptors (but not for progestogen, estrogen, or glucocorticoid receptors). Consequently, Nilutamide blocks the action of androgens of adrenal and testicular origin that stimulate the growth of normal and malignant prostatic tissue. Prostate cancer is mostly androgen-dependent and can be treated with surgical or chemical castration. To date, antiandrogen monotherapy has not consistently been shown to be equivalent to castration. CONFIDENCE standard compound; INTERNAL_ID 279; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4399; ORIGINAL_PRECURSOR_SCAN_NO 4395 CONFIDENCE standard compound; INTERNAL_ID 279; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4426; ORIGINAL_PRECURSOR_SCAN_NO 4421 CONFIDENCE standard compound; INTERNAL_ID 279; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4395; ORIGINAL_PRECURSOR_SCAN_NO 4393 CONFIDENCE standard compound; INTERNAL_ID 279; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4406; ORIGINAL_PRECURSOR_SCAN_NO 4401 CONFIDENCE standard compound; INTERNAL_ID 279; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4403; ORIGINAL_PRECURSOR_SCAN_NO 4401 CONFIDENCE standard compound; INTERNAL_ID 279; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4490; ORIGINAL_PRECURSOR_SCAN_NO 4487 L - Antineoplastic and immunomodulating agents > L02 - Endocrine therapy > L02B - Hormone antagonists and related agents > L02BB - Anti-androgens D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D000726 - Androgen Antagonists C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C146993 - Androgen Receptor Inhibitor C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist > C242 - Anti-Androgen D000970 - Antineoplastic Agents
Phenylethylmalonamide
CONFIDENCE standard compound; INTERNAL_ID 2499
Cilastatin
A renal dehydropeptidase-I and leukotriene D4 dipeptidase inhibitor. Since the antibiotic, imipenem, is hydrolyzed by dehydropeptidase-I, which resides in the brush border of the renal tubule, cilastatin is administered with imipenem to increase its effectiveness. The drug also inhibits the metabolism of leukotriene D4 to leukotriene E4. [PubChem] D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors C471 - Enzyme Inhibitor > C783 - Protease Inhibitor CONFIDENCE standard compound; INTERNAL_ID 2129
Propyl gallate
Propyl gallate is found in corn. Propyl gallate is an antioxidant used in foods especially animal fats and vegetable oils. Synergistic with other antioxidants such as Butylated hydroxyanisole
Cloxacillin
Cloxacillin is only found in individuals that have used or taken this drug. It is a semi-synthetic antibiotic that is a chlorinated derivative of oxacillin. [PubChem]By binding to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, cloxacillin inhibits the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins; it is possible that cloxacillin interferes with an autolysin inhibitor. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CF - Beta-lactamase resistant penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
Cephapirin
Cephapirin is an injectable, first-generation cephalosporin antibiotic that has a wide spectrum of activity against gram-positive and gram-negative organisms. The bactericidal activity of cephapirin results from the inhibition of cell wall synthesis via affinity for penicillin-binding proteins (PBPs). Cephapirin is more resistant to beta-lactamases than the penicillins, and therefore is effective against staphylococci, with the exception of methicillin-resistant staphylococci. Cephapirin is FDA approved for use in food-producing animals, especially dairy cattle. Cephapirin is used for the treatment of mastitis in cows. Production for use in humans has been discontinued in the United States. It is marketed under the trade name Cefadyl. Active against gram-positive and -negative bacteria (vet. use). FDA approved for use in food producing animals, especies dairy cattle. It is used for the treatment of mastitis in cows J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DB - First-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
Arachidonic acid
Arachidonic acid is a polyunsaturated, essential fatty acid that has a 20-carbon chain as a backbone and four cis-double bonds at the C5, C8, C11, and C14 positions. It is found in animal and human fat as well as in the liver, brain, and glandular organs, and is a constituent of animal phosphatides. It is synthesized from dietary linoleic acid. Arachidonic acid mediates inflammation and the functioning of several organs and systems either directly or upon its conversion into eicosanoids. Arachidonic acid in cell membrane phospholipids is the substrate for the synthesis of a range of biologically active compounds (eicosanoids) including prostaglandins, thromboxanes, and leukotrienes. These compounds can act as mediators in their own right and can also act as regulators of other processes, such as platelet aggregation, blood clotting, smooth muscle contraction, leukocyte chemotaxis, inflammatory cytokine production, and immune function. Arachidonic acid can be metabolized by cytochrome p450 (CYP450) enzymes into 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids (EETs), their corresponding dihydroxyeicosatrienoic acids (DHETs), and 20-hydroxyeicosatetraenoic acid (20-HETE). The production of kidney CYP450 arachidonic acid metabolites is altered in diabetes, pregnancy, hepatorenal syndrome, and in various models of hypertension, and it is likely that changes in this system contribute to the abnormalities in renal function that are associated with many of these conditions. Phospholipase A2 (PLA2) catalyzes the hydrolysis of the sn-2 position of membrane glycerophospholipids to liberate arachidonic acid (PMID: 12736897, 12736897, 12700820, 12570747, 12432908). The beneficial effects of omega-3 fatty acids are believed to be due in part to selective alteration of arachidonate metabolism that involves cyclooxygenase (COX) enzymes (PMID: 23371504). 9-Oxononanoic acid (9-ONA), one of the major products of peroxidized fatty acids, was found to stimulate the activity of phospholipase A2 (PLA2), the key enzyme to initiate the arachidonate cascade and eicosanoid production (PMID: 23704812). Arachidonate lipoxygenase (ALOX) enzymes metabolize arachidonic acid to generate potent inflammatory mediators and play an important role in inflammation-associated diseases (PMID: 23404351). Essential fatty acid. Constituent of many animal phospholipids Arachidonic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=506-32-1 (retrieved 2024-07-15) (CAS RN: 506-32-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Arachidonic acid is an essential fatty acid and a major constituent of biomembranes. Arachidonic acid is an essential fatty acid and a major constituent of biomembranes.
pymetrozine
CONFIDENCE standard compound; EAWAG_UCHEM_ID 2947 CONFIDENCE standard compound; INTERNAL_ID 257; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2674; ORIGINAL_PRECURSOR_SCAN_NO 2673 CONFIDENCE standard compound; INTERNAL_ID 257; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2682; ORIGINAL_PRECURSOR_SCAN_NO 2681 CONFIDENCE standard compound; INTERNAL_ID 257; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2679; ORIGINAL_PRECURSOR_SCAN_NO 2677 CONFIDENCE standard compound; INTERNAL_ID 257; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2664; ORIGINAL_PRECURSOR_SCAN_NO 2662 CONFIDENCE standard compound; INTERNAL_ID 257; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2667; ORIGINAL_PRECURSOR_SCAN_NO 2665
IMAZAQUIN
D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 1252; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7950; ORIGINAL_PRECURSOR_SCAN_NO 7948 CONFIDENCE standard compound; INTERNAL_ID 1252; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7948; ORIGINAL_PRECURSOR_SCAN_NO 7947 CONFIDENCE standard compound; INTERNAL_ID 1252; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3770; ORIGINAL_PRECURSOR_SCAN_NO 3769 CONFIDENCE standard compound; INTERNAL_ID 1252; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3779; ORIGINAL_PRECURSOR_SCAN_NO 3778 CONFIDENCE standard compound; INTERNAL_ID 1252; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3762; ORIGINAL_PRECURSOR_SCAN_NO 3761 CONFIDENCE standard compound; INTERNAL_ID 1252; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7947; ORIGINAL_PRECURSOR_SCAN_NO 7945 CONFIDENCE standard compound; INTERNAL_ID 1252; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3761; ORIGINAL_PRECURSOR_SCAN_NO 3760 CONFIDENCE standard compound; INTERNAL_ID 1252; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7928; ORIGINAL_PRECURSOR_SCAN_NO 7927 CONFIDENCE standard compound; INTERNAL_ID 1252; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7919; ORIGINAL_PRECURSOR_SCAN_NO 7918 CONFIDENCE standard compound; INTERNAL_ID 1252; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7962; ORIGINAL_PRECURSOR_SCAN_NO 7957 CONFIDENCE standard compound; INTERNAL_ID 1252; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3745; ORIGINAL_PRECURSOR_SCAN_NO 3744 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3711
BUPROFEZIN
D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 402; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10057; ORIGINAL_PRECURSOR_SCAN_NO 10056 CONFIDENCE standard compound; INTERNAL_ID 402; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10079; ORIGINAL_PRECURSOR_SCAN_NO 10078 CONFIDENCE standard compound; INTERNAL_ID 402; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10113; ORIGINAL_PRECURSOR_SCAN_NO 10111 ORIGINAL_ACQUISITION_NO 10127; CONFIDENCE standard compound; INTERNAL_ID 402; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_PRECURSOR_SCAN_NO 10126 CONFIDENCE standard compound; INTERNAL_ID 402; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10127; ORIGINAL_PRECURSOR_SCAN_NO 10126 CONFIDENCE standard compound; INTERNAL_ID 402; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10097; ORIGINAL_PRECURSOR_SCAN_NO 10096 CONFIDENCE standard compound; INTERNAL_ID 402; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10129; ORIGINAL_PRECURSOR_SCAN_NO 10128
Mepanipyrim
CONFIDENCE standard compound; INTERNAL_ID 1114; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9352; ORIGINAL_PRECURSOR_SCAN_NO 9351 CONFIDENCE standard compound; INTERNAL_ID 1114; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9350; ORIGINAL_PRECURSOR_SCAN_NO 9348 CONFIDENCE standard compound; INTERNAL_ID 1114; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9334; ORIGINAL_PRECURSOR_SCAN_NO 9332 CONFIDENCE standard compound; INTERNAL_ID 1114; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9294; ORIGINAL_PRECURSOR_SCAN_NO 9293 CONFIDENCE standard compound; INTERNAL_ID 1114; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9316; ORIGINAL_PRECURSOR_SCAN_NO 9313 CONFIDENCE standard compound; INTERNAL_ID 1114; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9337; ORIGINAL_PRECURSOR_SCAN_NO 9336 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3062
Isatidine
Origin: Plant; SubCategory_DNP: Alkaloids derived from ornithine, Pyrrolizidine alkaloids relative retention time with respect to 9-anthracene Carboxylic Acid is 0.363 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.358 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.361 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2325 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 177 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 117 INTERNAL_ID 147; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 147 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 137 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 157 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 167 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 127 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 107 D000970 - Antineoplastic Agents Retrorsine is a naturally occurring toxic pyrrolizidine alkaloid. Retrorsine can bind with DNA and inhibits the proliferative capacity of hepatocytes. Retrorsine can be used for the research of hepatocellular injury[1][2]. Retrorsine is a naturally occurring toxic pyrrolizidine alkaloid. Retrorsine can bind with DNA and inhibits the proliferative capacity of hepatocytes. Retrorsine can be used for the research of hepatocellular injury[1][2].
Pyrimethamine
Pyrimethamine is only found in individuals that have used or taken this drug. It is one of the folic acid antagonists that is used as an antimalarial or with a sulfonamide to treat toxoplasmosis. [PubChem]Pyrimethamine inhibits the dihydrofolate reductase of plasmodia and thereby blocks the biosynthesis of purines and pyrimidines, which are essential for DNA synthesis and cell multiplication. This leads to failure of nuclear division at the time of schizont formation in erythrocytes and liver. CONFIDENCE standard compound; INTERNAL_ID 1363; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7091; ORIGINAL_PRECURSOR_SCAN_NO 7088 CONFIDENCE standard compound; INTERNAL_ID 1363; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7117; ORIGINAL_PRECURSOR_SCAN_NO 7114 CONFIDENCE standard compound; INTERNAL_ID 1363; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7128; ORIGINAL_PRECURSOR_SCAN_NO 7126 CONFIDENCE standard compound; INTERNAL_ID 1363; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7117; ORIGINAL_PRECURSOR_SCAN_NO 7115 CONFIDENCE standard compound; INTERNAL_ID 1363; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7093; ORIGINAL_PRECURSOR_SCAN_NO 7091 P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01B - Antimalarials > P01BD - Diaminopyrimidines D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent C471 - Enzyme Inhibitor > C2153 - Dihydrofolate Reductase Inhibitor D004791 - Enzyme Inhibitors > D005493 - Folic Acid Antagonists
Pindolol
Pindolol is only found in individuals that have used or taken this drug. It is a moderately lipophilic beta blocker (adrenergic beta-antagonists). It is non-cardioselective and has intrinsic sympathomimetic actions, but little membrane-stabilizing activity. (From Martindale, The Extra Pharmocopoeia, 30th ed, p638)Pindolol non-selectively blocks beta-1 adrenergic receptors mainly in the heart, inhibiting the effects of epinephrine and norepinephrine resulting in a decrease in heart rate and blood pressure. By binding beta-2 receptors in the juxtaglomerular apparatus, Pindolol inhibits the production of renin, thereby inhibiting angiotensin II and aldosterone production and therefore inhibits the vasoconstriction and water retention due to angiotensin II and aldosterone, respectively. C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AA - Beta blocking agents, non-selective C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents CONFIDENCE standard compound; INTERNAL_ID 4098 CONFIDENCE standard compound; INTERNAL_ID 2663 Pindolol (LB-46) is a nonselective β-blocker with partial beta-adrenergic receptor agonist activity, also functions as a 5-HT1A receptor weak partial antagonist (Ki=33nM).
Oxolinic acid
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3609 CONFIDENCE standard compound; INTERNAL_ID 1034 D004791 - Enzyme Inhibitors
Dibucaine
A local anesthetic of the amide type now generally used for surface anesthesia. It is one of the most potent and toxic of the long-acting local anesthetics and its parenteral use is restricted to spinal anesthesia. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1006) D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AB - Anesthetics for topical use C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AD - Local anesthetics D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics S - Sensory organs > S02 - Otologicals > S02D - Other otologicals > S02DA - Analgesics and anesthetics S - Sensory organs > S01 - Ophthalmologicals > S01H - Local anesthetics > S01HA - Local anesthetics N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local > N01BB - Amides D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
Doxepin
Doxepin hydrochloride is a dibenzoxepin-derivative tricyclic antidepressant (TCA). TCAs are structurally similar to phenothiazines. They contain a tricyclic ring system with an alkyl amine substituent on the central ring. In non-depressed individuals, doxepin does not affect mood or arousal, but may cause sedation. In depressed individuals, doxepin exerts a positive effect on mood. TCAs are potent inhibitors of serotonin and norepinephrine reuptake. Tertiary amine TCAs, such as doxepin and amitriptyline, are more potent inhibitors of serotonin reuptake than secondary amine TCAs, such as nortriptyline and desipramine. TCAs also down-regulate cerebral cortical β-adrenergic receptors and sensitize post-synaptic serotonergic receptors with chronic use. The antidepressant effects of TCAs are thought to be due to an overall increase in serotonergic neurotransmission. TCAs also block histamine H1 receptors, α1-adrenergic receptors and muscarinic receptors, which accounts for their sedative, hypotensive and anticholinergic effects (e.g. blurred vision, dry mouth, constipation, urinary retention), respectively. Doxepin has less sedative and anticholinergic effects than amitriptyline. See toxicity section below for a complete listing of side effects. Doxepin may be used to treat depression and insomnia. Unlabeled indications include chronic and neuropathic pain, and anxiety. Doxepin may also be used as a second line agent to treat idiopathic urticaria. D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AA - Non-selective monoamine reuptake inhibitors D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent > C94727 - Tricyclic Antidepressant D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists EAWAG_UCHEM_ID 3676; CONFIDENCE standard compound CONFIDENCE standard compound; EAWAG_UCHEM_ID 3676
Metaxalone
Metaxalone (marketed by King Pharmaceuticals under the brand name Skelaxin) is a muscle relaxant used to relax muscles and relieve pain caused by strains, sprains, and other musculoskeletal conditions. Its exact mechanism of action is not known, but it may be due to general central nervous system depression. It is considered to be a moderately strong muscle relaxant, with relatively low incidence of side effects. Skelaxin comes in an 800 mg scored tablet. It previously came in both 400 mg and 800 mg tablets. The 400 mg tablet has been discontinued. Possible side effects include nausea, vomiting, drowsiness and CNS side effects such as dizziness, headache, and irritability. D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant D000890 - Anti-Infective Agents > D023303 - Oxazolidinones CONFIDENCE standard compound; EAWAG_UCHEM_ID 3127
Oxybutynin
Oxybutynin is an anticholinergic medication used to relieve urinary and bladder difficulties, including frequent urination and inability to control urination, by decreasing muscle spasms of the bladder. It competitively antagonizes the M1, M2, and M3 subtypes of the muscarinic acetylcholine receptor. G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BD - Drugs for urinary frequency and incontinence C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D000089162 - Genitourinary Agents > D064804 - Urological Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3025 Oxybutynin is an anticholinergic agent, which inhibits vascular Kv channels in a concentration-dependent manner, with an IC50 of 11.51 μM[1]. Oxybutynin is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.
Praziquantel
Praziquantel is only found in individuals that have used or taken this drug. It is an anthelmintic used in most schistosome and many cestode infestations. [PubChem]Praziquantel works by causing severe spasms and paralysis of the worms muscles. This paralysis is accompanied - and probably caused - by a rapid Ca 2+ influx inside the schistosome. Morphological alterations are another early effect of praziquantel. These morphological alterations are accompanied by an increased exposure of schistosome antigens at the parasite surface. The worms are then either completely destroyed in the intestine or passed in the stool. An interesting quirk of praziquantel is that it is relatively ineffective against juvenile schistosomes. While initially effective, effectiveness against schistosomes decreases until it reaches a minimum at 3-4 weeks. Effectiveness then increases again until it is once again fully effective at 6-7 weeks. Glutathione S-transferase (GST), an essential detoxification enzyme in parasitic helminths, is a major vaccine target and a drug target against schistosomiasis. Schistosome calcium ion channels are currently the only known target of praziquantel. P - Antiparasitic products, insecticides and repellents > P02 - Anthelmintics > P02B - Antitrematodals > P02BA - Quinoline derivatives and related substances D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent
methapyrilene
R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AC - Substituted ethylene diamines D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018926 - Anti-Allergic Agents
C-Quens
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
Ropinirole
Ropinirole is a non-ergoline dopamine agonist, manufactured by GlaxoSmithKline. It is used in the treatment of Parkinsons disease, and is also one of two medications in the United States with an FDA-approved indication for the treatment of restless legs syndrome (the other being Pramipexole). [Wikipedia] D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04B - Dopaminergic agents > N04BC - Dopamine agonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent
oxybenzone
D020011 - Protective Agents > D011837 - Radiation-Protective Agents > D013473 - Sunscreening Agents C1892 - Chemopreventive Agent > C851 - Sunscreen D003879 - Dermatologic Agents D003358 - Cosmetics Same as: D05309 CONFIDENCE standard compound; INTERNAL_ID 754; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4381; ORIGINAL_PRECURSOR_SCAN_NO 4379 CONFIDENCE standard compound; INTERNAL_ID 754; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4375; ORIGINAL_PRECURSOR_SCAN_NO 4373 CONFIDENCE standard compound; INTERNAL_ID 754; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4383; ORIGINAL_PRECURSOR_SCAN_NO 4379 CONFIDENCE standard compound; INTERNAL_ID 754; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4381; ORIGINAL_PRECURSOR_SCAN_NO 4376 CONFIDENCE standard compound; INTERNAL_ID 754; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4396; ORIGINAL_PRECURSOR_SCAN_NO 4394 CONFIDENCE standard compound; INTERNAL_ID 754; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4398; ORIGINAL_PRECURSOR_SCAN_NO 4397 CONFIDENCE standard compound; INTERNAL_ID 754; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9607; ORIGINAL_PRECURSOR_SCAN_NO 9606 CONFIDENCE standard compound; INTERNAL_ID 754; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9642; ORIGINAL_PRECURSOR_SCAN_NO 9638 CONFIDENCE standard compound; INTERNAL_ID 754; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9614; ORIGINAL_PRECURSOR_SCAN_NO 9611 CONFIDENCE standard compound; INTERNAL_ID 754; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9638; ORIGINAL_PRECURSOR_SCAN_NO 9635 CONFIDENCE standard compound; INTERNAL_ID 754; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9643; ORIGINAL_PRECURSOR_SCAN_NO 9641 CONFIDENCE standard compound; INTERNAL_ID 754; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9646; ORIGINAL_PRECURSOR_SCAN_NO 9641 CONFIDENCE standard compound; INTERNAL_ID 2758 CONFIDENCE standard compound; INTERNAL_ID 8629 CONFIDENCE standard compound; INTERNAL_ID 8143 CONFIDENCE standard compound; EAWAG_UCHEM_ID 230
Roseoflavin
A benzopteridine that is riboflavin in which the methyl group at position 8 is substituted by a dimethylamino group.
Salicylhydroxamic acid
D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Tetrahydrocortisone
Cortisol is a corticosteroid hormone that is involved in the response to stress; it increases blood pressure and blood sugar levels and suppresses the immune system. Synthetic cortisol, also known as hydrocortisone, is used as a drug mainly to fight allergies and inflammation. -- Wikipedia; As an oral or injectable drug, cortisol is also known as hydrocortisone. It is used as an immunosuppressive drug, given by injection in the treatment of severe allergic reactions such as anaphylaxis and angioedema, in place of prednisolone in patients who need steroid treatment but cannot take oral medication, and peri-operatively in patients on long-term steroid treatment to prevent an Addisonian crisis. -- Wikipedia [HMDB] Cortisol is a corticosteroid hormone that is involved in the response to stress; it increases blood pressure and blood sugar levels and suppresses the immune system. Synthetic cortisol, also known as hydrocortisone, is used as a drug mainly to fight allergies and inflammation. -- Wikipedia; As an oral or injectable drug, cortisol is also known as hydrocortisone. It is used as an immunosuppressive drug, given by injection in the treatment of severe allergic reactions such as anaphylaxis and angioedema, in place of prednisolone in patients who need steroid treatment but cannot take oral medication, and peri-operatively in patients on long-term steroid treatment to prevent an Addisonian crisis. -- Wikipedia. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Tetrahydrocortisone is a stress-induced hormone. Tetrahydrocortisone is also a urinary metabolite of Cortisone derived from the reduction of Cortisone by 5-reductase[1].
