Inositol 1,3,4,5,6-pentakisphosphate (BioDeep_00001869692)

Main id: BioDeep_00000004649

 

PANOMIX_OTCML-2023


代谢物信息卡片


Inositol 1,3,4,5,6-pentakisphosphate

化学式: C6H17O21P5 (579.895)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C1(C(C(C(C(C1OP(=O)(O)O)OP(=O)(O)O)OP(=O)(O)O)OP(=O)(O)O)OP(=O)(O)O)O
InChI: InChI=1S/C6H17O21P5/c7-1-2(23-28(8,9)10)4(25-30(14,15)16)6(27-32(20,21)22)5(26-31(17,18)19)3(1)24-29(11,12)13/h1-7H,(H2,8,9,10)(H2,11,12,13)(H2,14,15,16)(H2,17,18,19)(H2,20,21,22)/t1?,2-,3+,4+,5-,6?

描述信息

同义名列表

2 个代谢物同义名

Inositol 1,3,4,5,6-pentakisphosphate; D-myo-Inositol 1,2,4,5,6-pentakisphosphate



数据库引用编号

14 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(3)

PlantCyc(1)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 11 AKT1, CBR3, GLE1, IPPK, ITPR3, PDPK1, PIK3R6, PLEK, PRKX, PTEN, SYT1
Peripheral membrane protein 1 PIK3R6
Endosome membrane 1 CLCN5
Endoplasmic reticulum membrane 1 ITPR3
Nucleus 7 AKT1, GLE1, IPPK, PDPK1, PLCZ1, PRKX, PTEN
cytosol 12 AKT1, CBR3, CLCN5, GLE1, IPPK, ITPK1, PDPK1, PIK3R6, PLCZ1, PLEK, PRKCQ, PTEN
trans-Golgi network 1 CA4
centrosome 1 GLE1
nucleoplasm 7 AKT1, CBR3, IPPK, ITPR3, PLCZ1, PRKX, PTEN
Cell membrane 6 AKT1, CA4, CLCN5, MINPP1, PIK3R6, TNF
lamellipodium 1 AKT1
ruffle membrane 1 PLEK
Multi-pass membrane protein 2 CLCN5, ITPR3
Golgi apparatus membrane 1 CLCN5
Synapse 1 SYT1
cell cortex 1 AKT1
cell surface 2 CA4, TNF
glutamatergic synapse 2 AKT1, SYT1
Golgi apparatus 3 CA4, CLCN5, SYT1
Golgi membrane 1 CLCN5
lysosomal membrane 1 CLCN5
neuronal cell body 2 ITPR3, TNF
postsynapse 1 AKT1
presynaptic membrane 1 SYT1
synaptic vesicle 2 CLCN5, SYT1
plasma membrane 13 AKT1, CA4, CLCN5, GPRIN2, ITPR3, MINPP1, PDPK1, PIK3R6, PLEK, PRKCQ, PTEN, SYT1, TNF
presynaptic active zone 1 SYT1
synaptic vesicle membrane 1 SYT1
Membrane 8 AKT1, CA4, CLCN5, GLE1, ITPR3, PIK3R6, PLEK, SYT1
apical plasma membrane 3 CA4, ITPK1, PTEN
axon 1 SYT1
brush border 1 ITPR3
extracellular exosome 2 CA4, MINPP1
endoplasmic reticulum 1 ITPR3
extracellular space 4 CBR3, GLE1, MINPP1, TNF
perinuclear region of cytoplasm 2 CA4, PLCZ1
protein-containing complex 1 AKT1
postsynaptic density 3 PDPK1, PTEN, SYT1
pronucleus 1 PLCZ1
Secreted 1 MINPP1
extracellular region 3 PLEK, PTEN, TNF
cytoplasmic side of plasma membrane 1 PTEN
Single-pass membrane protein 1 SYT1
excitatory synapse 1 SYT1
hippocampal mossy fiber to CA3 synapse 1 SYT1
centriolar satellite 1 PRKCQ
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 SYT1
nuclear membrane 1 GLE1
external side of plasma membrane 2 CA4, TNF
dendritic spine 1 PTEN
cytoplasmic vesicle 1 PDPK1
microtubule cytoskeleton 1 AKT1
nucleolus 4 GLE1, IPPK, ITPR3, PLCZ1
Early endosome 1 CLCN5
apical part of cell 2 CLCN5, ITPR3
cell-cell junction 1 AKT1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 AKT1
postsynaptic membrane 1 SYT1
Cytoplasm, perinuclear region 1 PLCZ1
Membrane raft 1 TNF
focal adhesion 1 PDPK1
spindle 1 AKT1
sarcoplasmic reticulum 1 ITPR3
Cell projection, dendritic spine 1 PTEN
Nucleus, PML body 1 PTEN
PML body 1 PTEN
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
nuclear outer membrane 1 ITPR3
receptor complex 1 ITPR3
Cell projection, neuron projection 1 PTEN
neuron projection 2 PTEN, SYT1
ciliary basal body 2 AKT1, GLE1
cell projection 2 PDPK1, PTEN
phagocytic cup 1 TNF
centriole 1 GLE1
brush border membrane 1 CA4
Lipid-anchor, GPI-anchor 1 CA4
Nucleus, nuclear pore complex 1 GLE1
nuclear envelope 1 GLE1
nuclear pore 1 GLE1
Endomembrane system 1 SYT1
side of membrane 1 CA4
[Isoform 1]: Cytoplasm 1 GLE1
exocytic vesicle 1 SYT1
secretory granule membrane 2 CA4, ITPR3
endoplasmic reticulum lumen 1 MINPP1
phosphatidylinositol 3-kinase complex 1 PIK3R6
phosphatidylinositol 3-kinase complex, class IA 1 PIK3R6
dense core granule 1 SYT1
Schmidt-Lanterman incisure 1 PTEN
immunological synapse 1 PRKCQ
aggresome 1 PRKCQ
clathrin-coated endocytic vesicle membrane 1 SYT1
endoplasmic reticulum-Golgi intermediate compartment 1 CA4
platelet dense tubular network membrane 1 ITPR3
Cytoplasmic vesicle, secretory vesicle membrane 2 ITPR3, SYT1
Rough endoplasmic reticulum 1 CA4
postsynaptic cytosol 1 SYT1
presynaptic cytosol 1 SYT1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
transport vesicle membrane 2 CA4, ITPR3
sperm head 1 PLCZ1
myelin sheath adaxonal region 1 PTEN
neuron projection terminus 1 SYT1
Cytoplasmic vesicle, secretory vesicle, chromaffin granule membrane 1 SYT1
chromaffin granule membrane 1 SYT1
clathrin-sculpted gamma-aminobutyric acid transport vesicle membrane 1 SYT1
[Isoform alpha]: Secreted 1 PTEN
cytoplasmic side of endoplasmic reticulum membrane 1 ITPR3
clathrin-sculpted acetylcholine transport vesicle membrane 1 SYT1
clathrin-sculpted glutamate transport vesicle membrane 1 SYT1
clathrin-sculpted monoamine transport vesicle membrane 1 SYT1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3R6
nuclear pore cytoplasmic filaments 1 GLE1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Hang Lu, Imke Kühn, Mike R Bedford, Hayley Whitfield, Charles Brearley, Olayiwola Adeola, Kolapo M Ajuwon. Effect of phytase on intestinal phytate breakdown, plasma inositol concentrations, and glucose transporter type 4 abundance in muscle membranes of weanling pigs1. Journal of animal science. 2019 Sep; 97(9):3907-3919. doi: 10.1093/jas/skz234. [PMID: 31294448]
  • Karlis Briviba, Margit Schollenberger, Markus Rodehutscord, Ralf Greiner. Dephosphorylation of myo-inositol phosphates in the in vitro intestinal Caco-2 cell model. International journal of food sciences and nutrition. 2018 Feb; 69(1):46-51. doi: 10.1080/09637486.2017.1330404. [PMID: 28554270]
  • Doreen Blüher, Debabrata Laha, Sabine Thieme, Alexandre Hofer, Lennart Eschen-Lippold, Antonia Masch, Gerd Balcke, Igor Pavlovic, Oliver Nagel, Antje Schonsky, Rahel Hinkelmann, Jakob Wörner, Nargis Parvin, Ralf Greiner, Stefan Weber, Alain Tissier, Mike Schutkowski, Justin Lee, Henning Jessen, Gabriel Schaaf, Ulla Bonas. A 1-phytase type III effector interferes with plant hormone signaling. Nature communications. 2017 12; 8(1):2159. doi: 10.1038/s41467-017-02195-8. [PMID: 29255246]
  • Lisza M Bruder, Robert J Gruninger, Colyn P Cleland, Steven C Mosimann. Bacterial PhyA protein-tyrosine phosphatase-like myo-inositol phosphatases in complex with the Ins(1,3,4,5)P4 and Ins(1,4,5)P3 second messengers. The Journal of biological chemistry. 2017 10; 292(42):17302-17311. doi: 10.1074/jbc.m117.787853. [PMID: 28848052]
  • P Morales, J De J Berrios, A Varela, C Burbano, C Cuadrado, M Muzquiz, M M Pedrosa. Novel fiber-rich lentil flours as snack-type functional foods: an extrusion cooking effect on bioactive compounds. Food & function. 2015 Sep; 6(9):3135-43. doi: 10.1039/c5fo00729a. [PMID: 26221783]
  • Igor Pavlovic, Divyeshsinh T Thakor, Laurent Bigler, Miranda S C Wilson, Debabrata Laha, Gabriel Schaaf, Adolfo Saiardi, Henning J Jessen. Prometabolites of 5-Diphospho-myo-inositol Pentakisphosphate. Angewandte Chemie (International ed. in English). 2015 Aug; 54(33):9622-6. doi: 10.1002/anie.201503094. [PMID: 26014370]
  • Hui-Fen Kuo, Tzu-Yun Chang, Su-Fen Chiang, Wei-Di Wang, Yee-Yung Charng, Tzyy-Jen Chiou. Arabidopsis inositol pentakisphosphate 2-kinase, AtIPK1, is required for growth and modulates phosphate homeostasis at the transcriptional level. The Plant journal : for cell and molecular biology. 2014 Nov; 80(3):503-15. doi: 10.1111/tpj.12650. [PMID: 25155524]
  • Bernadett Kolozsvari, Federica Parisi, Adolfo Saiardi. Inositol phosphates induce DAPI fluorescence shift. The Biochemical journal. 2014 Jun; 460(3):377-85. doi: 10.1042/bj20140237. [PMID: 24670057]
  • Barbara U Metzler-Zebeli, Kathrin Deckardt, Margit Schollenberger, Markus Rodehutscord, Qendrim Zebeli. Lactic acid and thermal treatments trigger the hydrolysis of myo-inositol hexakisphosphate and modify the abundance of lower myo-inositol phosphates in barley (Hordeum vulgare L.). PloS one. 2014; 9(6):e101166. doi: 10.1371/journal.pone.0101166. [PMID: 24967651]
  • Laurens Pauwels, Alain Goossens. The JAZ proteins: a crucial interface in the jasmonate signaling cascade. The Plant cell. 2011 Sep; 23(9):3089-100. doi: 10.1105/tpc.111.089300. [PMID: 21963667]
  • Alina Mosblech, Corinna Thurow, Christiane Gatz, Ivo Feussner, Ingo Heilmann. Jasmonic acid perception by COI1 involves inositol polyphosphates in Arabidopsis thaliana. The Plant journal : for cell and molecular biology. 2011 Mar; 65(6):949-57. doi: 10.1111/j.1365-313x.2011.04480.x. [PMID: 21205029]
  • Sean G Jackson, Sarra Al-Saigh, Carsten Schultz, Murray S Junop. Inositol pentakisphosphate isomers bind PH domains with varying specificity and inhibit phosphoinositide interactions. BMC structural biology. 2011 Feb; 11(?):11. doi: 10.1186/1472-6807-11-11. [PMID: 21310079]
  • Laura B Sheard, Xu Tan, Haibin Mao, John Withers, Gili Ben-Nissan, Thomas R Hinds, Yuichi Kobayashi, Fong-Fu Hsu, Michal Sharon, John Browse, Sheng Yang He, Josep Rizo, Gregg A Howe, Ning Zheng. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature. 2010 Nov; 468(7322):400-5. doi: 10.1038/nature09430. [PMID: 20927106]
  • Samuel E K Caddick, Christopher J Harrison, Ioanna Stavridou, Jennifer L Mitchell, Andrew M Hemmings, Charles A Brearley. A Solanum tuberosum inositol phosphate kinase (StITPK1) displaying inositol phosphate-inositol phosphate and inositol phosphate-ADP phosphotransferase activities. FEBS letters. 2008 May; 582(12):1731-7. doi: 10.1016/j.febslet.2008.04.034. [PMID: 18442482]
  • Tania Maffucci, Enza Piccolo, Albana Cumashi, Manuela Iezzi, Andrew M Riley, Adolfo Saiardi, H Yasmin Godage, Cosmo Rossi, Massimo Broggini, Stefano Iacobelli, Barry V L Potter, Paolo Innocenti, Marco Falasca. Inhibition of the phosphatidylinositol 3-kinase/Akt pathway by inositol pentakisphosphate results in antiangiogenic and antitumor effects. Cancer research. 2005 Sep; 65(18):8339-49. doi: 10.1158/0008-5472.can-05-0121. [PMID: 16166311]
  • Qingchuan Chen. Determination of phytic acid and inositol pentakisphosphates in foods by high-performance ion chromatography. Journal of agricultural and food chemistry. 2004 Jul; 52(15):4604-13. doi: 10.1021/jf035294x. [PMID: 15264889]
  • G Máñez, A Alegría, R Farré, A Frígola. Effect of traditional, microwave and industrial cooking on inositol phosphate content in beans, chickpeas and lentils. International journal of food sciences and nutrition. 2002 Nov; 53(6):503-8. doi: 10.1080/09637480220164343. [PMID: 12590745]
  • Y H Liang, X Z Liu, S H Liu, G Y Lu. The structure of greylag goose oxy haemoglobin: the roles of four mutations compared with bar-headed goose haemoglobin. Acta crystallographica. Section D, Biological crystallography. 2001 Dec; 57(Pt 12):1850-6. doi: 10.1107/s0907444901016493. [PMID: 11717498]
  • Y Liang, Z Hua, X Liang, Q Xu, G Lu. The crystal structure of bar-headed goose hemoglobin in deoxy form: the allosteric mechanism of a hemoglobin species with high oxygen affinity. Journal of molecular biology. 2001 Oct; 313(1):123-37. doi: 10.1006/jmbi.2001.5028. [PMID: 11601851]
  • E Brailoiu, A Margineanu, C P Toma, C M Filipeanu, V Rusu, D D Branisteanu. D-myo-inositol derivatives alter liposomal membrane fluidity. Biochemistry and molecular biology international. 1998 Jan; 44(1):195-201. doi: 10.1080/15216549800201212. [PMID: 9503163]
  • E Brailoiu, C Beschea, C Brailoiu, A Costuleanu, C M Filipeanu, M Costuleanu, B Fallgren, D D Branisteanu. TLC characterization of small unilamellar liposomes containing D-myo-inositol derivatives. Biomedical chromatography : BMC. 1996 Sep; 10(5):233-6. doi: 10.1002/(sici)1099-0801(199609)10:5<233::aid-bmc594>3.0.co;2-5. [PMID: 8879530]
  • S B Shears. Inositol pentakis- and hexakisphosphate metabolism adds versatility to the actions of inositol polyphosphates. Novel effects on ion channels and protein traffic. Sub-cellular biochemistry. 1996; 26(?):187-226. doi: 10.1007/978-1-4613-0343-5_7. [PMID: 8744266]
  • E Brailoiu, G Huhurez, S Slatineanu, C M Filipeanu, M Costuleanu, D D Branisteanu. TLC characterization of liposomes containing D-myo-inositol derivatives. Biomedical chromatography : BMC. 1995 Jul; 9(4):175-8. doi: 10.1002/bmc.1130090405. [PMID: 8520206]
  • M C Glennon, S B Shears. Turnover of inositol pentakisphosphates, inositol hexakisphosphate and diphosphoinositol polyphosphates in primary cultured hepatocytes. The Biochemical journal. 1993 Jul; 293 ( Pt 2)(?):583-90. doi: 10.1042/bj2930583. [PMID: 8343137]
  • T Estrada-Garcia, A Craxton, C J Kirk, R H Michell. A salt-activated inositol 1,3,4,5-tetrakisphosphate 3-phosphatase at the inner surface of the human erythrocyte membrane. Proceedings. Biological sciences. 1991 Apr; 244(1309):63-8. doi: 10.1098/rspb.1991.0052. [PMID: 1677198]
  • P J Hughes, S B Shears. Inositol 1,3,4,5,6-pentakisphosphate and inositol hexakisphosphate inhibit inositol-1,3,4,5-tetrakisphosphate 3-phosphatase in rat parotid glands. The Journal of biological chemistry. 1990 Jun; 265(17):9869-75. doi: . [PMID: 2161845]