AFMU (BioDeep_00001875933)

Main id: BioDeep_00000011141

 


代谢物信息卡片


5-Acetylamino-6-formylamino-3-methyluracil

化学式: C8H10N4O4 (226.0702)
中文名称: 5-乙酰氨基-6-甲酰基氨基-3-甲基尿嘧啶
谱图信息: 最多检出来源 Mus musculus(plant) 11.63%

分子结构信息

SMILES: CC(=O)NC1=C(NC(=O)N(C1=O)C)NC=O
InChI: InChI=1S/C8H10N4O4/c1-4(14)10-5-6(9-3-13)11-8(16)12(2)7(5)15/h3H,1-2H3,(H,9,13)(H,10,14)(H,11,16)



数据库引用编号

7 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 AHR, CYP1A1, CYP2A6, CYP2C19, CYP2D6, CYP3A4, GSTM1, GSTM3, NAT2, XDH
Peripheral membrane protein 2 CYP1A1, CYP1B1
Endoplasmic reticulum membrane 10 CD4, CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2C19, CYP2D6, CYP3A4, MR1, UGT1A1
Nucleus 4 AHR, GSTM3, MR1, NAT2
cytosol 7 AHR, CLC, GSTM1, GSTM3, NAT1, NAT2, XDH
nucleoplasm 2 AHR, HFE
Cell membrane 5 CD4, HFE, MR1, NAT1, NAT2
Cytoplasmic granule 1 CLC
Early endosome membrane 1 MR1
Multi-pass membrane protein 3 ATP4A, NAT1, NAT2
Golgi apparatus membrane 1 MR1
Synapse 1 NAT1
cell surface 1 NAT1
Golgi membrane 2 INS, MR1
mitochondrial inner membrane 1 CYP1A1
neuronal cell body 1 NAT2
presynaptic membrane 1 NAT1
Cytoplasm, cytosol 1 CLC
plasma membrane 8 ATP4A, CD4, CYP2C19, HFE, MR1, NAT1, NAT2, UGT1A1
synaptic vesicle membrane 1 NAT1
Membrane 10 ATP4A, CYP1B1, CYP2A6, CYP2D6, CYP3A4, HFE, MR1, NAT1, NAT2, UGT1A1
apical plasma membrane 2 ATP4A, NAT1
axon 2 NAT1, NAT2
basolateral plasma membrane 2 NAT1, NAT2
extracellular exosome 2 GSTM3, NAT2
endoplasmic reticulum 3 CYP2D6, MR1, UGT1A1
extracellular space 6 ATP4A, CLC, HFE, INS, MR1, XDH
perinuclear region of cytoplasm 2 HFE, UGT1A1
mitochondrion 4 CYP1A1, CYP1B1, CYP2D6, MR1
protein-containing complex 1 AHR
intracellular membrane-bounded organelle 7 CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2C19, CYP2D6, CYP3A4
Microsome membrane 5 CYP1A1, CYP1A2, CYP1B1, CYP2D6, CYP3A4
Single-pass type I membrane protein 3 CD4, HFE, MR1
Secreted 2 CLC, INS
extracellular region 2 CLC, INS
Single-pass membrane protein 3 CYP2D6, MR1, UGT1A1
basal part of cell 1 HFE
neuronal cell body membrane 1 NAT1
transcription regulator complex 2 AHR, NAT2
external side of plasma membrane 3 CD4, HFE, MR1
cytoplasmic vesicle 1 HFE
Early endosome 2 CD4, HFE
apical part of cell 1 HFE
recycling endosome 1 HFE
Apical cell membrane 1 ATP4A
Cytoplasm, perinuclear region 1 UGT1A1
Mitochondrion inner membrane 1 CYP1A1
Membrane raft 1 CD4
Peroxisome 1 XDH
sarcoplasmic reticulum 1 XDH
collagen-containing extracellular matrix 1 CLC
chromatin 1 AHR
Late endosome membrane 1 MR1
Basolateral cell membrane 1 NAT1
intercellular bridge 2 GSTM1, GSTM3
Endomembrane system 1 HFE
endosome lumen 1 INS
aryl hydrocarbon receptor complex 1 AHR
secretory granule lumen 1 INS
HFE-transferrin receptor complex 1 HFE
Golgi lumen 1 INS
endoplasmic reticulum lumen 2 CD4, INS
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
clathrin-coated endocytic vesicle membrane 1 CD4
cytoplasmic microtubule 1 CYP2A6
external side of apical plasma membrane 1 NAT2
[Isoform 1]: Cell membrane 1 MR1
[Isoform 4]: Secreted 1 MR1
CRLF-CLCF1 complex 1 CLC
presynaptic cytosol 1 MR1
sperm fibrous sheath 1 GSTM3
[Isoform 3]: Cell membrane 1 MR1
T cell receptor complex 1 CD4
MHC class I protein complex 1 MR1
endoplasmic reticulum chaperone complex 1 UGT1A1
potassium:proton exchanging ATPase complex 1 ATP4A
cytochrome complex 1 UGT1A1
CNTFR-CLCF1 complex 1 CLC
nuclear aryl hydrocarbon receptor complex 1 AHR
cytosolic aryl hydrocarbon receptor complex 1 AHR
NatA complex 1 NAT2