Diacetoxyscirpenol
Diacetoxyscirpenol is a constituent of Fusarium species Mycotoxin D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins Constituent of Fusarium subspecies Mycotoxin C784 - Protein Synthesis Inhibitor D000970 - Antineoplastic Agents
Phentermine
Phentermine is only found in individuals that have used or taken this drug. It is a central nervous system stimulant and sympathomimetic with actions and uses similar to those of dextroamphetamine. It has been used most frequently in the treatment of obesity. [PubChem]Phentermine is an amphetamine that stimulates neurons to release or maintain high levels of a particular group of neurotransmitters known as catecholamines; these include dopamine and norepinephrine. High levels of these catecholamines tend to suppress hunger signals and appetite. The drug seems to inhibit reuptake of noradrenaline, dopamine, and seratonin through inhibition or reversal of the reuptake transporters. It may also inhibit MAO enzymes leaving more neurotransmitter available at the synapse.Phentermine (through catecholamine elevation) may also indirectly affect leptin levels in the brain. It is theorized that phentermine can raise levels of leptin which signal satiety. It is also theorized that increased levels of the catecholamines are partially responsible for halting another chemical messenger known as neuropeptide Y. This peptide initiates eating, decreases energy expenditure, and increases fat storage. A - Alimentary tract and metabolism > A08 - Antiobesity preparations, excl. diet products > A08A - Antiobesity preparations, excl. diet products > A08AA - Centrally acting antiobesity products CONFIDENCE standard compound; INTERNAL_ID 7; HBM4EU - science and policy for a healthy future (https://www.hbm4eu.eu) CONFIDENCE Reference Standard (Level 1); HBM4EU - science and policy for a healthy future (https://www.hbm4eu.eu) D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D019440 - Anti-Obesity Agents > D001067 - Appetite Depressants C78272 - Agent Affecting Nervous System > C29728 - Anorexiant
Adrenic acid
Adrenic acid, also known as 7,10,13,16-docosatetraenoic acid or adrenate, is a member of the class of compounds known as very long-chain fatty acids. Very long-chain fatty acids are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Adrenic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Adrenic acid can be found in blood and in human myelin tissue. Within the cell, adrenic acid is primarily located in the cytoplasm, in the membrane (predicted from logP), and in the peroxisome. It can also be found in the extracellular space. In humans, adrenic acid is involved in alpha-linolenic acid and linoleic acid metabolism. Docosatetraenoic acid designates any straight chain 22:4 fatty acid. In particular, all-cis-7,10,13,16-docosatetraenoic acid is an ω-6 fatty acid with the trivial name adrenic acid (AdA). This is a naturally occurring polyunsaturated fatty acid formed through a 2-carbon chain elongation of arachidonic acid. It is one of the most abundant fatty acids in the early human brain. This unsaturated fatty acid is also metabolized by cells into biologically active products, such as dihomoprostaglandins and dihomo-epoxyeicosatrienoic acids (dihomo-EETs) (Wikipedia). Adrenic acid, which is a prostacyclin inhibitor, appears to be a potential prothrombotic agent (PMID: 1642692). Adrenic acid, which is a prostacyclin inhibitor, appears to be potential prothrombotic agent. (PMID 1642692) [HMDB]
Nalmefene
N - Nervous system > N07 - Other nervous system drugs > N07B - Drugs used in addictive disorders > N07BB - Drugs used in alcohol dependence D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists C78272 - Agent Affecting Nervous System > C681 - Opiate Antagonist
Diflunisal
Diflunisal, a salicylate derivative, is a nonsteroidal anti-inflammatory agent (NSAIA) with pharmacologic actions similar to other prototypical NSAIAs. Diflunisal possesses anti-inflammatory, analgesic and antipyretic activity. Though its mechanism of action has not been clearly established, most of its actions appear to be associated with inhibition of prostaglandin synthesis via the arachidonic acid pathway. Diflunisal is used to relieve pain accompanied with inflammation and in the symptomatic treatment of rheumatoid arthritis and osteoarthritis. N - Nervous system > N02 - Analgesics > N02B - Other analgesics and antipyretics > N02BA - Salicylic acid and derivatives D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D004791 - Enzyme Inhibitors KEIO_ID D058
3,3'-Dichlorobenzidine
CONFIDENCE standard compound; INTERNAL_ID 2424 CONFIDENCE standard compound; INTERNAL_ID 49 D009676 - Noxae > D002273 - Carcinogens
Imazethapyr
Imazethapyr is a widely used imidazolinone herbicide worldwide, and its potential adverse effects on non-target plants have raised concerns. Understanding the mechanisms of imazethapyr phytotoxicity is crucial for its agro-ecological risk assessment.
Prostaglandin F1a
Prostaglandin F1a is derived mainly from Prostaglandin E1, and is metabolized to 6-Keto Prostaglandin F1a. Prostaglandin F1a is excreted directly into the urine. Prostaglandin F1a contracts the circular muscle of the gut in opposition to the Prostaglandins of the E series. Prostaglandin F1a is a cytoprotector, protecting mucosal tissue from damage produced by ulcerogenic stimuli.Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin F1a is derived mainly from Prostaglandin E1, and is metabolized to 6-Keto Prostaglandin F1a. Prostaglandin F1a is excreted directly into the urine. Prostaglandin F1a contracts the circular muscle of the gut in opposition to the Prostaglandins of the E series. Prostaglandin F1a is a cytoprotector, protecting mucosal tissue from damage produced by ulcerogenic stimuli.
20alpha-Dihydroprogesterone
20alpha-Dihydroprogesterone is a biologically active 20-alpha-reduced metabolite of progesterone. It is converted from progesterone to 20-alpha-hydroxypregn-4-en-3-one by the 20-alpha-hydroxysteroid dehydrogenase in the corpus luteum and the placenta. Progesterone is a C-21 steroid hormone involved in the female menstrual cycle, pregnancy (supports gestation), and embryogenesis of humans and other species. Progesterone belongs to a class of hormones called progestagens, and is the major naturally occurring human progestagen (Wikipedia). During implantation and gestation, progesterone appears to decrease the maternal immune response to allow for the acceptance of the pregnancy. Progesterone decreases contractility of the uterine smooth muscle. The fetus metabolizes placental progesterone in the production of adrenal mineralo- and glucosteroids. A drop in progesterone levels is possibly one step that facilitates the onset of labour. In addition, progesterone inhibits lactation during pregnancy. The fall in progesterone levels following delivery is one of the triggers for milk production (Wikipedia). A biologically active 20-alpha-reduced metabolite of progesterone. It is converted from progesterone to 20-alpha-hydroxypregn-4-en-3-one by the 20-alpha-hydroxysteroid dehydrogenase in the corpus luteum and the placenta. -- Pubchem; Progesterone is a C-21 steroid hormone involved in the female menstrual cycle, pregnancy (supports gestation) and embryogenesis of humans and other species. Progesterone belongs to a class of hormones called progestagens, and is the major naturally occurring human progestagen. -- Wikipedia; During implantation and gestation, progesterone appears to decrease the maternal immune response to allow for the acceptance of the pregnancy. Progesterone decreases contractility of the uterine smooth muscle. The fetus metabolizes placental progesterone in the production of adrenal mineralo- and glucosteroids. A drop in progesterone levels is possibly one step that facilitates the onset of labor. In addition progesterone inhibits lactation during pregnancy. The fall in progesterone levels following delivery is one of the triggers for milk production. -- Wikipedia [HMDB] D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D011372 - Progestins
3b-Allotetrahydrocortisol
3b-Allotetrahydrocortisol is one of the tetrahydrometabolites of cortisol. The 11-beta-hydroxysteroid dehydrogenase (11beta-HSD) is responsible for the interconversion of both the hormonally inactive cortisone and the active cortisol, which has implications in the pathogenesis of numerous diseases, as reflected in the ratio of tetrahydrometabolites of cortisol. (PMID: 16310418). The daily excretion of allotetrahydrocortisol is above normal in hyperthyroid patients; In contrast, in hyperthyroidism the excretion is diminished below normal levels to approximately half that of normal subjects. (PMID 13906284). A decreased activity of the enzyme 11beta-HSD produces a pattern of urinary steroid metabolites with an abnormal elevation of tetrahydrocortisol and allo-tetrahydrocortisol compared to tetrahydrocortisone; this pattern of steroid excretion is essential for the diagnosis of the syndrome of apparent mineralocorticoid excess type 1. (PMID: 8834992). 3b-Allotetrahydrocortisol is one of the tetrahydrometabolites of cortisol. The 11-beta-hydroxysteroid dehydrogenase (11beta-HSD) is responsible for the interconversion of both the hormonally inactive cortisone and the active cortisol, which has implications in the pathogenesis of numerous diseases, as reflected in the ratio of tetrahydrometabolites of cortisol. (PMID: 16310418) D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Tetrahydrocortisol is cortisol metabolite. The urinary Tetrahydrocortisol/Tetrahydrocortisone ratio decreases with increasing 11β-hydroxysteroid dehydrogenase (11β-HSD) activity[1][2].
Ethylene thiourea
CONFIDENCE standard compound; EAWAG_UCHEM_ID 271 CONFIDENCE standard compound; INTERNAL_ID 8704
Diethanolamine
Diethanolamine, often abbreviated as DEA, is an organic chemical compound which is both a secondary amine and a dialcohol. A dialcohol has two hydroxyl groups in its molecule. Like other amines, diethanolamine acts as a weak base. Diethanolamine is widely used in the preparation of diethanolamides and diethanolamine salts of long-chain fatty acids that are formulated into soaps and surfactants used in liquid laundry and dishwashing detergents, cosmetics, shampoos, and hair conditioners. Diethanolamine is also used in textile processing, in industrial gas purification to remove acid gases, as an anticorrosion agent in metalworking fluids, and in preparations of agricultural chemicals. Aqueous diethanolamine solutions are used as solvents for numerous drugs that are administered intravenously. [HMDB] Diethanolamine, often abbreviated as DEA, is an organic chemical compound which is both a secondary amine and a dialcohol. A dialcohol has two hydroxyl groups in its molecule. Like other amines, diethanolamine acts as a weak base. Diethanolamine is widely used in the preparation of diethanolamides and diethanolamine salts of long-chain fatty acids that are formulated into soaps and surfactants used in liquid laundry and dishwashing detergents, cosmetics, shampoos, and hair conditioners. Diethanolamine is also used in textile processing, in industrial gas purification to remove acid gases, as an anticorrosion agent in metalworking fluids, and in preparations of agricultural chemicals. Aqueous diethanolamine solutions are used as solvents for numerous drugs that are administered intravenously.
2-Furoic acid
Furoic acid is a metabolite that appears in the urine of workers occupationally exposed to furfural and is a marker of exposure to this compound. Furfural is a heterocyclic aldehyde that is commonly used as a solvent in industry. It is readily absorbed into the body via the lungs and has significant skin absorption. Furfural is an irritant of the eyes, mucous membranes, and skin and is a central nervous system depressant. Furfural as a confirmed animal carcinogen with unknown relevance to humans (It has been suggested that is a substance that produces hepatic cirrhosis). Once in the body, furfural is metabolized rapidly via oxidation to the metabolite furoic acid, which is then conjugated with glycine and excreted in the urine in both free and conjugated forms. (PMID: 3751566, 4630229, 12587683). 2-Furoic acid is a biomarker for the consumption of beer. 2-Furancarboxylic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=88-14-2 (retrieved 2024-07-10) (CAS RN: 88-14-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2]. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2]. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2].
4-Chlorophenol
C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent CONFIDENCE standard compound; EAWAG_UCHEM_ID 3066 D000890 - Anti-Infective Agents
p-Cresol
para-Cresol, also 4-methylphenol, is an organic compound with the formula CH3C6H4(OH). P-cresol is a cresol that consists of toluene substituted by a hydroxy group at position 4. It is a metabolite of aromatic amino acid metabolism produced by intestinal microflora in humans and animals. It has a role as a uremic toxin, a human metabolite and an Escherichia coli metabolite. It is a colourless solid that is widely used intermediate in the production of other chemicals. It is a derivative of phenol and is an isomer of o-cresol and m-cresol. It is a partially lipophilic moiety which strongly binds to plasma protein (close to 100\\%) under normal conditions. p-Cresol is metabolized through conjugation, mainly sulphation and glucuronization, but removal of the unconjugated p-cresol is, at least in part, via the urine. Therefore it is not surprising that this compound, together with several other phenoles, is retained when the kidneys fail. P-Cresol is an end-product of protein breakdown, and an increase of the nutritional protein load in healthy individuals results in enhanced generation and urinary excretion. The serum p-cresol concentration in uremic patients can be decreased by changing to a low-protein diet. p-Cresol is one of the metabolites of the amino acid tyrosine, and to a certain extent also of phenylalanine, which are converted to 4-hydroxyphenylacetic acid by intestinal bacteria, before being decarboxylated to p-cresol (putrefaction). The main contributing bacteria are aerobes (mainly enterobacteria), but to a certain extent also anaerobes play a role (mainly Clostridium perfringens). In uremia, modifications in the intestinal flora result in the specific overgrowth of bacteria that are specific p-cresol producers. The administration of antibiotics reduces urinary excretion of p-cresol, as a result of the liquidation of the producing bacteria. Environmental factors might also contribute. The liver cytochrome P450 metabolizes toluene to benzyl alcohol, but also to o-cresol and p-cresol. Toluene is not only used industrially, but it is also the most widely abusively inhaled solvent. Furthermore, p-cresol is a metabolite of menthofuran, one of the metabolites of R-(+)-pulegone, which is found in extracts from the plants Mentha pulegium and Hedeoma pulegioides, commonly known as pennyroyal oil and pennyroyal tea. These extracts are popular as unconventional herbal therapeutic agents and are applied as abortiva, diaphoretics, emmenagogues, and psychedelic drugs. Pennyroyal oil is extensively used for its pleasant mint-like smell in the flavoring industry. The toxicity of pennyroyal oil and menthofuran is well known. Another compound used in traditional medicine, especially in Japan, which is a precursor of p-cresol is wood tar creosote. p-Cresol has been reported to affect several biochemical, biological and physiological functions: (i) it diminishes the oxygen uptake of rat cerebral cortex slices; (ii) it increases the free active drug concentration of warfarin and diazepam; (iii) it has been related to growth retardation in the weanling pig; (iv) it alters cell membrane permeability, at least in bacteria; (v) it induces LDH leakage from rat liver slices; (vi) it induces susceptibility to auditive epileptic crises; and (vii) it blocks cell K+ channels. (PMID:10570076). p-Cresol is a uremic toxin that is at least partially removed by peritoneal dialysis in haemodialysis patients, and has been involved in the progression of renal failure (PMID:11169029). At concentrations encountered during uremia, p-cresol inhibits phagocyte function and decreases leukocyte adhesion to cytokine-stimulated endothelial cells. (PMID:14681860). p-Cresol can be found in Bacteroides, Bifidobacterium, Clostridium, Enterobacter and Lactobacillus (PMID:2394806; PMID:30208103). As a volatile organic compound, it has been identified as a fecal biomarker of Clostridium difficile infection (PMID:30986230). Present in blackcurrant buds, asparagus, cooked cured pork, black tea, fermented tea, yellow passion fruit juice, malt, peated malt, kumazasa (Sasa albo-marginata), lambs lettuce, squid and cuttlefish. Flavouring ingredient. 4-Methylphenol is found in many foods, some of which are animal foods, cereals and cereal products, tamarind, and tarragon.
O-Toluidine
O-toluidine, also known as 2-aminotoluene or 1-amino-2-methylbenzene, is a member of the class of compounds known as aminotoluenes. Aminotoluenes are organic aromatic compounds containing a benzene that carries a single methyl group and one amino group. O-toluidine is soluble (in water) and a strong basic compound (based on its pKa). O-toluidine can be found in tea, which makes O-toluidine a potential biomarker for the consumption of this food product. O-toluidine is formally rated as a carcinogenic (IARC 1) potentially toxic compound. The chemical properties of the toluidines are quite similar to those of aniline, and toluidines have properties in common with other aromatic amines. Due to the amino group bonded to the aromatic ring, the toluidines are weakly basic. The toluidines are poorly soluble in pure water but dissolve well in acidic water due to formation of ammonium salts, as usual for organic amines. ortho- and meta-toluidines are viscous liquids, but para-toluidine is a flaky solid. This difference is related to the fact that the p-toluidine molecules are more symmetrical. p-Toluidine can be obtained from reduction of p-nitrotoluene. p-Toluidine reacts with formaldehyde to form Trögers base . The chemical properties of the toluidines are quite similar to those of aniline and toluidines have properties in common with other aromatic amines. Due to the amino group bonded to the aromatic ring, the toluidines are weakly basic. None of the toluidines is very soluble in pure water, but will become soluble if the aqueous solution is acidic due to formation of ammonium salts, as usual for organic amines. At room temperature and pressure, ortho- and meta-toluidines are viscous liquids, but para-toluidine is a flaky solid. This can be explained by the fact that the p-toluidine molecules are more symmetrical and fit into a crystalline structure more easily. p-Toluidine can be obtained from reduction of p-nitrotoluene. p-Toluidine reacts with formaldehyde to form Trogers base. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 72
Ipratropium bromide
Ipratropium bromide is only found in individuals that have used or taken this drug. It is a muscarinic antagonist structurally related to atropine but often considered safer and more effective for inhalation use. It is used for various bronchial disorders, in rhinitis, and as an antiarrhythmic. [PubChem]Ipratropium bromide is an anticholinergic agent. It blocks muscarinic cholinergic receptors, without specificity for subtypes, resulting in a decrease in the formation of cyclic guanosine monophosphate (cGMP). Most likely due to actions of cGMP on intracellular calcium, this results in decreased contractility of smooth muscle. D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents
Hexachlorophene
A chlorinated bisphenol antiseptic with a bacteriostatic action against Gram-positive organisms, but much less effective against Gram-negative organisms. It is mainly used in soaps and creams and is an ingredient of various preparations used for skin disorders. (From Martindale, The Extra Pharmacopoeia, 30th ed, p797) CONFIDENCE standard compound; INTERNAL_ID 1307; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5466; ORIGINAL_PRECURSOR_SCAN_NO 5464 CONFIDENCE standard compound; INTERNAL_ID 1307; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5477; ORIGINAL_PRECURSOR_SCAN_NO 5475 CONFIDENCE standard compound; INTERNAL_ID 1307; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5465; ORIGINAL_PRECURSOR_SCAN_NO 5464 CONFIDENCE standard compound; INTERNAL_ID 1307; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5448; ORIGINAL_PRECURSOR_SCAN_NO 5447 CONFIDENCE standard compound; INTERNAL_ID 1307; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5472; ORIGINAL_PRECURSOR_SCAN_NO 5470 CONFIDENCE standard compound; INTERNAL_ID 1307; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5445; ORIGINAL_PRECURSOR_SCAN_NO 5443 D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AE - Phenol and derivatives C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8355 D000890 - Anti-Infective Agents
1,2-Cyclohexanedione
1,2-Cyclohexanedione is a flavour material for foo 1,2-Cyclohexanedione is an endogenous metabolite.
2-Hydroxypyridine
This colourless crystalline solid is used in peptide synthesis. It is well known to form hydrogen bonded structures somewhat related to the base-pairing mechanism found in RNA and DNA. It is also a classic case of a molecule that exists as tautomers. Some publications only focus one of the two possible patterns, and neglect the influence of the other. For example, to calculation of the energy difference of the two tautomers in a non-polar solution will lead to a wrong result if a large quantity of the substance is on the side of the dimer in an equilibrium. The direct tautomerisation is not energetically favoured, but a dimerisation followed by a double proton transfer and dissociation of the dimer is a self catalytic path from one tautomer to the other. Protic solvents also mediate the proton transfer during the tautomerisation. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H021 α-Pyridone is an endogenous metabolite.
4-Hydroxyquinoline
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 53 CONFIDENCE standard compound; INTERNAL_ID 2492 KEIO_ID H139
Carglumic acid
Carglumic acid is an orphan drug used for the treatment of hyperammonaemia in patients with N-acetylglutamate synthase deficiency. This rare genetic disorder results in elevated blood levels of ammonia, which can eventually cross the blood-brain barrier and cause neurologic problems, cerebral edema, coma, and death. Carglumic acid was approved by the U.S. Food and Drug Administration (FDA) on 18 March 2010. A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AA - Amino acids and derivatives C78275 - Agent Affecting Blood or Body Fluid KEIO_ID C078
Vecuronium
Monoquaternary homolog of pancuronium. A non-depolarizing neuromuscular blocking agent with shorter duration of action than pancuronium. Its lack of significant cardiovascular effects and lack of dependence on good kidney function for elimination as well as its short duration of action and easy reversibility provide advantages over, or alternatives to, other established neuromuscular blocking agents. [PubChem] D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents M - Musculo-skeletal system > M03 - Muscle relaxants > M03A - Muscle relaxants, peripherally acting agents D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists
alpha-Hydroxyisobutyric acid
Alpha-Hydroxyisobutyric acid is a metabolite of methyl tert-butyl ether (MTBE). MTBE may be obtained through environmental exposure. MTBE is rapidly eliminated from the body, mainly through expired air as the unchanged compound. MTBE is to some extent metabolised to t-butyl alcohol (TBA) and formaldehyde and oxidised to 2-methyl-1,2-propanediol and a-hydroxy isobuturic acid. Alpha-Hydroxyisobutyric acid has been used as an arial bactericide. [HMDB] alpha-Hydroxyisobutyric acid is a metabolite of methyl tert-butyl ether (MTBE). MTBE may be obtained through environmental exposure. MTBE is rapidly eliminated from the body, mainly through expired air as the unchanged compound. MTBE is to some extent metabolized to t-butyl alcohol (TBA) and formaldehyde and oxidized to 2-methyl-1,2-propanediol and alpha-hydroxyisobutyric acid. alpha-Hydroxyisobutyric acid has been used as an aerial bactericide. 2-Hydroxyisobutyric acid is an endogenous metabolite.
