myo-Inositol 1,3,4,5,6-pentakisphosphate (BioDeep_00000004649)

 

Secondary id: BioDeep_00001869692

human metabolite PANOMIX_OTCML-2023 Endogenous


代谢物信息卡片


{[(1R,2S,3r,4R,5S,6r)-3-hydroxy-2,4,5,6-tetrakis(phosphonooxy)cyclohexyl]oxy}phosphonic acid

化学式: C6H17O21P5 (579.895)
中文名称:
谱图信息: 最多检出来源 Homo sapiens(plant) 3.54%

分子结构信息

SMILES: C1(C(C(C(C(C1OP(=O)(O)O)OP(=O)(O)O)OP(=O)(O)O)OP(=O)(O)O)OP(=O)(O)O)O
InChI: InChI=1S/C6H17O21P5/c7-1-2(23-28(8,9)10)4(25-30(14,15)16)6(27-32(20,21)22)5(26-31(17,18)19)3(1)24-29(11,12)13/h1-7H,(H2,8,9,10)(H2,11,12,13)(H2,14,15,16)(H2,17,18,19)(H2,20,21,22)

描述信息

myo-Inositol 1,3,4,5,6-pentakisphosphate, also known as Ins(1,3,4,5,6)P5 or inositol pentaphosphate, is an inositol polyphosphate of emerging significance in cellular signalling. Both Ins(1,3,4,5,6)P5 and its C-2 epimer scyllo-inositol pentakisphosphate (scyllo-InsP(5)) were synthesized from the same myo-inositol-based precursor (PMID: 16755629). InsP6, Ins(1,3,4,5,6)P5, and their close metabolic relatives are amongst the more abundant intracellular inositol polyphosphates. They are involved in chromatin organization, DNA maintenance, gene transcription, nuclear mRNA transport, membrane trafficking, and control of cell proliferation (PMID: 14992690).
myo-Inositol 1,3,4,5,6-pentakisphosphate (Ins(1,3,4,5,6)P(5)), an inositol polyphosphate of emerging significance in cellular signalling, and its C-2 epimer scyllo-inositol pentakisphosphate (scyllo-InsP(5)) were synthesised from the same myo-inositol-based precursor. (PMID: 16755629)

同义名列表

19 个代谢物同义名

{[(1R,2S,3r,4R,5S,6r)-3-hydroxy-2,4,5,6-tetrakis(phosphonooxy)cyclohexyl]oxy}phosphonic acid; [(1R,2S,3r,4R,5S,6r)-3-hydroxy-2,4,5,6-tetrakis(phosphonooxy)cyclohexyl]oxyphosphonic acid; 1D-myo-Inositol 1,3,4,5,6-pentakisphosphoric acid; D-myo-Inositol 1,3,4,5,6-pentakisphosphoric acid; 1D-myo-Inositol 1,3,4,5,6-pentakisphosphate; D-myo-Inositol 1,3,4,5,6-pentakisphosphate; myo-Inositol 1,3,4,5,6-pentakis(phosphate); Inositol 1,3,4,5,6-pentakisphosphoric acid; myo-Inositol 1,3,4,5,6-pentakisphosphate; D-myo-Inositol-1,3,4,5,6-pentaphosphate; myo-Inositol 1,3,4,5,6-pentaphosphate; Inositol 1,3,4,5,6-pentakisphosphate; Inositol 1,3,4,5,6-pentaphosphate; myo-Inositol pentakisphosphate; Inositol pentakisphosphate; inositol pentaphosphate; Ins(1,3,4,5,6)P5; I(1,3,4,5,6)P5; D-myo-Inositol 1,2,4,5,6-pentakisphosphate



数据库引用编号

21 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(3)

PlantCyc(1)

代谢反应

880 个相关的代谢反应过程信息。

Reactome(21)

BioCyc(25)

WikiPathways(0)

Plant Reactome(288)

INOH(1)

PlantCyc(530)

COVID-19 Disease Map(0)

PathBank(15)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 AKT1, CYTH3, GLE1, IPMK, IPPK, ITPR3, PIK3R6, PLEK, PRKX
Peripheral membrane protein 3 CYTH3, PIK3R6, VHL
Endoplasmic reticulum membrane 2 HSP90B1, ITPR3
Nucleus 8 AKT1, GLE1, HSP90B1, IPMK, IPPK, PLCZ1, PRKX, VHL
cytosol 10 AKT1, CYTH3, GLE1, HSP90B1, IPPK, PIK3R6, PLCZ1, PLEK, PPIP5K2, VHL
trans-Golgi network 1 CA4
centrosome 1 GLE1
nucleoplasm 8 AKT1, CYTH3, IPMK, IPPK, ITPR3, PLCZ1, PRKX, VHL
Cell membrane 6 AKT1, CA4, CYTH3, MINPP1, PIK3R6, VHL
lamellipodium 1 AKT1
ruffle membrane 1 PLEK
Multi-pass membrane protein 2 CACNA1I, ITPR3
cell cortex 1 AKT1
cell surface 1 CA4
glutamatergic synapse 1 AKT1
Golgi apparatus 1 CA4
Golgi membrane 2 CYTH3, INS
neuronal cell body 1 ITPR3
postsynapse 1 AKT1
smooth endoplasmic reticulum 1 HSP90B1
Cytoplasm, cytosol 1 PPIP5K2
plasma membrane 11 AKT1, CA4, CACNA1I, CYTH3, GPRIN2, ITPR3, KNG1, MINPP1, PIK3R6, PLEK, VHL
Membrane 8 AKT1, CA4, CACNA1I, GLE1, HSP90B1, ITPR3, PIK3R6, PLEK
apical plasma membrane 1 CA4
brush border 1 ITPR3
extracellular exosome 4 CA4, HSP90B1, KNG1, MINPP1
endoplasmic reticulum 3 HSP90B1, ITPR3, VHL
extracellular space 4 GLE1, INS, KNG1, MINPP1
perinuclear region of cytoplasm 3 CA4, HSP90B1, PLCZ1
Cell junction, tight junction 1 CYTH3
adherens junction 1 CYTH3
bicellular tight junction 1 CYTH3
mitochondrion 1 VHL
protein-containing complex 2 AKT1, HSP90B1
pronucleus 1 PLCZ1
Secreted 2 INS, MINPP1
extracellular region 4 HSP90B1, INS, KNG1, PLEK
nuclear membrane 1 GLE1
external side of plasma membrane 1 CA4
microtubule cytoskeleton 1 AKT1
nucleolus 4 GLE1, IPPK, ITPR3, PLCZ1
midbody 1 HSP90B1
apical part of cell 1 ITPR3
cell-cell junction 1 AKT1
vesicle 1 AKT1
Cytoplasm, perinuclear region 1 PLCZ1
focal adhesion 1 HSP90B1
spindle 1 AKT1
Cell junction, adherens junction 1 CYTH3
sarcoplasmic reticulum 1 ITPR3
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
collagen-containing extracellular matrix 2 HSP90B1, KNG1
nuclear outer membrane 1 ITPR3
ruffle 1 CYTH3
receptor complex 1 ITPR3
ciliary basal body 2 AKT1, GLE1
centriole 1 GLE1
Secreted, extracellular space 1 KNG1
brush border membrane 1 CA4
blood microparticle 1 KNG1
Lipid-anchor, GPI-anchor 1 CA4
Nucleus, nuclear pore complex 1 GLE1
nuclear envelope 1 GLE1
nuclear pore 1 GLE1
endosome lumen 1 INS
Melanosome 1 HSP90B1
side of membrane 1 CA4
sperm plasma membrane 1 HSP90B1
[Isoform 1]: Cytoplasm 2 GLE1, VHL
[Isoform 3]: Cytoplasm 1 VHL
secretory granule lumen 1 INS
secretory granule membrane 2 CA4, ITPR3
Golgi lumen 1 INS
endoplasmic reticulum lumen 4 HSP90B1, INS, KNG1, MINPP1
platelet alpha granule lumen 1 KNG1
voltage-gated calcium channel complex 1 CACNA1I
phosphatidylinositol 3-kinase complex 1 PIK3R6
phosphatidylinositol 3-kinase complex, class IA 1 PIK3R6
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
Sarcoplasmic reticulum lumen 1 HSP90B1
endoplasmic reticulum-Golgi intermediate compartment 1 CA4
platelet dense tubular network membrane 1 ITPR3
intracellular non-membrane-bounded organelle 1 VHL
Cytoplasmic vesicle, secretory vesicle membrane 1 ITPR3
Rough endoplasmic reticulum 1 CA4
endocytic vesicle lumen 1 HSP90B1
transport vesicle membrane 2 CA4, ITPR3
sperm head 1 PLCZ1
endoplasmic reticulum chaperone complex 1 HSP90B1
cytoplasmic side of endoplasmic reticulum membrane 1 ITPR3
phosphatidylinositol 3-kinase complex, class IB 1 PIK3R6
nuclear pore cytoplasmic filaments 1 GLE1


文献列表

  • Hang Lu, Imke Kühn, Mike R Bedford, Hayley Whitfield, Charles Brearley, Olayiwola Adeola, Kolapo M Ajuwon. Effect of phytase on intestinal phytate breakdown, plasma inositol concentrations, and glucose transporter type 4 abundance in muscle membranes of weanling pigs1. Journal of animal science. 2019 Sep; 97(9):3907-3919. doi: 10.1093/jas/skz234. [PMID: 31294448]
  • Karlis Briviba, Margit Schollenberger, Markus Rodehutscord, Ralf Greiner. Dephosphorylation of myo-inositol phosphates in the in vitro intestinal Caco-2 cell model. International journal of food sciences and nutrition. 2018 Feb; 69(1):46-51. doi: 10.1080/09637486.2017.1330404. [PMID: 28554270]
  • Doreen Blüher, Debabrata Laha, Sabine Thieme, Alexandre Hofer, Lennart Eschen-Lippold, Antonia Masch, Gerd Balcke, Igor Pavlovic, Oliver Nagel, Antje Schonsky, Rahel Hinkelmann, Jakob Wörner, Nargis Parvin, Ralf Greiner, Stefan Weber, Alain Tissier, Mike Schutkowski, Justin Lee, Henning Jessen, Gabriel Schaaf, Ulla Bonas. A 1-phytase type III effector interferes with plant hormone signaling. Nature communications. 2017 12; 8(1):2159. doi: 10.1038/s41467-017-02195-8. [PMID: 29255246]
  • Lisza M Bruder, Robert J Gruninger, Colyn P Cleland, Steven C Mosimann. Bacterial PhyA protein-tyrosine phosphatase-like myo-inositol phosphatases in complex with the Ins(1,3,4,5)P4 and Ins(1,4,5)P3 second messengers. The Journal of biological chemistry. 2017 10; 292(42):17302-17311. doi: 10.1074/jbc.m117.787853. [PMID: 28848052]
  • P Morales, J De J Berrios, A Varela, C Burbano, C Cuadrado, M Muzquiz, M M Pedrosa. Novel fiber-rich lentil flours as snack-type functional foods: an extrusion cooking effect on bioactive compounds. Food & function. 2015 Sep; 6(9):3135-43. doi: 10.1039/c5fo00729a. [PMID: 26221783]
  • Igor Pavlovic, Divyeshsinh T Thakor, Laurent Bigler, Miranda S C Wilson, Debabrata Laha, Gabriel Schaaf, Adolfo Saiardi, Henning J Jessen. Prometabolites of 5-Diphospho-myo-inositol Pentakisphosphate. Angewandte Chemie (International ed. in English). 2015 Aug; 54(33):9622-6. doi: 10.1002/anie.201503094. [PMID: 26014370]
  • Hui-Fen Kuo, Tzu-Yun Chang, Su-Fen Chiang, Wei-Di Wang, Yee-Yung Charng, Tzyy-Jen Chiou. Arabidopsis inositol pentakisphosphate 2-kinase, AtIPK1, is required for growth and modulates phosphate homeostasis at the transcriptional level. The Plant journal : for cell and molecular biology. 2014 Nov; 80(3):503-15. doi: 10.1111/tpj.12650. [PMID: 25155524]
  • Bernadett Kolozsvari, Federica Parisi, Adolfo Saiardi. Inositol phosphates induce DAPI fluorescence shift. The Biochemical journal. 2014 Jun; 460(3):377-85. doi: 10.1042/bj20140237. [PMID: 24670057]
  • Barbara U Metzler-Zebeli, Kathrin Deckardt, Margit Schollenberger, Markus Rodehutscord, Qendrim Zebeli. Lactic acid and thermal treatments trigger the hydrolysis of myo-inositol hexakisphosphate and modify the abundance of lower myo-inositol phosphates in barley (Hordeum vulgare L.). PloS one. 2014; 9(6):e101166. doi: 10.1371/journal.pone.0101166. [PMID: 24967651]