文献列表

  • Yin-Pan Chau, Philip C M Au, Gloria H Y Li, Chor-Wing Sing, Vincent K F Cheng, Kathryn C B Tan, Annie W C Kung, Ching-Lung Cheung. Serum Metabolome of Coffee Consumption and its Association With Bone Mineral Density: The Hong Kong Osteoporosis Study. The Journal of clinical endocrinology and metabolism. 2020 03; 105(3):. doi: 10.1210/clinem/dgz210. [PMID: 31750515]
  • Eleni Aklillu, Juan Antonio Carrillo, Eyasu Makonnen, Leif Bertilsson, Natasa Djordjevic. N-Acetyltransferase-2 (NAT2) phenotype is influenced by genotype-environment interaction in Ethiopians. European journal of clinical pharmacology. 2018 Jul; 74(7):903-911. doi: 10.1007/s00228-018-2448-y. [PMID: 29589062]
  • Xiang-Yang Li, Yong-Nian Liu, Yong-Ping Li, Jun-Bo Zhu, Xing-Chen Yao, Yong-Fang Li, Mei Yang, Ming Yuan, Xue-Ru Fan, Yue-Miao Yin. [Effect of Tibetan medicine zuotai on the activity, protein and mRNA expression of CYP1A2 and NAT2]. Yao xue xue bao = Acta pharmaceutica Sinica. 2014 Feb; 49(2):267-72. doi: . [PMID: 24761621]
  • Natasa Djordjevic, Juan Antonio Carrillo, Hyung-Keun Roh, Sara Karlsson, Nobuhisa Ueda, Leif Bertilsson, Eleni Aklillu. Comparison of N-acetyltransferase-2 enzyme genotype-phenotype and xanthine oxidase enzyme activity between Swedes and Koreans. Journal of clinical pharmacology. 2012 Oct; 52(10):1527-34. doi: 10.1177/0091270011420261. [PMID: 22105431]
  • Natasa Djordjevic, Juan Antonio Carrillo, Nobuhisa Ueda, Guillermo Gervasini, Takashi Fukasawa, Akira Suda, Slobodan Jankovic, Eleni Aklillu. N-Acetyltransferase-2 (NAT2) gene polymorphisms and enzyme activity in Serbs: unprecedented high prevalence of rapid acetylators in a White population. Journal of clinical pharmacology. 2011 Jul; 51(7):994-1003. doi: 10.1177/0091270010377630. [PMID: 20801937]
  • Yao Chen, Wen-Hui Liu, Bi-Lian Chen, Lan Fan, Yang Han, Guo Wang, Dong-Li Hu, Zhi-Rong Tan, Gan Zhou, Shan Cao, Hong-Hao Zhou. Plant polyphenol curcumin significantly affects CYP1A2 and CYP2A6 activity in healthy, male Chinese volunteers. The Annals of pharmacotherapy. 2010 Jun; 44(6):1038-45. doi: 10.1345/aph.1m533. [PMID: 20484172]
  • Yao Chen, Peng Xiao, Dong-Sheng Ou-Yang, Lan Fan, Dong Guo, Yi-Nan Wang, Yang Han, Jiang-Hua Tu, Gan Zhou, Yuan-Fei Huang, Hong-Hao Zhou. Simultaneous action of the flavonoid quercetin on cytochrome P450 (CYP) 1A2, CYP2A6, N-acetyltransferase and xanthine oxidase activity in healthy volunteers. Clinical and experimental pharmacology & physiology. 2009 Aug; 36(8):828-33. doi: 10.1111/j.1440-1681.2009.05158.x. [PMID: 19215233]
  • Nancy M Kh Hakooz. Caffeine metabolic ratios for the in vivo evaluation of CYP1A2, N-acetyltransferase 2, xanthine oxidase and CYP2A6 enzymatic activities. Current drug metabolism. 2009 May; 10(4):329-38. doi: 10.2174/138920009788499003. [PMID: 19519341]
  • Alexander Jetter, Martina Kinzig, Michael Rodamer, Dorota Tomalik-Scharte, Fritz Sörgel, Uwe Fuhr. Phenotyping of N-acetyltransferase type 2 and xanthine oxidase with caffeine: when should urine samples be collected?. European journal of clinical pharmacology. 2009 Apr; 65(4):411-7. doi: 10.1007/s00228-008-0597-0. [PMID: 19082994]