3-methyl-2-oxovalerate
3-Methyl-2-oxovaleric acid (CAS: 1460-34-0) is an abnormal metabolite that arises from the incomplete breakdown of branched-chain amino acids. 3-Methyl-2-oxovaleric acid is a neurotoxin, an acidogen, and a metabotoxin. A neurotoxin causes damage to nerve cells and nerve tissues. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of 3-methyl-2-oxovaleric acid are associated with maple syrup urine disease. MSUD is a metabolic disorder caused by a deficiency of the branched-chain alpha-keto acid dehydrogenase complex (BCKDC), leading to a buildup of the branched-chain amino acids (leucine, isoleucine, and valine) and their toxic by-products (ketoacids) in the blood and urine. The symptoms of MSUD often show in infancy and lead to severe brain damage if untreated. MSUD may also present later depending on the severity of the disease. If left untreated in older individuals, during times of metabolic crisis, symptoms of the condition include uncharacteristically inappropriate, extreme, or erratic behaviour and moods, hallucinations, anorexia, weight loss, anemia, diarrhea, vomiting, dehydration, lethargy, oscillating hypertonia and hypotonia, ataxia, seizures, hypoglycemia, ketoacidosis, opisthotonus, pancreatitis, rapid neurological decline, and coma. In maple syrup urine disease, the brain concentration of branched-chain ketoacids can increase 10- to 20-fold. This leads to a depletion of glutamate and a consequent reduction in the concentration of brain glutamine, aspartate, alanine, and other amino acids. The result is a compromise of energy metabolism because of a failure of the malate-aspartate shuttle and a diminished rate of protein synthesis (PMID: 15930465). 3-Methyl-2-oxovaleric acid is a keto-acid, which is a subclass of organic acids. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart, liver, and kidney abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of untreated MSUD. Many affected children with organic acidemias experience intellectual disability or delayed development. (s)-3-methyl-2-oxopentanoate, also known as (3s)-2-oxo-3-methyl-N-valeric acid or (S)-omv, belongs to short-chain keto acids and derivatives class of compounds. Those are keto acids with an alkyl chain the contains less than 6 carbon atoms. Thus, (s)-3-methyl-2-oxopentanoate is considered to be a fatty acid lipid molecule (s)-3-methyl-2-oxopentanoate is slightly soluble (in water) and a weakly acidic compound (based on its pKa). (s)-3-methyl-2-oxopentanoate can be found in a number of food items such as bean, prickly pear, wild leek, and nutmeg, which makes (s)-3-methyl-2-oxopentanoate a potential biomarker for the consumption of these food products (s)-3-methyl-2-oxopentanoate may be a unique S.cerevisiae (yeast) metabolite.
Hydroxyhydroquinone
1,2,4-Trihydroxybenzene (Hydroxyhydroquinone), a by-product of coffee bean roasting, increases intracellular Ca2+ concentration in rat thymic lymphocytes[1]. 1,2,4-Trihydroxybenzene (Hydroxyhydroquinone), a by-product of coffee bean roasting, increases intracellular Ca2+ concentration in rat thymic lymphocytes[1].
Lactulose
Lactulose is a synthetic disaccharide used in the treatment of constipation and hepatic encephalopathy. It has also been used in the diagnosis of gastrointestinal disorders (From Martindale, The Extra Pharmacopoeia, 30th ed, p887). Moreover, lactulose is found to be associated with celiac disease, which is an inborn error of metabolism. A synthetic disaccharide used in the treatment of constipation and hepatic encephalopathy. It has also been used in the diagnosis of gastrointestinal disorders. (From Martindale, The Extra Pharmacopoeia, 30th ed, p887) [HMDB] A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AD - Osmotically acting laxatives C78276 - Agent Affecting Digestive System or Metabolism > C29697 - Laxative D005765 - Gastrointestinal Agents
Methyl acetate
Methyl acetate belongs to the class of organic compounds known as carboxylic acid esters. These are carboxylic acid derivatives in which the carbon atom from the carbonyl group is attached to an alkyl or an aryl moiety through an oxygen atom (forming an ester group). Methyl acetate is present in apple, grape, banana and other fruits. Methyl acetate is a flavouring ingredient and it is an ester that, in the laboratory, is synthesized from acetic acid and methanol in the presence of strong acids such as sulfuric acid in an esterification reaction. In the presence of strong bases such as sodium hydroxide or strong acids such as hydrochloric acid or sulfuric acid it is hydrolyzed back into methanol and acetic acid, especially at elevated temperature. Methyl acetate, also known as acetic acid methyl ester or methyl ethanoate, is a clear, flammable liquid with a characteristic, not unpleasant smell like certain glues or nail polish removers. Methyl acetate has characteristics very similar to its analog ethyl acetate. Methyl acetate is used as a solvent in glues, paints, and nail polish removers, in chemical reactions, and for extractions. Methyl acetate is a non-polar (lipophilic) to weakly polar (hydrophilic) aprotic solvent. Methyl acetate has a solubility of 25\\% in water at room temperature. At elevated temperature its solubility in water is much higher. Methyl acetate is not stable in the presence of strong aqueous bases or acids. The conversion of methyl acetate back into its components, by an acid, is a first-order reaction with respect to the ester. The reaction of methyl acetate and a base, for example sodium hydroxide, is a second-order reaction with respect to both reactants Methyl acetate is an ester that is synthesized from acetic acid and methanol in the presence of strong acids such as sulfuric acid in an esterification reaction. In the presence of strong bases such as sodium hydroxide or strong acids such as hydrochloric acid or sulfuric acid it is hydrolyzed back into methanol and acetic acid, especially at elevated temperature.; Methyl acetate, also known as acetic acid methyl ester or methyl ethanoate, is a clear, flammable liquid with a characteristic, not unpleasant smell like certain glues or nail polish removers. Methyl acetate has characteristics very similar to its analog ethyl acetate. Methyl acetate is used as a solvent in glues, paints, and nail polish removers, in chemical reactions, and for extractions. Methyl acetate is a non-polar (lipophilic) to weakly polar (hydrophilic) aprotic solvent. Methyl acetate has a solubility of 25\\% in water at room temperature. At elevated temperature its solubility in water is much higher. Methyl acetate is not stable in the presence of strong aqueous bases or acids. Methyl acetate is VOC exempt.; The conversion of methyl acetate back into its components, by an acid, is a first-order reaction with respect to the ester. The reaction of methyl acetate and a base, for example sodium hydroxide, is a second-order reaction with respect to both reactants. Methyl acetate is a flavouring agent and can be found in many foods, some of which are apple, grape, banana, orange mint, and ginger.
Vaccenic acid
Vaccenic acid is a naturally occurring trans fatty acid. It is the predominant kind of trans-fatty acid found in human milk, in the fat of ruminants, and in dairy products such as milk, butter, and yogurt. Trans fat in human milk may depend on trans fat content in food. Its IUPAC name is (11E)-11-octadecenoic acid, and its lipid shorthand name is 18:1 trans-11. The name was derived from the Latin vacca (cow). Vaccenic acid belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Vaccenic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Occurs in small proportions in ruminant fats (e.g., butter) via biohydrogenation of dietary polyene acids. Vaccenic acid is found in many foods, some of which are almond, romaine lettuce, butter, and pak choy. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level.
Oxymetholone
A - Alimentary tract and metabolism > A14 - Anabolic agents for systemic use > A14A - Anabolic steroids > A14AA - Androstan derivatives D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D000728 - Androgens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid
Benzamidine
D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015842 - Serine Proteinase Inhibitors Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 2169 KEIO_ID B004
9,10-DiHOME
9,10-Dihydroxy-12-octadecenoic acid (CAS: 263399-34-4), also known as 9,10-DHOME, is a derivative of linoleic acid diol and has been reported to be toxic in humans tissue preparations. 9,10-DHOME is a naturally occurring proliferator-activated receptor (PPAR) gamma2 ligand, which stimulates adipocytes and inhibits osteoblast differentiation. 9,10-DHOME is the epoxide hydrolase metabolite of the leukotoxin 9,10-EpOME. 9,10-EpOME act as a protoxin, with the corresponding epoxide hydrolase metabolite 9,10-DHOME, specifically exerting toxicity. Both 9,10-EpOME and 9,10-DHOME are shown to have neutrophil chemotactic activity. 9,10-DHOME suppresses the neutrophil respiratory burst by a mechanism distinct from that of respiratory burst inhibitors such as cyclosporin H or lipoxin A4, which inhibit multiple aspects of neutrophil activation (PMID: 12021203, 12127265, 17435320). 9,10-DHOME is found in fruits and can be isolated from the seeds of Cucurbita pepo. 9,10-DHOME is a derivative of linoleic acid diol that have been reported to be toxic in humans tissue preparations. 9,10-DHOME is a naturally occurring proliferator-activated receptor (PPAR) gamma2 ligand, which stimulates adipocytes and inhibits osteoblast differentiation. 9,10-DHOME is the epoxide hydrolase metabolite of the leukotoxin 9,10--EpOME. 9,10-EpOMEs act as a protoxin, with the corresponding epoxide hydrolase 9,10-DiHOME specifically exerting toxicity. Both the 9,10-EpOME and the 9,10-DiHOME are shown to have neutrophil chemotactic activity. 9,10-DiHOME suppress the neutrophil respiratory burst by a mechanism distinct from that of respiratory burst inhibitors such as cyclosporin H or lipoxin A4,which inhibit multiple aspects of neutrophil activation. (PMID: 12021203, 12127265, 17435320) [HMDB]
Oxamniquine
An anthelmintic with schistosomicidal activity against Schistosoma mansoni, but not against other Schistosoma spp. Oxamniquine causes worms to shift from the mesenteric veins to the liver where the male worms are retained; the female worms return to the mesentery, but can no longer release eggs. (From Martidale, The Extra Pharmacopoeia, 31st ed, p121) P - Antiparasitic products, insecticides and repellents > P02 - Anthelmintics > P02B - Antitrematodals > P02BA - Quinoline derivatives and related substances D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent
(S)-2-Azetidinecarboxylic acid
Azetidine-2-carboxylic acid is an azetidinecarboxylic acid that is azetidine substituted by a carboxy group at position 2. It is a plant non-protein amino acid. It has a role as a plant metabolite and a teratogenic agent. It is an azetidinecarboxylic acid and an amino acid. A proline analog that acts as a stoichiometric replacement of proline. It causes the production of abnormal proteins with impaired biological activity. (S)-2-Azetidinecarboxylic acid is found in common beet. (S)-2-Azetidinecarboxylic acid is present in roots and leaves of Convallaria majalis (lily-of-the-valley). Convallaria majalis is banned by the FDA from food use in the US Present in roots and leaves of Convallaria majalis (lily-of-the-valley). Convallaria majalis is banned by the FDA from food use in the USA. (S)-2-Azetidinecarboxylic acid is found in red beetroot and common beet. An azetidinecarboxylic acid that is azetidine substituted by a carboxy group at position 2. It is a plant non-protein amino acid. KEIO_ID A219 Azetidine-2-carboxylic acid is a non proteinogenic amino acid homologue of proline. Found in common beets. Azetidine-2-carboxylic acid can be misincorporated into proteins in place of proline in many species, including humans. Toxic and teratogenic agent[1][2]. Azetidine-2-carboxylic acid is a non proteinogenic amino acid homologue of proline. Found in common beets. Azetidine-2-carboxylic acid can be misincorporated into proteins in place of proline in many species, including humans. Toxic and teratogenic agent[1][2]. L-Azetidine-2-carboxylic acid is an endogenous metabolite. L-Azetidine-2-carboxylic acid is an endogenous metabolite.
Proteinase inhibitor E 64
D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015853 - Cysteine Proteinase Inhibitors D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents KEIO_ID E015; [MS2] KO008950 KEIO_ID E015
Vistamycin
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01G - Aminoglycoside antibacterials C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic KEIO_ID R016
Streptomycin
Streptomycin is an aminoglycoside antibiotic produced by the soil actinomycete Streptomyces griseus. It acts by binding to the 30S ribosomal subunit of susceptible organisms and disrupting the initiation and elongation steps in protein synthesis. It is bactericidal due to effects that are not fully understood. A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AA - Antibiotics J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01G - Aminoglycoside antibacterials > J01GA - Streptomycins C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic KEIO_ID S031
Ethylamine
Ethylamine, also known as 1-aminoethane or ethanamine, belongs to the class of organic compounds known as monoalkylamines. These are organic compounds containing an primary aliphatic amine group. Ethylamine exists in all living organisms, ranging from bacteria to humans. Ethylamine is an ammonia and fishy tasting compound. Ethylamine can be found found in a few different foods, such as barley, apples, and corns and in a lower concentration in white cabbages, wild carrots, and cabbages. Ethylamine has also been detected, but not quantified, in several different foods, such as black elderberries, common grapes, french plantains, soy beans, and spinachs. Ethylamine is a uremic toxin. Most uremic toxins are metabolic waste products and are normally excreted in the urine or feces. Uremic syndrome may affect any part of the body and can cause nausea, vomiting, loss of appetite, and weight loss. Ethylamine is component of normal human urine it has been suggested that this short aliphatic chain may play a significant role in the central nervous system disturbances observe during hepatic and renal disease especially when the blood brain barrier is compromised. Found in foods and drinks KEIO_ID E025
Pralidoxime
Pralidoxime is an antidote to organophosphate pesticides and chemicals. Organophosphates bind to the esteratic site of acetylcholinesterase, which results initially in reversible inactivation of the enzyme. If given within 24 hours,after organophosphate exposure, pralidoxime reactivates the enzyme cholinesterase by cleaving the phosphate-ester bond formed between the organophosphate and acetylcholinesterase. V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002801 - Cholinesterase Reactivators Acquisition and generation of the data is financially supported in part by CREST/JST. C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist D020011 - Protective Agents > D000931 - Antidotes D004793 - Enzyme Reactivators
2-Hydroxybutyric acid
2-Hydroxybutyric acid (CAS: 600-15-7), also known as alpha-hydroxybutyrate, is an organic acid derived from alpha-ketobutyrate. alpha-Ketobutyrate is produced by amino acid catabolism (threonine and methionine) and glutathione anabolism (cysteine formation pathway) and is metabolized into propionyl-CoA and carbon dioxide (PMID: 20526369). 2-Hydroxybutyric acid is formed as a byproduct from the formation of alpha-ketobutyrate via a reaction catalyzed by lactate dehydrogenase (LDH) or alpha-hydroxybutyrate dehydrogenase (alphaHBDH). alpha-Hydroxybutyric acid is primarily produced in mammalian hepatic tissues that catabolize L-threonine or synthesize glutathione. Oxidative stress or detoxification of xenobiotics in the liver can dramatically increase the rate of hepatic glutathione synthesis. Under such metabolic stress conditions, supplies of L-cysteine for glutathione synthesis become limiting, so homocysteine is diverted from the transmethylation pathway (which forms methionine) into the transsulfuration pathway (which forms cystathionine). alpha-Ketobutyrate is released as a byproduct when cystathionine is cleaved into cysteine that is incorporated into glutathione. Chronic shifts in the rate of glutathione synthesis may be reflected by urinary excretion of 2-hydroxybutyrate. 2-Hydroxybutyrate is an early marker for both insulin resistance and impaired glucose regulation that appears to arise due to increased lipid oxidation and oxidative stress (PMID: 20526369). 2-Hydroxybutyric acid is often found in the urine of patients suffering from lactic acidosis and ketoacidosis. 2-Hydroxybutyric acid generally appears at high concentrations in situations related to deficient energy metabolism (e.g. birth asphyxia) and also in inherited metabolic diseases affecting the central nervous system during neonatal development, such as "cerebral" lactic acidosis, glutaric aciduria type II, dihydrolipoyl dehydrogenase (E3) deficiency, and propionic acidemia. More recently it has been noted that elevated levels of alpha-hydroxybutyrate in the plasma is a good marker for early-stage type II diabetes (PMID: 19166731). It was concluded from studies done in the mid-1970s that an increased NADH2/NAD ratio was the most important factor for the production of 2-hydroxybutyric acid (PMID: 168632). 2-Hydroxybutyric acid is an organic acid that is involved in propanoate metabolism. It is produced in mammalian tissues (principaly hepatic) that catabolize L-threonine or synthesize glutathione. Oxidative stress or detoxification demands can dramatically increase the rate of hepatic glutathione synthesis. Under such metabolic stress conditions, supplies of L-cysteine for glutathione synthesis become limiting, so homocysteine is diverted from the transmethylation pathway forming methionine into the transsulfuration pathway forming cystathionine. 2-Hydroxybutyrate is released as a by-product when cystathionine is cleaved to cysteine that is incorporated into glutathione. 2-Hydroxybutyric acid is often found in the urine of patients suffering from lactic acidosis and ketoacidosis. 2-Hydroxybutyric acid generally appears at high concentrations in situations related to deficient energy metabolism (e.g., birth asphyxia) and also in inherited metabolic diseases affecting the central nervous system during neonatal development, such as "cerebral" lactic acidosis, glutaric aciduria type II, dihydrolipoyl dehydrogenase (E3) deficiency, and propionic acidemia. More recently it has been noted that elevated levels of alpha-hydroxybutyrate in the plasma is a good marker for early stage type II diabetes (PMID: 19166731). It was concluded from studies done in the mid 1970s that an increased NADH2/NAD ratio was the most important factor for the production of 2-hydorxybutyric acid (PMID: 168632) [HMDB] 2-Hydroxybutyric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=565-70-8 (retrieved 2024-07-16) (CAS RN: 600-15-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (S)-2-Hydroxybutanoic acid is the S-enantiomer of?2-Hydroxybutanoic acid. 2-Hydroxybutanoic acid, a coproduct of protein metabolism, is an insulin resistance (IR) biomarker[1].
Mesobilirubinogen
Mesobilirubinogen (also known as I-urobilinogen) is a tetrapyrrole chemical compound that is closely related to two other compounds: urobilinogen (also known as D-urobilinogen) and stercobilinogen (also known as L-urobilinogen). Specifically, urobilinogen can be reduced to form mesobilirubinogen, and mesobilirubinogen can be further reduced to form stercobilinogen. Confusingly, all three of these compounds are frequently collectively referred to as "urobilinogens". Urobilinogen is the parent compound of both stercobilin (the pigment that is responsible for the brown colour of feces) and urobilin (the pigment that is responsible for the yellow colour of urine). Urobilinogen is formed through the microbial degradation of its parent compound bilirubin. Urobilinogen is actually generated through the degradation of heme, the red pigment in hemoglobin and red blood cells (RBCs). RBCs have a life span of about 120 days. When the RBCs have reached the end of their useful lifespan, the cells are engulfed by macrophages and their constituents recycled or disposed of. Heme is broken down when the heme ring is opened by the enzyme known as heme oxygenase, which is found in the endoplasmic reticulum of the macrophages. The oxidation process produces the linear tetrapyrrole known as biliverdin along with ferric iron (Fe3+), and carbon monoxide (CO). In the next reaction, a second methylene group (located between rings III and IV of the porphyrin ring) is reduced by the enzyme known as biliverdin reductase, producing bilirubin. Bilirubin is significantly less extensively conjugated than biliverdin. This reduction causes a change in the colour of the biliverdin molecule from blue-green (vert or verd for green) to yellow-red, which is the colour of bilirubin (ruby or rubi for red). In plasma, virtually all the bilirubin is tightly bound to plasma proteins, largely albumin, because it is only sparingly soluble in aqueous solutions at physiological pH. In the sinusoids, unconjugated bilirubin dissociates from albumin, enters the liver cells across the cell membrane through non-ionic diffusion to the smooth endoplasmatic reticulum. In hepatocytes, bilirubin-UDP-glucuronyltransferase (bilirubin-UGT) adds 2 additional glucuronic acid molecules to bilirubin to produce the more water-soluble version of the molecule known as bilirubin diglucuronide. The bilirubin diglucuronide is transferred rapidly across the canalicular membrane into the bile canaliculi where it is then excreted as bile into the large intestine. The bilirubin is further degraded (reduced) by microbes present in the large intestine to form a colourless product known as urobilinogen. Urobilinogen that remains in the colon can either be reduced to stercobilinogen and finally oxidized to stercobilin, or it can be directly reduced to stercobilin. Some of the urobilinogen produced by the gut bacteria is reabsorbed and re-enters the enterohepatic circulation. This reabsorbed urobilinogen is oxidized and converted to urobilin. The urobilin is processed through the kidneys and then excreted in the urine, which causes the yellowish colour in urine. Urobilinogen is an uribiniloid, the product of bilirubin reduction in multiple sequential reactions. Urobilinogens are colorless chromogens that may in turn be oxidized to respective yellow oxidation products, urobilins. Under normal conditions only small amounts of bilirubin can be found in stools of adults while urobilinoids are predominant bile pigments (50-250 mg/day). Only negligible amounts of fecal urobilinoids are present in the intestinal lumen of infants during the first months of their life, due to undeveloped intestinal microflora capable of reducing bilirubin. This presumably contributes importantly to the pathogenesis of neonatal jaundice. In adults, the urobilinoid production is highly efficient. At times, it is re-excreted in the urine, where it may be later oxidized to urobilin. (PMID: 16504607) [HMDB]
Hexylamine
Hexylamine is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]") Acquisition and generation of the data is financially supported in part by CREST/JST. It is used as a food additive .
