alpha-Carotene (BioDeep_00000000629)
Secondary id: BioDeep_00000403008
human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite natural product
代谢物信息卡片
化学式: C40H56 (536.4382)
中文名称: alpha-胡萝卜素, α-胡萝卜素
谱图信息:
最多检出来源 Homo sapiens(blood) 70.67%
分子结构信息
SMILES: C/C(=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C)/C=C/C=C(\C)/C=C/C1C(=CCCC1(C)C)C
InChI: InChI=1S/C40H56/c1-31(19-13-21-33(3)25-27-37-35(5)23-15-29-39(37,7)8)17-11-12-18-32(2)20-14-22-34(4)26-28-38-36(6)24-16-30-40(38,9)10/h11-14,17-23,25-28,37H,15-16,24,29-30H2,1-10H3/b12-11+,19-13+,20-14+,27-25+,28-26+,31-17+,32-18+,33-21+,34-22+
描述信息
alpha-Carotene belongs to the class of organic compounds known as carotenes. These are a type of unsaturated hydrocarbons containing eight consecutive isoprene units. They are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. alpha-Carotene is considered to be an isoprenoid lipid molecule. alpha-Carotene is one of the primary isomers of carotene. Plasma levels of alpha-carotene are positively associated with the detection rate of AFB1-DNA adducts in a dose-dependent manner, whereas plasma lycopene level was inversely related to the presence of the adducts in urine (PMID: 9214602).
(6R)-beta,epsilon-carotene is an alpha-carotene. It is an enantiomer of a (6S)-beta,epsilon-carotene.
alpha-Carotene is a natural product found in Hibiscus syriacus, Scandix stellata, and other organisms with data available.
Widespread carotenoid, e.g. in carrots and palm oil. Has vitamin A activity but less than that of b-Carotene
A cyclic carotene with a beta- and an epsilon-ring at opposite ends respectively.
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
同义名列表
46 个代谢物同义名
(6R)-1,5,5-trimethyl-6-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohex-1-en-1-yl)octadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]cyclohex-1-ene; 1,3,3-trimethyl-2-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-3,7,12,16-tetramethyl-18-[(1R)-2,6,6-trimethylcyclohex-2-en-1-yl]octadeca-1,3,5,7,9,11,13,15,17-nonaenyl]cyclohexene; 1,3,3-trimethyl-2-((1E,3E,5E,7E,9E,11E,13E,15E,17E)-3,7,12,16-tetramethyl-18-((R)-2,6,6-trimethylcyclohex-2-enyl)octadeca-1,3,5,7,9,11,13,15,17-nonaenyl)cyclohex-1-ene; 1,3,3-TRIMETHYL-2-((1E,3E,5E,7E,9E,11E,13E,15E,17E)-3,7,12,16-TETRAMETHYL-18-(2,6,6-TRIMETHYL-2-CYCLOHEXEN-1-YL)-1,3,5,7,9,11,13,15,17-OCTADECANONAEN-1-YL)CYCLOHEXENE; (ALL-E)-1,3,3-TRIMETHYL-2-(3,7,12,16-TETRAMETHYL-18-(2,6,6-TRIMETHYL-2-CYCLOHEXEN-1-YL)-1,3,5,7,9,11,13,15,17-OCTADECANONAENYL)CYCLOHEXENE; 4,5-DIDEHYDRO-5,6-DIHYDRO-.BETA.,.BETA.-CAROTENE; alpha carotene (stereochemistry specified); alpha-Carotene/ beta,epsilon-Carotene; alpha-Carotene, analytical standard; alpha-Carotene, >=95.0\\% (HPLC); (6R)-.BETA.,.EPSILON.-CAROTENE; beta,epsilon-Carotene, (6R)-; alpha-carotene, (6R)-isomer; (6R)-beta,epsilon-Carotene; α-Carotene, (6’R)-isomer; all-trans-alpha-Carotene; alpha-Carotene (natural); ALPHA-CAROTENE [WHO-DD]; beta,epsilon-Carotene; .ALPHA.-CAROTENE [MI]; all-trans-α-Carotene; Α-carotene (natural); a-Carotene (natural); (6R)-alpha-Carotene; (6’R)-β,ε-Carotene; (+)-alpha-Carotene; (6R)-β,ε-Carotene; (6’R)-α-Carotene; .ALPHA.-CAROTENE; (6R)-α-Carotene; UNII-45XWE1Z69V; (+)-Α-carotene; alpha-Carotene; (+)-a-Carotene; ??-Carotene; Carotenoids; a-Carotene; α-Carotene; 45XWE1Z69V; Carotenes; Hi-Alpha; Carotene; hi-α; BCR; α-Carotene; alpha-Carotene
数据库引用编号
29 个数据库交叉引用编号
- ChEBI: CHEBI:28425
- ChEBI: CHEBI:35147
- KEGG: C05433
- PubChem: 4369188
- PubChem: 6419725
- PubChem: 24090
- HMDB: HMDB0003993
- Metlin: METLIN6998
- DrugBank: DB15909
- Wikipedia: \\%CE\\%91-Carotene
- Wikipedia: Alpha-Carotene
- LipidMAPS: LMPR01070011
- MeSH: alpha-carotene
- ChemIDplus: 0007488995
- MetaCyc: CPD1F-118
- KNApSAcK: C00003765
- foodb: FDB013716
- chemspider: 4925358
- CAS: 7488-99-5
- CAS: 432-70-2
- medchemexpress: HY-113462
- PMhub: MS000011013
- MetaboLights: MTBLC28425
- PubChem: 7797
- 3DMET: B00779
- NIKKAJI: J5.728B
- RefMet: alpha-Carotene
- KNApSAcK: 28425
- LOTUS: LTS0200789
分类词条
相关代谢途径
Reactome(0)
代谢反应
502 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(5)
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
γ-carotene ⟶ β-carotene
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- superpathway of carotenoid biosynthesis:
all-trans-β-carotene + H+ + NADH + O2 ⟶ β-cryptoxanthin + H2O + NAD+
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
WikiPathways(0)
Plant Reactome(228)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
DMAPP + genistein ⟶ PPi + lupiwighteone
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
gamma-carotene ⟶ beta-carotene
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Secondary metabolism:
DMAPP + genistein ⟶ PPi + lupiwighteone
- Carotenoid biosynthesis:
gamma-carotene ⟶ beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
DMAPP + genistein ⟶ PPi + lupiwighteone
- Carotenoid biosynthesis:
gamma-carotene ⟶ beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
gamma-carotene ⟶ beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
gamma-carotene ⟶ beta-carotene
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Secondary metabolism:
DMAPP + genistein ⟶ PPi + lupiwighteone
- Carotenoid biosynthesis:
gamma-carotene ⟶ beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
gamma-carotene ⟶ beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Secondary metabolism:
DMAPP + genistein ⟶ PPi + lupiwighteone
- Carotenoid biosynthesis:
gamma-carotene ⟶ beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
L-Phe ⟶ ammonia + trans-cinnamate
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Secondary metabolism:
GPP + H2O ⟶ PPi + geraniol
- Carotenoid biosynthesis:
Oxygen + beta-cryptoxanthin + hydrogen donor ⟶ H2O + hydrogen acceptor + zeaxanthin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
INOH(0)
PlantCyc(269)
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
δ-carotene ⟶ α-carotene
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
δ-carotene ⟶ α-carotene
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
γ-carotene ⟶ β-carotene
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
γ-carotene ⟶ β-carotene
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
15-cis-phytoene + a plastoquinone ⟶ 15,9'-di-cis-phytofluene + a plastoquinol
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- superpathway of carotenoid biosynthesis in plants:
prephytoene diphosphate ⟶ 15-cis-phytoene + diphosphate
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
417 个相关的物种来源信息
- 183218 - Abelmoschus: LTS0200789
- 455045 - Abelmoschus esculentus: 10.1111/J.1365-2621.1986.TB10851.X
- 455045 - Abelmoschus esculentus: LTS0200789
- 3808 - Acacia: LTS0200789
- 205044 - Acacia decurrens: 10.1104/PP.86.4.1286
- 205044 - Acacia decurrens: LTS0200789
- 4022 - Acer: LTS0200789
- 66201 - Acer palmatum: 10.1271/BBB1961.49.1211
- 66201 - Acer palmatum: LTS0200789
- 13817 - Adiantum: LTS0200789
- 13818 - Adiantum capillus-veneris: 10.1016/0305-1978(85)90030-4
- 13818 - Adiantum capillus-veneris: LTS0200789
- 29590 - Adiantum pedatum: 10.1016/0305-1978(85)90030-4
- 29590 - Adiantum pedatum: LTS0200789
- 446141 - Adiantum venustum: 10.1016/0305-1978(85)90030-4
- 446141 - Adiantum venustum: LTS0200789
- 43363 - Aesculus: LTS0200789
- 43364 - Aesculus hippocastanum: 10.1016/S0031-9422(00)85174-2
- 43364 - Aesculus hippocastanum: LTS0200789
- 155619 - Agaricomycetes: LTS0200789
- 72714 - Agelas: LTS0200789
- 2723817 - Agelas schmidtii: 10.1002/HLCA.19770600831
- 2723817 - Agelas schmidtii: LTS0200789
- 85771 - Agelasidae: LTS0200789
- 47036 - Alhagi: LTS0200789
- 47037 - Alhagi maurorum: 10.1007/S10600-016-1871-5
- 47037 - Alhagi maurorum: LTS0200789
- 759841 - Alhagi persarum: 10.1007/S10600-016-1871-5
- 759841 - Alhagi persarum: LTS0200789
- 3563 - Amaranthaceae: LTS0200789
- 178513 - Amphimedon: 10.1016/0305-0491(88)90145-9
- 178513 - Amphimedon: LTS0200789
- 6340 - Annelida: LTS0200789
- 4037 - Apiaceae: LTS0200789
- 6499 - Aplysia: LTS0200789
- 71498 - Aplysia punctata: 10.1016/0305-0491(84)90180-9
- 71498 - Aplysia punctata: LTS0200789
- 6498 - Aplysiidae: LTS0200789
- 124739 - Arctocetraria: LTS0200789
- 326049 - Arctocetraria andrejevii: LTS0200789
- 4710 - Arecaceae: LTS0200789
- 4890 - Ascomycota: LTS0200789
- 40552 - Asparagaceae: LTS0200789
- 4685 - Asparagus: LTS0200789
- 4686 - Asparagus officinalis: 10.1111/J.1365-2621.1986.TB10851.X
- 4686 - Asparagus officinalis: LTS0200789
- 41972 - Aspleniaceae: 10.1016/0305-1978(85)90030-4
- 41972 - Aspleniaceae: LTS0200789
- 32071 - Asplenium: LTS0200789
- 147934 - Asplenium aethiopicum: LTS0200789
- 147945 - Asplenium ceterach: LTS0200789
- 1352538 - Asplenium obovatum: 10.1016/0305-1978(85)90030-4
- 1521210 - Asplenium sulcatum: 10.1016/0305-1978(85)90030-4
- 78464 - Asplenium trichomanes: 10.1016/0305-1978(85)90030-4
- 78464 - Asplenium trichomanes: LTS0200789
- 4210 - Asteraceae: LTS0200789
- 1203520 - Athyriaceae: LTS0200789
- 5204 - Basidiomycota: LTS0200789
- 3554 - Beta: LTS0200789
- 161934 - Beta vulgaris: 10.1111/J.1365-2621.1986.TB10851.X
- 161934 - Beta vulgaris: LTS0200789
- 6544 - Bivalvia: LTS0200789
- 29600 - Blechnaceae: LTS0200789
- 29605 - Blechnum: LTS0200789
- 32073 - Blechnum occidentale: 10.1016/0305-1978(85)90030-4
- 32073 - Blechnum occidentale: LTS0200789
- 3705 - Brassica: LTS0200789
- 3707 - Brassica juncea: 10.1271/BBB1961.49.1211
- 3707 - Brassica juncea: LTS0200789
- 3712 - Brassica oleracea:
- 3712 - Brassica oleracea: 10.1111/J.1365-2621.1986.TB10851.X
- 3712 - Brassica oleracea: 10.1271/BBB1961.49.1211
- 3712 - Brassica oleracea: LTS0200789
- 3700 - Brassicaceae: LTS0200789
- 4441 - Camellia: LTS0200789
- 385388 - Camellia oleifera: 10.1007/BF00607557
- 385388 - Camellia oleifera: LTS0200789
- 182300 - Camellia sasanqua: 10.1007/BF00607557
- 182300 - Camellia sasanqua: LTS0200789
- 57201 - Cantharellaceae: LTS0200789
- 36065 - Cantharellus: LTS0200789
- 36066 - Cantharellus cibarius: 10.1086/297545
- 36066 - Cantharellus cibarius: LTS0200789
- 57194 - Cantharellus lateritius: 10.1086/297545
- 57194 - Cantharellus lateritius: LTS0200789
- 57196 - Cantharellus tabernensis: 10.1086/297545
- 57196 - Cantharellus tabernensis: LTS0200789
- 4071 - Capsicum: LTS0200789
- 4072 - Capsicum annuum:
- 4072 - Capsicum annuum: LTS0200789
- 4305 - Celastraceae: LTS0200789
- 78063 - Cetraria: LTS0200789
- 1804623 - Chenopodiaceae: LTS0200789
- 3166 - Chlorophyceae: LTS0200789
- 3041 - Chlorophyta: LTS0200789
- 7711 - Chordata: LTS0200789
- 173869 - Christella: LTS0200789
- 714463 - Christella parasitica: LTS0200789
- 2706 - Citrus: LTS0200789
- 43166 - Citrus aurantium: 10.1021/JF00087A017
- 43166 - Citrus aurantium: 10.1111/J.1365-2621.1986.TB10851.X
- 558547 - Citrus deliciosa: 10.1016/0031-9422(83)83012-X
- 171249 - Citrus limonia: LTS0200789
- 85571 - Citrus reticulata: 10.1016/0031-9422(83)83012-X
- 85571 - Citrus reticulata: LTS0200789
- 2711 - Citrus sinensis: 10.1007/BF00579990
- 2711 - Citrus sinensis: 10.1111/J.1365-2621.1986.TB10851.X
- 2711 - Citrus sinensis: LTS0200789
- 37656 - Citrus × paradisi: 10.1021/JF00087A017
- 37656 - Citrus × paradisi: 10.1111/J.1365-2621.1986.TB10851.X
- 5199 - Cladonia: LTS0200789
- 174053 - Cladonia coccifera: 10.1016/0305-1978(85)90064-X
- 174053 - Cladonia coccifera: LTS0200789
- 184094 - Cladonia cornuta: 10.1016/0305-1978(85)90064-X
- 184094 - Cladonia cornuta: LTS0200789
- 196765 - Cladonia macilenta: 10.1016/0305-1978(85)90064-X
- 196765 - Cladonia macilenta: LTS0200789
- 184109 - Cladonia phyllophora: 10.1016/0305-1978(85)90064-X
- 184109 - Cladonia phyllophora: LTS0200789
- 50943 - Cladonia portentosa: 10.1016/0305-1978(85)90064-X
- 50943 - Cladonia portentosa: LTS0200789
- 5198 - Cladoniaceae: LTS0200789
- 29597 - Coniogramme: LTS0200789
- 29598 - Coniogramme japonica: 10.1016/0305-1978(85)90030-4
- 29598 - Coniogramme japonica: LTS0200789
- 4118 - Convolvulaceae: LTS0200789
- 45948 - Corbicula: LTS0200789
- 141464 - Corbicula japonica: 10.1021/JF058088T
- 141464 - Corbicula japonica: LTS0200789
- 141465 - Corbicula sandai: 10.1021/JF058088T
- 141465 - Corbicula sandai: LTS0200789
- 13464 - Crepis: LTS0200789
- 55615 - Crepis tectorum: 10.1007/BF00580095
- 55615 - Crepis tectorum: LTS0200789
- 3655 - Cucumis: LTS0200789
- 3656 - Cucumis melo: 10.1111/J.1365-2621.1986.TB10851.X
- 3656 - Cucumis melo: LTS0200789
- 3660 - Cucurbita: 10.1111/J.1365-2621.1986.TB10851.X
- 3660 - Cucurbita: LTS0200789
- 3662 - Cucurbita moschata: 10.1021/JF9708655
- 3662 - Cucurbita moschata: LTS0200789
- 3650 - Cucurbitaceae: LTS0200789
- 3367 - Cupressaceae: LTS0200789
- 32180 - Cyclosorus: LTS0200789
- 714463 - Cyclosorus parasiticus: 10.1016/0305-1978(85)90030-4
- 1176409 - Cyrenidae: LTS0200789
- 84613 - Cyrtomium: LTS0200789
- 84614 - Cyrtomium falcatum: 10.1016/0305-1978(85)90030-4
- 84614 - Cyrtomium falcatum: LTS0200789
- 31412 - Cystocloniaceae: LTS0200789
- 257570 - Cystoclonium: LTS0200789
- 257571 - Cystoclonium purpureum: 10.1016/S0031-9422(00)85526-0
- 257571 - Cystoclonium purpureum: LTS0200789
- 4038 - Daucus: LTS0200789
- 4039 - Daucus carota:
- 4039 - Daucus carota: 10.1021/AC961911N
- 4039 - Daucus carota: 10.1021/JF00023A019
- 4039 - Daucus carota: 10.1021/JF00059A019
- 4039 - Daucus carota: 10.1021/JF9708655
- 4039 - Daucus carota: 10.1104/PP.86.4.1286
- 4039 - Daucus carota: 10.1111/J.1365-2621.1986.TB10851.X
- 4039 - Daucus carota: 10.1111/J.1365-2621.1996.TB12198.X
- 4039 - Daucus carota: 10.1271/BBB1961.49.1211
- 4039 - Daucus carota: LTS0200789
- 29638 - Davallia: LTS0200789
- 2487050 - Davallia sinensis: 10.1016/0305-1978(85)90030-4
- 2487050 - Davallia sinensis: LTS0200789
- 194872 - Davallia solida: 10.1016/0305-1978(85)90030-4
- 194872 - Davallia solida: LTS0200789
- 29637 - Davalliaceae: LTS0200789
- 6042 - Demospongiae: LTS0200789
- 32084 - Dennstaedtiaceae: LTS0200789
- 13492 - Diospyros: LTS0200789
- 35925 - Diospyros kaki:
- 35925 - Diospyros kaki: 10.1007/BF00575777
- 35925 - Diospyros kaki: 10.1007/BF00597870
- 35925 - Diospyros kaki: 10.1016/S0031-9422(00)80801-8
- 35925 - Diospyros kaki: LTS0200789
- 29614 - Diplazium: LTS0200789
- 86695 - Diplazium sibiricum: 10.1016/0305-1978(85)90030-4
- 86695 - Diplazium sibiricum: LTS0200789
- 29607 - Dryopteridaceae: LTS0200789
- 3287 - Dryopteris: LTS0200789
- 239555 - Dryopteris carthusiana: 10.1016/0305-1978(85)90030-4
- 239555 - Dryopteris carthusiana: LTS0200789
- 3044 - Dunaliella: LTS0200789
- 3046 - Dunaliella salina: 10.1104/PP.86.4.1286
- 3046 - Dunaliella salina: LTS0200789
- 3043 - Dunaliellaceae: LTS0200789
- 19955 - Ebenaceae: LTS0200789
- 25996 - Elaeagnaceae: LTS0200789
- 51952 - Elaeis: LTS0200789
- 51953 - Elaeis guineensis: 10.1093/AJCN/49.5.849
- 51953 - Elaeis guineensis: LTS0200789
- 3256 - Equisetaceae: LTS0200789
- 3257 - Equisetum: LTS0200789
- 3258 - Equisetum arvense: 10.1016/0305-1978(85)90030-4
- 3258 - Equisetum arvense: LTS0200789
- 231680 - Equisetum fluviatile: 10.1016/0305-1978(85)90030-4
- 231680 - Equisetum fluviatile: LTS0200789
- 3262 - Equisetum hyemale: 10.1016/0305-1978(85)90030-4
- 3262 - Equisetum hyemale: LTS0200789
- 113538 - Equisetum palustre: 10.1016/0305-1978(85)90030-4
- 113538 - Equisetum palustre: LTS0200789
- 231681 - Equisetum pratense: 10.1016/0305-1978(85)90030-4
- 231681 - Equisetum pratense: LTS0200789
- 231679 - Equisetum sylvaticum: 10.1016/0305-1978(85)90030-4
- 231679 - Equisetum sylvaticum: LTS0200789
- 3260 - Equisetum telmateia: 10.1016/0305-1978(85)90030-4
- 3260 - Equisetum telmateia: LTS0200789
- 4345 - Ericaceae: LTS0200789
- 23166 - Eriobotrya: LTS0200789
- 32224 - Eriobotrya japonica: 10.1104/PP.86.4.1286
- 32224 - Eriobotrya japonica: LTS0200789
- 3035 - Euglenida: LTS0200789
- 33682 - Euglenozoa: LTS0200789
- 2759 - Eukaryota: LTS0200789
- 4306 - Euonymus: LTS0200789
- 212708 - Euonymus japonicus: 10.1271/BBB1961.49.1211
- 212708 - Euonymus japonicus: LTS0200789
- 3990 - Euphorbia: LTS0200789
- 3015701 - Euphorbia lancifolia: LTS0200789
- 3977 - Euphorbiaceae: LTS0200789
- 73024 - Eutreptiella: LTS0200789
- 73025 - Eutreptiella gymnastica: 10.1016/S0031-9422(82)85046-2
- 73025 - Eutreptiella gymnastica: LTS0200789
- 3803 - Fabaceae: LTS0200789
- 2806 - Florideophyceae: LTS0200789
- 3746 - Fragaria: 10.1111/J.1365-2621.1986.TB10851.X
- 3746 - Fragaria: LTS0200789
- 4751 - Fungi: LTS0200789
- 6448 - Gastropoda: LTS0200789
- 3846 - Glycine: LTS0200789
- 3847 - Glycine max: 10.1271/BBB1961.49.1211
- 3847 - Glycine max: LTS0200789
- 6061 - Halichondria: LTS0200789
- 6062 - Halichondria japonica: 10.1246/BCSJ.30.111
- 6062 - Halichondria japonica: LTS0200789
- 6060 - Halichondriidae: LTS0200789
- 47605 - Hibiscus: LTS0200789
- 106335 - Hibiscus syriacus: 10.1021/JF60182A030
- 106335 - Hibiscus syriacus: LTS0200789
- 48233 - Hippophae: LTS0200789
- 193516 - Hippophae rhamnoides: 10.1007/BF00570873
- 193516 - Hippophae rhamnoides: LTS0200789
- 9606 - Homo sapiens: -
- 68758 - Hydnaceae: LTS0200789
- 360966 - Ia: LTS0200789
- 360967 - Ia io: 10.3891/ACTA.CHEM.SCAND.01-0507
- 360967 - Ia io: LTS0200789
- 4119 - Ipomoea: LTS0200789
- 4120 - Ipomoea batatas: 10.1111/J.1365-2621.1986.TB10851.X
- 4120 - Ipomoea batatas: LTS0200789
- 4235 - Lactuca: LTS0200789
- 4236 - Lactuca sativa:
- 4236 - Lactuca sativa: 10.1104/PP.86.4.1286
- 4236 - Lactuca sativa: 10.1111/J.1365-2621.1986.TB10851.X
- 4236 - Lactuca sativa: LTS0200789
- 75943 - Lactuca serriola: 10.1271/BBB1961.49.1211
- 75943 - Lactuca serriola: LTS0200789
- 4136 - Lamiaceae: LTS0200789
- 147547 - Lecanoromycetes: LTS0200789
- 4447 - Liliopsida: LTS0200789
- 3963 - Loranthaceae: LTS0200789
- 3398 - Magnoliopsida: LTS0200789
- 3629 - Malvaceae: LTS0200789
- 40674 - Mammalia: LTS0200789
- 3276 - Matteuccia: LTS0200789
- 3277 - Matteuccia struthiopteris: 10.1016/0305-1978(85)90030-4
- 3277 - Matteuccia struthiopteris: 10.1111/J.1365-2621.1985.TB10508.X
- 3277 - Matteuccia struthiopteris: LTS0200789
- 3370 - Metasequoia: LTS0200789
- 3371 - Metasequoia glyptostroboides: 10.1016/0305-1978(87)90003-2
- 3371 - Metasequoia glyptostroboides: LTS0200789
- 33208 - Metazoa: LTS0200789
- 32096 - Microlepia: LTS0200789
- 449865 - Microlepia speluncae: 10.1016/0305-1978(85)90030-4
- 449865 - Microlepia speluncae: LTS0200789
- 6447 - Mollusca: LTS0200789
- 3671 - Momordica: LTS0200789
- 3673 - Momordica charantia: 10.1016/S0031-9422(99)00174-0
- 3673 - Momordica charantia: LTS0200789
- 178475 - Niphatidae: LTS0200789
- 4145 - Olea: LTS0200789
- 4146 - Olea europaea: 10.1002/0471684228.EGP08791
- 4146 - Olea europaea: LTS0200789
- 4144 - Oleaceae: LTS0200789
- 693794 - Onocleaceae: LTS0200789
- 204150 - Orthosiphon: LTS0200789
- 204151 - Orthosiphon aristatus: 10.1007/BF00596668
- 4726 - Pandanus tectorius: 10.1079/PHN2005892
- 78060 - Parmeliaceae: LTS0200789
- 48385 - Perilla: LTS0200789
- 48386 - Perilla frutescens: 10.1271/BBB1961.49.1211
- 48386 - Perilla frutescens: LTS0200789
- 179837 - Perilla frutescens var. crispa: 10.1016/J.FCT.2009.10.009
- 3883 - Phaseolus: LTS0200789
- 3885 - Phaseolus vulgaris:
- 3885 - Phaseolus vulgaris: 10.1021/JF00023A019
- 3885 - Phaseolus vulgaris: 10.1111/J.1365-2621.1986.TB10851.X
- 3885 - Phaseolus vulgaris: LTS0200789
- 3328 - Picea: LTS0200789
- 3329 - Picea abies: 10.1111/J.1439-0329.1984.TB00176.X
- 3329 - Picea abies: LTS0200789
- 3318 - Pinaceae: LTS0200789
- 58019 - Pinopsida: LTS0200789
- 3887 - Pisum: LTS0200789
- 3888 - Pisum sativum: 10.1111/J.1365-2621.1986.TB10851.X
- 3888 - Pisum sativum: LTS0200789
- 164273 - Pityrogramma: LTS0200789
- 1868143 - Pityrogramma sulphurea: 10.1016/0305-1978(85)90030-4
- 1868143 - Pityrogramma sulphurea: LTS0200789
- 4479 - Poaceae: LTS0200789
- 6341 - Polychaeta: LTS0200789
- 3615 - Polygonaceae: LTS0200789
- 241806 - Polypodiopsida: LTS0200789
- 3278 - Polystichum: LTS0200789
- 983335 - Polystichum aculeatum: 10.1016/0305-1978(85)90030-4
- 983335 - Polystichum aculeatum: LTS0200789
- 6040 - Porifera: LTS0200789
- 23204 - Potentilla: LTS0200789
- 654633 - Potentilla argentea: 10.1007/BF00629945
- 654633 - Potentilla argentea: LTS0200789
- 57940 - Potentilla erecta: 10.1007/BF00629945
- 57940 - Potentilla erecta: LTS0200789
- 51281 - Protula: LTS0200789
- 363316 - Protula tubularia: 10.1016/0305-0491(84)90180-9
- 363316 - Protula tubularia: LTS0200789
- 3754 - Prunus: LTS0200789
- 36596 - Prunus armeniaca:
- 36596 - Prunus armeniaca: 10.1104/PP.86.4.1286
- 36596 - Prunus armeniaca: 10.1111/J.1365-2621.1986.TB10851.X
- 36596 - Prunus armeniaca: LTS0200789
- 3760 - Prunus persica:
- 3760 - Prunus persica: 10.1104/PP.86.4.1286
- 3760 - Prunus persica: 10.1111/J.1365-2621.1986.TB10851.X
- 3760 - Prunus persica: LTS0200789
- 3759 - Prunus yedoensis: 10.1271/BBB1961.49.1211
- 3759 - Prunus yedoensis: LTS0200789
- 13819 - Pteridaceae: LTS0200789
- 32100 - Pteridium: LTS0200789
- 32101 - Pteridium aquilinum: 10.1016/0305-1978(85)90030-4
- 32101 - Pteridium aquilinum: LTS0200789
- 3766 - Pyrus: LTS0200789
- 23211 - Pyrus communis: 10.1007/BF00598399
- 23211 - Pyrus communis: LTS0200789
- 3725 - Raphanus: LTS0200789
- 3726 - Raphanus sativus:
- 3726 - Raphanus sativus: 10.1271/BBB1961.49.1211
- 3726 - Raphanus sativus: LTS0200789
- 4346 - Rhododendron: LTS0200789
- 75581 - Rhododendron indicum: 10.1271/BBB1961.49.1211
- 75581 - Rhododendron indicum: LTS0200789
- 2763 - Rhodophyta: LTS0200789
- 3764 - Rosa: LTS0200789
- 117266 - Rosa platyacantha: 10.1007/BF00566112
- 117266 - Rosa platyacantha: LTS0200789
- 3745 - Rosaceae: LTS0200789
- 23216 - Rubus: LTS0200789
- 32247 - Rubus idaeus: 10.1111/J.1365-2621.1986.TB10851.X
- 32247 - Rubus idaeus: LTS0200789
- 3618 - Rumex: LTS0200789
- 23513 - Rutaceae: LTS0200789
- 3958 - Santalaceae: LTS0200789
- 23672 - Sapindaceae: LTS0200789
- 40906 - Scandix: LTS0200789
- 109145 - Scandix stellata: 10.1007/BF02024787
- 109145 - Scandix stellata: LTS0200789
- 396367 - Scutellaria barbata: 10.1016/J.JPBA.2011.01.016
- 51280 - Serpulidae: LTS0200789
- 4070 - Solanaceae: LTS0200789
- 4107 - Solanum: LTS0200789
- 4113 - Solanum tuberosum: 10.1021/JF00023A019
- 4113 - Solanum tuberosum: LTS0200789
- 23222 - Sorbus: LTS0200789
- 36599 - Sorbus aucuparia: 10.1093/OXFORDJOURNALS.AOB.A084605
- 36599 - Sorbus aucuparia: LTS0200789
- 3561 - Spinacia: LTS0200789
- 3562 - Spinacia oleracea: 10.1111/J.1365-2621.1986.TB10851.X
- 3562 - Spinacia oleracea: LTS0200789
- 50937 - Stereocaulaceae: LTS0200789
- 50938 - Stereocaulon: LTS0200789
- 405089 - Stereocaulon botryosum: 10.1016/0305-1978(87)90002-0
- 50940 - Stereocaulon paschale: 10.1016/0305-1978(87)90002-0
- 50940 - Stereocaulon paschale: LTS0200789
- 35493 - Streptophyta: LTS0200789
- 34493 - Tethya: LTS0200789
- 281732 - Tethya aurantium: 10.1016/0305-0491(84)90180-9
- 281732 - Tethya aurantium: LTS0200789
- 45120 - Tethyidae: LTS0200789
- 27065 - Theaceae: LTS0200789
- 29616 - Thelypteridaceae: LTS0200789
- 58023 - Tracheophyta: LTS0200789
- 3898 - Trifolium: LTS0200789
- 3899 - Trifolium repens: 10.1007/BF00580095
- 3899 - Trifolium repens: LTS0200789
- 74529 - Trifolium semipilosum: 10.1007/BF00580095
- 13749 - Vaccinium: LTS0200789
- 69266 - Vaccinium corymbosum: 10.1111/J.1365-2621.1986.TB10851.X
- 69266 - Vaccinium corymbosum: LTS0200789
- 13750 - Vaccinium macrocarpon: 10.1021/JF00087A017
- 13750 - Vaccinium macrocarpon: LTS0200789
- 9431 - Vespertilionidae: LTS0200789
- 33090 - Viridiplantae: LTS0200789
- 1003255 - Viscaceae: LTS0200789
- 3971 - Viscum: LTS0200789
- 3972 - Viscum album: 10.1055/S-1999-14089
- 3972 - Viscum album: LTS0200789
- 3602 - Vitaceae: LTS0200789
- 3603 - Vitis: LTS0200789
- 29760 - Vitis vinifera:
- 29760 - Vitis vinifera: 10.1007/BF00574814
- 29760 - Vitis vinifera: 10.1021/JF00087A017
- 29760 - Vitis vinifera: LTS0200789
- 4575 - Zea: LTS0200789
- 4577 - Zea mays: 10.1271/BBB1961.49.1211
- 4577 - Zea mays: LTS0200789
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Zhilei Qin, Mengsu Liu, Xuefeng Ren, Weizhu Zeng, Zhengshan Luo, Jingwen Zhou. De Novo Biosynthesis of Lutein in Yarrowia lipolytica.
Journal of agricultural and food chemistry.
2024 Mar; 72(10):5348-5357. doi:
10.1021/acs.jafc.3c09080
. [PMID: 38412053] - Weidong Chen, Yuanqing Li, Min Li, Hai Li, Caifang Chen, Yanzhao Lin. Association between dietary carotenoid intakes and abdominal aortic calcification in adults: National Health and Nutrition Examination Survey 2013-2014.
Journal of health, population, and nutrition.
2024 Feb; 43(1):20. doi:
10.1186/s41043-024-00511-9
. [PMID: 38303096] - Shaohua Yan, Siyu Chen, Yumiao Liu, Hongbin Liang, Xinlu Zhang, Qiuxia Zhang, Jiancheng Xiu. Associations of serum carotenoids with visceral adiposity index and lipid accumulation product: a cross-sectional study based on NHANES 2001-2006.
Lipids in health and disease.
2023 Nov; 22(1):209. doi:
10.1186/s12944-023-01945-6
. [PMID: 38037060] - Ya-Hui Wang, Yu-Qing Zhang, Rong-Rong Zhang, Fei-Yun Zhuang, Hui Liu, Zhi-Sheng Xu, Ai-Sheng Xiong. Lycopene ε-cyclase mediated transition of α-carotene and β-carotene metabolic flow in carrot fleshy root.
The Plant journal : for cell and molecular biology.
2023 May; ?(?):. doi:
10.1111/tpj.16275
. [PMID: 37158657] - Ou Sheng, Zhibin Yin, Wenjie Huang, Mengyu Chen, Mingyi Du, Qian Kong, Alisdair R Fernie, Ganjun Yi, Shijuan Yan. Metabolic profiling reveals genotype-associated alterations in carotenoid content during banana postharvest ripening.
Food chemistry.
2023 Mar; 403(?):134380. doi:
10.1016/j.foodchem.2022.134380
. [PMID: 36194931] - Zilong Zhao, Jing Chen, FangFang Ci, He Pang, Ning Cheng, Aijia Xing. α-Carotene: a valuable carotenoid in biological and medical research.
Journal of the science of food and agriculture.
2022 Oct; 102(13):5606-5617. doi:
10.1002/jsfa.11966
. [PMID: 35478460] - Tong Li, Yuan-Jie Deng, Jie-Xia Liu, Ao-Qi Duan, Hui Liu, Ai-Sheng Xiong. DcCCD4 catalyzes the degradation of α-carotene and β-carotene to affect carotenoid accumulation and taproot color in carrot.
The Plant journal : for cell and molecular biology.
2021 11; 108(4):1116-1130. doi:
10.1111/tpj.15498
. [PMID: 34547154] - Yihan Zhao, Xufeng Yang, Yuwei Hu, Qiuming Gu, Weiling Chen, Jiaqi Li, Xinbo Guo, Yutao Liu. Evaluation of Carotenoids Accumulation and Biosynthesis in Two Genotypes of Pomelo (Citrus maxima) during Early Fruit Development.
Molecules (Basel, Switzerland).
2021 Aug; 26(16):. doi:
10.3390/molecules26165054
. [PMID: 34443643] - Zhe-Yu Yang, Wei-Liang Chen. Physiological significance of link between polycyclic aromatic hydrocarbons and serum nutritional biomarkers.
Food chemistry.
2021 Aug; 353(?):129445. doi:
10.1016/j.foodchem.2021.129445
. [PMID: 33714110] - Dejene Kebede, Wende Mengesha, Abebe Menkir, Ayodeji Abe, Ana Luisa Garcia-Oliveira, Melaku Gedil. Marker based enrichment of provitamin A content in two tropical maize synthetics.
Scientific reports.
2021 07; 11(1):14998. doi:
10.1038/s41598-021-94586-7
. [PMID: 34294860] - Saki Tokunaga, Daichi Morimoto, Takahisa Koyama, Yuki Kubo, Mai Shiroi, Kanta Ohara, Tokuhiro Higashine, Yuki Mori, Satoshi Nakagawa, Shigeki Sawayama. Enhanced Lutein Production in Chlamydomonas reinhardtii by Overexpression of the Lycopene Epsilon Cyclase Gene.
Applied biochemistry and biotechnology.
2021 Jun; 193(6):1967-1978. doi:
10.1007/s12010-021-03524-w
. [PMID: 33528746] - T Shalini, Sarin S Jose, P S Prasanthi, N Balakrishna, K Viswanath, G Bhanuprakash Reddy. Carotenoid status in type 2 diabetes patients with and without retinopathy.
Food & function.
2021 May; 12(10):4402-4410. doi:
10.1039/d0fo03321a
. [PMID: 33928954] - Xiaoran Liu, Klodian Dhana, Jeremy D Furtado, Puja Agarwal, Neelum T Aggarwal, Christy Tangney, Nancy Laranjo, Vincent Carey, Lisa L Barnes, Frank M Sacks. Higher circulating α-carotene was associated with better cognitive function: an evaluation among the MIND trial participants.
Journal of nutritional science.
2021; 10(?):e64. doi:
10.1017/jns.2021.56
. [PMID: 34527222] - Shan Li, Xianglu Zhu, Lin Zhu, Xin Hu, Shujuan Wen. Associations between serum carotenoid levels and the risk of non-Hodgkin lymphoma: a case-control study.
The British journal of nutrition.
2020 12; 124(12):1311-1319. doi:
10.1017/s000711452000152x
. [PMID: 32349798] - Raeda El Sayed Ahmad, Mariam Baroudi, Hibeh Shatila, Lara Nasreddine, Fatima Al Zahraa Chokor, Rana F Chehab, Michele R Forman, Farah Naja. Validity and Reproducibility of a Culture-Specific Food Frequency Questionnaire in Lebanon.
Nutrients.
2020 Oct; 12(11):. doi:
10.3390/nu12113316
. [PMID: 33137973] - Qianqian Sun, Lun Liu, Lei Zhang, Hongmei Lv, Qing He, Luqin Guo, Xichun Zhang, Hongju He, Shuxin Ren, Na Zhang, Bing Zhao, Yang-Dong Guo. Melatonin promotes carotenoid biosynthesis in an ethylene-dependent manner in tomato fruits.
Plant science : an international journal of experimental plant biology.
2020 Sep; 298(?):110580. doi:
10.1016/j.plantsci.2020.110580
. [PMID: 32771141] - Cheryl L Rock, Elizabeth Zunshine, Huong Thien Nguyen, Annemarie O Perez, Christine Zoumas, Bilge Pakiz, Martha M White. Effects of Pistachio Consumption in a Behavioral Weight Loss Intervention on Weight Change, Cardiometabolic Factors, and Dietary Intake.
Nutrients.
2020 Jul; 12(7):. doi:
10.3390/nu12072155
. [PMID: 32698457] - Ping Lin, Qian Ren, Qin Wang, Jiali Wu. Carotenoids Inhibit Fructose-Induced Inflammatory Response in Human Endothelial Cells and Monocytes.
Mediators of inflammation.
2020; 2020(?):5373562. doi:
10.1155/2020/5373562
. [PMID: 32410856] - Francilia Campos de Siqueira, Deusa do Socorro Teixeira Costa Leitão, Adriana Zerlotti Mercadante, Renan Campos Chisté, Alessandra Santos Lopes. Profile of phenolic compounds and carotenoids of Arrabidaea chica leaves and the in vitro singlet oxygen quenching capacity of their hydrophilic extract.
Food research international (Ottawa, Ont.).
2019 12; 126(?):108597. doi:
10.1016/j.foodres.2019.108597
. [PMID: 31732026] - Rebecca Peixoto Paes-Silva, Patrícia Calado Ferreira Pinheiro Gadelha, Maria da Conceição Chaves de Lemos, Célia Maria Machado Barbosa de Castro, Ilma Kruze Grande de Arruda, Alcides da Silva Diniz. Adiposity, inflammation and fat-soluble vitamins in adolescents.
Jornal de pediatria.
2019 Sep; 95(5):575-583. doi:
10.1016/j.jped.2018.05.008
. [PMID: 29963989] - Xiumin Fu, Sihua Cheng, Chao Feng, Ming Kang, Bingzhi Huang, Yueming Jiang, Xuewu Duan, Don Grierson, Ziyin Yang. Lycopene cyclases determine high α-/β-carotene ratio and increased carotenoids in bananas ripening at high temperatures.
Food chemistry.
2019 Jun; 283(?):131-140. doi:
10.1016/j.foodchem.2018.12.121
. [PMID: 30722852] - Tyler J Titcomb, Mikayla S Kaeppler, Sofía Beatriz Sandoval Cates, Jamie M Shannon, Philipp W Simon, Sherry A Tanumihardjo. Carrot Leaves Maintain Liver Vitamin A Concentrations in Male Mongolian Gerbils Regardless of the Ratio of α- to β-Carotene When β-Carotene Equivalents Are Equalized.
The Journal of nutrition.
2019 06; 149(6):951-958. doi:
10.1093/jn/nxz036
. [PMID: 31050738] - Helena de Oliveira Schmidt, Fernanda C Rockett, Carlos H Pagno, Jucelaine Possa, Renato Q Assis, Viviani R de Oliveira, Vanuska L da Silva, Simone H Flôres, Alessandro de Oliveira Rios. Vitamin and bioactive compound diversity of seven fruit species from south Brazil.
Journal of the science of food and agriculture.
2019 May; 99(7):3307-3317. doi:
10.1002/jsfa.9544
. [PMID: 30569496] - Laura J Lutz, Anna T Nakayama, J Philip Karl, James P McClung, Erin Gaffney-Stomberg. Serum and Erythrocyte Biomarkers of Nutrient Status Correlate with Short-Term Α-Carotene, Β-Carotene, Folate, and Vegetable Intakes Estimated by Food Frequency Questionnaire in Military Recruits.
Journal of the American College of Nutrition.
2019 02; 38(2):171-178. doi:
10.1080/07315724.2018.1490215
. [PMID: 30398960] - Melissa Thoene, Ann Anderson-Berry, Matthew Van Ormer, Jeremy Furtado, Ghada A Soliman, Whitney Goldner, Corrine Hanson. Quantification of Lutein + Zeaxanthin Presence in Human Placenta and Correlations with Blood Levels and Maternal Dietary Intake.
Nutrients.
2019 Jan; 11(1):. doi:
10.3390/nu11010134
. [PMID: 30634589] - Maxime Gauthier, Philippe Aras, Joanne Paquin, Monique Boily. Chronic exposure to imidacloprid or thiamethoxam neonicotinoid causes oxidative damages and alters carotenoid-retinoid levels in caged honey bees (Apis mellifera).
Scientific reports.
2018 11; 8(1):16274. doi:
10.1038/s41598-018-34625-y
. [PMID: 30390008] - Kiersten Olsen, Devika J Suri, Christopher Davis, Jesse Sheftel, Kohei Nishimoto, Yusuke Yamaoka, Yutaka Toya, Nathan V Welham, Sherry A Tanumihardjo. Serum retinyl esters are positively correlated with analyzed total liver vitamin A reserves collected from US adults at time of death.
The American journal of clinical nutrition.
2018 11; 108(5):997-1005. doi:
10.1093/ajcn/nqy190
. [PMID: 30475970] - Marianne Prasad, Hanna-Mari Takkinen, Liisa Uusitalo, Heli Tapanainen, Marja-Leena Ovaskainen, Georg Alfthan, Iris Erlund, Suvi Ahonen, Mari Åkerlund, Jorma Toppari, Jorma Ilonen, Mikael Knip, Riitta Veijola, Suvi M Virtanen. Carotenoid Intake and Serum Concentration in Young Finnish Children and Their Relation with Fruit and Vegetable Consumption.
Nutrients.
2018 Oct; 10(10):. doi:
10.3390/nu10101533
. [PMID: 30336644] - Jean Fidèle Bationo, Augustin N Zeba, Souheila Abbeddou, Nadine D Coulibaly, Olivier O Sombier, Jesse Sheftel, Imael Henri Nestor Bassole, Nicolas Barro, Jean Bosco Ouedraogo, Sherry A Tanumihardjo. Serum Carotenoids Reveal Poor Fruit and Vegetable Intake among Schoolchildren in Burkina Faso.
Nutrients.
2018 Oct; 10(10):. doi:
10.3390/nu10101422
. [PMID: 30287727] - Mohsen Mazidi, Andre Pascal Kengne, L J Cheskin, Maciej Banach. Serum lipophilic antioxidants levels are associated with leucocyte telomere length among US adults.
Lipids in health and disease.
2018 Jul; 17(1):164. doi:
10.1186/s12944-018-0781-x
. [PMID: 30029639] - Nattawut Leelakanok, Ronilda R D'Cunha, Grerk Sutamtewagul, Marin L Schweizer. A systematic review and meta-analysis of the association between vitamin A intake, serum vitamin A, and risk of liver cancer.
Nutrition and health.
2018 Jun; 24(2):121-131. doi:
10.1177/0260106018777170
. [PMID: 29792083] - Meng-Chuan Huang, Kun-Der Lin, Hung-Jiun Chen, Yu-Ju Wu, Chiao-I Chang, Shyi-Jang Shin, Hsin-Chia Hung, Chien-Hung Lee, Ya-Fang Huang, Chih-Cheng Hsu. Validity of a Short Food Frequency Questionnaire Assessing Macronutrient and Fiber Intakes in Patients of Han Chinese Descent with Type 2 Diabetes.
International journal of environmental research and public health.
2018 06; 15(6):. doi:
10.3390/ijerph15061142
. [PMID: 29857595] - Jing Ma, Jingwen Li, Zhisheng Xu, Feng Wang, Aisheng Xiong. Transcriptome profiling of genes involving in carotenoid biosynthesis and accumulation between leaf and root of carrot (Daucus carota L.).
Acta biochimica et biophysica Sinica.
2018 May; 50(5):481-490. doi:
10.1093/abbs/gmy027
. [PMID: 29617714] - Cheng Wang, Rui Qiu, Yi Cao, Wei-Fu Ouyang, Hua-Bin Li, Wen-Hua Ling, Yu-Ming Chen. Higher dietary and serum carotenoid levels are associated with lower carotid intima-media thickness in middle-aged and elderly people.
The British journal of nutrition.
2018 03; 119(5):590-598. doi:
10.1017/s0007114517003932
. [PMID: 29508696] - Amanda C Palmer, Neal E Craft, Kerry J Schulze, Maxwell Barffour, Justin Chileshe, Ward Siamusantu, Keith P West. Impact of biofortified maize consumption on serum carotenoid concentrations in Zambian children.
European journal of clinical nutrition.
2018 02; 72(2):301-303. doi:
10.1038/s41430-017-0054-1
. [PMID: 29321687] - Bojiang Li, Qiannan Weng, Zequn Liu, Ming Shen, Jiaqing Zhang, Wangjun Wu, Honglin Liu. Selection of antioxidants against ovarian oxidative stress in mouse model.
Journal of biochemical and molecular toxicology.
2017 Dec; 31(12):. doi:
10.1002/jbt.21997
. [PMID: 29205955] - Shunan Dong, Hui Xia, Feng Wang, Guiju Sun. The Effect of Red Palm Oil on Vitamin A Deficiency: A Meta-Analysis of Randomized Controlled Trials.
Nutrients.
2017 11; 9(12):. doi:
10.3390/nu9121281
. [PMID: 29186779] - Wendy S White, Yang Zhou, Agatha Crane, Philip Dixon, Frits Quadt, Leonard M Flendrig. Modeling the dose effects of soybean oil in salad dressing on carotenoid and fat-soluble vitamin bioavailability in salad vegetables.
The American journal of clinical nutrition.
2017 Oct; 106(4):1041-1051. doi:
10.3945/ajcn.117.153635
. [PMID: 28814399] - Jing Huang, Min-Shan Lu, Yu-Jing Fang, Ming Xu, Wu-Qing Huang, Zhi-Zhong Pan, Yu-Ming Chen, Cai-Xia Zhang. Serum carotenoids and colorectal cancer risk: A case-control study in Guangdong, China.
Molecular nutrition & food research.
2017 10; 61(10):. doi:
10.1002/mnfr.201700267
. [PMID: 28605127] - José J Ríos, Ana Augusta Odorissi Xavier, Elena Díaz-Salido, Isabel Arenilla-Vélez, Manuel Jarén-Galán, Juan Garrido-Fernández, Josefa Aguayo-Maldonado, Antonio Pérez-Gálvez. Xanthophyll esters are found in human colostrum.
Molecular nutrition & food research.
2017 10; 61(10):. doi:
10.1002/mnfr.201700296
. [PMID: 28586173] - Jing Ma, Zhisheng Xu, Guofei Tan, Feng Wang, Aisheng Xiong. Distinct transcription profile of genes involved in carotenoid biosynthesis among six different color carrot (Daucus carota L.) cultivars.
Acta biochimica et biophysica Sinica.
2017 Sep; 49(9):817-826. doi:
10.1093/abbs/gmx081
. [PMID: 28910981] - Lee Ashton, Rebecca Williams, Lisa Wood, Tracy Schumacher, Tracy Burrows, Megan Rollo, Kristine Pezdirc, Robin Callister, Clare Collins. Comparison of Australian Recommended Food Score (ARFS) and Plasma Carotenoid Concentrations: A Validation Study in Adults.
Nutrients.
2017 Aug; 9(8):. doi:
10.3390/nu9080888
. [PMID: 28817083] - Vidya S Farook, Lavanya Reddivari, Srinivas Mummidi, Sobha Puppala, Rector Arya, Juan Carlos Lopez-Alvarenga, Sharon P Fowler, Geetha Chittoor, Roy G Resendez, Birunda Mohan Kumar, Anthony G Comuzzie, Joanne E Curran, Donna M Lehman, Christopher P Jenkinson, Jane L Lynch, Ralph A DeFronzo, John Blangero, Daniel E Hale, Ravindranath Duggirala, Jairam Kp Vanamala. Genetics of serum carotenoid concentrations and their correlation with obesity-related traits in Mexican American children.
The American journal of clinical nutrition.
2017 Jul; 106(1):52-58. doi:
10.3945/ajcn.116.144006
. [PMID: 28515064] - Jessica L Cooperstone, Hilary J Goetz, Ken M Riedl, Earl H Harrison, Steven J Schwartz, Rachel E Kopec. Relative contribution of α-carotene to postprandial vitamin A concentrations in healthy humans after carrot consumption.
The American journal of clinical nutrition.
2017 Jul; 106(1):59-66. doi:
10.3945/ajcn.116.150821
. [PMID: 28515067] - Emily Taylor Nuss, Ashley R Valentine, Zhumin Zhang, HuiChuan Jennifer Lai, Sherry A Tanumihardjo. Serum carotenoid interactions in premenopausal women reveal α-carotene is negatively impacted by body fat.
Experimental biology and medicine (Maywood, N.J.).
2017 06; 242(12):1262-1270. doi:
10.1177/1535370217706962
. [PMID: 28440717] - Apinya Wisutiamonkul, Charles Ampomah-Dwamena, Andrew C Allan, Saichol Ketsa. Carotenoid accumulation in durian (Durio zibethinus) fruit is affected by ethylene via modulation of carotenoid pathway gene expression.
Plant physiology and biochemistry : PPB.
2017 Jun; 115(?):308-319. doi:
10.1016/j.plaphy.2017.03.021
. [PMID: 28415031] - Johanna W Lampe, Ying Huang, Marian L Neuhouser, Lesley F Tinker, Xiaoling Song, Dale A Schoeller, Soyoung Kim, Daniel Raftery, Chongzhi Di, Cheng Zheng, Yvonne Schwarz, Linda Van Horn, Cynthia A Thomson, Yasmin Mossavar-Rahmani, Shirley Aa Beresford, Ross L Prentice. Dietary biomarker evaluation in a controlled feeding study in women from the Women's Health Initiative cohort.
The American journal of clinical nutrition.
2017 02; 105(2):466-475. doi:
10.3945/ajcn.116.144840
. [PMID: 28031191] - Andrea Krähmer, Christoph Böttcher, Andrea Rode, Thomas Nothnagel, Hartwig Schulz. Quantifying biochemical quality parameters in carrots (Daucus carota L.) - FT-Raman spectroscopy as efficient tool for rapid metabolite profiling.
Food chemistry.
2016 Dec; 212(?):495-502. doi:
10.1016/j.foodchem.2016.05.176
. [PMID: 27374560] - Welma Stonehouse, Grant D Brinkworth, Campbell H Thompson, Mahinda Y Abeywardena. Short term effects of palm-tocotrienol and palm-carotenes on vascular function and cardiovascular disease risk: A randomised controlled trial.
Atherosclerosis.
2016 11; 254(?):205-214. doi:
10.1016/j.atherosclerosis.2016.10.027
. [PMID: 27760402] - Charles Couillard, Simone Lemieux, Marie-Claude Vohl, Patrick Couture, Benoît Lamarche. Carotenoids as biomarkers of fruit and vegetable intake in men and women.
The British journal of nutrition.
2016 Oct; 116(7):1206-1215. doi:
10.1017/s0007114516003056
. [PMID: 27572625] - Wolfgang Stuetz, Daniela Weber, Martijn E T Dollé, Eugène Jansen, Beatrix Grubeck-Loebenstein, Simone Fiegl, Olivier Toussaint, Juergen Bernhardt, Efstathios S Gonos, Claudio Franceschi, Ewa Sikora, María Moreno-Villanueva, Nicolle Breusing, Tilman Grune, Alexander Bürkle. Plasma Carotenoids, Tocopherols, and Retinol in the Age-Stratified (35-74 Years) General Population: A Cross-Sectional Study in Six European Countries.
Nutrients.
2016 Sep; 8(10):. doi:
10.3390/nu8100614
. [PMID: 27706032] - Hilary J Goetz, Rachel E Kopec, Ken M Riedl, Jessica L Cooperstone, Sureshbabu Narayanasamy, Robert W Curley, Steven J Schwartz. An HPLC-MS/MS method for the separation of α-retinyl esters from retinyl esters.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2016 Sep; 1029-1030(?):68-71. doi:
10.1016/j.jchromb.2016.06.043
. [PMID: 27423669] - Sangmi Kim, Joohee Kim, Yeni Lim, You Jin Kim, Ji Yeon Kim, Oran Kwon. A dietary cholesterol challenge study to assess Chlorella supplementation in maintaining healthy lipid levels in adults: a double-blinded, randomized, placebo-controlled study.
Nutrition journal.
2016 05; 15(1):54. doi:
10.1186/s12937-016-0174-9
. [PMID: 27177615] - Catherine Feart, Luc Letenneur, Catherine Helmer, Cécilia Samieri, Wolfgang Schalch, Stéphane Etheve, Cécile Delcourt, Jean-François Dartigues, Pascale Barberger-Gateau. Plasma Carotenoids Are Inversely Associated With Dementia Risk in an Elderly French Cohort.
The journals of gerontology. Series A, Biological sciences and medical sciences.
2016 May; 71(5):683-8. doi:
10.1093/gerona/glv135
. [PMID: 26286605] - Z-Q Zhang, W-T Cao, J Liu, Y Cao, Y-X Su, Y-M Chen. Greater serum carotenoid concentration associated with higher bone mineral density in Chinese adults.
Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA.
2016 Apr; 27(4):1593-1601. doi:
10.1007/s00198-015-3425-2
. [PMID: 26753540] - Minoru Sugiura, Mieko Nakamura, Kazunori Ogawa, Yoshinori Ikoma, Masamichi Yano. High serum carotenoids are associated with lower risk for developing elevated serum alanine aminotransferase among Japanese subjects: the Mikkabi cohort study.
The British journal of nutrition.
2016 04; 115(8):1462-9. doi:
10.1017/s0007114516000374
. [PMID: 26916997] - Tobias Nordström, Erin L Van Blarigan, Vy Ngo, Ritu Roy, Vivian Weinberg, Xiaoling Song, Jeffry Simko, Peter R Carroll, June M Chan, Pamela L Paris. Associations between circulating carotenoids, genomic instability and the risk of high-grade prostate cancer.
The Prostate.
2016 Mar; 76(4):339-48. doi:
10.1002/pros.23125
. [PMID: 26585352] - Marije F Bakker, Petra Hm Peeters, Veronique M Klaasen, H Bas Bueno-de-Mesquita, Eugene Hjm Jansen, Martine M Ros, Noémie Travier, Anja Olsen, Anne Tjønneland, Kim Overvad, Sabina Rinaldi, Isabelle Romieu, Paul Brennan, Marie-Christine Boutron-Ruault, Florence Perquier, Claire Cadeau, Heiner Boeing, Krasimira Aleksandrova, Rudolf Kaaks, Tilman Kühn, Antonia Trichopoulou, Pagona Lagiou, Dimitrios Trichopoulos, Paolo Vineis, Vittorio Krogh, Salvatore Panico, Giovanna Masala, Rosario Tumino, Elisabete Weiderpass, Guri Skeie, Eiliv Lund, J Ramón Quirós, Eva Ardanaz, Carmen Navarro, Pilar Amiano, María-José Sánchez, Genevieve Buckland, Ulrika Ericson, Emily Sonestedt, Matthias Johansson, Malin Sund, Ruth C Travis, Timothy J Key, Kay-Tee Khaw, Nick Wareham, Elio Riboli, Carla H van Gils. Plasma carotenoids, vitamin C, tocopherols, and retinol and the risk of breast cancer in the European Prospective Investigation into Cancer and Nutrition cohort.
The American journal of clinical nutrition.
2016 Feb; 103(2):454-64. doi:
10.3945/ajcn.114.101659
. [PMID: 26791185] - Christopher R D'Adamo, Valerie J Dawson, Kathleen A Ryan, Laura M Yerges-Armstrong, Richard D Semba, Nanette I Steinle, Braxton D Mitchell, Alan R Shuldiner, Patrick F McArdle. The CAPN2/CAPN8 Locus on Chromosome 1q Is Associated with Variation in Serum Alpha-Carotene Concentrations.
Journal of nutrigenetics and nutrigenomics.
2016; 9(5-6):254-264. doi:
10.1159/000452890
. [PMID: 28002826] - Minoru Sugiura, Mieko Nakamura, Kazunori Ogawa, Yoshinori Ikoma, Masamichi Yano. High serum carotenoids associated with lower risk for the metabolic syndrome and its components among Japanese subjects: Mikkabi cohort study.
The British journal of nutrition.
2015 Nov; 114(10):1674-82. doi:
10.1017/s0007114515003268
. [PMID: 26365147] - Ying Wang, Susan M Gapstur, Mia M Gaudet, Jeremy D Furtado, Hannia Campos, Marjorie L McCullough. Plasma carotenoids and breast cancer risk in the Cancer Prevention Study II Nutrition Cohort.
Cancer causes & control : CCC.
2015 Sep; 26(9):1233-44. doi:
10.1007/s10552-015-0614-4
. [PMID: 26081425] - Jung Eun Kim, Susannah L Gordon, Mario G Ferruzzi, Wayne W Campbell. Effects of egg consumption on carotenoid absorption from co-consumed, raw vegetables.
The American journal of clinical nutrition.
2015 Jul; 102(1):75-83. doi:
10.3945/ajcn.115.111062
. [PMID: 26016861] - P G Cocate, A J Natali, R C G Alfenas, A de Oliveira, E C dos Santos, H H M Hermsdorff. Carotenoid consumption is related to lower lipid oxidation and DNA damage in middle-aged men.
The British journal of nutrition.
2015 Jul; 114(2):257-64. doi:
10.1017/s0007114515001622
. [PMID: 26079483] - A Heather Eliassen, Xiaomei Liao, Bernard Rosner, Rulla M Tamimi, Shelley S Tworoger, Susan E Hankinson. Plasma carotenoids and risk of breast cancer over 20 y of follow-up.
The American journal of clinical nutrition.
2015 Jun; 101(6):1197-205. doi:
10.3945/ajcn.114.105080
. [PMID: 25877493] - Tracy L Burrows, Melinda J Hutchesson, Megan E Rollo, May M Boggess, Maya Guest, Clare E Collins. Fruit and vegetable intake assessed by food frequency questionnaire and plasma carotenoids: a validation study in adults.
Nutrients.
2015 May; 7(5):3240-51. doi:
10.3390/nu7053240
. [PMID: 25954899] - Andreas Blatt, Matthias E Bauch, Yvonne Pörschke, Martin Lohr. A lycopene β-cyclase/lycopene ε-cyclase/light-harvesting complex-fusion protein from the green alga Ostreococcus lucimarinus can be modified to produce α-carotene and β-carotene at different ratios.
The Plant journal : for cell and molecular biology.
2015 May; 82(4):582-95. doi:
10.1111/tpj.12826
. [PMID: 25759133] - Anna Vallverdú-Queralt, Jorge Regueiro, José Fernando Rinaldi de Alvarenga, Xavier Torrado, Rosa M Lamuela-Raventos. Carotenoid profile of tomato sauces: effect of cooking time and content of extra virgin olive oil.
International journal of molecular sciences.
2015 Apr; 16(5):9588-99. doi:
10.3390/ijms16059588
. [PMID: 25927580] - Aušra Brazaitytė, Sandra Sakalauskienė, Giedrė Samuolienė, Julė Jankauskienė, Akvilė Viršilė, Algirdas Novičkovas, Ramūnas Sirtautas, Jurga Miliauskienė, Viktorija Vaštakaitė, Laurynas Dabašinskas, Pavelas Duchovskis. The effects of LED illumination spectra and intensity on carotenoid content in Brassicaceae microgreens.
Food chemistry.
2015 Apr; 173(?):600-6. doi:
10.1016/j.foodchem.2014.10.077
. [PMID: 25466065] - Hristina Staleva, Josef Komenda, Mahendra K Shukla, Václav Šlouf, Radek Kaňa, Tomáš Polívka, Roman Sobotka. Mechanism of photoprotection in the cyanobacterial ancestor of plant antenna proteins.
Nature chemical biology.
2015 Apr; 11(4):287-91. doi:
10.1038/nchembio.1755
. [PMID: 25706339] - Rebecca K Golley, Sarah A McNaughton, Gilly A Hendrie. A dietary guideline adherence score is positively associated with dietary biomarkers but not lipid profile in healthy children.
The Journal of nutrition.
2015 Jan; 145(1):128-33. doi:
10.3945/jn.114.197970
. [PMID: 25527667] - Mariel Colmán-Martínez, Miriam Martínez-Huélamo, Esther Miralles, Ramón Estruch, Rosa M Lamuela-Raventós. A New Method to Simultaneously Quantify the Antioxidants: Carotenes, Xanthophylls, and Vitamin A in Human Plasma.
Oxidative medicine and cellular longevity.
2015; 2015(?):9268531. doi:
10.1155/2016/9268531
. [PMID: 26697143] - Ana Freitas, Margarida Moldão-Martins, Helena S Costa, Tânia G Albuquerque, Ana Valente, Ana Sanches-Silva. Effect of UV-C radiation on bioactive compounds of pineapple (Ananas comosus L. Merr.) by-products.
Journal of the science of food and agriculture.
2015 Jan; 95(1):44-52. doi:
10.1002/jsfa.6751
. [PMID: 24852602] - Huei-Yan Chen, Chih-Min Yang, Jen-Yin Chen, Te-Cheng Yueh, Miao-Lin Hu. Multicarotenoids at Physiological Levels Inhibit Metastasis in Human Hepatocarcinoma SK-Hep-1 Cells.
Nutrition and cancer.
2015; 67(4):676-86. doi:
10.1080/01635581.2015.1019633
. [PMID: 25868689] - Marie Modestine Kana-Sop, Inocent Gouado, Mercy Bih Achu, John Van Camp, Paul Henri Amvam Zollo, Florian J Schweigert, Donald Oberleas, Tetanye Ekoe. The Influence of Iron and Zinc Supplementation on the Bioavailability of Provitamin A Carotenoids from Papaya Following Consumption of a Vitamin A-Deficient Diet.
Journal of nutritional science and vitaminology.
2015; 61(3):205-14. doi:
10.3177/jnsv.61.205
. [PMID: 26226956] - Jun S Lai, John Attia, Mark McEvoy, Alexis J Hure. Biochemical validation of the older Australian's food frequency questionnaire using carotenoids and vitamin E.
Nutrients.
2014 Nov; 6(11):4906-17. doi:
10.3390/nu6114906
. [PMID: 25383938] - May A Beydoun, Michael A Nalls, J Atilio Canas, Michele K Evans, Alan B Zonderman. Gene polymorphisms and gene scores linked to low serum carotenoid status and their associations with metabolic disturbance and depressive symptoms in African-American adults.
The British journal of nutrition.
2014 Sep; 112(6):992-1003. doi:
10.1017/s0007114514001706
. [PMID: 25201307] - Sheryl S Aguilar, Heidi J Wengreen, Michael Lefevre, Gregory J Madden, Julie Gast. Skin carotenoids: a biomarker of fruit and vegetable intake in children.
Journal of the Academy of Nutrition and Dietetics.
2014 Aug; 114(8):1174-80. doi:
10.1016/j.jand.2014.04.026
. [PMID: 24951435] - Elisabeth Kvaavik, Torunn H Totland, Nasser Bastani, Marte K Kjøllesdal, Grethe S Tell, Lene F Andersen. Do smoking and fruit and vegetable intake mediate the association between socio-economic status and plasma carotenoids?.
European journal of public health.
2014 Aug; 24(4):685-90. doi:
10.1093/eurpub/ckt081
. [PMID: 23813714] - Rachel E Kopec, Jessica L Cooperstone, Ralf M Schweiggert, Gregory S Young, Earl H Harrison, David M Francis, Steven K Clinton, Steven J Schwartz. Avocado consumption enhances human postprandial provitamin A absorption and conversion from a novel high-β-carotene tomato sauce and from carrots.
The Journal of nutrition.
2014 Aug; 144(8):1158-66. doi:
10.3945/jn.113.187674
. [PMID: 24899156] - Kyoung-Bok Min, Jin-Young Min. Serum carotenoid levels and risk of lung cancer death in US adults.
Cancer science.
2014 Jun; 105(6):736-43. doi:
10.1111/cas.12405
. [PMID: 24673770] - Meng Yang, Ying Wang, Catherine G Davis, Sang Gil Lee, Maria Luz Fernandez, Sung I Koo, Eunyoung Cho, Won O Song, Ock K Chun. Validation of an FFQ to assess short-term antioxidant intake against 30 d food records and plasma biomarkers.
Public health nutrition.
2014 Feb; 17(2):297-306. doi:
10.1017/s1368980012005071
. [PMID: 23164175] - Yusuke Okuyama, Kotaro Ozasa, Keiichi Oki, Hoyoku Nishino, Sotaro Fujimoto, Yoshiyuki Watanabe. Inverse associations between serum concentrations of zeaxanthin and other carotenoids and colorectal neoplasm in Japanese.
International journal of clinical oncology.
2014 Feb; 19(1):87-97. doi:
10.1007/s10147-013-0520-2
. [PMID: 23380957] - Rika Watarai, Koji Suzuki, Naohiro Ichino, Keisuke Osakabe, Keiko Sugimoto, Hiroya Yamada, Takeshi Hamajima, Nobuyuki Hamajima, Takashi Inoue. Association between serum levels of carotenoids and serum asymmetric dimethylarginine levels in Japanese subjects.
Journal of epidemiology.
2014; 24(3):250-7. doi:
10.2188/jea.je20130137
. [PMID: 24727752] - Sara J Hendrickson, Walter C Willett, Bernard A Rosner, A Heather Eliassen. Food predictors of plasma carotenoids.
Nutrients.
2013 Oct; 5(10):4051-66. doi:
10.3390/nu5104051
. [PMID: 24152746] - Giedrė Samuolienė, Aušra Brazaitytė, Ramūnas Sirtautas, Akvilė Viršilė, Jurga Sakalauskaitė, Sandra Sakalauskienė, Pavelas Duchovskis. LED illumination affects bioactive compounds in romaine baby leaf lettuce.
Journal of the science of food and agriculture.
2013 Oct; 93(13):3286-91. doi:
10.1002/jsfa.6173
. [PMID: 23584932] - Patrick Borel, Georg Lietz, Aurélie Goncalves, Fabien Szabo de Edelenyi, Sophie Lecompte, Peter Curtis, Louisa Goumidi, Muriel J Caslake, Elizabeth A Miles, Christopher Packard, Philip C Calder, John C Mathers, Anne M Minihane, Franck Tourniaire, Emmanuelle Kesse-Guyot, Pilar Galan, Serge Hercberg, Christina Breidenassel, Marcela González Gross, Myriam Moussa, Aline Meirhaeghe, Emmanuelle Reboul. CD36 and SR-BI are involved in cellular uptake of provitamin A carotenoids by Caco-2 and HEK cells, and some of their genetic variants are associated with plasma concentrations of these micronutrients in humans.
The Journal of nutrition.
2013 Apr; 143(4):448-56. doi:
10.3945/jn.112.172734
. [PMID: 23427331] - Elisabeth Müllner, Helmut Brath, Daniela Toferer, Sonja Adrigan, Marie-Therese Bulla, Roswitha Stieglmayer, Marlies Wallner, Reinhard Marek, Karl-Heinz Wagner. Genome damage in peripheral blood lymphocytes of diabetic and non-diabetic individuals after intervention with vegetables and plant oil.
Mutagenesis.
2013 Mar; 28(2):205-11. doi:
10.1093/mutage/ges073
. [PMID: 23340810] - Luca Dall'Osto, Maria Piques, Michela Ronzani, Barbara Molesini, Alessandro Alboresi, Stefano Cazzaniga, Roberto Bassi. The Arabidopsis nox mutant lacking carotene hydroxylase activity reveals a critical role for xanthophylls in photosystem I biogenesis.
The Plant cell.
2013 Feb; 25(2):591-608. doi:
10.1105/tpc.112.108621
. [PMID: 23396829] - A Heather Eliassen, Sara J Hendrickson, Louise A Brinton, Julie E Buring, Hannia Campos, Qi Dai, Joanne F Dorgan, Adrian A Franke, Yu-tang Gao, Marc T Goodman, Göran Hallmans, Kathy J Helzlsouer, Judy Hoffman-Bolton, Kerstin Hultén, Howard D Sesso, Anne L Sowell, Rulla M Tamimi, Paolo Toniolo, Lynne R Wilkens, Anna Winkvist, Anne Zeleniuch-Jacquotte, Wei Zheng, Susan E Hankinson. Circulating carotenoids and risk of breast cancer: pooled analysis of eight prospective studies.
Journal of the National Cancer Institute.
2012 Dec; 104(24):1905-16. doi:
10.1093/jnci/djs461
. [PMID: 23221879] - Sara J Hendrickson, Aditi Hazra, Constance Chen, A Heather Eliassen, Peter Kraft, Bernard A Rosner, Walter C Willett. β-Carotene 15,15'-monooxygenase 1 single nucleotide polymorphisms in relation to plasma carotenoid and retinol concentrations in women of European descent.
The American journal of clinical nutrition.
2012 Dec; 96(6):1379-89. doi:
10.3945/ajcn.112.034934
. [PMID: 23134893] - Shinichi Takaichi, Mari Mochimaru, Hiroko Uchida, Akio Murakami, Euichi Hirose, Takashi Maoka, Tohru Tsuchiya, Mamoru Mimuro. Opposite chirality of α-carotene in unusual cyanobacteria with unique chlorophylls, Acaryochloris and Prochlorococcus.
Plant & cell physiology.
2012 Nov; 53(11):1881-8. doi:
10.1093/pcp/pcs126
. [PMID: 22968452] - Jouni Karppi, Jari A Laukkanen, Juhani Sivenius, Kimmo Ronkainen, Sudhir Kurl. Serum lycopene decreases the risk of stroke in men: a population-based follow-up study.
Neurology.
2012 Oct; 79(15):1540-7. doi:
10.1212/wnl.0b013e31826e26a6
. [PMID: 23045517] - Lancui Zhang, Gang Ma, Yuki Shirai, Masaya Kato, Kazuki Yamawaki, Yoshinori Ikoma, Hikaru Matsumoto. Expression and functional analysis of two lycopene β-cyclases from citrus fruits.
Planta.
2012 Oct; 236(4):1315-25. doi:
10.1007/s00425-012-1690-2
. [PMID: 22729824] - J Karppi, J A Laukkanen, T H Mäkikallio, K Ronkainen, S Kurl. Low β-carotene concentrations increase the risk of cardiovascular disease mortality among Finnish men with risk factors.
Nutrition, metabolism, and cardiovascular diseases : NMCD.
2012 Oct; 22(10):921-8. doi:
10.1016/j.numecd.2012.01.008
. [PMID: 22494809] - Jennifer L Jeffery, Nancy D Turner, Stephen R King. Carotenoid bioaccessibility from nine raw carotenoid-storing fruits and vegetables using an in vitro model.
Journal of the science of food and agriculture.
2012 Oct; 92(13):2603-10. doi:
10.1002/jsfa.5768
. [PMID: 22806183] - Christopher R D'Adamo, Ram R Miller, Michelle D Shardell, Denise L Orwig, Marc C Hochberg, Luigi Ferrucci, Richard D Semba, Janet A Yu-Yahiro, Jay Magaziner, Gregory E Hicks. Higher serum concentrations of dietary antioxidants are associated with lower levels of inflammatory biomarkers during the year after hip fracture.
Clinical nutrition (Edinburgh, Scotland).
2012 Oct; 31(5):659-65. doi:
10.1016/j.clnu.2012.01.013
. [PMID: 22365613] - Gareth W Davison, Tony Ashton, Jane McEneny, Ian S Young, Bruce Davies, Damian M Bailey. Critical difference applied to exercise-induced oxidative stress: the dilemma of distinguishing biological from statistical change.
Journal of physiology and biochemistry.
2012 Sep; 68(3):377-84. doi:
10.1007/s13105-012-0149-z
. [PMID: 22298153] - Baldo F Cordero, Inmaculada Couso, Rosa Leon, Herminia Rodriguez, Maria Angeles Vargas. Isolation and characterization of a lycopene ε-cyclase gene of Chlorella (Chromochloris) zofingiensis. Regulation of the carotenogenic pathway by nitrogen and light.
Marine drugs.
2012 Sep; 10(9):2069-2088. doi:
10.3390/md10092069
. [PMID: 23118722] - Nicholas J Ollberding, Gertraud Maskarinec, Shannon M Conroy, Yukiko Morimoto, Adrian A Franke, Robert V Cooney, Lynne R Wilkens, Loïc Le Marchand, Marc T Goodman, Brenda Y Hernandez, Brian E Henderson, Laurence N Kolonel. Prediagnostic circulating carotenoid levels and the risk of non-Hodgkin lymphoma: the Multiethnic Cohort.
Blood.
2012 Jun; 119(24):5817-23. doi:
10.1182/blood-2012-02-413609
. [PMID: 22550343]