  • Hideo Nakabayashi, Takashi Hashimoto, Hitoshi Ashida, Shin Nishiumi, Kazuki Kanazawa. Inhibitory effects of caffeine and its metabolites on intracellular lipid accumulation in murine 3T3-L1 adipocytes. BioFactors (Oxford, England). 2008; 34(4):293-302. doi: 10.3233/bio-2009-1083. [PMID: 19850984]
  • Hans-Peter Rihs, Andrea John, Michael Scherenberg, Albrecht Seidel, Thomas Brüning. Concordance between the deduced acetylation status generated by high-speed: real-time PCR based NAT2 genotyping of seven single nucleotide polymorphisms and human NAT2 phenotypes determined by a caffeine assay. Clinica chimica acta; international journal of clinical chemistry. 2007 Feb; 376(1-2):240-3. doi: 10.1016/j.cca.2006.08.010. [PMID: 17011540]
  • Jun Li, Xiang-qian Peng, Jian Zhang, Ji-ping Xu. [Determination of the activity of cytochrome P-450 CYP2A6 by HPLC method with caffeine as metabolizing probe]. Yao xue xue bao = Acta pharmaceutica Sinica. 2006 Mar; 41(3):282-4. doi: . [PMID: 16759004]
  • Allan Weimann, Mads Sabroe, Henrik E Poulsen. Measurement of caffeine and five of the major metabolites in urine by high-performance liquid chromatography/tandem mass spectrometry. Journal of mass spectrometry : JMS. 2005 Mar; 40(3):307-16. doi: 10.1002/jms.785. [PMID: 15685651]
  • Alexander Jetter, Martina Kinzig-Schippers, Michael Illauer, Robert Hermann, Katharina Erb, Jürgen Borlak, Helga Wolf, Gillian Smith, Ingolf Cascorbi, Fritz Sörgel, Uwe Fuhr. Phenotyping of N-acetyltransferase type 2 by caffeine from uncontrolled dietary exposure. European journal of clinical pharmacology. 2004 Mar; 60(1):17-21. doi: 10.1007/s00228-003-0718-8. [PMID: 14747882]
  • Chi-Chen Hong, Bing-Kou Tang, Venketeshwer Rao, Sanjiv Agarwal, Lisa Martin, David Tritchler, Martin Yaffe, Norman F Boyd. Cytochrome P450 1A2 (CYP1A2) activity, mammographic density, and oxidative stress: a cross-sectional study. Breast cancer research : BCR. 2004; 6(4):R338-51. doi: 10.1186/bcr797. [PMID: 15217501]
  • Chi-Chen Hong, Bing-Kou Tang, Geoffrey L Hammond, David Tritchler, Martin Yaffe, Norman F Boyd. Cytochrome P450 1A2 (CYP1A2) activity and risk factors for breast cancer: a cross-sectional study. Breast cancer research : BCR. 2004; 6(4):R352-65. doi: 10.1186/bcr798. [PMID: 15217502]
  • Heiko Schneider, Lan Ma, Hansruedi Glatt. Extractionless method for the determination of urinary caffeine metabolites using high-performance liquid chromatography coupled with tandem mass spectrometry. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2003 Jun; 789(2):227-37. doi: 10.1016/s1570-0232(03)00065-5. [PMID: 12742114]
  • A Nyéki, T Buclin, J Biollaz, L A Decosterd. NAT2 and CYP1A2 phenotyping with caffeine: head-to-head comparison of AFMU vs. AAMU in the urine metabolite ratios. British journal of clinical pharmacology. 2003 Jan; 55(1):62-7. doi: 10.1046/j.1365-2125.2003.01730.x. [PMID: 12534641]
  • Klaus Abraham, Alexandra Geusau, Yalcin Tosun, Hans Helge, Steffen Bauer, Jürgen Brockmöller. Severe 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) intoxication: insights into the measurement of hepatic cytochrome P450 1A2 induction. Clinical pharmacology and therapeutics. 2002 Aug; 72(2):163-74. doi: 10.1067/mcp.2002.126408. [PMID: 12189363]
  • Pierre Wong, Gérald Villeneuve, Vicky Tessier, Kris Banerjee, Hinko Nedev, Bertrand J Jean-Claude, Brian Leyland-Jones. Stability of 5-acetamido-6-formylamino-3-methyluracil in buffers and urine. Journal of pharmaceutical and biomedical analysis. 2002 May; 28(3-4):693-700. doi: 10.1016/s0731-7085(01)00656-2. [PMID: 12008149]
  • Y C Bechtel, P R Bechtel, H Lelouët, H Choisy, N R Dy. [The acetylator polymorphism in a Khmer population: clinical consequences]. Therapie. 2001 Jul; 56(4):409-13. doi: NULL. [PMID: 11677864]
  • A Nyéki, J Biollaz, U W Kesselring, L A Décosterd. Extractionless method for the simultaneous high-performance liquid chromatographic determination of urinary caffeine metabolites for N-acetyltransferase 2, cytochrome P450 1A2 and xanthine oxidase activity assessment. Journal of chromatography. B, Biomedical sciences and applications. 2001 May; 755(1-2):73-84. doi: 10.1016/s0378-4347(00)00616-2. [PMID: 11393735]
  • P Wong, K Banerjee, J Massengill, S Nowell, N Lang, B Leyland-Jones. Validity of an ELISA for N-acetyltransferase-2 (NAT2) phenotyping. Journal of immunological methods. 2001 May; 251(1-2):1-9. doi: 10.1016/s0022-1759(01)00310-6. [PMID: 11292476]
  • Y C Bechtel, H Lelouët, S Hrusovsky, M P Brientini, G Mantion, G Paintaud, J P Miguet, P R Bechtel. Caffeine metabolism before and after liver transplantation. International journal of clinical pharmacology and therapeutics. 2001 Feb; 39(2):53-60. doi: 10.5414/cpp39053. [PMID: 11270802]
  • Y C Bechtel, H Lelouët, M P Brientini, M David-Laroche, J P Miguet, G Paintaud, P R Bechtel. Caffeine metabolism differences in acute hepatitis of viral and drug origin. Therapie. 2000 Sep; 55(5):619-27. doi: NULL. [PMID: 11201977]
  • X Cui, R Guo, Z Xu, B Wang, C Li. Relationship between metabolic phenotype of N-acetylation and bladder cancer. Chinese medical journal. 2000 Apr; 113(4):303-5. doi: NULL. [PMID: 11775223]
  • B Sinués, M A Sáenz, J Lanuza, M L Bernal, A Fanlo, J L Juste, E Mayayo. Five caffeine metabolite ratios to measure tobacco-induced CYP1A2 activity and their relationships with urinary mutagenicity and urine flow. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 1999 Feb; 8(2):159-66. doi: . [PMID: 10067814]
  • E K Asprodini, E Zifa, I Papageorgiou, A Benakis. Determination of N-acetylation phenotyping in a Greek population using caffeine as a metabolic probe. European journal of drug metabolism and pharmacokinetics. 1998 Oct; 23(4):501-6. doi: 10.1007/bf03190002. [PMID: 10323334]
  • J F Lu, T Yi, X M Cao, H T Zhuo, S S Ling. [Determination of caffeine metabolite for the evaluation of N-acetyltransferase, CYP1A2 and xanthine oxidase activities]. Yao xue xue bao = Acta pharmaceutica Sinica. 1997 Nov; 32(11):813-8. doi: NULL. [PMID: 11596199]
  • J F Lu, T Yi, X M Cao, H T Zhuo, S S Lin. [HPLC determination of five caffeine metabolites]. Yao xue xue bao = Acta pharmaceutica Sinica. 1997 Aug; 32(8):607-11. doi: . [PMID: 11596311]
  • S H McQuilkin, D W Nierenberg, E Bresnick. Analysis of within-subject variation of caffeine metabolism when used to determine cytochrome P4501A2 and N-acetyltransferase-2 activities. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 1995 Mar; 4(2):139-46. doi: NULL. [PMID: 7742721]
  • I Klebovich, A Rautio, P Salonpää, P Arvela, O Pelkonen, E A Sotaniemi. Antipyrine, coumarin and glipizide affect n-acetylation measured by caffeine test. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 1995; 49(5):225-7. doi: 10.1016/0753-3322(96)82627-8. [PMID: 7579000]
  • M T Kloth, R L Gee, E M Messing, S Swaminathan. Expression of N-acetyltransferase (NAT) in cultured human uroepithelial cells. Carcinogenesis. 1994 Dec; 15(12):2781-7. doi: 10.1093/carcin/15.12.2781. [PMID: 8001235]
  • A E Cribb, R Isbrucker, T Levatte, B Tsui, C T Gillespie, K W Renton. Acetylator phenotyping: the urinary caffeine metabolite ratio in slow acetylators correlates with a marker of systemic NAT1 activity. Pharmacogenetics. 1994 Jun; 4(3):166-70. doi: . [PMID: 7920698]
  • S M Frederickson, E M Messing, C A Reznikoff, S Swaminathan. Relationship between in vivo acetylator phenotypes and cytosolic N-acetyltransferase and O-acetyltransferase activities in human uroepithelial cells. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 1994 Jan; 3(1):25-32. doi: . [PMID: 8118381]
  • M Vincent-Viry, Z B Pontes, R Gueguen, M M Galteau, G Siest. Segregation analyses of four urinary caffeine metabolite ratios implicated in the determination of human acetylation phenotypes. Genetic epidemiology. 1994; 11(2):115-29. doi: 10.1002/gepi.1370110203. [PMID: 8013893]
  • I Klebovich, P Arvela, O Pelkonen. HPLC method for rapid determination of acetylator phenotype by measuring urinary caffeine metabolites. Journal of pharmaceutical and biomedical analysis. 1993 Oct; 11(10):1017-21. doi: 10.1016/0731-7085(93)80063-7. [PMID: 8305582]
  • D A Bell, J A Taylor, M A Butler, E A Stephens, J Wiest, L H Brubaker, F F Kadlubar, G W Lucier. Genotype/phenotype discordance for human arylamine N-acetyltransferase (NAT2) reveals a new slow-acetylator allele common in African-Americans. Carcinogenesis. 1993 Aug; 14(8):1689-92. doi: 10.1093/carcin/14.8.1689. [PMID: 8102597]
  • Y C Bechtel, C Bonaiti-Pellie, N Poisson, J Magnette, P R Bechtel. A population and family study of N-acetyltransferase using caffeine urinary metabolites. Clinical pharmacology and therapeutics. 1993 Aug; 54(2):134-41. doi: 10.1038/clpt.1993.124. [PMID: 8354022]
  • M Hashiguchi, A Ebihara. Acetylation polymorphism of caffeine in a Japanese population. Clinical pharmacology and therapeutics. 1992 Sep; 52(3):274-6. doi: 10.1038/clpt.1992.141. [PMID: 1526084]
  • C R Kumana, M M Chan, K L Wong, R W Wong, M Kou, I J Lauder. Lack of association between slow acetylator status and spontaneous lupus erythematosus. Clinical pharmacology and therapeutics. 1990 Aug; 48(2):208-13. doi: 10.1038/clpt.1990.137. [PMID: 2379389]
  • D M Grant, K Mörike, M Eichelbaum, U A Meyer. Acetylation pharmacogenetics. The slow acetylator phenotype is caused by decreased or absent arylamine N-acetyltransferase in human liver. The Journal of clinical investigation. 1990 Mar; 85(3):968-72. doi: 10.1172/jci114527. [PMID: 2312737]