L-Gulonolactone
L-Gulonolactone (also known as reduced ascorbic acid, RAA) is the substrate of the enzyme L-gulono-1,4-lactone oxidoreductase (EC 1.1.3.8), which catalyzes the last step of the biosynthesis of L-ascorbic acid (vitamin C) in plants and animals. The enzyme L-Gulono-1,4-lactone oxidase is missing in scurvy-prone, vitamin C-deficient animals, such as humans. L-Gulonolactone is present in human blood and has been used as one of the markers to compare changes in exercise-induced oxidative stress. (PMID: 16956367, 16494601) [HMDB] L-Gulonolactone (also known as reduced ascorbic acid, RAA) is the substrate of the enzyme L-gulono-1,4-lactone oxidoreductase (EC 1.1.3.8), which catalyzes the last step of the biosynthesis of L-ascorbic acid (vitamin C) in plants and animals. The enzyme L-Gulono-1,4-lactone oxidase is missing in scurvy-prone, vitamin C-deficient animals, such as humans. L-Gulonolactone is present in human blood and has been used as one of the markers to compare changes in exercise-induced oxidative stress. (PMID:16956367, 16494601). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Gulono-1,4-lactone is a substrate of L-gulono-1,4-lactone oxidoreductase, which catalyzes the last step of the biosynthesis of L-ascorbic (Vatamin) C. In other words, L-Gulono-1,4-lactone is a direct precursor of vitamin C in animals, in plants and in some protists.
Acteoside
The main hydroxycinnamic deriv. in olives. Acteoside is found in many foods, some of which are olive, lemon verbena, bitter gourd, and common verbena. Acteoside is found in bitter gourd. It is the main hydroxycinnamic derivative in olives Verbascoside is isolated from Acanthus mollis, acts as an ATP-competitive inhibitor of PKC, with an IC50 of 25 μM, and has antitumor, anti-inflammatory and antineuropathic pain activity. Verbascoside is isolated from Acanthus mollis, acts as an ATP-competitive inhibitor of PKC, with an IC50 of 25 μM, and has antitumor, anti-inflammatory and antineuropathic pain activity.
alpha-Tocopherol acetate
D020011 - Protective Agents > D000975 - Antioxidants > D024505 - Tocopherols Vitamin E supplement and antioxidant for foodstuffs Vitamin E supplement and antioxidant for foodstuff D018977 - Micronutrients > D014815 - Vitamins Same as: D01735 D-α-Tocopherol acetate (D-Vitamin E acetate) can be hydrolyzed to d-alpha-tocopherol (VE) and absorbed in the small intestine[1]. D-α-Tocopherol acetate (D-Vitamin E acetate) can be hydrolyzed to d-alpha-tocopherol (VE) and absorbed in the small intestine[1].
Cellobionic acid
A disaccharide consisting beta-D-glucosyl and D-gluconic acid residues joined by a (1->4)-linkage.
1-Methylguanidine
Methylguanidine (MG) is a guanidine in which one of the amino hydrogens of guanidine itself is substituted by a methyl group. Methylguanidine is a guanidine compound deriving from protein catabolism. It is also a product of putrefaction. Methylguanidine has a role as a metabolite, an EC 1.14.13.39 (nitric oxide synthase) inhibitor and as a uremic toxin. It has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821). It accumulates in renal failure, however it also exhibits anti-inflammatory effects. Methylguanidine is synthesized from creatinine concomitant with the synthesis of hydrogen peroxide from endogenous substrates in peroxisomes. Recent evidence suggests that methylguanidine significantly inhibits iNOS activity and TNF- release. This means that methylguandine can attenuate the degree of inflammation and tissue damage associated with endotoxic shock. Methylguanidine (MG) is a guanidine compound deriving from protein catabolism. It is also a product of putrefaction. Methylguanidine is a suspected uraemic toxin that accumulates in renal failure, however it also exhibits anti-inflammatory effects. Methylguanidine is synthesized from creatinine concomitant with the synthesis of hydrogen peroxide from endogenous substrates in peroxisomes. Recent evidence suggests that methylguanidine significantly inhibits iNOS activity and TNF- release. This means that methylguandine can attenuate the degree of inflammation and tissue damage associated with endotoxic shock. Methylguanidine is found in loquat and apple. Methylguanidine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=471-29-4 (retrieved 2024-07-16) (CAS RN: 471-29-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Enniatin B
An enniatin obtained from formal cyclocondensation of three N-[(2R)-2-hydroxy-3-methylbutanoyl]-N-methyl-L-valine units. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents CONFIDENCE Reference Standard (Level 1)
Bufogein
Bufogenin is a steroid lactone of Chan su (toad venom), a Chinese medicine obtained from the skin venom gland of toads. A specific Na/K-ATPase protein inhibitor, it is used as a cardiotonic and central nervous system (CNS) respiratory agent, an analgesic and anesthetic, and as a remedy for ulcers. It has a role as an EC 3.6.3.9 (Na(+)/K(+)-transporting ATPase) inhibitor. It is a steroid lactone and an epoxy steroid. It is functionally related to a bufanolide. Resibufogenin is a natural product found in Sclerophrys mauritanica, Bufo gargarizans, and other organisms with data available. Bufogenin is a bufadienolide toxin originally isolated from the venom of the Chinese toad Bufo gargarizans; it is also one of the glycosides in the traditional Chinese medicine ChanSu, with potential cardiotonic activity. Although the mechanism of action of bufogenin is still under investigation, this agent is a specific Na+/K+-ATPase inhibitor and has been shown to reduce blood pressure in a rat model of preeclampsia. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides D002317 - Cardiovascular Agents C471 - Enzyme Inhibitor Resibufogenin is a component of cinobufogenin and has the function of inhibiting oxidative stress and tumor regeneration. Resibufogenin is a component of cinobufogenin and has the function of inhibiting oxidative stress and tumor regeneration.
2,6-Di-tert-butyl-4-methylphenol
2,6-Di-tert-butyl-4-methylphenol, also known as butylated hydroxytoluene or BHT, belongs to the class of organic compounds known as phenylpropanes. These are organic compounds containing a phenylpropane moiety. BHT is a mild, camphor, and musty tasting compound. It has been detected, but not quantified, in soft-necked garlic. This could make BHT a potential biomarker for the consumption of this food. BHT is a synthetic phenolic antioxidant (SPA). SPAs are a family of chemicals used widely in foods, polymers, and cosmetics as radical trapping agents to slow down degradation due to oxidation. Given their widespread use, human exposure is unavoidable and there is public concern regarding environmental contamination by these chemicals. BHT was detected in human urine (PMID:31265952). Antioxidant, used in cosmetics, foods and pharmaceuticals D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant Same as: D02413 Butylated hydroxytoluene is an antioxidant widely used in foods and in food-related products[1]. Butylated hydroxytoluene is a Ferroptosis inhibitor[2].
Allysine
Allysine (CAS: 1962-83-0), also known as 2-amino-6-oxohexanoic acid or 6-oxonorleucine, belongs to the class of organic compounds known as alpha-amino acids. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Outside of the human body, allysine has been detected, but not quantified in, several different foods, such as winged beans, wasabi, common verbena, arrowhead, and oats. This could make allysine a potential biomarker for the consumption of these foods. Allysine is a derivative of lysine used in the production of elastin and collagen. It is produced by the actions of the enzyme lysyl oxidase in the extracellular matrix and is essential in the crosslink formation that stabilizes collagen and elastin.
Corynebactin
A crown compound that is enterobactin in which the pro-R hydrogens at positions 2, 6 and 10 of the trilactone backbone are replaced by methyl groups, and in which a glycine spacer separates the trilactone backbone from each of the catecholamide arms. It is the endogenous siderophore of Bacillus subtilis, used for the acquisition of iron.
Proanthocyanidin A2
Isolated from cassia bark (Cinnamomum aromaticum). Proanthocyanidin A2 is found in many foods, some of which are herbs and spices, cinnamon, avocado, and lingonberry. Proanthocyanidin A2 is found in apple. Proanthocyanidin A2 is isolated from cassia bark (Cinnamomum aromaticum). Procyanidin A1 (Proanthocyanidin A1) is a procyanidin dimer, which inhibits degranulation downstream of protein kinase C activation or Ca2+ influx from an internal store in RBL-213 cells. Procyanidin A1 has antiallergic effects[1]. Procyanidin A1 (Proanthocyanidin A1) is a procyanidin dimer, which inhibits degranulation downstream of protein kinase C activation or Ca2+ influx from an internal store in RBL-213 cells. Procyanidin A1 has antiallergic effects[1]. Procyanidin A2 is a flavonoid found in grapes, with anti-cancer, antioxidant, antimicrobial and anti-inflammation activity[1][2]. Procyanidin A2 is a flavonoid found in grapes, with anti-cancer, antioxidant, antimicrobial and anti-inflammation activity[1][2].
Vibriobactin
D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents
Cytidine 5'-monophosphate-N-acetylneuraminic acid
Cytidine 5-monophosphate-N-acetylneuraminic acid (CMP-Neu5Ac), also known as CMP-N-acetyl-β-neuraminic acid, belongs to the class of organic compounds known as pyrimidine nucleotide sugars. These are pyrimidine nucleotides bound to a saccharide derivative through the terminal phosphate group. CMP-Neu5Ac is an extremely weak basic (essentially neutral) compound (based on its pKa). CMP-Neu5Ac donates N-acetylneuraminic acid to the terminal sugar of a ganglioside or glycoprotein. A nucleoside monophosphate sugar which donates N-acetylneuraminic acid to the terminal sugar of a ganglioside or glycoprotein. [HMDB] COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Glyceric acid 1,3-biphosphate
Glyceric acid 1,3-biphosphate (CAS: 1981-49-3), also known as 1,3-bisphosphoglycerate (1,3BPG) or PGAP, is a 3-carbon organic molecule present in most, if not all living creatures. It primarily exists as a metabolic intermediate in glycolysis during respiration. 1,3BPG has been recognized as regulatory signal implicated in the control of metabolism, oxygen affinity of red cells, and other cellular functions. 1,3BPG concentration in erythrocytes changes in a number of pathological conditions, such as inherited phosphoglycerate kinase deficiency in erythrocytes (involved in the synthesis and breakdown of 1,3BPG) (PMID: 3555887). Glyceric acid 1,3-biphosphate is phosphorylated at the number 1 and 3 carbons. The result of this phosphorylation gives 1,3BPG important biological properties such as the ability to phosphorylate ADP to form the energy storage molecule ATP (Wikipedia). 3-phospho-d-glyceroyl phosphate, also known as 1,3-bisphospho-D-glycerate or D-glycerate 1,3-diphosphate, is a member of the class of compounds known as acyl monophosphates. Acyl monophosphates are organic compounds containing a monophosphate linked to an acyl group. They have the general structure R-CO-P(O)(O)OH, R=H or organyl. 3-phospho-d-glyceroyl phosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). 3-phospho-d-glyceroyl phosphate can be found in a number of food items such as tamarind, narrowleaf cattail, mustard spinach, and cereals and cereal products, which makes 3-phospho-d-glyceroyl phosphate a potential biomarker for the consumption of these food products. 3-phospho-d-glyceroyl phosphate exists in E.coli (prokaryote) and yeast (eukaryote).
Formiminoglutamic acid
Measurement of this acid in the urine after oral administration of histidine provides the basis for the diagnostic test of folic acid deficiency and of megaloblastic anemia of pregnancy. [HMDB] Measurement of this acid in the urine after oral administration of histidine provides the basis for the diagnostic test of folic acid deficiency and of megaloblastic anemia of pregnancy.
myo-Inositol 1,3,4,5,6-pentakisphosphate
myo-Inositol 1,3,4,5,6-pentakisphosphate, also known as Ins(1,3,4,5,6)P5 or inositol pentaphosphate, is an inositol polyphosphate of emerging significance in cellular signalling. Both Ins(1,3,4,5,6)P5 and its C-2 epimer scyllo-inositol pentakisphosphate (scyllo-InsP(5)) were synthesized from the same myo-inositol-based precursor (PMID: 16755629). InsP6, Ins(1,3,4,5,6)P5, and their close metabolic relatives are amongst the more abundant intracellular inositol polyphosphates. They are involved in chromatin organization, DNA maintenance, gene transcription, nuclear mRNA transport, membrane trafficking, and control of cell proliferation (PMID: 14992690). myo-Inositol 1,3,4,5,6-pentakisphosphate (Ins(1,3,4,5,6)P(5)), an inositol polyphosphate of emerging significance in cellular signalling, and its C-2 epimer scyllo-inositol pentakisphosphate (scyllo-InsP(5)) were synthesised from the same myo-inositol-based precursor. (PMID: 16755629)
Carbamic acid
Carbamic acid is occasionally found as carbamate in workers exposed to pesticides. Carbamates, particularly carbofuran, seem to be more associated with exuberant and diversified symptomatology of pesticide exposure than organophosphates. Neurological symptoms occur among farmers occupationally exposed to acetylcholinesterase-inhibiting insecticides such as carbamates. Carbamic acid products of several amines, such as beta-N-methylamino-L-alanine (BMAA), ethylenediamine, and L-cysteine have been implicated in toxicity. Studies suggested that a significant portion of amino-compounds in biological samples (that naturally contain CO2/bicarbonate) can be present as a carbamic acid. The formation of carbamate glucuronide metabolites has been described for numerous pharmaceuticals and they have been identified in all of the species commonly used in drug metabolism studies (rat, dog, mouse, rabbit, guinea pig, and human). There has been no obvious species specificity for their formation and no preference for 1 or 2 degree amines. Many biological reactions have also been described in the literature that involve the reaction of CO2 with amino groups of biomolecules. For example, CO2 generated from cellular respiration is expired in part through the reversible formation of a carbamate between CO2 and the -amino groups of the alpha and beta-chains of hemoglobin. Glucuronidation is an important mechanism used by mammalian systems to clear and eliminate both endogenous and foreign chemicals. Many functional groups are susceptible to conjugation with glucuronic acid, including hydroxyls, phenols, carboxyls, activated carbons, thiols, amines, and selenium. Primary and secondary amines can also react with carbon dioxide (CO2) via a reversible reaction to form a carbamic acid. The carbamic acid is also a substrate for glucuronidation and results in a stable carbamate glucuronide metabolite. The detection and characterization of these products has been facilitated greatly by the advent of soft ionization mass spectrometry techniques and high field NMR instrumentation. (PMID: 16268118, 17168688, 12929145).
N,N'-diacetylchitobiose
N,N-diacetylchitobiose, also known as (GlcNAc)2, is classified as a member of the Acylaminosugars. Acylaminosugars are organic compounds containing a sugar linked to a chain through N-acyl group. N,N-diacetylchitobiose is considered to be soluble (in water) and acidic. N,N-diacetylchitobiose may be a unique E.coli metabolite N,N'-Diacetylchitobiose is a dimer of β(1,4) linked N-acetyl-D glucosamine. N,N'-Diacetylchitobiose is the hydrolysate of chitin and can be used as alternative carbon source by?E. coli[1].
Bleomycin B2
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000970 - Antineoplastic Agents
Naphthazarin
A naphthoquinone that is 1,4-naphthoquinone in which the hydrogens at positions 5 and 8 are replaced by hydroxy groups. D000970 - Antineoplastic Agents
Trypanothione disulfide
This compound belongs to the family of Cyclic Peptides. These are compounds containing a cyclic moiety bearing a peptide backbone
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate
Indole-3-glycerol phosphate, also known as c1-(3-indolyl)-glycerol 3-phosphate, is a member of the class of compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. Indole-3-glycerol phosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Indole-3-glycerol phosphate can be found in a number of food items such as german camomile, lambsquarters, other soy product, and hazelnut, which makes indole-3-glycerol phosphate a potential biomarker for the consumption of these food products. Indole-3-glycerol phosphate may be a unique E.coli metabolite. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents
4-(2,6,6-Trimethyl-1-cyclohexen-1-yl)-2-butanone
4-(2,6,6-Trimethyl-1-cyclohexen-1-yl)-2-butanone is found in fruits. 4-(2,6,6-Trimethyl-1-cyclohexen-1-yl)-2-butanone is a component of peach aroma. Component of peach aroma. 4-(2,6,6-Trimethyl-1-cyclohexen-1-yl)-2-butanone is found in fruits and red raspberry.
LysoSM(d18:1)
D-erythro-sphingosylphosphorylcholine is an intermediate in Sphingolipid metabolism. D-erythro-sphingosylphosphorylcholine is the 5th to last step in the synthesis of Digalactosylceramidesulfate and is converted from Sphingosine via the enzyme sphingosine cholinephosphotransferase ( EC 2.7.8.10). It is then converted to Sphingomyelin via the enzyme sphingosine N-acyltransferase (EC 2.3.1.24). [HMDB] D-erythro-sphingosylphosphorylcholine is an intermediate in Sphingolipid metabolism. D-erythro-sphingosylphosphorylcholine is the 5th to last step in the synthesis of Digalactosylceramidesulfate and is converted from Sphingosine via the enzyme sphingosine cholinephosphotransferase ( EC 2.7.8.10). It is then converted to Sphingomyelin via the enzyme sphingosine N-acyltransferase (EC 2.3.1.24).
N-Acetyl-4-O-acetylneuraminic acid
N-Acetyl-4-O-acetylneuraminic acid is a component of glycoprotein- and glycolipid-bound sialic acids present in the human erythrocyte membrane (RBC). (PMID: 12527384) [HMDB] N-Acetyl-4-O-acetylneuraminic acid is a component of glycoprotein- and glycolipid-bound sialic acids present in the human erythrocyte membrane (RBC). (PMID: 12527384).
D-myo-Inositol 3,4,5,6-tetrakisphosphate
Inositol phosphates are a family of water-soluble intracellular signalling molecules derived from membrane inositol phospholipids. They undergo a variety of complex interconversion pathways, and their levels are dynamically regulated within the cytosol in response to a variety of agonists. D-myo-Inositol 3,4,5,6-tetrakisphosphate, also known as Ins(3,4,5,6)P4, has a direct biphasic (activation/inhibition) effect on an epithelial Ca2+-activated chloride channel. The effect of Ins(3,4,5,6)P4 is not mimicked by other inositol tetrakisphosphate isomers, is dependent on the prevailing calcium concentration, and is influenced when channels are phosphorylated by calmodulin kinase II. The predominant effect of Ins(3,4,5,6)P4 on phosphorylated channels is inhibitory at levels of intracellular calcium observed in stimulated cells. Ins(3,4,5,6)P4 activity acts to inhibit calcium-dependent chloride secretion. The secretion of fluid and electrolytes across intestinal epithelial cells in response to Ca2+-dependent secretagogues is a tightly regulated process that is subject to both positive and negative influences. Agonists of Gq protein-coupled receptor (GqPCRs) appear to have the ability to evoke antisecretory mechanisms. One is mediated by the generation of Ins(3,4,5,6)P4 and serves to chronically downregulate epithelial responsiveness to subsequent challenges with Ca2+-dependent agonists (PMID: 12388102, 11408264). Inositol phosphates are a family of water-soluble intracellular signaling molecules derived from membrane inositol phospholipids. They undergo a variety of complex interconversion pathways, and their levels are dynamically regulated within the cytosol in response to a variety of agonists. D-Myo-inositol (3,4,5,6) tetrakisphosphate (Ins(3,4,5,6)P4) has a direct biphasic (activation/inhibition) effect on an epithelial Ca2+-activated chloride channel. The effect of Ins(3,4,5,6)P4 is not mimicked by other inositol tetrakisphosphate isomers, is dependent on the prevailing calcium concentration, and is influenced when channels are phosphorylated by calmodulin kinase II. The predominant effect of Ins(3,4,5,6)P4 on phosphorylated channels is inhibitory at levels of intracellular calcium observed in stimulated cells. Ins(3,4,5,6)P4 activity acts to inhibit calcium-dependent chloride secretion. The secretion of fluid and electrolytes across intestinal epithelial cells in response to Ca2+-dependent secretagogues is a tightly regulated process that is subject to both positive and negative influences. Agonists of Gq protein-coupled receptor (GqPCRs) appear to have the ability to evoke antisecretory mechanisms. One is mediated by the generation of Ins(3,4,5,6)P4 and serves to chronically downregulate epithelial responsiveness to subsequent challenge with Ca2+-dependent agonists. (PMID: 12388102, 11408264) [HMDB]
2-Deoxy-2,3-dehydro-N-acetylneuraminic acid
D004791 - Enzyme Inhibitors
Olivoretin D
D009676 - Noxae > D011042 - Poisons > D008235 - Lyngbya Toxins D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D007509 - Irritants
2-Hydroxyestrone
2-Hydroxyestrone (2-OHE1), also known as estra-1,3,5(10)-trien-2,3-diol-17-one, is an endogenous, naturally occurring catechol estrogen and a major metabolite of estrone and estradiol. 2-Hydroxyestrone belongs to the class of organic compounds known as estrogens and derivatives. These are steroids with a structure containing a 3-hydroxylated estrane. Thus, 2-Hydroxyestrone is considered to be a steroid molecule. It is formed irreversibly from estrone in the liver and to a lesser extent in other tissues via 2-hydroxylation mediated by cytochrome P450 enzymes, mainly the CYP3A and CYP1A subfamilies. 2-OHE1 is the most abundant catechol estrogen in the body. 2-Hydroxyestrone is found in all vertebrates. Vertebrates, especially mammals, metabolizes estrogen into two major pathways and one minor. The two major pathways lead to 2-hydroxyestrone and 16a-hydroxyestrone (2-OHE1 and 16a OHE1, respectively). The minor pathway leads to 4-hydroxyestrone (4-OHE1). 2a-hydroxyestrone is considered to be the good steroid metabolite (PMID: 8943806) as 2-hydroxyestrone does not stimulate cell growth and it blocks the action of stronger estrogens that may be carcinogenic. 2-hydroxyestrone is not significantly uterotrophic, whereas other hydroxylated estrogen metabolites including 2-hydroxyestradiol, 16a-hydroxyestrone, estriol, 4-hydroxyestradiol, and 4-hydroxyestrone all are. A low urinary ratio of 2-hydroxyestrone to 16-alpha-hydroxyestrone is a strong predictor of breast cancer risk among women (PMID: 19502596). Estrone (also oestrone) is an estrogenic hormone secreted by the ovary. Its molecular formula is C18H22O2. estrone has a melting point of 254.5 degrees Celsius. estrone is one of the three estrogens, which also include estriol and estradiol. estrone is the least prevalent of the three hormones, estradiol being prevalent almost always in a female body, estriol being prevalent primarily during pregnancy. estrone sulfate is relevant to health and disease due to its conversion to estrone sulfate, a long-lived derivative of estrone. estrone sulfate acts as a pool of estrone which can be converted as needed to the more active estradiol. [HMDB] C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents
Cinnavalininate
Cinnavalininate is an intermediate in the tryptophan metabolic pathway [Kegg: C05640]. It is generated from 3-hydroxyanthranilate via the enzyme catalase (EC:1.11.1.6). [HMDB] Cinnavalininate is an intermediate in the tryptophan metabolic pathway [Kegg: C05640]. It is generated from 3-hydroxyanthranilate via the enzyme catalase (EC:1.11.1.6). Cinnabarinic acid is a specific orthosteric agonist of mGlu4 by interacting with residues of the glutamate binding pocket of mGlu4, has no activity at other mGlu receptors. Cinnabarinic acid is an endogenous metabolite of the kynurenine pathway of tryptophan. Cinnabarinic acid induces cell apoptosis[1].
