1,2-CYCLOHEXANEDIONE (BioDeep_00000405639)

Main id: BioDeep_00000003068

 

PANOMIX_OTCML-2023


代谢物信息卡片


1,2-CYCLOHEXANEDIONE

化学式: C6H8O2 (112.0524)
中文名称: 1,2-环己二酮, 1,2-环己烷二酮
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C1CCC(=O)C(=O)C1
InChI: InChI=1S/C6H8O2/c7-5-3-1-2-4-6(5)8/h1-4H2

描述信息

1,2-Cyclohexanedione is an endogenous metabolite.

同义名列表

3 个代谢物同义名

1,2-CYCLOHEXANEDIONE; Cyclohexane-1,2-dione; 1,2-Cyclohexanedione



数据库引用编号

12 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(4)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 ALB, APOB, APOE, DAO, ELANE, FTH1, HPD, PMP2, TUBB4B
Peripheral membrane protein 3 DAO, HPD, LPL
Endosome membrane 2 APOB, TF
Endoplasmic reticulum membrane 3 APOB, HMGCR, HPD
Cytoplasmic vesicle, autophagosome 1 FTH1
Nucleus 5 ALB, APOE, FTH1, PMP2, TUBB4B
autophagosome 1 FTH1
cytosol 10 ALB, APOB, DAO, ELANE, FTH1, HPD, LIPE, MB, PMP2, TUBB4B
dendrite 1 APOE
phagocytic vesicle 1 ELANE
centrosome 1 ALB
Cell membrane 3 DAO, LIPE, LPL
Multi-pass membrane protein 1 HMGCR
Golgi apparatus membrane 1 HPD
Synapse 2 C1QA, TAC1
cell surface 3 ELANE, LPL, TF
glutamatergic synapse 2 APOE, C1QA
Golgi apparatus 2 ALB, APOE
Golgi membrane 1 HPD
neuronal cell body 3 APOB, APOE, TAC1
postsynapse 1 C1QA
smooth endoplasmic reticulum 1 APOB
Cytoplasm, cytosol 2 DAO, LIPE
Cytoplasmic vesicle, secretory vesicle 1 NTS
Lysosome 1 FTH1
plasma membrane 8 APOB, APOE, DAO, F2, KNG1, LPL, SERPINC1, TF
presynaptic active zone 1 DAO
Membrane 4 APOE, FTH1, HMGCR, LIPE
apical plasma membrane 1 TF
axon 1 TAC1
caveola 1 LIPE
extracellular exosome 14 ALB, APOB, APOE, DAO, ELANE, F2, FTH1, HPD, KNG1, MB, PMP2, SERPINC1, TF, TUBB4B
endoplasmic reticulum 3 ALB, APOE, HMGCR
extracellular space 11 ALB, APOB, APOE, DAO, ELANE, F2, KNG1, LPL, SERPINC1, TAC1, TF
lysosomal lumen 1 APOB
perinuclear region of cytoplasm 1 TF
bicellular tight junction 1 DAO
protein-containing complex 1 ALB
intracellular membrane-bounded organelle 2 APOB, NTS
Secreted 9 ALB, APOB, APOE, C1QA, DAO, F2, LPL, NTS, TF
extracellular region 15 ALB, APOB, APOE, C1QA, DAO, ELANE, F2, FTH1, KNG1, LPL, NTS, SERPINC1, TAC1, TF, TUBB4B
basal part of cell 1 TF
Extracellular side 2 DAO, LPL
anchoring junction 1 ALB
Endosome, multivesicular body 1 APOE
Extracellular vesicle 2 APOE, TUBB4B
Secreted, extracellular space, extracellular matrix 2 APOE, LPL
chylomicron 3 APOB, APOE, LPL
high-density lipoprotein particle 1 APOE
low-density lipoprotein particle 2 APOB, APOE
multivesicular body 1 APOE
very-low-density lipoprotein particle 3 APOB, APOE, LPL
cytoplasmic vesicle 1 TF
microtubule cytoskeleton 1 TUBB4B
sarcoplasm 1 MB
Early endosome 3 APOB, APOE, TF
clathrin-coated pit 1 TF
recycling endosome 1 TF
vesicle 1 TF
Cytoplasm, cytoskeleton 1 TUBB4B
microtubule 1 TUBB4B
extracellular matrix 1 APOE
Peroxisome 1 DAO
collagen trimer 1 C1QA
Peroxisome matrix 1 DAO
peroxisomal matrix 1 DAO
peroxisomal membrane 1 HMGCR
collagen-containing extracellular matrix 6 APOE, C1QA, ELANE, F2, KNG1, SERPINC1
secretory granule 1 ELANE
Late endosome 1 TF
ciliary basal body 1 ALB
cell projection 1 DAO
mitotic spindle 1 TUBB4B
cytoskeleton 1 TUBB4B
centriole 1 ALB
Secreted, extracellular space 4 APOE, DAO, KNG1, SERPINC1
spindle pole 1 ALB
blood microparticle 6 ALB, APOE, F2, KNG1, SERPINC1, TF
intercellular bridge 1 TUBB4B
Cytoplasm, cytoskeleton, flagellum axoneme 1 TUBB4B
sperm flagellum 1 TUBB4B
endosome lumen 1 APOB
Lipid droplet 2 APOB, LIPE
Membrane, caveola 1 LIPE
axonemal microtubule 1 TUBB4B
Melanosome 1 APOE
myelin sheath 1 PMP2
Peroxisome membrane 1 HMGCR
basal plasma membrane 1 TF
ficolin-1-rich granule lumen 1 FTH1
secretory granule lumen 1 TF
HFE-transferrin receptor complex 1 TF
Golgi lumen 1 F2
endoplasmic reticulum lumen 7 ALB, APOB, APOE, F2, KNG1, SERPINC1, TF
transcription repressor complex 1 ELANE
platelet alpha granule lumen 2 ALB, KNG1
axon terminus 1 NTS
specific granule lumen 2 DAO, ELANE
tertiary granule lumen 1 FTH1
endocytic vesicle 1 TF
transport vesicle 1 NTS
azurophil granule lumen 2 ELANE, TUBB4B
endoplasmic reticulum exit site 1 APOB
clathrin-coated endocytic vesicle membrane 3 APOB, APOE, TF
synaptic cleft 1 APOE
Cytoplasmic vesicle, phagosome 1 ELANE
vesicle coat 1 TF
discoidal high-density lipoprotein particle 1 APOE
endocytic vesicle lumen 2 APOB, APOE
Cytoplasm, sarcoplasm 1 MB
chylomicron remnant 2 APOB, APOE
intermediate-density lipoprotein particle 2 APOB, APOE
lipoprotein particle 1 APOE
multivesicular body, internal vesicle 1 APOE
complement component C1 complex 1 C1QA
complement component C1q complex 1 C1QA
extrinsic component of postsynaptic membrane 1 C1QA
extrinsic component of presynaptic membrane 1 C1QA
Autolysosome 1 FTH1
ferritin complex 1 FTH1
mature chylomicron 1 APOB
catalytic complex 1 LPL
ciliary transition fiber 1 ALB
dense body 1 TF


文献列表

  • Maheshika S K Wanigasekara, Saiful M Chowdhury. Evaluation of chemical labeling methods for identifying functional arginine residues of proteins by mass spectrometry. Analytica chimica acta. 2016 Sep; 935(?):197-206. doi: 10.1016/j.aca.2016.06.051. [PMID: 27543028]
  • Swati Singh, Veda P Pandey, Huma Naaz, Upendra N Dwivedi. Phylogenetic analysis, molecular modeling, substrate-inhibitor specificity, and active site comparison of bacterial, fungal, and plant heme peroxidases. Biotechnology and applied biochemistry. 2012 Jul; 59(4):283-94. doi: 10.1002/bab.1025. [PMID: 23586862]
  • Hugo Cruz-Hipolito, Maria D Osuna, Jose A Dominguez-Valenzuela, Nelson Espinoza, Rafael De Prado. Mechanism of resistance to ACCase-inhibiting herbicides in wild oat (Avena fatua ) from Latin America. Journal of agricultural and food chemistry. 2011 Jul; 59(13):7261-7. doi: 10.1021/jf201074k. [PMID: 21639122]
  • Peter Kovacic, Andrew L Cooksy. Electron transfer as a potential cause of diacetyl toxicity in popcorn lung disease. Reviews of environmental contamination and toxicology. 2010; 204(?):133-48. doi: 10.1007/978-1-4419-1440-8_2. [PMID: 19957235]
  • Xiao-Qi Zhang, Stephen B Powles. The molecular bases for resistance to acetyl co-enzyme A carboxylase (ACCase) inhibiting herbicides in two target-based resistant biotypes of annual ryegrass (Lolium rigidum). Planta. 2006 Feb; 223(3):550-7. doi: 10.1007/s00425-005-0095-x. [PMID: 16133206]
  • J P Ruiz-Santaella, A Heredia, R De Prado. Basis of selectivity of cyhalofop-butyl in Oryza sativa L. Planta. 2006 Jan; 223(2):191-9. doi: 10.1007/s00425-005-0075-1. [PMID: 16160841]
  • A Herrmann, E Svangård, P Claeson, J Gullbo, L Bohlin, U Göransson. Key role of glutamic acid for the cytotoxic activity of the cyclotide cycloviolacin O2. Cellular and molecular life sciences : CMLS. 2006 Jan; 63(2):235-45. doi: 10.1007/s00018-005-5486-4. [PMID: 16389447]
  • Thomas Pham, Ahmer Kodvawala, David Y Hui. The receptor binding domain of apolipoprotein E is responsible for its antioxidant activity. Biochemistry. 2005 May; 44(20):7577-82. doi: 10.1021/bi0472696. [PMID: 15896001]
  • D Scott Wilbur, Donald K Hamlin, James Sanderson, Yukang Lin. Streptavidin in antibody pretargeting. 4. Site-directed mutation provides evidence that both arginine and lysine residues are involved in kidney localization. Bioconjugate chemistry. 2004 Nov; 15(6):1454-63. doi: 10.1021/bc049869n. [PMID: 15546215]
  • Tae-Joon Kim, Jin-Seog Kim, Kyoung Sik Hong, In-Taek Hwang, Kyoung Mahn Kim, Hyeong-Rae Kim, Kwang Yun Cho. EK-2612, a new cyclohexane-1,3-dione possessing selectivity between rice (Oryza sativa) and barnyardgrass (Echinochloa crus-galli). Pest management science. 2004 Sep; 60(9):909-13. doi: 10.1002/ps.868. [PMID: 15382506]
  • Amit Shukla, Corwin Nycholat, Mani V Subramanian, Richard J Anderson, Malcolm D Devine. Use of resistant ACCase mutants to screen for novel inhibitors against resistant and susceptible forms of ACCase from grass weeds. Journal of agricultural and food chemistry. 2004 Aug; 52(16):5144-50. doi: 10.1021/jf034738m. [PMID: 15291488]
  • Sung-Soo Park, Hideki Ohba. Suppressive activity of protease inhibitors from buckwheat seeds against human T-acute lymphoblastic leukemia cell lines. Applied biochemistry and biotechnology. 2004 May; 117(2):65-74. doi: 10.1385/abab:117:2:065. [PMID: 15159551]