  • F F Kadlubar, G Talaska, M A Butler, C H Teitel, J P Massengill, N P Lang. Determination of carcinogenic arylamine N-oxidation phenotype in humans by analysis of caffeine urinary metabolites. Progress in clinical and biological research. 1990; 340B(?):107-14. doi: NULL. [PMID: 2392442]
  • A el-Yazigi, K Chaleby, C R Martin. A simplified and rapid test for acetylator phenotyping by use of the peak height ratio of two urinary caffeine metabolites. Clinical chemistry. 1989 May; 35(5):848-51. doi: NULL. [PMID: 2566399]
  • A el-Yazigi, K Chaleby, C R Martin. Acetylator phenotypes of Saudi Arabians by a simplified caffeine metabolites test. Journal of clinical pharmacology. 1989 Mar; 29(3):246-50. doi: 10.1002/j.1552-4604.1989.tb03321.x. [PMID: 2723111]
  • M Hildebrand, W Seifert. Determination of acetylator phenotype in Caucasians with caffeine. European journal of clinical pharmacology. 1989; 37(5):525-6. doi: 10.1007/bf00558136. [PMID: 2598993]
  • G Pons, E Rey, O Carrier, M O Richard, C Moran, J Badoual, G Olive. Maturation of AFMU excretion in infants. Fundamental & clinical pharmacology. 1989; 3(6):589-95. doi: 10.1111/j.1472-8206.1989.tb00461.x. [PMID: 2613160]
  • O Carrier, G Pons, E Rey, M O Richard, C Moran, J Badoual, G Olive. Maturation of caffeine metabolic pathways in infancy. Clinical pharmacology and therapeutics. 1988 Aug; 44(2):145-51. doi: 10.1038/clpt.1988.129. [PMID: 3396261]
  • B G Hardy, C Lemieux, S E Walker, W R Bartle. Interindividual and intraindividual variability in acetylation: characterization with caffeine. Clinical pharmacology and therapeutics. 1988 Aug; 44(2):152-7. doi: 10.1038/clpt.1988.130. [PMID: 3396262]
  • M P Gascon, T Leemann, P Dayer. [Evaluation of a caffeine test for determining the phenotype of N-acetyltransferase]. Schweizerische medizinische Wochenschrift. 1987 Dec; 117(49):1974-6. doi: NULL. [PMID: 3423781]
  • B K Tang, D Kadar, W Kalow. An alternative test for acetylator phenotyping with caffeine. Clinical pharmacology and therapeutics. 1987 Nov; 42(5):509-13. doi: 10.1038/clpt.1987.189. [PMID: 3677540]
  • M E Campbell, S P Spielberg, W Kalow. A urinary metabolite ratio that reflects systemic caffeine clearance. Clinical pharmacology and therapeutics. 1987 Aug; 42(2):157-65. doi: 10.1038/clpt.1987.126. [PMID: 3608349]
  • D M Grant, B K Tang, W Kalow. A simple test for acetylator phenotype using caffeine. British journal of clinical pharmacology. 1984 Apr; 17(4):459-64. doi: 10.1111/j.1365-2125.1984.tb02372.x. [PMID: 6721992]
  • B K Tang, D M Grant, W Kalow. Isolation and identification of 5-acetylamino-6-formylamino-3-methyluracil as a major metabolite of caffeine in man. Drug metabolism and disposition: the biological fate of chemicals. 1983 May; 11(3):218-20. doi: . [PMID: 6135579]
  • D M Grant, B K Tang, W Kalow. Polymorphic N-acetylation of a caffeine metabolite. Clinical pharmacology and therapeutics. 1983 Mar; 33(3):355-9. doi: 10.1038/clpt.1983.45. [PMID: 6825389]
  • . . . . doi: . [PMID: 17221922]