Selenate
Selenate, also known as selenic acid, is a member of the class of compounds known as non-metal selanates. These are inorganic non-metallic compounds containing a selenate as its largest oxoanion. Selenate can be found in a number of foods such as chives, naranjillas, moth beans, other soy products, black crowberries, rapes, acorns, and Alaska blueberries. Selenates are analogous to sulfates and have similar chemistry (Wikipedia). They are highly soluble in aqueous solutions at ambient temperatures (Wikipedia). Selenate can be metabolized to methyl-2-acetamido-2-deoxy-1-seleno-β-D-galactopyranoside (SeSug1) and methyl-2-amino-2-deoxy-1-seleno-β-D-galactopyranoside (SeSug3) (PMID: 25270623). Selenate is metabolized only marginally and is excreted rapidly via urine generally (PMID: 25270623). Sodium selenate is effectively used for bio-fortification of crops hence fortifying food/feed to mitigate selenium deficiency in humans and livestock (Wikipedia). The decahydrate is a common ingredient in multivitamins and livestock feed as a source of selenium (Wikipedia). D020011 - Protective Agents > D000975 - Antioxidants D018977 - Micronutrients > D014131 - Trace Elements
Lacto-N-biose I
Lacto-N-biose I is a common oligosaccharide found in human milk and in numerous other tissues. Oligosaccharides are important components of glycoproteins and glycolipids and also occur as free oligosaccharides in several body fluids.(PMID: 14993226; 11925506; 11432777; 9760191; 9592127; 8608564; 7591266; 7627975; 7766648; 1490103; 3146987; 6689405) [HMDB] Lacto-N-biose I is a common oligosaccharide found in human milk and in numerous other tissues. Oligosaccharides are important components of glycoproteins and glycolipids and also occur as free oligosaccharides in several body fluids.(PMID: 14993226; 11925506; 11432777; 9760191; 9592127; 8608564; 7591266; 7627975; 7766648; 1490103; 3146987; 6689405).
Amphotericin B
Amphotericin B shows a high order of in vitro activity against many species of fungi. Histoplasma capsulatum, Coccidioides immitis, Candida species, Blastomyces dermatitidis, Rhodotorula, Cryptococcus neoformans, Sporothrix schenckii, Mucor mucedo, and Aspergillus fumigatus are all inhibited by concentrations of amphotericin B ranging from 0.03 to 1.0 mcg/mL in vitro. While Candida albicans is generally quite susceptible to amphotericin B, non-albicans species may be less susceptible. Pseudallescheria boydii and Fusarium sp. are often resistant to amphotericin B. The antibiotic is without effect on bacteria, rickettsiae, and viruses. G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AA - Antibiotics A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AA - Antibiotics J - Antiinfectives for systemic use > J02 - Antimycotics for systemic use > J02A - Antimycotics for systemic use > J02AA - Antibiotics D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent Amphotericin B is a polyene antifungal agent against a wide variety of fungal pathogens. It binds irreversibly to ergosterol, resulting in disruption of membrane integrity and ultimately cell death.
1,3-Dichloropropene
1,3-Dichloropropene, also known as Telone or simply 1,3-D, is a colorless liquid with a sweet smell. It exists as a mixture of the geometric isomers cis-1,3-dichloropropene and trans-1,3-dichloropropene. It dissolves in water and evaporates easily. It is used mainly in farming as a pesticide, specifically as a preplant fumigant and nematicide. It widely used in the US and other countries, but in the process of being phased out in the European Union. [HMDB] 1,3-Dichloropropene, also known as Telone or simply 1,3-D, is a colorless liquid with a sweet smell. It exists as a mixture of the geometric isomers cis-1,3-dichloropropene and trans-1,3-dichloropropene. It dissolves in water and evaporates easily. It is used mainly in farming as a pesticide, specifically as a preplant fumigant and nematicide. It widely used in the US and other countries, but in the process of being phased out in the European Union. D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals
Calcitonin
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D000077264 - Calcium-Regulating Hormones and Agents D050071 - Bone Density Conservation Agents
Carmustine
Carmustine is a cell-cycle phase nonspecific alkylating antineoplastic agent. It is used in the treatment of brain tumors and various other malignant neoplasms. (From Martindale, The Extra Pharmacopoeia, 30th ed, p462) This substance may reasonably be anticipated to be a carcinogen according to the Fourth Annual Report on Carcinogens (NTP 85-002, 1985). (From Merck Index, 11th ed). L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents > L01AD - Nitrosoureas C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent Isolated from the common clam Mercenaria mercenaria and from Mercenaria campechiensis D009676 - Noxae > D000477 - Alkylating Agents D000970 - Antineoplastic Agents
Cefotetan
Cefotetan is only found in individuals that have used or taken this drug. It is a semisynthetic cephamycin antibiotic that is administered intravenously or intramuscularly. The drug is highly resistant to a broad spectrum of beta-lactamases and is active against a wide range of both aerobic and anaerobic gram-positive and gram-negative microorganisms. [PubChem]The bactericidal action of cefotetan results from inhibition of cell wall synthesis by binding and inhibiting the bacterial penicillin binding proteins which help in the cell wall biosynthesis. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DC - Second-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002513 - Cephamycins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
Latamoxef
Broad- spectrum beta-lactam antibiotic similar in structure to the cephalosporins except for the substitution of an oxaazabicyclo moiety for the thiaazabicyclo moiety of certain cephalosporins. It has been proposed especially for the meningitides because it passes the blood-brain barrier and for anaerobic infections. [PubChem] J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DD - Third-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
Enflurane
Enflurane is only found in individuals that have used or taken this drug. It is an extremely stable inhalation anesthetic that allows rapid adjustments of anesthesia depth with little change in pulse or respiratory rate. [PubChem]Enflurane induces a reduction in junctional conductance by decreasing gap junction channel opening times and increasing gap junction channel closing times. Enflurane also activates calcium dependent ATPase in the sarcoplasmic reticulum by increasing the fluidity of the lipid membrane. It also appears to bind the D subunit of ATP synthase and NADH dehydogenase. Enflurane also binds to and angonizes the GABA receptor, the large conductance Ca2+ activated potassium channel, the glycine receptor, and antagonizes the glutamate receptor receptor. These yield a decreased depolarization and therefore, tissue excitability which results in anesthesia. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AB - Halogenated hydrocarbons C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
Thiotepa
N,NN-triethylenethiophosphoramide (ThioTEPA) is a cancer chemotherapeutic member of the alkylating agent group, now in use for over 50 years. It is a stable derivative of N,N,N- triethylenephosphoramide (TEPA). It is mostly used to treat breast cancer, ovarian cancer and bladder cancer. It is also used as conditioning for Bone marrow transplantation. Its main toxicity is myelosuppression. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents > L01AC - Ethylene imines C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000970 - Antineoplastic Agents > D019653 - Myeloablative Agonists D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D009676 - Noxae > D000477 - Alkylating Agents
Isosorbide Mononitrate
Isosorbide mononitrate (ISMN), sold under the names Imdur and Monoket, among others, is an organic nitrate used principally in the prophylactic treatment of angina pectoris (ischemic chest pain). ISMN is an active metabolite of isosorbide dinitrate and exerts qualitatively similar effects. Like other organic nitrates, ISMN acts as a prodrug for its active metabolite, nitric oxide, which mediates the therapeutic action of ISMN. Nitric oxide works on both arteries and veins, but predominantly veins. Nitric oxide functions by relaxing veins and reducing the central venous pressure, thereby causing venous pooling and a decrease in the venous return to the heart, thus decreasing cardiac preload (PMID: 31643263). The net effect when administering ISMN is therefore a reduced workload for the heart and an improvement in the oxygen supply/demand balance of the myocardium. ISMN is not subject to first pass metabolism in the human liver. Detectable metabolites include isosorbide, sorbitol, and 2-glucuronide of mononitrate, which are pharmacologically inactive (PMID: 1449102). Research on ISMN as a cervical ripener to reduce time at hospital to birth is supportive (PMID: 23983763). Isosorbide mononitrate is only found in individuals who have consumed or used this drug. C - Cardiovascular system > C01 - Cardiac therapy > C01D - Vasodilators used in cardiac diseases > C01DA - Organic nitrates C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D002317 - Cardiovascular Agents > D020030 - Nitric Oxide Donors D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents
Thiamylal
Thiamylal is only found in individuals that have used or taken this drug. It is a barbiturate that is administered intravenously for the production of complete anesthesia of short duration, for the induction of general anesthesia, or for inducing a hypnotic state. (From Martindale, The Extra Pharmacopoeia, 30th ed, p919)Thiamylal binds at a distinct binding site associated with a Cl- ionopore at the GABAA receptor, increasing the duration of time for which the Cl- ionopore is open. The post-synaptic inhibitory effect of GABA in the thalamus is, therefore, prolonged. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
Butenafine
Butenafine is only found in individuals that have used or taken this drug. It is a synthetic benzylamine antifungal agent.Although the mechanism of action has not been fully established, it has been suggested that butenafine, like allylamines, interferes with sterol biosynthesis (especially ergosterol) by inhibiting squalene monooxygenase, an enzyme responsible for converting squalene to 2,3-oxydo squalene. As ergosterol is an essential component of the fungal cell membrane, inhibition of its synthesis results in increased cellular permeability causing leakage of cellular contents. Blockage of squalene monooxygenase also leads to a subsequent accumulation of squalene. When a high concentration of squalene is reached, it is thought to have an effect of directly kill fungal cells. D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent
Indican
Indican is a colourless, water-soluble organic compound consisting of an indole ring conjugated to glucose. It is an indole glycoside. Its hydrolysis yields β-D-glucose and indoxyl. Indoles are compounds which consist of a pyrrole ring fused to benzene to form 2,3-benzopyrrole. The oxidation of indican by a mild oxidizing agent, e.g. atmospheric oxygen or CYP450 enzymes, yields indigo dye which is blue in colour. Indican is a substance occurring naturally in the urine of humans and mammals and also in blood plasma as a normal metabolite of tryptophan. Tryptophan is first converted to indole by gut bacteria. Following absorption from the gut, indole is converted to 3-hydroxyindole (indoxyl or indican) in the liver, where it is again then conjugated with sulfuric acid or glucoronic acid through normal xenobiotic metabolism pathways. It is then transported to the kidneys for excretion. In individuals affected by the blue diaper syndrome (a rare, autosomal recessive metabolic disorder characterized in infants by bluish urine-stained diapers), the patients exhibit a defect in tryptophan metabolism, leading to an increase in indican synthesis. Indican is then excreted into the urine and from there into the diaper where, upon exposure to air, it is converted to indigo blue dye due to oxidation by atmospheric oxygen. An increased urinary excretion of indican is seen in Hartnup disease from the bacterial degradation of unabsorbed tryptophan (PMID: 19967017). Hartnup disease is an autosomal recessive metabolic disorder affecting the absorption of nonpolar amino acids (particularly tryptophan), which leads to excessive bacterial fermentation of tryptophan (to indole) in the gut. Indican has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Its excretion is decreased by the presence of Lactobacillus bacteria in the gut (PMID: 6785555 ). Indican is an indolyl carbohydrate, a beta-D-glucoside and an exopolysaccharide. Indican is a natural product found in Indigofera suffruticosa, Isatis tinctoria, and other organisms with data available. Indican is a toxic metabolite derived from dietary proteins and tryptophan. In the intestine, proteins and tryptophan are converted to indole by tryptophanase-expressing organisms. In the liver, indole is hydroxylated to form indoxyl and indoxyl is sufated to produce indican. Overproduction of indican is associated with glomerular sclerosis, interstitial fibrosis and renal failure. Indican is a uremic toxin. Uremic toxins can be subdivided into three major groups based upon their chemical and physical characteristics: 1) small, water-soluble, non-protein-bound compounds, such as urea; 2) small, lipid-soluble and/or protein-bound compounds, such as the phenols and 3) larger so-called middle-molecules, such as beta2-microglobulin. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. It is a colourless organic compound, soluble in water, naturally occurring in Indigofera plants. It is a precursor of indigo dye. Indican interferes with many commercial procedures for measuring total bilirubin[6] which can be a problem for renal failure patients where blood indican levels are raised. It can cause gastrointestinal symptoms in patients where protein absorption is reduced - like Hartnups disease, allowing for greater bacterial decomposition of the Tryptophan to indole and its conversion to indican.
alpha-Irone
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids alpha-Irone is a flavouring ingredien Flavouring ingredient
1-Phenylethanol
1-Phenylethanol is a flavouring agent. It is found in many foods, some of which are onion-family vegetables, herbs and spices, nuts, and fruits. (±)-1-Phenylethanol is a flavouring agent
Trimetrexate
A nonclassical folic acid inhibitor through its inhibition of the enzyme dihydrofolate reductase. It is being tested for efficacy as an antineoplastic agent and as an antiparasitic agent against pneumocystis pneumonia in AIDS patients. Myelosuppression is its dose-limiting toxic effect. [PubChem] P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01A - Agents against amoebiasis and other protozoal diseases C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite C471 - Enzyme Inhibitor > C2153 - Dihydrofolate Reductase Inhibitor D004791 - Enzyme Inhibitors > D005493 - Folic Acid Antagonists D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents Same as: D06238
Thiocarbohydrazide
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents
cefsulodin
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DD - Third-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams A pyridinium-substituted semi-synthetic, broad-spectrum, cephalosporin antibiotic. C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic Same as: D07653
8-Bromoadenosine
8-Bromoadenosine is an adenosine analog. Adenosine analogs mostly act as smooth muscle vasodilators and have also been shown to inhibit cancer progression. Its popular products are adenosine phosphate, Acadesine (HY-13417), Clofarabine (HY-A0005), Fludarabine phosphate (HY-B0028) and Vidarabine (HY-B0277)[1].
Chymostatin
D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015842 - Serine Proteinase Inhibitors
C-1027
An enediyne antibiotic that has formula C43H42ClN3O13. It is a natural product found in Streptomyces globisporus and exhibits antimicrobial and antineoplastic properties. A natural product found in Streptomyces globisporus and Streptomyces globisporus. D000970 - Antineoplastic Agents
N-Methylformamide
N-Methylformamide (NMF) is one of the two major urinary biomarkers of exposure to N,N-Dimethylformamide (DMF), a compound widely used in industries because of its extensive miscibility with water and solvents. Metabolism of NMF results in the formation of N-methylcarbamoyl adducts at the N-terminal valine and lysine in blood protein globin. (PMID: 17254560, 17254560, 16289959) [HMDB] N-Methylformamide (NMF) is one of the two major urinary biomarkers of exposure to N,N-Dimethylformamide (DMF), a compound widely used in industries because of its extensive miscibility with water and solvents. Metabolism of NMF results in the formation of N-methylcarbamoyl adducts at the N-terminal valine and lysine in blood protein globin. (PMID: 17254560, 17254560, 16289959). C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer C274 - Antineoplastic Agent > C798 - Radiosensitizing Agent D011838 - Radiation-Sensitizing Agents D000970 - Antineoplastic Agents
N-Acetyl-S-(N-methylcarbamoyl)cysteine
N-acetyl-s-(n-methylcarbamoyl)cysteine belongs to the family of N-acyl-alpha Amino Acids and Derivatives. These are compounds containing an alpha amino acid which bears an acyl group at his terminal nitrogen atom.
Etorphine
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics Same as: D07937
undecylprodigiosin
A member of the class of tripyrroles that is 1H-pyrrole substituted by (4-methoxy-1H,5H-[2,2-bipyrrol]-5-ylidene)methyl and undecyl groups at positions 2 and 5, respectively. It is a pigment produced by Stveptomyces coelicolor. D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents
Rifamycin
A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AA - Antibiotics J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04A - Drugs for treatment of tuberculosis > J04AB - Antibiotics D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06A - Antibiotics for topical use A member of the class of rifamycins that exhibits antibiotic and antitubercular properties. S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AA - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D012294 - Rifamycins C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent S - Sensory organs > S02 - Otologicals > S02A - Antiinfectives > S02AA - Antiinfectives Same as: D02549
Ansamitocin P3
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents Ansamitocin P-3 (Antibiotic C 15003P3) is a microtubule inhibitor. Ansamitocin P-3 is a macrocyclic antitumor antibiotic.
2-Aminoacridone
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes
Boric acid (H3BO3)
Food contaminant deriving from paper and paperboard in contact with food. V. limited use as an antibacterial agent in caviar. Boric acid (H3BO3) is found in many foods, some of which are pomegranate, fig, french plantain, and redcurrant. Boric acid (H3BO3) is found in fig. Boric acid (H3BO3) is a food contaminant deriving from paper and paperboard in contact with food. V. limited use as an antibacterial agent in cavia S - Sensory organs > S02 - Otologicals > S02A - Antiinfectives > S02AA - Antiinfectives C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Same as: D01089
Magnesium carbonate
pH-control agent; drying agent; buffer and anticaking agent Magnesium carbonate, MgCO3, is a white solid that occurs in nature as a mineral. Several hydrated and basic forms of magnesium carbonate also exist as minerals. In addition, MgCO3 has a variety of uses. A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AD - Osmotically acting laxatives A - Alimentary tract and metabolism > A02 - Drugs for acid related disorders > A02A - Antacids > A02AA - Magnesium compounds C78275 - Agent Affecting Blood or Body Fluid > C29730 - Electrolyte Replacement Agent pH-control agent; drying agent; buffer and anticaking agent D016877 - Oxidants > D057886 - Bleaching Agents D009676 - Noxae > D016877 - Oxidants D058427 - Hygroscopic Agents
Potassium sulfate (K2SO4)
Flavouring agent and enhancer Same as: D01726
IAA-94
D018501 - Antirheumatic Agents > D006074 - Gout Suppressants > D014528 - Uricosuric Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D004232 - Diuretics
Metribolone
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone
Thiourea
Thiourea is an organic compound of carbon, nitrogen, sulfur and hydrogen, with the formula CSN2H4 or (NH2)2CS. It is similar to urea, except that the oxygen atom is replaced by a sulfur atom. The properties of urea and thiourea differ significantly because of the relative electronegativities of sulfur and oxygen. Thiourea is a versatile reagent in organic synthesis. "Thioureas" refers to a broad class of compounds with the general structure (R1R2N)(R3R4N)C=S. Thioureas are related to thioamides, e.g. RC(S)NR2, where R is methyl, ethyl, etc. Thiourea is prohibited from use in food. Industrial uses of thiourea include production of flame retardant resins, and vulcanization accelerators. Thiourea is used as an auxiliary agent in diazo paper (light-sensitive photocopy paper) and almost all other types of copy paper. It is also used to tone silver-gelatin photographic prints. The liquid silver cleaning product TarnX is essentially a solution of thiourea. A leaching agent for gold leaching and silver leaching can be created by selectively oxidizing thiourea, bypassing the steps of cyanide use and smelting. Another common application for use of thiourea is a common sulfur source for making semiconductor cadmium sulfide nanoparticle. Thiourea is a planar molecule. The C=S bond distance is 1.60±0.1 for a wide range of derivatives. This narrow range indicates that the C=S bond is insensitive to the nature of the substitutent. Thus, the thioamide, which is similar to an amide group, is difficult to perturb. Thiourea reduces peroxides to the corresponding diols. The intermediate of the reaction is an unstable epidioxide which can only be identified at -100 °C. Epidioxide is similar to epoxide except with two oxygen atoms. This intermediate reduces to diol by thiourea D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents Prohibited from use in food
Benzo[e]pyrene
N,N'-Diphenyl-p-phenylenediamine
D020011 - Protective Agents > D000975 - Antioxidants
Aceteugenol
Aceteugenol, also known as eugenol acetate, belongs to the class of organic compounds known as phenol esters. These are aromatic compounds containing a benzene ring substituted by a hydroxyl group and an ester group. Aceteugenol is an extremely weak basic (essentially neutral) compound (based on its pKa). Aceteugenol is a sweet-, carnation-, and clove-tasting compound. Outside of the human body, aceteugenol is found, on average, in the highest concentration in a few different foods, such as cloves, Ceylon cinnamons, and sweet bay. Aceteugenol has also been detected, but not quantified in, several different foods, such as nutmegs, herbs and spices, cumins, star anises, and lemon balms. This could make aceteugenol a potential biomarker for the consumption of these foods. Aceteugenol is a flavouring agent found in Caraway, oil of clove (Syzygium aromaticum), cinnamon leaf (Cinnamomum verum), and other essential oils. Flavouring agent. Found in oil of clove (Syzygium aromaticum), cinnamon leaf (Cinnamomum verum) and other essential oils Eugenol acetate (Eugenyl acetate), a major phytochemical constituent of the essential oil exhibits antibacterial, antioxidant, and anti-virulence activities. Eugenol acetate (Eugenyl acetate), a phytochemical in clove essential oil, against clinical isolates of Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida glabrata. Eugenol acetate (Eugenyl acetate), a major phytochemical constituent of the essential oil exhibits antibacterial, antioxidant, and anti-virulence activities. Eugenol acetate (Eugenyl acetate), a phytochemical in clove essential oil, against clinical isolates of Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida glabrata.