  • Daniel Bosch, Adolfo Saiardi. Arginine transcriptional response does not require inositol phosphate synthesis. The Journal of biological chemistry. 2012 Nov; 287(45):38347-55. doi: 10.1074/jbc.m112.384255. [PMID: 22992733]
  • Abraham J K Koo, Gregg A Howe. Catabolism and deactivation of the lipid-derived hormone jasmonoyl-isoleucine. Frontiers in plant science. 2012; 3(?):19. doi: 10.3389/fpls.2012.00019. [PMID: 22639640]
  • Laurens Pauwels, Alain Goossens. The JAZ proteins: a crucial interface in the jasmonate signaling cascade. The Plant cell. 2011 Sep; 23(9):3089-100. doi: 10.1105/tpc.111.089300. [PMID: 21963667]
  • Alina Mosblech, Corinna Thurow, Christiane Gatz, Ivo Feussner, Ingo Heilmann. Jasmonic acid perception by COI1 involves inositol polyphosphates in Arabidopsis thaliana. The Plant journal : for cell and molecular biology. 2011 Mar; 65(6):949-57. doi: 10.1111/j.1365-313x.2011.04480.x. [PMID: 21205029]
  • Sean G Jackson, Sarra Al-Saigh, Carsten Schultz, Murray S Junop. Inositol pentakisphosphate isomers bind PH domains with varying specificity and inhibit phosphoinositide interactions. BMC structural biology. 2011 Feb; 11(?):11. doi: 10.1186/1472-6807-11-11. [PMID: 21310079]
  • Laura B Sheard, Xu Tan, Haibin Mao, John Withers, Gili Ben-Nissan, Thomas R Hinds, Yuichi Kobayashi, Fong-Fu Hsu, Michal Sharon, John Browse, Sheng Yang He, Josep Rizo, Gregg A Howe, Ning Zheng. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature. 2010 Nov; 468(7322):400-5. doi: 10.1038/nature09430. [PMID: 20927106]
  • Søren K Rasmussen, Christina Rønn Ingvardsen, Anna Maria Torp. Mutations in genes controlling the biosynthesis and accumulation of inositol phosphates in seeds. Biochemical Society transactions. 2010 Apr; 38(2):689-94. doi: 10.1042/bst0380689. [PMID: 20298244]
  • Tania Maffucci, Claudio Raimondi, Shadi Abu-Hayyeh, Veronica Dominguez, Gianluca Sala, Ian Zachary, Marco Falasca. A phosphoinositide 3-kinase/phospholipase Cgamma1 pathway regulates fibroblast growth factor-induced capillary tube formation. PloS one. 2009 Dec; 4(12):e8285. doi: 10.1371/journal.pone.0008285. [PMID: 20011604]
  • Michael L Merchant, Bruce A Perkins, Grzegorz M Boratyn, Linda H Ficociello, Daniel W Wilkey, Michelle T Barati, Clinton C Bertram, Grier P Page, Brad H Rovin, James H Warram, Andrzej S Krolewski, Jon B Klein. Urinary peptidome may predict renal function decline in type 1 diabetes and microalbuminuria. Journal of the American Society of Nephrology : JASN. 2009 Sep; 20(9):2065-74. doi: 10.1681/asn.2008121233. [PMID: 19643930]
  • Andrew J Letcher, Michael J Schell, Robin F Irvine. Do mammals make all their own inositol hexakisphosphate?. The Biochemical journal. 2008 Dec; 416(2):263-70. doi: 10.1042/bj20081417. [PMID: 18684107]