  • Thomas W Seng, Tiffanie R Skillman, Nengyu Yang, Craig Hammond. Cyclohexanedione herbicides are inhibitors of rat heart acetyl-CoA carboxylase. Bioorganic & medicinal chemistry letters. 2003 Oct; 13(19):3237-42. doi: 10.1016/s0960-894x(03)00664-4. [PMID: 12951100]
  • Christophe Délye, Xiao-Qi Zhang, Claire Chalopin, Séverine Michel, Stephen B Powles. An isoleucine residue within the carboxyl-transferase domain of multidomain acetyl-coenzyme A carboxylase is a major determinant of sensitivity to aryloxyphenoxypropionate but not to cyclohexanedione inhibitors. Plant physiology. 2003 Jul; 132(3):1716-23. doi: 10.1104/pp.103.021139. [PMID: 12857850]
  • Lindsey J Price, Derek Herbert, David J Cole, John L Harwood. Use of plant cell cultures to study graminicide effects on lipid metabolism. Phytochemistry. 2003 Jul; 63(5):533-41. doi: 10.1016/s0031-9422(03)00180-8. [PMID: 12809713]
  • Stephen R Moss, Kay M Cocker, Amanda C Brown, Linda Hall, Linda M Field. Characterisation of target-site resistance to ACCase-inhibiting herbicides in the weed Alopecurus myosuroides (black-grass). Pest management science. 2003 Feb; 59(2):190-201. doi: 10.1002/ps.623. [PMID: 12587873]
  • D Scott Wilbur, Donald K Hamlin, Damon L Meyer, Robert W Mallett, Janna Quinn, Robert L Vessella, Oliver W Press. Streptavidin in antibody pretargeting. 3. Comparison of biotin binding and tissue localization of 1,2-cyclohexanedione and succinic anhydride modified recombinant streptavidin. Bioconjugate chemistry. 2002 May; 13(3):611-20. doi: 10.1021/bc015574n. [PMID: 12009953]
  • T Ruuhola, O P Tikkanen, J Tahvanainen. Differences in host use efficiency of larvae of a generalist moth, Operophtera brumata on three chemically divergent Salix species. Journal of chemical ecology. 2001 Aug; 27(8):1595-615. doi: 10.1023/a:1010458208335. [PMID: 11521399]
  • S R Webb, J C Hall. Polyclonal-based ELISA for the identification of cyclohexanedione analogs that inhibit maize acetyl coenzyme-A carboxylase. Journal of AOAC International. 2001 Jan; 84(1):143-9. doi: 10.1093/jaoac/84.1.143. [PMID: 11234801]
  • J M Wang, T Asami, N Murofushi, S Yoshida. Isolation and initial characterization of 13(2)-hydroxychlorophyll a induced by cyclohexanedione derivatives in tobacco cell suspension cultures. Photochemistry and photobiology. 2000 Jan; 71(1):84-9. doi: 10.1562/0031-8655(2000)071<0084:iaicoh>2.0.co;2. [PMID: 10649893]
  • J J Calvete, M A Campanero-Rhodes, M Raida, L Sanz. Characterisation of the conformational and quaternary structure-dependent heparin-binding region of bovine seminal plasma protein PDC-109. FEBS letters. 1999 Feb; 444(2-3):260-4. doi: 10.1016/s0014-5793(99)00099-x. [PMID: 10050771]
  • A Nadal, E Fuentes, P A McNaughton. Albumin stimulates uptake of calcium into subcellular stores in rat cortical astrocytes. The Journal of physiology. 1996 May; 492 ( Pt 3)(?):737-50. doi: 10.1113/jphysiol.1996.sp021342. [PMID: 8734986]
  • M A Katz, M L La Marche. Albumin reduces basement membrane hydraulic conductance in part due to arginyl side groups. The American journal of physiology. 1995 Nov; 269(5 Pt 2):H1514-21. doi: 10.1152/ajpheart.1995.269.5.h1514. [PMID: 7503243]