Fluprednisolone
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D000893 - Anti-Inflammatory Agents Same as: D04227
CE(18:2(9Z,12Z))
Cholesteryl linoleic acid is a cholesteryl ester. A cholesteryl ester is an ester of cholesterol. Fatty acid esters of cholesterol constitute about two-thirds of the cholesterol in the plasma. Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues, and transported in the blood plasma of all animals. The accumulation of cholesterol esters in the arterial intima (the innermost layer of an artery, in direct contact with the flowing blood) is a characteristic feature of atherosclerosis. Atherosclerosis is a disease affecting arterial blood vessels. It is a chronic inflammatory response in the walls of arteries, in large part to the deposition of lipoproteins (plasma proteins that carry cholesterol and triglycerides). Cholesteryl linoleate is contained in low density lipoprotein and atherosclerotic lesions. The oxidation products of cholesteryl linoleate may cause chronic inflammatory processes. (PMID 9684755, 11950694) [HMDB] Cholesteryl linoleic acid is a cholesteryl ester. A cholesteryl ester is an ester of cholesterol. Fatty acid esters of cholesterol constitute about two-thirds of the cholesterol in the plasma. Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues, and transported in the blood plasma of all animals. The accumulation of cholesterol esters in the arterial intima (the innermost layer of an artery, in direct contact with the flowing blood) is a characteristic feature of atherosclerosis. Atherosclerosis is a disease affecting arterial blood vessels. It is a chronic inflammatory response in the walls of arteries, in large part to the deposition of lipoproteins (plasma proteins that carry cholesterol and triglycerides). Cholesteryl linoleate is contained in low density lipoprotein and atherosclerotic lesions. The oxidation products of cholesteryl linoleate may cause chronic inflammatory processes. (PMID 9684755, 11950694). Cholesteryl linoleate is shown to be the major cholesteryl ester contained in LDL and atherosclerotic lesions.
concanamycin a
A concanamycin in which the lactone ring contains 4 double bonds and is substituted by 4 methyl groups, 2 hydroxy groups, 2 methoxy groups and an ethyl group. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D004791 - Enzyme Inhibitors
5-Acetylamino-6-formylamino-3-methyluracil
5-Acetylamino-6-formylamino-3-methyluracil participates in Caffeine metabolism. 5-Acetylamino-6-formylamino-3-methyluracil is converted from paraxanthine via arylamine N-acetyltransferase [EC:2.3.1.5] [HMDB] 5-Acetylamino-6-formylamino-3-methyluracil participates in Caffeine metabolism. 5-Acetylamino-6-formylamino-3-methyluracil is converted from paraxanthine via arylamine N-acetyltransferase [EC:2.3.1.5].
Squalamine
C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor > C2143 - Endothelial Cell Inhibitor D006133 - Growth Substances > D043924 - Angiogenesis Modulating Agents D000970 - Antineoplastic Agents > D020533 - Angiogenesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D006133 - Growth Substances > D006131 - Growth Inhibitors
Yessotoxin
Yessotoxin is found in mollusks. Toxic constituent of scallops (Patinopecten yessoensis). Toxic constituent of scallops (Patinopecten yessoensis). Yessotoxin is found in mollusks. D009676 - Noxae > D011042 - Poisons > D008978 - Mollusk Venoms D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins D009676 - Noxae > D011042 - Poisons > D014688 - Venoms
Cinobufotalin
Cinobufotalin is a natural product found in Bufo and Bufo bufo with data available. Cinobufotalin is a bufadienolide isolated from toad venom and utilized in traditional Chinese medicine (TCM) for its cardiotonic, diuretic and hemostatic effects, with potential cytotoxic and antineoplastic activities. Upon administration and although the exact mechanism of action(s) (MoAs) through which this agent exerts its effects have yet to be fully discovered, cinobufotalin causes DNA fragmentation, decreases mitochondrial membrane potential (MMP), increases intracellular calcium (Ca2+) ion concentrations and reactive oxygen species (ROS) production, upregulates Fas protein and activates cytochrome C, various caspases, Bid and Bax. This causes cell cycle arrest, induces apoptosis and inhibits tumor cell growth and survival. In addition, cinobufotalin inhibits the activity of sphingosine kinase 1 (SphK1) and induces pro-apoptotic ceramide production, which further promotes tumor cell apoptosis. Cinobufotalin also induces mitochondrial protein cyclophilin D (Cyp-D)-dependent opening of the mitochondrial permeability transition pore (mPTP), which may contribute to cinobufotalin-induced non-apoptotic death of certain tumor cells. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides Cinobufotalin is a cardiotonic steroids or bufadienolides, is extracted from the skin secretions of the giant toads. Cinobufotalin has been used as a cardiotonic, diuretic and a hemostatic agent, Cinobufotalin is also a potential anti-lung cancer agent[1].
G-418
D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D005839 - Gentamicins
(±)-Tryptophan
(±)-Tryptophan is a dietary supplement, nutrient.Tryptophan is one of the 20 standard amino acids, as well as an essential amino acid in the human diet. Only the L-stereoisomer of tryptophan is used in structural or enzyme proteins, but the D-stereoisomer is occasionally found in naturally produced peptides (for example, the marine venom peptide contryphan). (Wikipedia Dietary supplement, nutrient DL-Tryptophan is an endogenous metabolite.
Methyl methacrylate
Methyl methacrylate is an enoate ester compound having methacrylic acid as the carboxylic acid component and methanol as the alcohol component. (ChEBI An enoate ester compound having methacrylic acid as the carboxylic acid component and methanol as the alcohol component. (ChEBI)
o-Toluidine
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D009676 - Noxae > D002273 - Carcinogens
2-Oxo-3-methylvalerate
CONFIDENCE standard compound; ML_ID 14 3-Methyl-2-oxovaleric acid is a neurotoxin, an acidogen, and a metabotoxin, and also an abnormal metabolite that arises from the incomplete breakdown of branched-chain amino acids.
1,5-Anhydrosorbitol
An anhydro sugar of D-glucitol. 1,5-Anhydrosorbitol is a short-term marker for glycemic control. 1,5-Anhydrosorbitol is a short-term marker for glycemic control.
Corynanthin
Methyl 17-hydroxy-20xi-yohimban-16-carboxylate is a yohimban alkaloid, a methyl ester and an organic heteropentacyclic compound. Methyl 17-hydroxy-20xi-yohimban-16-carboxylate is a natural product found in Aspidosperma oblongum, Aspidosperma ramiflorum, and other organisms with data available. D001697 - Biomedical and Dental Materials > D003764 - Dental Materials
16b-Hydroxyestrone
16b-Hydroxyestrone is an aromatized C18 steroid with a 3-hydroxyl group and a 17-ketone, a major mammalian estrogen. It is converted from androstenedione directly, or from testosterone via estradiol. In humans, it is produced primarily by the cyclic ovaries, placenta, and the adipose tissue of men and postmenopausal women. An aromatized C18 steroid with a 3-hydroxyl group and a 17-ketone, a major mammalian estrogen. It is converted from androstenedione directly, or from testosterone via estradiol. In humans, it is produced primarily by the cyclic ovaries, placenta, and the adipose tissue of men and postmenopausal women. [HMDB] C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
Hippuric acid
Hippuric acid (Gr. hippos, horse, ouron, urine) is a carboxylic acid found in the urine of horses and other herbivores. Hippuric acid crystallizes in rhombic prisms which are readily soluble in hot water, melt at 187 °C and decompose at about 240 °C. High concentrations of hippuric acid can also indicate a toluene intoxication. When many aromatic compounds such as benzoic acid and toluene are taken internally, they are converted to hippuric acid by reaction with the amino acid, glycine.; Hippuric acid is an acyl glycine formed by the conjugation of benzoic aicd with glycine. Acyl glycines are produced through the action of glycine N-acyltransferase (EC 2.3.1.13) which is an enzyme that catalyzes the chemical reaction: acyl-CoA + glycine < -- > CoA + N-acylglycine. Hippuric acid is a normal component of urine and is typically increased with increased consumption of phenolic compounds (tea, wine, fruit juices). These phenols are converted to benzoic acid which is then converted to hippuric acid and excreted in the urine. Hippuric acid is the most frequently used biomarker in the biological monitoring of occupational exposure to toluene. This product of solvent biotransformation may be also found in the urine of individuals who have not been exposed to the solvent. A smaller fraction of the absorbed toluene is oxidized to aromatic compounds including ortho-cresol, which is not found significantly in the urine of nonexposed individuals. The concentration of hippuric acid in the urine of individuals exposed to a low toluene concentration does not differ from that of individuals not exposed to the solvent. This has led to the conclusion that hippuric acid should not be utilized in the biological monitoring of occupational exposure to low levels of toluene in the air.; Protein-bound organic acids such as hippuric acid are markedly accumulated in uremic plasma and produce defective protein binding of drugs. (PMID: 9120876, 8734460). Hippuric acid is an acyl glycine formed from the conjugation of benzoic acid with glycine. Acyl glycines are produced through the action of glycine N-acyltransferase (EC 2.3.1.13) which is an enzyme that catalyzes the chemical reaction: acyl-CoA + glycine < -- > CoA + N-acylglycine. Hippuric acid is a normal component of urine and is typically increased with increased consumption of phenolic compounds (tea, wine, fruit juices). These phenols are converted into benzoic acid which is then converted into hippuric acid and excreted in the urine. Hippuric acid is the most frequently used biomarker in the biological monitoring of occupational exposure to toluene. This product of solvent biotransformation may be also found in the urine of individuals who have not been exposed to the solvent. A smaller fraction of the absorbed toluene is oxidized into aromatic compounds including ortho-cresol, which is not found in the urine of nonexposed individuals in a significant amount. The concentration of hippuric acid in the urine of individuals exposed to a low toluene concentration does not differ from that of individuals not exposed to the solvent. This has led to the conclusion that hippuric acid should not be utilized in the biological monitoring of occupational exposure to low levels of toluene in the air. Protein-bound organic acids such as hippuric acid are markedly accumulated in uremic plasma and produce defective protein binding of drugs (PMID: 9120876 , 8734460). Hippuric acid has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Hippuric acid is also found to be associated with phenylketonuria, propionic acidemia, and tyrosinemia I, which are inborn errors of metabolism. Hippuric acid is an endogenous phenolic acid metabolite detected after the consumption of whole grain. C254 - Anti-Infective Agent > C255 - Urinary Anti-Infective Agent Hippuric Acid (2-Benzamidoacetic acid), an acyl glycine produced by the conjugation of benzoic acid and glycine, is a normal component in urine as a metabolite of aromatic compounds from food. Hippuric Acid (2-Benzamidoacetic acid), an acyl glycine produced by the conjugation of benzoic acid and glycine, is a normal component in urine as a metabolite of aromatic compounds from food.
Oxybenzone
Oxybenzone is an organic compound used in sunscreens. It is a derivative of benzophenone. It forms colorless crystals that are readily soluble in most organic solvents. It is used as an ingredient in sunscreen and other cosmetics because it absorbs UV-A ultraviolet rays. D020011 - Protective Agents > D011837 - Radiation-Protective Agents > D013473 - Sunscreening Agents C1892 - Chemopreventive Agent > C851 - Sunscreen D003879 - Dermatologic Agents D003358 - Cosmetics Same as: D05309
5-Hydroxyflavone
5-Hydroxyflavone, a flavonoid ligand, shows no cytotoxic activity against MCF-7, FaDU, MDA-MB-435S, U87, RPE-1, and HEK293 cells[1]. 5-Hydroxyflavone, a flavonoid ligand, shows no cytotoxic activity against MCF-7, FaDU, MDA-MB-435S, U87, RPE-1, and HEK293 cells[1].
Neopterin
Neopterin, also known as monapterin, belongs to the class of organic compounds known as biopterins and derivatives. These are coenzymes containing a 2-amino-pteridine-4-one derivative and are mainly synthesized in several parts of the body, including the pineal gland. Neopterin is a solid that is soluble in water. Neopterin is a catabolic product of guanosine triphosphate (GTP). In humans, it is involved in pterine biosynthesis and it also serves as a precursor in the biosynthesis of biopterin, which is an essential cofactor in neurotransmitter synthesis. Neopterin has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Most uremic toxins are metabolic waste products and are normally excreted in the urine or feces. Uremic toxins can cause kidney, liver and heart damage. They can also cause changes in mental status, such as confusion, reduced awareness, agitation, psychosis, seizures, and coma. Uremic toxins such as neopterin are actively transported into the kidneys via organic ion transporters (especially OAT3). Elevated levels of neopterin result from immune system activation, including from malignant cancer, allograft rejection, viral infection, and autoimmune disorders (PMID: 19500901). Measurement of neopterin concentration allows estimation of the extent of oxidative stress elicited by the immune system. Neopterin concentrations usually correlate with the extent and activity of a given disease, and are also used to monitor the course of the disease. Elevated neopterin concentrations are among the best predictors of adverse outcome in patients with HIV infection, in cardiovascular disease, and in various types of cancer. Neopterin (D-(+)-Neopterin), a catabolic product of guanosine triphosphate (GTM), serves as a marker of cellular immune system activation.
NeuNGc
NeuNGc, also known as N-Glycolylneuraminic acid or Neu5GC, is classified as a member of the N-acylneuraminic acids. N-acylneuraminic acids are neuraminic acids carrying an N-acyl substituent. NeuNGc is considered to be soluble (in water) and acidic
Etorphine
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics
Fungizone
Ansamitocin P-3
Applaud
D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals
C-Quens
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
concanamycin a
3-[[(2S)-2,4-Dihydroxy-3,3-dimethylbutanoyl]amino]propanoic acid
Pantothenic acid is a water-soluble vitamin. For many animals, pantothenic acid is an essential nutrient. Only the dextrorotatory (D) isomer of pantothenic acid possesses biologic activity. The levorotatory (L) form may antagonize the effects of the dextrorotatory isomer. Pantothenic acid is found in many foods, some of which are cream substitute, yellow bell pepper, corn, and atlantic mackerel. D018977 - Micronutrients > D014815 - Vitamins D-Pantothenic acid (Pantothenate) is an essential trace nutrient that functions as the obligate precursor of coenzyme A (CoA). D-Pantothenic acid plays key roles in myriad biological processes, including many that regulate carbohydrate, lipid, protein, and nucleic acid metabolism[1]. D-Pantothenic acid (Pantothenate) is an essential trace nutrient that functions as the obligate precursor of coenzyme A (CoA). D-Pantothenic acid plays key roles in myriad biological processes, including many that regulate carbohydrate, lipid, protein, and nucleic acid metabolism[1].
5,8-Dihydroxy-1,4-naphthoquinone
D000970 - Antineoplastic Agents
undecylprodigiosin
Verbascoside
Pantothenic Acid
D018977 - Micronutrients > D014815 - Vitamins D-Pantothenic acid (Pantothenate) is an essential trace nutrient that functions as the obligate precursor of coenzyme A (CoA). D-Pantothenic acid plays key roles in myriad biological processes, including many that regulate carbohydrate, lipid, protein, and nucleic acid metabolism[1]. D-Pantothenic acid (Pantothenate) is an essential trace nutrient that functions as the obligate precursor of coenzyme A (CoA). D-Pantothenic acid plays key roles in myriad biological processes, including many that regulate carbohydrate, lipid, protein, and nucleic acid metabolism[1].
4-Pyridoxic acid
4-Pyridoxic acid is a catabolic product of vitamin B6 which is excreted in the urine.
Cholylglycine
D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D013501 - Surface-Active Agents > D003902 - Detergents Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1]. Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1].
1,5-Anhydroglucitol
1,5-Anhydrosorbitol is a short-term marker for glycemic control. 1,5-Anhydrosorbitol is a short-term marker for glycemic control.
Propyl gallate
Propyl gallate appears as fine white to creamy-white crystalline powder. Odorless or with a faint odor. Melting point 150 °C. Insoluble in water. Slightly bitter taste.
N-propyl gallate is a trihydroxybenzoic acid.
Propyl Gallate is under investigation in clinical trial NCT01450098 (A Study of LY2484595 in Healthy Subjects).
Propyl gallate is a natural product found in Alchornea glandulosa, Mangifera indica, and Zea mays with data available.
Propyl gallate is found in corn. Propyl gallate is an antioxidant used in foods especially animal fats and vegetable oils. Synergistic with other antioxidants such as Butylated hydroxyanisole
Proanthocyanidin A2
Proanthocyanidin A2 is a proanthocyanidin obtained by the condensation of (-)-epicatechin units. It has a role as an antioxidant, an anti-HIV agent, a metabolite and an angiogenesis modulating agent. It is a hydroxyflavan and a proanthocyanidin. It is functionally related to a (-)-epicatechin. Proanthocyanidin A2 is a natural product found in Cinnamomum iners, Cinnamomum aromaticum, and other organisms with data available. See also: Litchi fruit (part of). Isolated from cassia bark (Cinnamomum aromaticum). Proanthocyanidin A2 is found in many foods, some of which are herbs and spices, cinnamon, avocado, and lingonberry. Proanthocyanidin A2 is found in apple. Proanthocyanidin A2 is isolated from cassia bark (Cinnamomum aromaticum). Procyanidin A2 is a flavonoid found in grapes, with anti-cancer, antioxidant, antimicrobial and anti-inflammation activity[1][2]. Procyanidin A2 is a flavonoid found in grapes, with anti-cancer, antioxidant, antimicrobial and anti-inflammation activity[1][2].
Propyl gallate
Propyl gallate appears as fine white to creamy-white crystalline powder. Odorless or with a faint odor. Melting point 150 °C. Insoluble in water. Slightly bitter taste.
N-propyl gallate is a trihydroxybenzoic acid.
Propyl Gallate is under investigation in clinical trial NCT01450098 (A Study of LY2484595 in Healthy Subjects).
Propyl gallate is a natural product found in Alchornea glandulosa, Mangifera indica, and Zea mays with data available.
Propyl gallate is found in corn. Propyl gallate is an antioxidant used in foods especially animal fats and vegetable oils. Synergistic with other antioxidants such as Butylated hydroxyanisole
Proanthocyanidin A2
Proanthocyanidin A2 is a proanthocyanidin obtained by the condensation of (-)-epicatechin units. It has a role as an antioxidant, an anti-HIV agent, a metabolite and an angiogenesis modulating agent. It is a hydroxyflavan and a proanthocyanidin. It is functionally related to a (-)-epicatechin. Proanthocyanidin A2 is a natural product found in Cinnamomum iners, Cinnamomum aromaticum, and other organisms with data available. See also: Litchi fruit (part of). Isolated from cassia bark (Cinnamomum aromaticum). Proanthocyanidin A2 is found in many foods, some of which are herbs and spices, cinnamon, avocado, and lingonberry. Proanthocyanidin A2 is found in apple. Proanthocyanidin A2 is isolated from cassia bark (Cinnamomum aromaticum). A proanthocyanidin obtained by the condensation of (-)-epicatechin units. Procyanidin A2 is a flavonoid found in grapes, with anti-cancer, antioxidant, antimicrobial and anti-inflammation activity[1][2]. Procyanidin A2 is a flavonoid found in grapes, with anti-cancer, antioxidant, antimicrobial and anti-inflammation activity[1][2].
2-Hydroxybutyric acid
A hydroxybutyric acid having a single hydroxyl group located at position 2; urinary secretion of 2-hydroxybutyric acid is increased with alcohol ingestion or vigorous physical exercise and is associated with lactic acidosis and ketoacidosis in humans and diabetes in animals. (S)-2-Hydroxybutanoic acid is the S-enantiomer of?2-Hydroxybutanoic acid. 2-Hydroxybutanoic acid, a coproduct of protein metabolism, is an insulin resistance (IR) biomarker[1].
3-Methyl-2-oxovaleric acid
A 2-oxo monocarboxylic acid that is valeric acid carrying oxo- and methyl substituents at C-2 and C-3, respectively. An alpha-keto acid analogue and metabolite of isoleucine in man, animals and bacteria. Used as a clinical marker for maple syrup urine disease (MSUD). 3-Methyl-2-oxovaleric acid is a neurotoxin, an acidogen, and a metabotoxin, and also an abnormal metabolite that arises from the incomplete breakdown of branched-chain amino acids.
Limonene
A monoterpene that is cyclohex-1-ene substituted by a methyl group at position 1 and a prop-1-en-2-yl group at position 4 respectively. Found in over 300 essential oils, the ==(R)==-form is the most widespread, followed by the racemate and then the (S)-form. Extensively used in the flavour industry [DFC] (-)-Limonene ((S)-(-)-Limonene) is a monoterpene found in citrus plants like lemon, orange, and grape. (-)-Limonene can induce a mild bronchoconstrictive effect[1]. (-)-Limonene ((S)-(-)-Limonene) is a monoterpene found in citrus plants like lemon, orange, and grape. (-)-Limonene can induce a mild bronchoconstrictive effect[1]. (-)-Limonene ((S)-(-)-Limonene) is a monoterpene found in citrus plants like lemon, orange, and grape. (-)-Limonene can induce a mild bronchoconstrictive effect[1]. (-)-Limonene ((S)-(-)-Limonene) is a monoterpene found in citrus plants like lemon, orange, and grape. (-)-Limonene can induce a mild bronchoconstrictive effect[1].