  • Amanda R Stiles, Xun Qian, Stephen B Shears, Elizabeth A Grabau. Metabolic and signaling properties of an Itpk gene family in Glycine max. FEBS letters. 2008 Jun; 582(13):1853-8. doi: 10.1016/j.febslet.2008.04.054. [PMID: 18474240]
  • Samuel E K Caddick, Christopher J Harrison, Ioanna Stavridou, Jennifer L Mitchell, Andrew M Hemmings, Charles A Brearley. A Solanum tuberosum inositol phosphate kinase (StITPK1) displaying inositol phosphate-inositol phosphate and inositol phosphate-ADP phosphotransferase activities. FEBS letters. 2008 May; 582(12):1731-7. doi: 10.1016/j.febslet.2008.04.034. [PMID: 18442482]
  • Woravimol Krittaphol, Karl B Bailey, Tippawan Pongcharoen, Pattanee Winichagoon, Rosalind S Gibson. Low zinc, iron, and calcium intakes of Northeast Thai school children consuming glutinous rice-based diets are not exacerbated by high phytate. International journal of food sciences and nutrition. 2006 Nov; 57(7-8):520-8. doi: 10.1080/09637480601040989. [PMID: 17162330]
  • Tania Maffucci, Enza Piccolo, Albana Cumashi, Manuela Iezzi, Andrew M Riley, Adolfo Saiardi, H Yasmin Godage, Cosmo Rossi, Massimo Broggini, Stefano Iacobelli, Barry V L Potter, Paolo Innocenti, Marco Falasca. Inhibition of the phosphatidylinositol 3-kinase/Akt pathway by inositol pentakisphosphate results in antiangiogenic and antitumor effects. Cancer research. 2005 Sep; 65(18):8339-49. doi: 10.1158/0008-5472.can-05-0121. [PMID: 16166311]
  • Aimee L Miller, Mythili Suntharalingam, Sylvia L Johnson, Anjon Audhya, Scott D Emr, Susan R Wente. Cytoplasmic inositol hexakisphosphate production is sufficient for mediating the Gle1-mRNA export pathway. The Journal of biological chemistry. 2004 Dec; 279(49):51022-32. doi: 10.1074/jbc.m409394200. [PMID: 15459192]
  • Qingchuan Chen. Determination of phytic acid and inositol pentakisphosphates in foods by high-performance ion chromatography. Journal of agricultural and food chemistry. 2004 Jul; 52(15):4604-13. doi: 10.1021/jf035294x. [PMID: 15264889]
  • Elaine A Orchiston, Deborah Bennett, Nick R Leslie, Rosemary G Clarke, Lucinda Winward, C Peter Downes, Stephen T Safrany. PTEN M-CBR3, a versatile and selective regulator of inositol 1,3,4,5,6-pentakisphosphate (Ins(1,3,4,5,6)P5). Evidence for Ins(1,3,4,5,6)P5 as a proliferative signal. The Journal of biological chemistry. 2004 Jan; 279(2):1116-22. doi: 10.1074/jbc.m310933200. [PMID: 14561749]
  • Hui-Jun Xia, Charles Brearley, Stephan Elge, Boaz Kaplan, Hillel Fromm, Bernd Mueller-Roeber. Arabidopsis inositol polyphosphate 6-/3-kinase is a nuclear protein that complements a yeast mutant lacking a functional ArgR-Mcm1 transcription complex. The Plant cell. 2003 Feb; 15(2):449-63. doi: 10.1105/tpc.006676. [PMID: 12566584]
  • G Máñez, A Alegría, R Farré, A Frígola. Effect of traditional, microwave and industrial cooking on inositol phosphate content in beans, chickpeas and lentils. International journal of food sciences and nutrition. 2002 Nov; 53(6):503-8. doi: 10.1080/09637480220164343. [PMID: 12590745]
  • Laura Zonia, Sofia Cordeiro, Jaroslav Tupý, José A Feijó. Oscillatory chloride efflux at the pollen tube apex has a role in growth and cell volume regulation and is targeted by inositol 3,4,5,6-tetrakisphosphate. The Plant cell. 2002 Sep; 14(9):2233-49. doi: . [PMID: 12215517]
  • Y H Liang, X Z Liu, S H Liu, G Y Lu. The structure of greylag goose oxy haemoglobin: the roles of four mutations compared with bar-headed goose haemoglobin. Acta crystallographica. Section D, Biological crystallography. 2001 Dec; 57(Pt 12):1850-6. doi: 10.1107/s0907444901016493. [PMID: 11717498]
  • Y Liang, Z Hua, X Liang, Q Xu, G Lu. The crystal structure of bar-headed goose hemoglobin in deoxy form: the allosteric mechanism of a hemoglobin species with high oxygen affinity. Journal of molecular biology. 2001 Oct; 313(1):123-37. doi: 10.1006/jmbi.2001.5028. [PMID: 11601851]
  • E Brailoiu, A Margineanu, C P Toma, C M Filipeanu, V Rusu, D D Branisteanu. D-myo-inositol derivatives alter liposomal membrane fluidity. Biochemistry and molecular biology international. 1998 Jan; 44(1):195-201. doi: 10.1080/15216549800201212. [PMID: 9503163]
  • E Brailoiu, C Beschea, C Brailoiu, A Costuleanu, C M Filipeanu, M Costuleanu, B Fallgren, D D Branisteanu. TLC characterization of small unilamellar liposomes containing D-myo-inositol derivatives. Biomedical chromatography : BMC. 1996 Sep; 10(5):233-6. doi: 10.1002/(sici)1099-0801(199609)10:5<233::aid-bmc594>3.0.co;2-5. [PMID: 8879530]
  • S B Shears. Inositol pentakis- and hexakisphosphate metabolism adds versatility to the actions of inositol polyphosphates. Novel effects on ion channels and protein traffic. Sub-cellular biochemistry. 1996; 26(?):187-226. doi: 10.1007/978-1-4613-0343-5_7. [PMID: 8744266]
  • E Brailoiu, G Huhurez, S Slatineanu, C M Filipeanu, M Costuleanu, D D Branisteanu. TLC characterization of liposomes containing D-myo-inositol derivatives. Biomedical chromatography : BMC. 1995 Jul; 9(4):175-8. doi: 10.1002/bmc.1130090405. [PMID: 8520206]
  • M C Glennon, S B Shears. Turnover of inositol pentakisphosphates, inositol hexakisphosphate and diphosphoinositol polyphosphates in primary cultured hepatocytes. The Biochemical journal. 1993 Jul; 293 ( Pt 2)(?):583-90. doi: 10.1042/bj2930583. [PMID: 8343137]
  • T Estrada-Garcia, A Craxton, C J Kirk, R H Michell. A salt-activated inositol 1,3,4,5-tetrakisphosphate 3-phosphatase at the inner surface of the human erythrocyte membrane. Proceedings. Biological sciences. 1991 Apr; 244(1309):63-8. doi: 10.1098/rspb.1991.0052. [PMID: 1677198]
  • P J Hughes, S B Shears. Inositol 1,3,4,5,6-pentakisphosphate and inositol hexakisphosphate inhibit inositol-1,3,4,5-tetrakisphosphate 3-phosphatase in rat parotid glands. The Journal of biological chemistry. 1990 Jun; 265(17):9869-75. doi: . [PMID: 2161845]