  • U Olsson, G Camejo, G Bondjers. Binding of a synthetic apolipoprotein B-100 peptide and peptide analogues to chondroitin 6-sulfate: effects of the lipid environment. Biochemistry. 1993 Feb; 32(7):1858-65. doi: 10.1021/bi00058a020. [PMID: 8439543]
  • M J Caslake, C J Packard, J J Series, B Yip, M M Dagen, J Shepherd. Plasma triglyceride and low density lipoprotein metabolism. European journal of clinical investigation. 1992 Feb; 22(2):96-104. doi: 10.1111/j.1365-2362.1992.tb01942.x. [PMID: 1572392]
  • J T Powell. Chemical modification of arginine residues of lung galaptin and fibronectin. Effects on fibroblast binding. The Biochemical journal. 1985 Dec; 232(3):919-22. doi: 10.1042/bj2320919. [PMID: 4091829]
  • C J Packard, D E Boag, R Clegg, D Bedford, J Shepherd. Effects of 1,2-cyclohexanedione modification on the metabolism of very low density lipoprotein apolipoprotein B: potential role of receptors in intermediate density lipoprotein catabolism. Journal of lipid research. 1985 Sep; 26(9):1058-67. doi: . [PMID: 4067428]
  • A Comis, S B Easterbrook-Smith. C1q binding to mitochondria: a possible artefact?. FEBS letters. 1985 Jun; 185(1):105-8. doi: 10.1016/0014-5793(85)80749-3. [PMID: 3873357]
  • C C Michel, M E Phillips, M R Turner. The effects of native and modified bovine serum albumin on the permeability of frog mesenteric capillaries. The Journal of physiology. 1985 Mar; 360(?):333-46. doi: 10.1113/jphysiol.1985.sp015620. [PMID: 3921691]
  • G Holdsworth, J G Noel, K Stedje, M Shinomiya, R L Jackson. Modification of apolipoprotein C-II with 1,2-cyclohexanedione and 2,3-butanedione. Role of arginine in the activation of lipoprotein lipase. Biochimica et biophysica acta. 1984 Jul; 794(3):472-8. doi: 10.1016/0005-2760(84)90014-6. [PMID: 6743677]
  • L Harkes, T J Van Berkel. In vivo characteristics of a specific recognition site for LDL on non-parenchymal rat liver cells which differs from the 17 alpha-ethinyl estradiol-induced LDL receptor on parenchymal liver cells. Biochimica et biophysica acta. 1984 Jul; 794(2):340-7. doi: 10.1016/0005-2760(84)90165-6. [PMID: 6329312]
  • M Davril, M L Jung, G Duportail, M Lohez, K K Han, J G Bieth. Arginine modification in elastase. Effect on catalytic activity and conformation of the calcium-binding site. The Journal of biological chemistry. 1984 Mar; 259(6):3851-7. doi: . [PMID: 6561199]
  • E Fleer, S Fleischer. Modification of arginines in D-beta-hydroxybutyrate dehydrogenase. Biochimica et biophysica acta. 1983 Nov; 749(1):1-8. doi: 10.1016/0167-4838(83)90143-7. [PMID: 6639953]
  • F Krempler, G M Kostner, A Roscher, F Haslauer, K Bolzano, F Sandhofer. Studies on the role of specific cell surface receptors in the removal of lipoprotein (a) in man. The Journal of clinical investigation. 1983 May; 71(5):1431-41. doi: 10.1172/jci110896. [PMID: 6304146]
  • E Thunberg, G Samuelsson, M M Teeter. Modification of arginine residues in phoratoxin B by 1,2-cyclohexanedione. Acta pharmaceutica Suecica. 1983; 20(2):107-14. doi: ". [PMID: 6880790]
  • Z Y Jiang, C Thorpe. Modification of an arginine residue in pig kidney general acyl-coenzyme A dehydrogenase by cyclohexane-1,2-dione. The Biochemical journal. 1982 Dec; 207(3):415-9. doi: 10.1042/bj2070415. [PMID: 7165702]
  • M I Khan, A Surolia. Chemical modification studies on Ricinus communis (Castor Bean) agglutinin. European journal of biochemistry. 1982 Sep; 126(3):495-500. doi: 10.1111/j.1432-1033.1982.tb06807.x. [PMID: 6183113]
  • C J Packard, H R Slater, J Shepherd. The reticuloendothelial system and low density lipoprotein metabolism in the rabbit. Biochimica et biophysica acta. 1982 Aug; 712(2):412-9. doi: 10.1016/0005-2760(82)90361-7. [PMID: 7126615]
  • B L Knight, A K Soutar. Degradation by cultured fibroblasts and macrophages of unmodified and 1,2-cyclohexanedione-modified low-density lipoprotein from normal and homozygous familial hypercholesterolaemic subjects. The Biochemical journal. 1982 Jan; 202(1):145-52. doi: 10.1042/bj2020145. [PMID: 6282270]
  • H R Slater, C J Packard, J Shepherd. Measurement of receptor-independent lipoprotein catabolism using 1,2 cyclohexanedione-modified low density lipoprotein. Journal of lipid research. 1982 Jan; 23(1):92-6. doi: . [PMID: 6276483]
  • C Ferti, B Curti, M P Simonetta, S Ronchi, M Galliano, L Minchiotti. Reactivity of D-amino acid oxidase with 1,2-cyclohexanedione: evidence for one arginine in the substrate-binding site. European journal of biochemistry. 1981 Oct; 119(3):553-7. doi: 10.1111/j.1432-1033.1981.tb05643.x. [PMID: 6118269]
  • J G Noel, D Y Hui, D T Blankenship, J A Harmony. Reduced immunoregulatory potency of low density lipoproteins with selectively modified arginine and lysine residues of apolipoprotein B. Biochimica et biophysica acta. 1981 Sep; 665(3):519-30. doi: 10.1016/0005-2760(81)90266-6. [PMID: 6794630]
  • E A Fleer, W C Puijk, A J Slotboom, G H de Haas. Modification of arginine residues in porcine pancreatic phospholipase A2. European journal of biochemistry. 1981 May; 116(2):277-84. doi: 10.1111/j.1432-1033.1981.tb05330.x. [PMID: 7250128]
  • B Wiklund, B Lüning, B Björklund. Chemical studies of tissue polypeptide antigen (TPA). III. on the nature of the antigenic determinant(s) of TPA subfraction B1. Acta chemica Scandinavica. Series B: Organic chemistry and biochemistry. 1981; 35(5):325-36. doi: 10.3891/acta.chem.scand.35b-0325. [PMID: 6171966]
  • B Shivaraj, T N Pattabiraman. Natural plant enzyme inhibitors. Characterization of an unusual alpha-amylase/trypsin inhibitor from ragi (Eleusine coracana Geartn.). The Biochemical journal. 1981 Jan; 193(1):29-36. doi: 10.1042/bj1930029. [PMID: 6796040]
  • H R Slater, C J Packard, S Bicker, J Shepherd. Effects of cholestyramine on receptor-mediated plasma clearance and tissue uptake of human low density lipoproteins in the rabbit. The Journal of biological chemistry. 1980 Nov; 255(21):10210-3. doi: 10.1016/s0021-9258(19)70450-5. [PMID: 6253466]
  • J Shepherd, S Bicker, A R Lorimer, C J Packard. Receptor-mediated low density lipoprotein catabolism in man. Journal of lipid research. 1979 Nov; 20(8):999-1006. doi: . [PMID: 230269]
  • A F Habeeb, J C Bennett. Obviation of destructive action of 0.2 M NaOH on proteins during arginine modification with cyclohexanedione by use of 0.1 M triethylamine as solvent. Biochimica et biophysica acta. 1971 Nov; 251(2):181-4. doi: 10.1016/0005-2795(71)90101-2. [PMID: 11452383]