Capsanthin
Capsanthin is a carotenone. It has a role as a plant metabolite. Capsanthin is a natural product found in Capsicum annuum, Lilium lancifolium, and Gallus gallus with data available. See also: Red Pepper (part of). D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
1ST40320
Retrorsine is a macrolide. Retrorsine is a natural product found in Crotalaria spartioides, Senecio malacitanus, and other organisms with data available. D000970 - Antineoplastic Agents Retrorsine is a naturally occurring toxic pyrrolizidine alkaloid. Retrorsine can bind with DNA and inhibits the proliferative capacity of hepatocytes. Retrorsine can be used for the research of hepatocellular injury[1][2]. Retrorsine is a naturally occurring toxic pyrrolizidine alkaloid. Retrorsine can bind with DNA and inhibits the proliferative capacity of hepatocytes. Retrorsine can be used for the research of hepatocellular injury[1][2].
Aceteugenol
Aceteugenol, also known as eugenol acetate, belongs to the class of organic compounds known as phenol esters. These are aromatic compounds containing a benzene ring substituted by a hydroxyl group and an ester group. Aceteugenol is an extremely weak basic (essentially neutral) compound (based on its pKa). Aceteugenol is a sweet-, carnation-, and clove-tasting compound. Outside of the human body, aceteugenol is found, on average, in the highest concentration in a few different foods, such as cloves, Ceylon cinnamons, and sweet bay. Aceteugenol has also been detected, but not quantified in, several different foods, such as nutmegs, herbs and spices, cumins, star anises, and lemon balms. This could make aceteugenol a potential biomarker for the consumption of these foods. Aceteugenol is a flavouring agent found in Caraway, oil of clove (Syzygium aromaticum), cinnamon leaf (Cinnamomum verum), and other essential oils. Acetyleugenol is a member of phenols and a benzoate ester. Acetyleugenol is a natural product found in Myrtus communis, Illicium verum, and other organisms with data available. See also: Clove Oil (part of). Flavouring agent. Found in oil of clove (Syzygium aromaticum), cinnamon leaf (Cinnamomum verum) and other essential oils Eugenol acetate (Eugenyl acetate), a major phytochemical constituent of the essential oil exhibits antibacterial, antioxidant, and anti-virulence activities. Eugenol acetate (Eugenyl acetate), a phytochemical in clove essential oil, against clinical isolates of Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida glabrata. Eugenol acetate (Eugenyl acetate), a major phytochemical constituent of the essential oil exhibits antibacterial, antioxidant, and anti-virulence activities. Eugenol acetate (Eugenyl acetate), a phytochemical in clove essential oil, against clinical isolates of Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida glabrata.
doxepin
D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AA - Non-selective monoamine reuptake inhibitors D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent > C94727 - Tricyclic Antidepressant D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists CONFIDENCE standard compound; INTERNAL_ID 1532
nitrazepam
A 1,4-benzodiazepinone that is 1,3-dihydro-2H-1,4-benzodiazepin-2-one which is substituted at positions 5 and 7 by phenyl and nitro groups, respectively. It is used as a hypnotic for the short-term management of insomnia and for the treatment of epileptic spasms in infants (Wests syndrome). D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CD - Benzodiazepine derivatives D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants CONFIDENCE standard compound; INTERNAL_ID 1535
praziquantel
P - Antiparasitic products, insecticides and repellents > P02 - Anthelmintics > P02B - Antitrematodals > P02BA - Quinoline derivatives and related substances D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent CONFIDENCE standard compound; INTERNAL_ID 164; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8927; ORIGINAL_PRECURSOR_SCAN_NO 8925 CONFIDENCE standard compound; INTERNAL_ID 164; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8934; ORIGINAL_PRECURSOR_SCAN_NO 8932 CONFIDENCE standard compound; INTERNAL_ID 164; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8954; ORIGINAL_PRECURSOR_SCAN_NO 8953 CONFIDENCE standard compound; INTERNAL_ID 164; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8977; ORIGINAL_PRECURSOR_SCAN_NO 8976 CONFIDENCE standard compound; INTERNAL_ID 164; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8993; ORIGINAL_PRECURSOR_SCAN_NO 8991 CONFIDENCE standard compound; INTERNAL_ID 2202 [Raw Data] CB144_Praziquantel_pos_50eV_CB000054.txt [Raw Data] CB144_Praziquantel_pos_40eV_CB000054.txt [Raw Data] CB144_Praziquantel_pos_30eV_CB000054.txt [Raw Data] CB144_Praziquantel_pos_20eV_CB000054.txt [Raw Data] CB144_Praziquantel_pos_10eV_CB000054.txt CONFIDENCE standard compound; EAWAG_UCHEM_ID 3272
Cilastatin
The thioether resulting from the formal oxidative coupling of the thiol group of L-cysteine with the 7-position of (2Z)-2-({[(1S)-2,2-dimethylcyclopropyl]carbonyl}amino)hept-2-enoic acid. It is an inhibitor of dehydropeptidase I (membrane dipeptidase, 3.4.13.19), an enzyme found in the brush border of renal tubes and responsible for degrading the antibiotic imipenem. Cilastatin is therefore administered (as the sodium salt) with imipenem to prolong the antibacterial effect of the latter by preventing its renal metabolism to inactive and potentially nephrotoxic products. Cilastatin also acts as a leukotriene D4 dipeptidase inhibitor, preventing the metabolism of leukotriene D4 to leukotriene E4. D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors C471 - Enzyme Inhibitor > C783 - Protease Inhibitor CONFIDENCE standard compound; INTERNAL_ID 2129 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2555 EAWAG_UCHEM_ID 2555; CONFIDENCE standard compound
Imazamox
2-(4-isopropyl-4-methyl-5-oxo-4,5-dihydro-1H-imidazol-2-yl)-5-(methoxymethyl)nicotinic acid is a pyridinemonocarboxylic acid that is nicotinic acid which is substituted substituted at position 5 by a methoxymethyl group and at position 2 by a 4,5-dihydro-1H-imidazol-2-yl group, that in turn is substituted by isopropyl, methyl, and oxo groups at positions 4, 4, and 5, respectively. It is a pyridinemonocarboxylic acid, an ether, an imidazolone and a member of imidazolines. Imazamox is a member of the imidazolinone class of herbicides. It is registered for post-emergence control of broadleaf weeds and grass in alfalfa, edible legumes and soybeans. It is a systemic herbicide that moves throughout the plant tissue and prevents plants from producing an essential enzyme, acetolactate synthase (ALS), which is not found in animals. This enzyme is key for the biosynthesis of branched chain amino acids. Susceptible plants will stop growing soon after treatment, but plant death and decomposition will occur over several weeks.
dibucaine
D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AB - Anesthetics for topical use C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AD - Local anesthetics D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics S - Sensory organs > S02 - Otologicals > S02D - Other otologicals > S02DA - Analgesics and anesthetics S - Sensory organs > S01 - Ophthalmologicals > S01H - Local anesthetics > S01HA - Local anesthetics N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local > N01BB - Amides D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent CONFIDENCE Reference Standard (Level 1); HBM4EU - science and policy for a healthy future (https://www.hbm4eu.eu); Flow Injection CONFIDENCE Reference Standard (Level 1); HBM4EU - science and policy for a healthy future (https://www.hbm4eu.eu) HBM4EU - science and policy for a healthy future (https://www.hbm4eu.eu); CONFIDENCE Reference Standard (Level 1) CONFIDENCE standard compound; EAWAG_UCHEM_ID 3294
Dicloxacillin
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CF - Beta-lactamase resistant penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic CONFIDENCE standard compound; EAWAG_UCHEM_ID 3665
pyrimethamine
P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01B - Antimalarials > P01BD - Diaminopyrimidines D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent C471 - Enzyme Inhibitor > C2153 - Dihydrofolate Reductase Inhibitor D004791 - Enzyme Inhibitors > D005493 - Folic Acid Antagonists [Raw Data] CB119_Pyrimethamine_pos_50eV_CB000043.txt [Raw Data] CB119_Pyrimethamine_pos_40eV_CB000043.txt [Raw Data] CB119_Pyrimethamine_pos_30eV_CB000043.txt [Raw Data] CB119_Pyrimethamine_pos_20eV_CB000043.txt [Raw Data] CB119_Pyrimethamine_pos_10eV_CB000043.txt
oxamniquine
P - Antiparasitic products, insecticides and repellents > P02 - Anthelmintics > P02B - Antitrematodals > P02BA - Quinoline derivatives and related substances D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent [Raw Data] CB143_Oxamniquine_pos_50eV_CB000053.txt [Raw Data] CB143_Oxamniquine_pos_40eV_CB000053.txt [Raw Data] CB143_Oxamniquine_pos_30eV_CB000053.txt [Raw Data] CB143_Oxamniquine_pos_20eV_CB000053.txt [Raw Data] CB143_Oxamniquine_pos_10eV_CB000053.txt
Valine
A branched-chain amino acid that consists of glycine in which one of the hydrogens attached to the alpha-carbon is substituted by an isopropyl group. Acquisition and generation of the data is financially supported by the Max-Planck-Society L-Valine (Valine) is a new nonlinear semiorganic material[1]. L-Valine (Valine) is a new nonlinear semiorganic material[1].
2,5-Dihydroxybenzoic acid
D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates Profile spectrum of this record is given as a JPEG file.; [Profile] MCH00007.jpg Profile spectrum of this record is given as a JPEG file.; [Profile] MCH00006.jpg Profile spectrum of this record is given as a JPEG file.; [Profile] MCH00002.jpg 2,5-Dihydroxybenzoic acid is a derivative of benzoic and a powerful inhibitor of fibroblast growth factors. 2,5-Dihydroxybenzoic acid is a derivative of benzoic and a powerful inhibitor of fibroblast growth factors.
3-HYDROXYPICOLINIC ACID
COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Profile spectrum of this record is given as a JPEG file.; [Profile] MCH00011.jpg Profile spectrum of this record is given as a JPEG file.; [Profile] MCH00010.jpg 3-Hydroxypicolinic acid is a picolinic acid derivative, and belongs to the pyridine family.
Androstenedione
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Origin: Animal; SubCategory_DNP: The sterols, Androstanes CONFIDENCE standard compound; INTERNAL_ID 8732 INTERNAL_ID 8732; CONFIDENCE standard compound Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong.
alpha-Hydroxyisobutyric acid
A 2-hydroxy monocarboxylic acid that is isobutyric acid bearing a hydroxy substituent at position 2. It is a metabolite of methyl tertiary-butyl ether. Acquisition and generation of the data is financially supported in part by CREST/JST. 2-Hydroxyisobutyric acid is an endogenous metabolite.
streptomycin
A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AA - Antibiotics A amino cyclitol glycoside that consists of streptidine having a disaccharyl moiety attached at the 4-position. The parent of the streptomycin class J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01G - Aminoglycoside antibacterials > J01GA - Streptomycins C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic
Vecuronium
D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents M - Musculo-skeletal system > M03 - Muscle relaxants > M03A - Muscle relaxants, peripherally acting agents D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists
Resibufogenin
Annotation level-1 Resibufogenin is a component of cinobufogenin and has the function of inhibiting oxidative stress and tumor regeneration. Resibufogenin is a component of cinobufogenin and has the function of inhibiting oxidative stress and tumor regeneration.
Hippuric acid
C254 - Anti-Infective Agent > C255 - Urinary Anti-Infective Agent An N-acylglycine in which the acyl group is specified as benzoyl. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; QIAFMBKCNZACKA-UHFFFAOYSA-N_STSL_0191_Hippuric acid_2000fmol_180831_S2_L02M02_62; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.317 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.318 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.315 Hippuric Acid (2-Benzamidoacetic acid), an acyl glycine produced by the conjugation of benzoic acid and glycine, is a normal component in urine as a metabolite of aromatic compounds from food. Hippuric Acid (2-Benzamidoacetic acid), an acyl glycine produced by the conjugation of benzoic acid and glycine, is a normal component in urine as a metabolite of aromatic compounds from food.
DL-Leucine
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.062 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.057 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.055
lactulose
A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AD - Osmotically acting laxatives C78276 - Agent Affecting Digestive System or Metabolism > C29697 - Laxative D005765 - Gastrointestinal Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.051
felbamate
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics Felbamate (W-554) is a potent nonsedative anticonvulsant whose clinical effect may be related to the inhibition of N-methyl-D-aspartate (NMDA).
Oxybutynin
G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BD - Drugs for urinary frequency and incontinence C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D000089162 - Genitourinary Agents > D064804 - Urological Agents CONFIDENCE standard compound; INTERNAL_ID 2516 CONFIDENCE standard compound; INTERNAL_ID 8497 Oxybutynin is an anticholinergic agent, which inhibits vascular Kv channels in a concentration-dependent manner, with an IC50 of 11.51 μM[1]. Oxybutynin is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.
phenacetin
N - Nervous system > N02 - Analgesics > N02B - Other analgesics and antipyretics > N02BE - Anilides D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics
thiamphenicol
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01B - Amphenicols > J01BA - Amphenicols D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic C784 - Protein Synthesis Inhibitor
2,2'-Dihydroxydiethylamine
A member of the class of ethanolamines that is ethanolamine having a N-hydroxyethyl substituent. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; ZBCBWPMODOFKDW-UHFFFAOYSA-N_STSL_0222_Diethanolamine_0002fmol_190114_S2_LC02MS02_004; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Diethanolamine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=111-42-2 (retrieved 2024-11-05) (CAS RN: 111-42-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
METHYLGUANIDINE
A guanidine in which one of the amino hydrogens of guanidine itself is substituted by a methyl group.
2,3-Dihydroxybenzoic acid
A dihydroxybenzoic acid that is benzoic acid substituted by hydroxy groups at positions 2 and 3. It occurs naturally in Phyllanthus acidus and in the aquatic fern Salvinia molesta. D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents Pyrocatechuic acid is a normal human benzoic acid metabolite found in plasma, and has increased levels after aspirin ingestion. Pyrocatechuic acid is a normal human benzoic acid metabolite found in plasma, and has increased levels after aspirin ingestion.
Benzamidine
D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015842 - Serine Proteinase Inhibitors CONFIDENCE standard compound; INTERNAL_ID 2169
Homogentisic acid
A dihydroxyphenylacetic acid having the two hydroxy substituents at the 2- and 5-positions. Homogentisic acid is a specific metabolite in urine and serum, which is used for diagnosis of alkaptonuria. Homogentisic acid is a specific metabolite in urine and serum, which is used for diagnosis of alkaptonuria.
2-Hydroxyphenylacetic acid
COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2-Hydroxyphenylacetic acid is a potential biomarker for the food products, and found to be associated with phenylketonuria (PKU). 2-Hydroxyphenylacetic acid is a potential biomarker for the food products, and found to be associated with phenylketonuria (PKU). D-(-)-Mandelic acid is a natural compound isolated from bitter almonds. D-(-)-Mandelic acid is a natural compound isolated from bitter almonds.
hexachlorophene
D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AE - Phenol and derivatives C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents CONFIDENCE Identification confirmed with Reference Standard (Level 1); Source 402_8423_MSMS.txt
porphobilinogen
A dicarboxylic acid that is pyrole bearing aminomethyl, carboxymethyl and 2-carboxyethyl substituents at positions 2, 3 and 4 respectively.
2-hydroxyestrone
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones A 2-hydroxy steroid that is estrone substituted by a hydroxy group at position 2. D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents
2-FUROIC ACID
A furoic acid having the carboxylic acid group located at position 2. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2]. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2]. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2].
Salicyluric acid
An N-acylglycine in which the acyl group is specified as 2-hydroxybenzoyl. Salicyluric acid is an endogenous metabolite.
Tetrahydrocortisone
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Tetrahydrocortisone is a stress-induced hormone. Tetrahydrocortisone is also a urinary metabolite of Cortisone derived from the reduction of Cortisone by 5-reductase[1].
Aminocaproic acid
B - Blood and blood forming organs > B02 - Antihemorrhagics > B02A - Antifibrinolytics > B02AA - Amino acids D006401 - Hematologic Agents > D003029 - Coagulants > D006490 - Hemostatics C78275 - Agent Affecting Blood or Body Fluid > C78311 - Hemostatic Agent D050299 - Fibrin Modulating Agents > D000933 - Antifibrinolytic Agents 6-Aminocaproic acid (EACA), a monoamino carboxylic acid, is a potent and orally active inhibitor of plasmin and plasminogen. 6-Aminocaproic acid is a potent antifibrinolytic agent. 6-Aminocaproic acid prevents clot lysis through the competitive binding of lysine residues on plasminogen, inhibiting plasmin formation and reducing fibrinolysis. 6-Aminocaproic acid can be used for the research of bleeding disorders[1][2].
BROMPHENIRAMINE
R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AB - Substituted alkylamines D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018926 - Anti-Allergic Agents
chlorpheniramine
R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AB - Substituted alkylamines D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D003879 - Dermatologic Agents > D000982 - Antipruritics D018926 - Anti-Allergic Agents
Desaminotyrosine
Desaminotyrosine is a microbially associated metabolite protecting from influenza through augmentation of type I interferon signaling. Desaminotyrosine is a microbially associated metabolite protecting from influenza through augmentation of type I interferon signaling.
4-Pyridoxic acid
A methylpyridine that is 2-methylpyridine substituted by a hydroxy group at C-3, a carboxy group at C-4, and a hydroxymethyl group at C-5. It is the catabolic product of vitamin B6 and is excreted in the urine. 4-Pyridoxic acid is a catabolic product of vitamin B6 which is excreted in the urine.
2-deoxyuridine
A pyrimidine 2-deoxyribonucleoside having uracil as the nucleobase. D009676 - Noxae > D000963 - Antimetabolites COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2'-Deoxyuridine could increase chromosome breakage and results in a decreased thymidylate synthetase activity. A known use of 2'-Deoxyuridine is as a precursor in the synthesis of Edoxudine. 2'-Deoxyuridine could increase chromosome breakage and results in a decreased thymidylate synthetase activity. A known use of 2'-Deoxyuridine is as a precursor in the synthesis of Edoxudine. 2'-Deoxyuridine could increase chromosome breakage and results in a decreased thymidylate synthetase activity. A known use of 2'-Deoxyuridine is as a precursor in the synthesis of Edoxudine.
phentermine
A - Alimentary tract and metabolism > A08 - Antiobesity preparations, excl. diet products > A08A - Antiobesity preparations, excl. diet products > A08AA - Centrally acting antiobesity products D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D019440 - Anti-Obesity Agents > D001067 - Appetite Depressants C78272 - Agent Affecting Nervous System > C29728 - Anorexiant CONFIDENCE Reference Standard (Level 1); HBM4EU - science and policy for a healthy future (https://www.hbm4eu.eu); Flow Injection CONFIDENCE Reference Standard (Level 1); HBM4EU - science and policy for a healthy future (https://www.hbm4eu.eu)
cannabinol
C308 - Immunotherapeutic Agent > C574 - Immunosuppressant
disopyramide
C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BA - Antiarrhythmics, class ia D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker
pindolol
C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AA - Beta blocking agents, non-selective C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Pindolol (LB-46) is a nonselective β-blocker with partial beta-adrenergic receptor agonist activity, also functions as a 5-HT1A receptor weak partial antagonist (Ki=33nM).
diflunisal
N - Nervous system > N02 - Analgesics > N02B - Other analgesics and antipyretics > N02BA - Salicylic acid and derivatives D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D004791 - Enzyme Inhibitors
chlorzoxazone
M - Musculo-skeletal system > M03 - Muscle relaxants > M03B - Muscle relaxants, centrally acting agents > M03BB - Oxazol, thiazine, and triazine derivatives D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant D002491 - Central Nervous System Agents COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Dibutylhydroxytoluene
D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant CONFIDENCE standard compound; INTERNAL_ID 2454 Butylated hydroxytoluene is an antioxidant widely used in foods and in food-related products[1]. Butylated hydroxytoluene is a Ferroptosis inhibitor[2].
ropinirole
D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04B - Dopaminergic agents > N04BC - Dopamine agonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent CONFIDENCE standard compound; INTERNAL_ID 2711
Alcapton
Homogentisic acid is a specific metabolite in urine and serum, which is used for diagnosis of alkaptonuria. Homogentisic acid is a specific metabolite in urine and serum, which is used for diagnosis of alkaptonuria.
Protirelin
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C76367 - Thyrotropin-Releasing Hormone Analogue V - Various > V04 - Diagnostic agents > V04C - Other diagnostic agents > V04CJ - Tests for thyreoidea function A tripeptide composed of L-pyroglutamyl, L-histidyl and L-prolinamide residues joined in sequence. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Protirelin is a highly conserved neuropeptide that exerts the hormonal control of thyroid-stimulating hormone (TSH) levels as well as neuromodulatory functions.
