9,10-DiHOME (BioDeep_00000003307)

 

Secondary id: BioDeep_00001883287

human metabolite Endogenous blood metabolite natural product


代谢物信息卡片


(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoic acid

化学式: C18H34O4 (314.2457)
中文名称: 9,10-二羟基-12-十八碳烯酸
谱图信息: 最多检出来源 Homo sapiens(blood) 20.17%

分子结构信息

SMILES: CCCCC/C=C\CC(O)C(O)CCCCCCCC(=O)O
InChI: InChI=1S/C18H34O4/c1-2-3-4-5-7-10-13-16(19)17(20)14-11-8-6-9-12-15-18(21)22/h7,10,16-17,19-20H,2-6,8-9,11-15H2,1H3,(H,21,22)/b10-7+

描述信息

9,10-Dihydroxy-12-octadecenoic acid (CAS: 263399-34-4), also known as 9,10-DHOME, is a derivative of linoleic acid diol and has been reported to be toxic in humans tissue preparations. 9,10-DHOME is a naturally occurring proliferator-activated receptor (PPAR) gamma2 ligand, which stimulates adipocytes and inhibits osteoblast differentiation. 9,10-DHOME is the epoxide hydrolase metabolite of the leukotoxin 9,10-EpOME. 9,10-EpOME act as a protoxin, with the corresponding epoxide hydrolase metabolite 9,10-DHOME, specifically exerting toxicity. Both 9,10-EpOME and 9,10-DHOME are shown to have neutrophil chemotactic activity. 9,10-DHOME suppresses the neutrophil respiratory burst by a mechanism distinct from that of respiratory burst inhibitors such as cyclosporin H or lipoxin A4, which inhibit multiple aspects of neutrophil activation (PMID: 12021203, 12127265, 17435320). 9,10-DHOME is found in fruits and can be isolated from the seeds of Cucurbita pepo.
9,10-DHOME is a derivative of linoleic acid diol that have been reported to be toxic in humans tissue preparations. 9,10-DHOME is a naturally occurring proliferator-activated receptor (PPAR) gamma2 ligand, which stimulates adipocytes and inhibits osteoblast differentiation. 9,10-DHOME is the epoxide hydrolase metabolite of the leukotoxin 9,10--EpOME. 9,10-EpOMEs act as a protoxin, with the corresponding epoxide hydrolase 9,10-DiHOME specifically exerting toxicity. Both the 9,10-EpOME and the 9,10-DiHOME are shown to have neutrophil chemotactic activity. 9,10-DiHOME suppress the neutrophil respiratory burst by a mechanism distinct from that of respiratory burst inhibitors such as cyclosporin H or lipoxin A4,which inhibit multiple aspects of neutrophil activation. (PMID: 12021203, 12127265, 17435320) [HMDB]

同义名列表

13 个代谢物同义名

(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoic acid; (R,R)-9,10-Dihydroxy-cis-12-octadecenoic acid; (9R,10R)-Dihydroxy-12(Z)-octadecenoic acid; (12Z)-9,10-Dihydroxy-12-octadecenoic acid; (12Z)-9,10-Dihydroxyoctadec-12-enoic acid; 9,10-dihydroxy-12Z-octadecenoic acid; 9,10-dihydroxy-12-octadecenoic acid; 9,10-DIHYDROXYOCTADEC-12-ENOIC ACID; Leukotoxin diol; 9,10-DiHOME; 9,10-DHOME; FA 18:1;O2; 9,10-DHOA



数据库引用编号

18 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

1 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(1)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

9 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 8 ALB, CASP1, CASP3, CAT, EDN1, ELANE, IL18, NLRP3
Peripheral membrane protein 1 CYP1B1
Endoplasmic reticulum membrane 1 CYP1B1
Nucleus 5 ALB, CASP3, MPO, NLRP3, OMP
cytosol 9 ALB, CASP1, CASP3, CAT, ELANE, EPHX2, IL18, NLRP3, OMP
phagocytic vesicle 1 ELANE
centrosome 1 ALB
nucleoplasm 2 CASP3, MPO
Cell membrane 3 CASP1, ITGB2, TNF
Multi-pass membrane protein 1 ABCC4
Golgi apparatus membrane 1 NLRP3
Synapse 1 OMP
cell surface 4 ELANE, ITGAX, ITGB2, TNF
glutamatergic synapse 1 CASP3
Golgi apparatus 2 ABCC4, ALB
Golgi membrane 1 NLRP3
neuronal cell body 3 CASP3, OMP, TNF
Cytoplasm, cytosol 2 IL18, NLRP3
Lysosome 1 MPO
plasma membrane 6 ABCC4, CASP1, ITGAX, ITGB2, LTA, TNF
Membrane 7 ABCC4, CAT, CYP1B1, ITGAX, ITGB2, LTA, NLRP3
apical plasma membrane 1 ABCC4
axon 1 OMP
basolateral plasma membrane 1 ABCC4
extracellular exosome 6 ALB, CAT, ELANE, EPHX2, ITGB2, MPO
endoplasmic reticulum 2 ALB, NLRP3
extracellular space 9 ALB, CXCL8, EDN1, ELANE, IL18, IL6, LTA, MPO, TNF
mitochondrion 3 CAT, CYP1B1, NLRP3
protein-containing complex 3 ALB, CASP1, CAT
intracellular membrane-bounded organelle 3 CAT, CYP1B1, MPO
Microsome membrane 1 CYP1B1
postsynaptic density 1 CASP3
Single-pass type I membrane protein 2 ITGAX, ITGB2
Secreted 7 ALB, CXCL8, EDN1, IL18, IL6, LTA, NLRP3
extracellular region 10 ALB, CAT, CXCL8, EDN1, ELANE, IL18, IL6, MPO, NLRP3, TNF
basal part of cell 1 EDN1
mitochondrial matrix 1 CAT
anchoring junction 1 ALB
external side of plasma membrane 3 ITGAX, ITGB2, TNF
Extracellular vesicle 1 ITGB2
nucleolus 2 ABCC4, CASP1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Apical cell membrane 1 ABCC4
Membrane raft 2 ITGB2, TNF
focal adhesion 2 CAT, ITGB2
microtubule 1 CASP1
Peroxisome 2 CAT, EPHX2
Peroxisome matrix 1 CAT
peroxisomal matrix 2 CAT, EPHX2
peroxisomal membrane 1 CAT
collagen-containing extracellular matrix 1 ELANE
secretory granule 2 ELANE, MPO
Cytoplasm, cytoskeleton, microtubule organizing center 1 NLRP3
Inflammasome 1 NLRP3
interphase microtubule organizing center 1 NLRP3
NLRP3 inflammasome complex 2 CASP1, NLRP3
receptor complex 1 ITGB2
ciliary basal body 1 ALB
phagocytic cup 1 TNF
centriole 1 ALB
spindle pole 1 ALB
blood microparticle 1 ALB
Basolateral cell membrane 1 ABCC4
Endomembrane system 1 NLRP3
microtubule organizing center 1 NLRP3
specific granule membrane 1 ITGB2
tertiary granule membrane 2 ITGAX, ITGB2
azurophil granule 1 MPO
platelet dense granule membrane 1 ABCC4
plasma membrane raft 1 ITGB2
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 1 CAT
secretory granule membrane 1 ITGAX
endoplasmic reticulum lumen 2 ALB, IL6
transcription repressor complex 1 ELANE
platelet alpha granule lumen 1 ALB
specific granule lumen 1 ELANE
transport vesicle 1 EDN1
azurophil granule lumen 2 ELANE, MPO
AIM2 inflammasome complex 1 CASP1
phagocytic vesicle lumen 1 MPO
ficolin-1-rich granule membrane 2 ITGAX, ITGB2
external side of apical plasma membrane 1 ABCC4
death-inducing signaling complex 1 CASP3
canonical inflammasome complex 1 CASP1
Cytoplasmic vesicle, phagosome 1 ELANE
integrin complex 2 ITGAX, ITGB2
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
rough endoplasmic reticulum lumen 1 EDN1
catalase complex 1 CAT
Weibel-Palade body 1 EDN1
integrin alphaL-beta2 complex 1 ITGB2
integrin alphaM-beta2 complex 1 ITGB2
integrin alphaX-beta2 complex 2 ITGAX, ITGB2
interleukin-6 receptor complex 1 IL6
IPAF inflammasome complex 1 CASP1
NLRP1 inflammasome complex 1 CASP1
protease inhibitor complex 1 CASP1
ciliary transition fiber 1 ALB
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Ziang Li, Rani Baidoun, Angela C Brown. Toxin-triggered liposomes for the controlled release of antibiotics to treat infections associated with the gram-negative bacterium, Aggregatibacter actinomycetemcomitans. Colloids and surfaces. B, Biointerfaces. 2024 Jun; 238(?):113870. doi: 10.1016/j.colsurfb.2024.113870. [PMID: 38555763]
  • Derek J Prince, Deendayal Patel, Scott C Kachlany. Leukotoxin (LtxA/Leukothera) induces ATP expulsion via pannexin-1 channels and subsequent cell death in malignant lymphocytes. Scientific reports. 2021 09; 11(1):18086. doi: 10.1038/s41598-021-97545-4. [PMID: 34508147]
  • Abraham Fikru Mechesso, Dong Chan Moon, Gwang-Seon Ryoo, Hyun-Ju Song, Hye Young Chung, Sang Uk Kim, Ji-Hyun Choi, Su-Jeong Kim, Hee Young Kang, Seok Hyeon Na, Soon-Seek Yoon, Suk-Kyung Lim. Resistance profiling and molecular characterization of Staphylococcus aureus isolated from goats in Korea. International journal of food microbiology. 2021 Jan; 336(?):108901. doi: 10.1016/j.ijfoodmicro.2020.108901. [PMID: 33075694]
  • Abraham Fikru Mechesso, Su-Jeong Kim, Ho-Sung Park, Ji-Hyun Choi, Hyun-Ju Song, Mi Hyun Kim, Suk-Kyung Lim, Soon-Seek Yoon, Dong-Chan Moon. Short communication: First detection of Panton-Valentine leukocidin-positive methicillin-resistant Staphylococcus aureus ST30 in raw milk taken from dairy cows with mastitis in South Korea. Journal of dairy science. 2021 Jan; 104(1):969-976. doi: 10.3168/jds.2020-19004. [PMID: 33162097]
  • Kelsey Hildreth, Sean D Kodani, Bruce D Hammock, Ling Zhao. Cytochrome P450-derived linoleic acid metabolites EpOMEs and DiHOMEs: a review of recent studies. The Journal of nutritional biochemistry. 2020 12; 86(?):108484. doi: 10.1016/j.jnutbio.2020.108484. [PMID: 32827665]
  • Dorottya Nagy-Szakal, Dinesh K Barupal, Bohyun Lee, Xiaoyu Che, Brent L Williams, Ellie J R Kahn, Joy E Ukaigwe, Lucinda Bateman, Nancy G Klimas, Anthony L Komaroff, Susan Levine, Jose G Montoya, Daniel L Peterson, Bruce Levin, Mady Hornig, Oliver Fiehn, W Ian Lipkin. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics. Scientific reports. 2018 07; 8(1):10056. doi: 10.1038/s41598-018-28477-9. [PMID: 29968805]
  • Radhakrishnan Jayasree Padmaja, Prakash Motiram Halami. Taming C-terminal peptides of Staphylococcus aureus leukotoxin M for B-cell response: Implication in improved subclinical bovine mastitis diagnosis and protective efficacy in vitro. Toxicon : official journal of the International Society on Toxinology. 2016 Sep; 119(?):99-105. doi: 10.1016/j.toxicon.2016.05.018. [PMID: 27242043]
  • Joshua N Webb, Evan Koufos, Angela C Brown. Inhibition of Bacterial Toxin Activity by the Nuclear Stain, DRAQ5™. The Journal of membrane biology. 2016 08; 249(4):503-11. doi: 10.1007/s00232-016-9892-3. [PMID: 27039399]
  • A C Brown, E Koufos, N V Balashova, K Boesze-Battaglia, E T Lally. Inhibition of LtxA toxicity by blocking cholesterol binding with peptides. Molecular oral microbiology. 2016 Feb; 31(1):94-105. doi: 10.1111/omi.12133. [PMID: 26352738]
  • N Balashova, A Dhingra, K Boesze-Battaglia, E T Lally. Aggregatibacter actinomycetemcomitans leukotoxin induces cytosol acidification in LFA-1 expressing immune cells. Molecular oral microbiology. 2016 Feb; 31(1):106-14. doi: 10.1111/omi.12136. [PMID: 26361372]
  • M J Walters, A C Brown, T C Edrington, S Baranwal, Y Du, E T Lally, K Boesze-Battaglia. Membrane association and destabilization by Aggregatibacter actinomycetemcomitans leukotoxin requires changes in secondary structures. Molecular oral microbiology. 2013 Oct; 28(5):342-53. doi: 10.1111/omi.12028. [PMID: 23678967]
  • Angela C Brown, Nataliya V Balashova, Richard M Epand, Raquel F Epand, Alvina Bragin, Scott C Kachlany, Michael J Walters, Yurong Du, Kathleen Boesze-Battaglia, Edward T Lally. Aggregatibacter actinomycetemcomitans leukotoxin utilizes a cholesterol recognition/amino acid consensus site for membrane association. The Journal of biological chemistry. 2013 Aug; 288(32):23607-21. doi: 10.1074/jbc.m113.486654. [PMID: 23792963]
  • Patricia L Podolin, Brian J Bolognese, Joseph F Foley, Edward Long, Brian Peck, Sandra Umbrecht, Xiaojun Zhang, Penny Zhu, Benjamin Schwartz, Wensheng Xie, Chad Quinn, Hongwei Qi, Sharon Sweitzer, Stephanie Chen, Marc Galop, Yun Ding, Svetlana L Belyanskaya, David I Israel, Barry A Morgan, David J Behm, Joseph P Marino, Edit Kurali, Mary S Barnette, Ruth J Mayer, Catherine L Booth-Genthe, James F Callahan. In vitro and in vivo characterization of a novel soluble epoxide hydrolase inhibitor. Prostaglandins & other lipid mediators. 2013 Jul; 104-105(?):25-31. doi: 10.1016/j.prostaglandins.2013.02.001. [PMID: 23434473]
  • Francis Kwamin, Rolf Gref, Dorte Haubek, Anders Johansson. Interactions of extracts from selected chewing stick sources with Aggregatibacter actinomycetemcomitans. BMC research notes. 2012 Jul; 5(?):203. doi: 10.1186/1756-0500-5-203. [PMID: 22537711]
  • Angela C Brown, Kathleen Boesze-Battaglia, Yurong Du, Frank P Stefano, Irene R Kieba, Raquel F Epand, Lazaros Kakalis, Philip L Yeagle, Richard M Epand, Edward T Lally. Aggregatibacter actinomycetemcomitans leukotoxin cytotoxicity occurs through bilayer destabilization. Cellular microbiology. 2012 Jun; 14(6):869-81. doi: 10.1111/j.1462-5822.2012.01762.x. [PMID: 22309134]
  • Todd R Harris, Pavel A Aronov, Paul D Jones, Hiromasa Tanaka, Michael Arand, Bruce D Hammock. Identification of two epoxide hydrolases in Caenorhabditis elegans that metabolize mammalian lipid signaling molecules. Archives of biochemistry and biophysics. 2008 Apr; 472(2):139-49. doi: 10.1016/j.abb.2008.01.016. [PMID: 18267101]
  • Dhammika N Atapattu, Charles J Czuprynski. Mannheimia haemolytica leukotoxin binds to lipid rafts in bovine lymphoblastoid cells and is internalized in a dynamin-2- and clathrin-dependent manner. Infection and immunity. 2007 Oct; 75(10):4719-27. doi: 10.1128/iai.00534-07. [PMID: 17682044]
  • Karen P Fong, Cinthia M F Pacheco, Linda L Otis, Somesh Baranwal, Irene R Kieba, Gerald Harrison, Elliot V Hersh, Kathleen Boesze-Battaglia, Edward T Lally. Actinobacillus actinomycetemcomitans leukotoxin requires lipid microdomains for target cell cytotoxicity. Cellular microbiology. 2006 Nov; 8(11):1753-67. doi: 10.1111/j.1462-5822.2006.00746.x. [PMID: 16827908]
  • Olivier Joubert, Gabriella Viero, Daniel Keller, Eric Martinez, Didier A Colin, Henri Monteil, Lionel Mourey, Mauro Dalla Serra, Gilles Prévost. Engineered covalent leucotoxin heterodimers form functional pores: insights into S-F interactions. The Biochemical journal. 2006 Jun; 396(2):381-9. doi: 10.1042/bj20051878. [PMID: 16494579]
  • Valérie Le Quéré, Emmanuelle Plée-Gautier, Philippe Potin, Stéphanie Madec, Jean-Pierre Salaün. Human CYP4F3s are the main catalysts in the oxidation of fatty acid epoxides. Journal of lipid research. 2004 Aug; 45(8):1446-58. doi: 10.1194/jlr.m300463-jlr200. [PMID: 15145985]
  • Seitaro Okamura, Shingo Ameshima, Yoshiki Demura, Takeshi Ishizaki, Shigeru Matsukawa, Isamu Miyamori. Leukotoxin-activated human pulmonary artery endothelial cell produces nitric oxide and superoxide anion. Pulmonary pharmacology & therapeutics. 2002; 15(1):25-33. doi: 10.1006/pupt.2001.0322. [PMID: 11969361]
  • Satsuki Kato, Yusuke Kowashi, Donald R Demuth. Outer membrane-like vesicles secreted by Actinobacillus actinomycetemcomitans are enriched in leukotoxin. Microbial pathogenesis. 2002 Jan; 32(1):1-13. doi: 10.1006/mpat.2001.0474. [PMID: 11782116]
  • H Iwase, K Sakurada, K Hatanaka, M Kobayashi, T Takatori. Effect of cytochrome c on the linoleic acid-degrading activity of porcine leukocyte 12-lipoxygenase. Free radical biology & medicine. 2000 Mar; 28(6):912-9. doi: 10.1016/s0891-5849(00)00171-4. [PMID: 10802222]
  • M E Baca-Estrada, M Foldvari, C Ewen, I Badea, L A Babiuk. Effects of IL-12 on immune responses induced by transcutaneous immunization with antigens formulated in a novel lipid-based biphasic delivery system. Vaccine. 2000 Mar; 18(17):1847-54. doi: 10.1016/s0264-410x(99)00379-5. [PMID: 10699333]
  • E T Lally, R B Hill, I R Kieba, J Korostoff. The interaction between RTX toxins and target cells. Trends in microbiology. 1999 Sep; 7(9):356-61. doi: 10.1016/s0966-842x(99)01530-9. [PMID: 10470043]
  • H Iwase, T Takatori, M Nagao, K Iwadate, M Nakajima. Monoepoxide production from linoleic acid by cytochrome c in the presence of cardiolipin. Biochemical and biophysical research communications. 1996 May; 222(1):83-9. doi: 10.1006/bbrc.1996.0701. [PMID: 8630079]
  • S Saginala, T G Nagaraja, Z L Tan, K F Lechtenberg, M M Chengappa, P M Hine. The serum neutralizing antibody response in cattle to Fusobacterium necrophorum leukotoxoid and possible protection against experimentally induced hepatic abscesses. Veterinary research communications. 1996; 20(6):493-504. doi: 10.1007/bf00396292. [PMID: 8950830]
  • J D Lear, U G Furblur, E T Lally, J C Tanaka. Actinobacillus actinomycetemcomitans leukotoxin forms large conductance, voltage-gated ion channels when incorporated into planar lipid bilayers. Biochimica et biophysica acta. 1995 Aug; 1238(1):34-41. doi: 10.1016/0005-2736(95)00086-i. [PMID: 7544624]
  • N S Taichman, M Iwase, E T Lally, S J Shattil, M E Cunningham, H M Korchak. Early changes in cytosolic calcium and membrane potential induced by Actinobacillus actinomycetemcomitans leukotoxin in susceptible and resistant target cells. Journal of immunology (Baltimore, Md. : 1950). 1991 Nov; 147(10):3587-94. doi: NULL. [PMID: 1940358]
  • T Ozawa, S Sugiyama. [Linoleic cascade and radical peroxidation reaction]. Nihon rinsho. Japanese journal of clinical medicine. 1988 Oct; 46(10):2161-6. doi: ". [PMID: 3241344]