Propyl gallate
CONFIDENCE standard compound; INTERNAL_ID 323; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3582; ORIGINAL_PRECURSOR_SCAN_NO 3580 D020011 - Protective Agents > D000975 - Antioxidants CONFIDENCE standard compound; INTERNAL_ID 323; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3578; ORIGINAL_PRECURSOR_SCAN_NO 3575 CONFIDENCE standard compound; INTERNAL_ID 323; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3586; ORIGINAL_PRECURSOR_SCAN_NO 3583 CONFIDENCE standard compound; INTERNAL_ID 323; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3565; ORIGINAL_PRECURSOR_SCAN_NO 3561 CONFIDENCE standard compound; INTERNAL_ID 323; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3643; ORIGINAL_PRECURSOR_SCAN_NO 3639 CONFIDENCE standard compound; INTERNAL_ID 323; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3577; ORIGINAL_PRECURSOR_SCAN_NO 3574 Propyl gallate is a common food antioxidant. Propyl gallate can inhibit the production of acrolein, glyoxal and methylglyoxal[1][2]. Propyl gallate is a common food antioxidant. Propyl gallate can inhibit the production of acrolein, glyoxal and methylglyoxal[1][2].
pantothenate
CONFIDENCE standard compound; INTERNAL_ID 870; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2028; ORIGINAL_PRECURSOR_SCAN_NO 2025 D018977 - Micronutrients > D014815 - Vitamins CONFIDENCE standard compound; INTERNAL_ID 870; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2045; ORIGINAL_PRECURSOR_SCAN_NO 2043 CONFIDENCE standard compound; INTERNAL_ID 870; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2007; ORIGINAL_PRECURSOR_SCAN_NO 2005 CONFIDENCE standard compound; INTERNAL_ID 870; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2020; ORIGINAL_PRECURSOR_SCAN_NO 2018 CONFIDENCE standard compound; INTERNAL_ID 870; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2022; ORIGINAL_PRECURSOR_SCAN_NO 2020 CONFIDENCE standard compound; INTERNAL_ID 870; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2020; ORIGINAL_PRECURSOR_SCAN_NO 2018 CONFIDENCE standard compound; INTERNAL_ID 870; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4240; ORIGINAL_PRECURSOR_SCAN_NO 4238 CONFIDENCE standard compound; INTERNAL_ID 870; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4241; ORIGINAL_PRECURSOR_SCAN_NO 4239 CONFIDENCE standard compound; INTERNAL_ID 870; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4259; ORIGINAL_PRECURSOR_SCAN_NO 4257 CONFIDENCE standard compound; INTERNAL_ID 870; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4274; ORIGINAL_PRECURSOR_SCAN_NO 4273 CONFIDENCE standard compound; INTERNAL_ID 870; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4270; ORIGINAL_PRECURSOR_SCAN_NO 4268 CONFIDENCE standard compound; INTERNAL_ID 870; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4269; ORIGINAL_PRECURSOR_SCAN_NO 4266 D-Pantothenic acid (Pantothenate) is an essential trace nutrient that functions as the obligate precursor of coenzyme A (CoA). D-Pantothenic acid plays key roles in myriad biological processes, including many that regulate carbohydrate, lipid, protein, and nucleic acid metabolism[1]. D-Pantothenic acid (Pantothenate) is an essential trace nutrient that functions as the obligate precursor of coenzyme A (CoA). D-Pantothenic acid plays key roles in myriad biological processes, including many that regulate carbohydrate, lipid, protein, and nucleic acid metabolism[1].
4-CHLOROPHENOL
C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents CONFIDENCE standard compound; INTERNAL_ID 1064; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3852; ORIGINAL_PRECURSOR_SCAN_NO 3851 CONFIDENCE standard compound; INTERNAL_ID 1064; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4286; ORIGINAL_PRECURSOR_SCAN_NO 4284 CONFIDENCE standard compound; INTERNAL_ID 1064; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4317; ORIGINAL_PRECURSOR_SCAN_NO 4313 CONFIDENCE standard compound; INTERNAL_ID 1064; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4647; ORIGINAL_PRECURSOR_SCAN_NO 4645 CONFIDENCE standard compound; INTERNAL_ID 1064; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4713; ORIGINAL_PRECURSOR_SCAN_NO 4712 CONFIDENCE standard compound; INTERNAL_ID 1064; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4634; ORIGINAL_PRECURSOR_SCAN_NO 4633
L-Gulonolactone
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Gulono-1,4-lactone is a substrate of L-gulono-1,4-lactone oxidoreductase, which catalyzes the last step of the biosynthesis of L-ascorbic (Vatamin) C. In other words, L-Gulono-1,4-lactone is a direct precursor of vitamin C in animals, in plants and in some protists.
Salicylhydroxamic acid
D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Butylated hydroxytoluene
D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant Butylated hydroxytoluene is an antioxidant widely used in foods and in food-related products[1]. Butylated hydroxytoluene is a Ferroptosis inhibitor[2].
UROBILINOGEN
A member of the class of bilanes that is a colourless product formed in the intestine by the reduction of bilirubin.
CHOLESTERYL LINOLEATE
Cholesteryl linoleate is shown to be the major cholesteryl ester contained in LDL and atherosclerotic lesions.
capsiate
Capsiate, as a capsaicin analogue extracted from a non-pungent cultivar of CH-19 sweet red pepper, is an orally active agonist of TRPV1[1]. Capsiate, as a capsaicin analogue extracted from a non-pungent cultivar of CH-19 sweet red pepper, is an orally active agonist of TRPV1[1].
ST 27:4;O3
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D000728 - Androgens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid
ST 18:4;O3
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents 4-Hydroxyestrone (4-OHE1), an estrone metabolite, has strong neuroprotective effect against oxidative neurotoxicity. 4-Hydroxyestrone increases cytoplasmic translocation of p53 resulting from SIRT1-mediated deacetylation of p53. 4-Hydroxyestrone has little estrogenic activity[1].
Urocortisone
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Tetrahydrocortisone is a stress-induced hormone. Tetrahydrocortisone is also a urinary metabolite of Cortisone derived from the reduction of Cortisone by 5-reductase[1].
Urocortisol
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Tetrahydrocortisol is cortisol metabolite. The urinary Tetrahydrocortisol/Tetrahydrocortisone ratio decreases with increasing 11β-hydroxysteroid dehydrogenase (11β-HSD) activity[1][2].
ST 21:2;O2
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D011372 - Progestins 5a-Pregnane-3,20-dione is the endogenous progesterone metabolite.
Ansamitocin P-3
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents Ansamitocin P-3 (Antibiotic C 15003P3) is a microtubule inhibitor. Ansamitocin P-3 is a macrocyclic antitumor antibiotic.
N,N-Diacetylchitobiose
The N,N-diacetylated derivative of chitobiose, but with no stereodesignation for the anomeric carbon atom. N,N'-Diacetylchitobiose is a dimer of β(1,4) linked N-acetyl-D glucosamine. N,N'-Diacetylchitobiose is the hydrolysate of chitin and can be used as alternative carbon source by?E. coli[1].
Methyltrienolone
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone
BORIC ACID
S - Sensory organs > S02 - Otologicals > S02A - Antiinfectives > S02AA - Antiinfectives C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Same as: D01089
oxolinic acid
A quinolinemonocarboxylic acid having the carboxy group at position 7 as well as oxo- and ethyl groups at positions 4 and 1 respectively and a dioxolo ring fused at the 5- and 6-positions. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D004791 - Enzyme Inhibitors
trimetrexate
P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01A - Agents against amoebiasis and other protozoal diseases C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite C471 - Enzyme Inhibitor > C2153 - Dihydrofolate Reductase Inhibitor D004791 - Enzyme Inhibitors > D005493 - Folic Acid Antagonists D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents Same as: D06238
Atractylodin
Atractylodin (Atractydin) is an active component of the essential oil contained in the rhizomes of Atractylodes lancea and A. chinensis. Atractylodin is natural insecticide and is active against Tribolium castaneum[1][2]. Atractylodin is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Atractylodin (Atractydin) is an active component of the essential oil contained in the rhizomes of Atractylodes lancea and A. chinensis. Atractylodin is natural insecticide and is active against Tribolium castaneum[1][2]. Atractylodin is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.
Polygalytol
1,5-Anhydrosorbitol is a short-term marker for glycemic control. 1,5-Anhydrosorbitol is a short-term marker for glycemic control.
Kukoamine A
Kukoamine A is a natural occurring spermine derivative, acts as a potent inhibitor of trypanothione reductase (Ki, 1.8 μM), with antihypertensive activity[1]. Kukoamine A is a natural occurring spermine derivative, acts as a potent inhibitor of trypanothione reductase (Ki, 1.8 μM), with antihypertensive activity[1].
54-28-4
D020011 - Protective Agents > D000975 - Antioxidants > D024505 - Tocopherols D018977 - Micronutrients > D014815 - Vitamins γ-Tocopherol (D-γ-Tocopherol) is a potent cyclooxygenase (COX) inhibitor. γ-Tocopherol is a naturally occurring form of Vitamin E in many plant seeds, such as corn oil and soybeans. γ-Tocopherol possesses antiinflammatory properties and anti-cancer activity[1]. γ-Tocopherol (D-γ-Tocopherol) is a potent cyclooxygenase (COX) inhibitor. γ-Tocopherol is a naturally occurring form of Vitamin E in many plant seeds, such as corn oil and soybeans. γ-Tocopherol possesses antiinflammatory properties and anti-cancer activity[1].
Ionol
D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant Butylated hydroxytoluene is an antioxidant widely used in foods and in food-related products[1]. Butylated hydroxytoluene is a Ferroptosis inhibitor[2].
c0264
1,2,4-Trihydroxybenzene (Hydroxyhydroquinone), a by-product of coffee bean roasting, increases intracellular Ca2+ concentration in rat thymic lymphocytes[1]. 1,2,4-Trihydroxybenzene (Hydroxyhydroquinone), a by-product of coffee bean roasting, increases intracellular Ca2+ concentration in rat thymic lymphocytes[1].
GENOP
D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates 2,5-Dihydroxybenzoic acid is a derivative of benzoic and a powerful inhibitor of fibroblast growth factors. 2,5-Dihydroxybenzoic acid is a derivative of benzoic and a powerful inhibitor of fibroblast growth factors.
furoic acid
2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2]. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2]. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2].
614-75-5
COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2-Hydroxyphenylacetic acid is a potential biomarker for the food products, and found to be associated with phenylketonuria (PKU). 2-Hydroxyphenylacetic acid is a potential biomarker for the food products, and found to be associated with phenylketonuria (PKU).
AIDS-113822
D009676 - Noxae > D000963 - Antimetabolites COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2'-Deoxyuridine could increase chromosome breakage and results in a decreased thymidylate synthetase activity. A known use of 2'-Deoxyuridine is as a precursor in the synthesis of Edoxudine. 2'-Deoxyuridine could increase chromosome breakage and results in a decreased thymidylate synthetase activity. A known use of 2'-Deoxyuridine is as a precursor in the synthesis of Edoxudine. 2'-Deoxyuridine could increase chromosome breakage and results in a decreased thymidylate synthetase activity. A known use of 2'-Deoxyuridine is as a precursor in the synthesis of Edoxudine.
Ethanamine
Aceteugenol
Eugenol acetate (Eugenyl acetate), a major phytochemical constituent of the essential oil exhibits antibacterial, antioxidant, and anti-virulence activities. Eugenol acetate (Eugenyl acetate), a phytochemical in clove essential oil, against clinical isolates of Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida glabrata. Eugenol acetate (Eugenyl acetate), a major phytochemical constituent of the essential oil exhibits antibacterial, antioxidant, and anti-virulence activities. Eugenol acetate (Eugenyl acetate), a phytochemical in clove essential oil, against clinical isolates of Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida glabrata.
FR-1294
D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents Pyrocatechuic acid is a normal human benzoic acid metabolite found in plasma, and has increased levels after aspirin ingestion. Pyrocatechuic acid is a normal human benzoic acid metabolite found in plasma, and has increased levels after aspirin ingestion.
Tetrahydrocortisol
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Tetrahydrocortisol is the most powerful natural angiostatic steroid. It is involved in C21-Steroid hormone metabolism pathway (KEGG). [HMDB] Tetrahydrocortisol is cortisol metabolite. The urinary Tetrahydrocortisol/Tetrahydrocortisone ratio decreases with increasing 11β-hydroxysteroid dehydrogenase (11β-HSD) activity[1][2].
L-BOAA
N(3)-oxalyl-L-2,3-diaminopropionic acid is an N(beta)-acyl-L-2,3-diaminopropionic acid in which the acyl group is oxalyl. It is functionally related to a propionic acid. It is a conjugate acid of a N(3)-(carboxylatoformyl)-L-2,3-diaminopropionate(1-). Dencichin is a natural product found in Lathyrus latifolius and Lathyrus sativus with data available. See also: Panax notoginseng root (part of). Dencichin is a non-protein amino acid originally extracted from Panax notoginseng, and can inhibit HIF-prolyl hydroxylase-2 (PHD-2) activity.
Cloxacillin
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CF - Beta-lactamase resistant penicillins A semisynthetic penicillin antibiotic carrying a 3-(2-chlorophenyl)-5-methylisoxazole-4-carboxamido group at position 6. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
SULFANILIC ACID
An aminobenzenesulfonic acid that is aniline sulfonated at the para-position.
Methylbenzylalcohol
An aromatic alcohol that is ethanol substituted by a phenyl group at position 1.
Cephapirin
A cephalosporin with acetoxymethyl and 2(pyridin-4-ylsulfanyl)acetamido substituents at positions 3 and 7, respectively, of the cephem skeleton. It is used (as its sodium salt) as an antibiotic, being effective against gram-negative and gram-positive organisms. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DB - First-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
METAXALONE
D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant D000890 - Anti-Infective Agents > D023303 - Oxazolidinones
thiotepa
L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents > L01AC - Ethylene imines C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000970 - Antineoplastic Agents > D019653 - Myeloablative Agonists D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D009676 - Noxae > D000477 - Alkylating Agents
enflurane
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AB - Halogenated hydrocarbons C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
glutethimide
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CE - Piperidinedione derivatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic
Isosorbide Mononitrate
C - Cardiovascular system > C01 - Cardiac therapy > C01D - Vasodilators used in cardiac diseases > C01DA - Organic nitrates C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D002317 - Cardiovascular Agents > D020030 - Nitric Oxide Donors D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents
Pralidoxime
V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002801 - Cholinesterase Reactivators C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist D020011 - Protective Agents > D000931 - Antidotes D004793 - Enzyme Reactivators
nilutamide
L - Antineoplastic and immunomodulating agents > L02 - Endocrine therapy > L02B - Hormone antagonists and related agents > L02BB - Anti-androgens D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D000726 - Androgen Antagonists C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C146993 - Androgen Receptor Inhibitor C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist > C242 - Anti-Androgen D000970 - Antineoplastic Agents
carmustine
L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents > L01AD - Nitrosoureas C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D009676 - Noxae > D000477 - Alkylating Agents D000970 - Antineoplastic Agents
SULFADOXINE
D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent D000890 - Anti-Infective Agents > D013424 - Sulfanilamides
DIBUTYL SUCCINATE
P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents
butenafine
D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent
Cefotetan
A semi-synthetic cephalosporin antibiotic with [(1-methyl-1H-tetrazol-5-yl)sulfanyl]methyl, methoxy and {[4-(2-amino-1-carboxy-2-oxoethylidene)-1,3-dithietan-2-yl]carbonyl}amino groups at the 3, 7alpha, and 7beta positions, respectively, of the cephem skeleton. It is resistant to a wide range of beta-lactamases and is active against a broad spectrum of aerobic and anaerobic Gram-positive and Gram-negative microorganisms. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DC - Second-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002513 - Cephamycins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
1,2,4-BENZENETRIOL
A benzenetriol carrying hydroxy groups at positions 1, 2 and 4. 1,2,4-Trihydroxybenzene (Hydroxyhydroquinone), a by-product of coffee bean roasting, increases intracellular Ca2+ concentration in rat thymic lymphocytes[1]. 1,2,4-Trihydroxybenzene (Hydroxyhydroquinone), a by-product of coffee bean roasting, increases intracellular Ca2+ concentration in rat thymic lymphocytes[1].
Latamoxef
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DD - Third-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
thiamylal
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
Vecuronium
A 5alpha-androstane compound having 3alpha-acetoxy-, 17beta-acetoxy-, 2beta-piperidino- and 16beta-N-methylpiperidinium substituents. D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents M - Musculo-skeletal system > M03 - Muscle relaxants > M03A - Muscle relaxants, peripherally acting agents D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists
SELENIC ACID
D020011 - Protective Agents > D000975 - Antioxidants D018977 - Micronutrients > D014131 - Trace Elements
16α-Hydroxyestrone
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones The 16alpha-hydroxy derivative of estrone; a minor estrogen metabolite.
(20R)-20-hydroxypregn-4-en-3-one
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D011372 - Progestins
Glycylglycine
A dipeptide formed from glycine residues. Glycylglycine is the simplest of all peptides and could function as a gamma-glutamyl acceptor. Glycylglycine is the simplest of all peptides and could function as a gamma-glutamyl acceptor.
Proguanil
P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01B - Antimalarials > P01BB - Biguanides D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent C471 - Enzyme Inhibitor > C2153 - Dihydrofolate Reductase Inhibitor D007004 - Hypoglycemic Agents > D001645 - Biguanides D009676 - Noxae > D000963 - Antimetabolites
ribostamycin
An amino cyclitol glycoside that is 4,6-diaminocyclohexane-1,2,3-triol having a 2,6-diamino-2,6-dideoxy-alpha-D-glucosyl residue attached at position 1 and a beta-D-ribosyl residue attached at position 2. It is an antibiotic produced by Streptomyces ribosidificus (formerly S. thermoflavus). J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01G - Aminoglycoside antibacterials C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic
ipratropium
D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents
CARBAMIC ACID
A one-carbon compound that is ammonia in which one of the hydrogens is replaced by a carboxy group. Although carbamic acid derivatives are common, carbamic acid itself has never been synthesised.
L-Homophenylalanine
A non-proteinogenic L-alpha-amino acid that is an analogue of L-phenylalanine having a 2-phenylethyl rather than a benzyl side-chain.
Cinnabarinic acid
Cinnabarinic acid is a specific orthosteric agonist of mGlu4 by interacting with residues of the glutamate binding pocket of mGlu4, has no activity at other mGlu receptors. Cinnabarinic acid is an endogenous metabolite of the kynurenine pathway of tryptophan. Cinnabarinic acid induces cell apoptosis[1].
L-Azetidine-2-carboxylic acid
The (S)-enantiomer of azetidine-2-carboxylic acid. L-Azetidine-2-carboxylic acid is an endogenous metabolite. L-Azetidine-2-carboxylic acid is an endogenous metabolite.
Formiminoglutamic acid
The N-formimidoyl derivative of L-glutamic acid
e-64
D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015853 - Cysteine Proteinase Inhibitors D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents
Cytidine monophosphate N-acetylneuraminic acid
COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
1D-myo-Inositol 3,4,5,6-tetrakisphosphate
A myo-inositol tetrakisphosphate having the four phosphate groups placed at the 3-, 4-, 5- and 6-positions.
2,3-Bisphospho-D-glycerate
The D-enantiomer of 2,3-bisphosphoglyceric acid.
3-phospho-D-glyceroyl dihydrogen phosphate
The (R)-enantiomer of 3-phosphoglyceroyl dihydrogen phosphate.
5-Methyl-2-deoxycytidine
5-Methyl-2'-deoxycytidine in single-stranded DNA can act in cis to signal de novo DNA methylation[1][2]. 5-Methyl-2'-deoxycytidine in single-stranded DNA can act in cis to signal de novo DNA methylation[1][2].
N-acetyl-2,3-didehydro-2-deoxyneuraminic acid
D004791 - Enzyme Inhibitors
Teleocidin B-1
D009676 - Noxae > D011042 - Poisons > D008235 - Lyngbya Toxins D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D007509 - Irritants
Galbeta1,3GlcNAc
An amino disaccharide consisting of beta-D-galactose linked via a (1->3)-glycosidic bond to N-acetyl-D-glucosamine.
methapyrilene
R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AC - Substituted ethylene diamines D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018926 - Anti-Allergic Agents
Magnesite
A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AD - Osmotically acting laxatives A - Alimentary tract and metabolism > A02 - Drugs for acid related disorders > A02A - Antacids > A02AA - Magnesium compounds C78275 - Agent Affecting Blood or Body Fluid > C29730 - Electrolyte Replacement Agent D016877 - Oxidants > D057886 - Bleaching Agents D009676 - Noxae > D016877 - Oxidants D058427 - Hygroscopic Agents
Butylhydroxytoluene
D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant Same as: D02413 Butylated hydroxytoluene is an antioxidant widely used in foods and in food-related products[1]. Butylated hydroxytoluene is a Ferroptosis inhibitor[2].
Sulfosalicylic Acid
D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic
DL-Penicillamine
D064449 - Sequestering Agents > D002614 - Chelating Agents D020011 - Protective Agents > D000931 - Antidotes D018501 - Antirheumatic Agents
N-METHYLFORMAMIDE
C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer C274 - Antineoplastic Agent > C798 - Radiosensitizing Agent D011838 - Radiation-Sensitizing Agents D000970 - Antineoplastic Agents
1,4-Dianilinobenzene
D020011 - Protective Agents > D000975 - Antioxidants
Tocopheryl acetate
D020011 - Protective Agents > D000975 - Antioxidants > D024505 - Tocopherols D018977 - Micronutrients > D014815 - Vitamins
{34-hydroxy-40-[(3E)-2-hydroxy-5-methylideneocta-3,7-dien-2-yl]-13,25,27,30,35-pentamethyl-39-methylidene-13-[2-(sulfooxy)ethyl]-4,8,12,17,21,26,32,36,41,45,49-undecaoxaundecacyclo[25.22.0.0^{3,25}.0^{5,22}.0^{7,20}.0^{9,18}.0^{11,16}.0^{31,48}.0^{33,46}.0^{35,44}.0^{37,42}]nonatetracontan-14-yl}oxidanesulfonic acid
D009676 - Noxae > D011042 - Poisons > D008978 - Mollusk Venoms D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins D009676 - Noxae > D011042 - Poisons > D014688 - Venoms
2-aminoacridone
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes
N-carbamoylglutamic acid
A glutamic acid derivative that is glutamic acid substituted by a carbamoyl group at the nitrogen atom.
N-[(2S,3R,4R,5S,6R)-2,5-dihydroxy-6-(hydroxymethyl)-4-{[(2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]acetamide
Glyceric acid 1,3-biphosphate
1,3-Bisphosphoglycerate. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1981-49-3 (retrieved 2024-10-16) (CAS RN: 1981-49-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
1-C-(Indol-3-yl)glycerol 3-phosphate
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents