IAA-94 (BioDeep_00000009518)

   


代谢物信息卡片


(S)-2-((6,7-Dichloro-2-cyclopentyl-2-methyl-1-oxo-2,3-dihydro-1H-inden-5-yl)oxy)acetic acid

化学式: C17H18Cl2O4 (356.0582)
中文名称: R-(+)-甲基吲唑酮
谱图信息: 最多检出来源 not specific(not specific) 0%

分子结构信息

SMILES: CC1(C2CCCC2)Cc2cc(OCC(=O)O)c(Cl)c(Cl)c2C1=O
InChI: InChI=1S/C17H18Cl2O4/c1-17(10-4-2-3-5-10)7-9-6-11(23-8-12(20)21)14(18)15(19)13(9)16(17)22/h6,10H,2-5,7-8H2,1H3,(H,20,21)

描述信息

D018501 - Antirheumatic Agents > D006074 - Gout Suppressants > D014528 - Uricosuric Agents
D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents
D045283 - Natriuretic Agents > D004232 - Diuretics

同义名列表

5 个代谢物同义名

(S)-2-((6,7-Dichloro-2-cyclopentyl-2-methyl-1-oxo-2,3-dihydro-1H-inden-5-yl)oxy)acetic acid; Indanyloxyacetic acid; IAA-94; [(6,7-Dichloro-2-cyclopentyl-2-methyl-1-oxo-2,3-dihydro-1h-inden-5-yl)oxy]acetic acid; IAA-94



数据库引用编号

15 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 11 ANXA5, APOE, AXIN2, CA2, CASP3, CLIC1, EDN1, ITPR3, NOS2, NPPB, PPIF
Peripheral membrane protein 1 ANXA5
Endosome membrane 1 CLCN5
Endoplasmic reticulum membrane 1 ITPR3
Nucleus 6 APOE, AXIN2, CASP3, CLIC1, NOS2, PLCZ1
cytosol 8 ANXA5, AXIN2, CA2, CASP3, CLCN5, NOS2, PLCZ1, PRKCQ
dendrite 1 APOE
centrosome 1 AXIN2
nucleoplasm 4 CASP3, ITPR3, NOS2, PLCZ1
Cell membrane 4 CA2, CLCN5, CLIC1, TNF
Multi-pass membrane protein 4 CATSPER3, CLCN5, ITPR3, KCNA3
Golgi apparatus membrane 1 CLCN5
cell surface 1 TNF
glutamatergic synapse 3 APOE, CASP3, KCNA3
Golgi apparatus 2 APOE, CLCN5
Golgi membrane 1 CLCN5
lysosomal membrane 1 CLCN5
mitochondrial inner membrane 1 PPIF
neuronal cell body 4 APOE, CASP3, ITPR3, TNF
presynaptic membrane 1 KCNA3
sarcolemma 1 ANXA5
synaptic vesicle 1 CLCN5
Cytoplasm, cytosol 1 NOS2
acrosomal vesicle 1 CATSPER3
plasma membrane 13 APOE, AXIN2, CA2, CATSPER3, CLCN5, CLIC1, F2, ITPR3, KCNA3, NOS2, PRKCQ, REN, TNF
Membrane 8 ANXA5, APOE, CLCN5, CLIC1, ITPR3, KCNA3, PPIF, REN
axon 1 KCNA3
brush border 2 CLIC1, ITPR3
extracellular exosome 5 ANXA5, APOE, CA2, CLIC1, F2
endoplasmic reticulum 4 APOE, CATSPER3, CLIC1, ITPR3
extracellular space 7 APOE, CLIC1, EDN1, F2, NPPB, REN, TNF
perinuclear region of cytoplasm 4 CLIC1, KCNA3, NOS2, PLCZ1
mitochondrion 2 CLIC1, PPIF
protein-containing complex 1 NPPB
postsynaptic density 1 CASP3
pronucleus 1 PLCZ1
Secreted 4 APOE, EDN1, F2, REN
extracellular region 8 ANXA5, APOE, DNAH9, EDN1, F2, NPPB, REN, TNF
Single-pass membrane protein 1 CLIC1
basal part of cell 1 EDN1
Mitochondrion matrix 1 PPIF
mitochondrial matrix 1 PPIF
centriolar satellite 1 PRKCQ
motile cilium 2 CATSPER3, DNAH9
Nucleus membrane 1 CLIC1
nuclear membrane 1 CLIC1
external side of plasma membrane 2 ANXA5, TNF
Endosome, multivesicular body 1 APOE
Extracellular vesicle 1 APOE
Secreted, extracellular space, extracellular matrix 1 APOE
chylomicron 1 APOE
high-density lipoprotein particle 1 APOE
low-density lipoprotein particle 1 APOE
multivesicular body 1 APOE
very-low-density lipoprotein particle 1 APOE
beta-catenin destruction complex 1 AXIN2
nucleolus 2 ITPR3, PLCZ1
Cytoplasm, P-body 1 NOS2
P-body 1 NOS2
Early endosome 2 APOE, CLCN5
apical part of cell 4 CA2, CLCN5, ITPR3, REN
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 CLIC1
postsynaptic membrane 1 KCNA3
Cytoplasm, perinuclear region 2 NOS2, PLCZ1
Membrane raft 2 KCNA3, TNF
focal adhesion 1 ANXA5
microtubule 1 DNAH9
extracellular matrix 1 APOE
Peroxisome 1 NOS2
sarcoplasmic reticulum 1 ITPR3
peroxisomal matrix 1 NOS2
collagen-containing extracellular matrix 3 ANXA5, APOE, F2
axoneme 1 DNAH9
nuclear outer membrane 1 ITPR3
receptor complex 1 ITPR3
Zymogen granule membrane 1 ANXA5
phagocytic cup 1 TNF
Secreted, extracellular space 1 APOE
blood microparticle 3 APOE, CLIC1, F2
Cytoplasm, cytoskeleton, cilium axoneme 1 DNAH9
[Isoform 2]: Cell membrane 1 KCNA3
nuclear envelope 1 CLIC1
chloride channel complex 1 CLIC1
Cell projection, cilium, flagellum membrane 1 CATSPER3
Melanosome 1 APOE
myelin sheath 1 CA2
voltage-gated potassium channel complex 1 KCNA3
secretory granule membrane 1 ITPR3
Golgi lumen 1 F2
endoplasmic reticulum lumen 2 APOE, F2
transport vesicle 1 EDN1
immunological synapse 1 PRKCQ
aggresome 1 PRKCQ
9+2 motile cilium 1 DNAH9
dynein complex 1 DNAH9
calyx of Held 1 KCNA3
vesicle membrane 1 ANXA5
clathrin-coated endocytic vesicle membrane 1 APOE
platelet dense tubular network membrane 1 ITPR3
synaptic cleft 1 APOE
death-inducing signaling complex 1 CASP3
[Isoform 1]: Cell membrane 1 KCNA3
Cytoplasmic vesicle, secretory vesicle membrane 1 ITPR3
discoidal high-density lipoprotein particle 1 APOE
endocytic vesicle lumen 1 APOE
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
transport vesicle membrane 1 ITPR3
chylomicron remnant 1 APOE
intermediate-density lipoprotein particle 1 APOE
lipoprotein particle 1 APOE
multivesicular body, internal vesicle 1 APOE
cortical cytoskeleton 1 NOS2
rough endoplasmic reticulum lumen 1 EDN1
sperm head 1 PLCZ1
Weibel-Palade body 1 EDN1
mitochondrial permeability transition pore complex 1 PPIF
endothelial microparticle 1 ANXA5
[NT-proBNP]: Secreted 1 NPPB
[proBNP(3-108)]: Secreted 1 NPPB
[Brain natriuretic peptide 32]: Secreted 1 NPPB
[BNP(3-32)]: Secreted 1 NPPB
cytoplasmic side of endoplasmic reticulum membrane 1 ITPR3
[Isoform 3]: Cytoplasm, perinuclear region 1 KCNA3
CatSper complex 1 CATSPER3
outer dynein arm 1 DNAH9
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF
distal portion of axoneme 1 DNAH9


文献列表

  • Shubha Gururaja Rao, Devasena Ponnalagu, Sowmya Sukur, Harkewal Singh, Shridhar Sanghvi, Yixiao Mei, Ding J Jin, Harpreet Singh. Identification and Characterization of a Bacterial Homolog of Chloride Intracellular Channel (CLIC) Protein. Scientific reports. 2017 08; 7(1):8500. doi: 10.1038/s41598-017-08742-z. [PMID: 28819106]
  • Abass Al-Momany, Laiji Li, R Todd Alexander, Barbara J Ballermann. Clustered PI(4,5)P₂ accumulation and ezrin phosphorylation in response to CLIC5A. Journal of cell science. 2014 Dec; 127(Pt 24):5164-78. doi: 10.1242/jcs.147744. [PMID: 25344252]
  • Stefania Averaimo, Marta Gritti, Erica Barini, Laura Gasparini, Michele Mazzanti. CLIC1 functional expression is required for cAMP-induced neurite elongation in post-natal mouse retinal ganglion cells. Journal of neurochemistry. 2014 Nov; 131(4):444-56. doi: 10.1111/jnc.12832. [PMID: 25060644]
  • Justin A Costa, Dac A Nguyen, Edgar Leal-Pinto, Ronald E Gordon, Basil Hanss. Wicking: a rapid method for manually inserting ion channels into planar lipid bilayers. PloS one. 2013; 8(5):e60836. doi: 10.1371/journal.pone.0060836. [PMID: 23717384]
  • Lele Jiang, Kanin Salao, Hui Li, Joanna M Rybicka, Robin M Yates, Xu Wei Luo, Xin Xin Shi, Tamara Kuffner, Vicky Wang-Wei Tsai, Yasmin Husaini, Liyun Wu, David A Brown, Thomas Grewal, Louise J Brown, Paul M G Curmi, Samuel N Breit. Intracellular chloride channel protein CLIC1 regulates macrophage function through modulation of phagosomal acidification. Journal of cell science. 2012 Nov; 125(Pt 22):5479-88. doi: 10.1242/jcs.110072. [PMID: 22956539]
  • Pan Wang, Chao Zhang, PeiWu Yu, Bo Tang, Tao Liu, Hao Cui, JianHua Xu. Regulation of colon cancer cell migration and invasion by CLIC1-mediated RVD. Molecular and cellular biochemistry. 2012 Jun; 365(1-2):313-21. doi: 10.1007/s11010-012-1271-5. [PMID: 22426742]
  • Weihong Ma, Hui Hui, Pablo Pelegrin, Annmarie Surprenant. Pharmacological characterization of pannexin-1 currents expressed in mammalian cells. The Journal of pharmacology and experimental therapeutics. 2009 Feb; 328(2):409-18. doi: 10.1124/jpet.108.146365. [PMID: 19023039]
  • Rosemary H Milton, Rosella Abeti, Stefania Averaimo, Silvia DeBiasi, Laura Vitellaro, Lele Jiang, Paul M G Curmi, Samuel N Breit, Michael R Duchen, Michele Mazzanti. CLIC1 function is required for beta-amyloid-induced generation of reactive oxygen species by microglia. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2008 Nov; 28(45):11488-99. doi: 10.1523/jneurosci.2431-08.2008. [PMID: 18987185]
  • P B Hansen, U G Friis, T R Uhrenholt, J Briggs, J Schnermann. Intracellular signalling pathways in the vasoconstrictor response of mouse afferent arterioles to adenosine. Acta physiologica (Oxford, England). 2007 Oct; 191(2):89-97. doi: 10.1111/j.1748-1716.2007.01724.x. [PMID: 17565566]
  • Gaia Novarino, Cinzia Fabrizi, Raffaella Tonini, Michela A Denti, Fiorella Malchiodi-Albedi, Giuliana M Lauro, Benedetto Sacchetti, Silvia Paradisi, Arnaldo Ferroni, Paul M Curmi, Samuel N Breit, Michele Mazzanti. Involvement of the intracellular ion channel CLIC1 in microglia-mediated beta-amyloid-induced neurotoxicity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2004 Jun; 24(23):5322-30. doi: 10.1523/jneurosci.1170-04.2004. [PMID: 15190104]
  • Joen Steendahl, Niels-Henrik Holstein-Rathlou, Charlotte Mehlin Sorensen, Max Salomonsson. Effects of chloride channel blockers on rat renal vascular responses to angiotensin II and norepinephrine. American journal of physiology. Renal physiology. 2004 Feb; 286(2):F323-30. doi: 10.1152/ajprenal.00017.2003. [PMID: 14506073]
  • Seiji Hashimoto, Tetsuya Kawata, Jurgen Schnermann, Takao Koike. Chloride channel blockade attenuates the effect of angiotensin II on tubuloglomerular feedback in WKY but not spontaneously hypertensive rats. Kidney & blood pressure research. 2004; 27(1):35-42. doi: 10.1159/000075621. [PMID: 14679313]
  • Barbara Köhler, Lars H Wegner, Viktor Osipov, Klaus Raschke. Loading of nitrate into the xylem: apoplastic nitrate controls the voltage dependence of X-QUAC, the main anion conductance in xylem-parenchyma cells of barley roots. The Plant journal : for cell and molecular biology. 2002 Apr; 30(2):133-42. doi: 10.1046/j.1365-313x.2002.01269.x. [PMID: 12000450]
  • O Pantoja, J A C Smith. Sensitivity of the plant vacuolar malate channel to pH, Ca2+ and anion-channel blockers. The Journal of membrane biology. 2002 Mar; 186(1):31-42. doi: 10.1007/s00232-001-0132-z. [PMID: 11891587]
  • Z Zhang, J M Huang, M R Turner, K L Rhinehart, T L Pallone. Role of chloride in constriction of descending vasa recta by angiotensin II. American journal of physiology. Regulatory, integrative and comparative physiology. 2001 Jun; 280(6):R1878-86. doi: 10.1152/ajpregu.2001.280.6.r1878. [PMID: 11353695]
  • S M Valenzuela, M Mazzanti, R Tonini, M R Qiu, K Warton, E A Musgrove, T J Campbell, S N Breit. The nuclear chloride ion channel NCC27 is involved in regulation of the cell cycle. The Journal of physiology. 2000 Dec; 529 Pt 3(?):541-52. doi: 10.1111/j.1469-7793.2000.00541.x. [PMID: 11195932]
  • I Szabò, S Brutsche, F Tombola, M Moschioni, B Satin, J L Telford, R Rappuoli, C Montecucco, E Papini, M Zoratti. Formation of anion-selective channels in the cell plasma membrane by the toxin VacA of Helicobacter pylori is required for its biological activity. The EMBO journal. 1999 Oct; 18(20):5517-27. doi: 10.1093/emboj/18.20.5517. [PMID: 10523296]
  • S Hashimoto. [The in vivo role of vascular chloride channels in the regulation of glomerular hemodynamics]. [Hokkaido igaku zasshi] The Hokkaido journal of medical science. 1999 Sep; 74(5):387-94. doi: . [PMID: 10495853]
  • S Thomine, J Guern, H Barbier-Brygoo. Voltage-dependent anion channel of Arabidopsis hypocotyls: nucleotide regulation and pharmacological properties. The Journal of membrane biology. 1997 Sep; 159(1):71-82. doi: 10.1007/s002329900270. [PMID: 9309212]
  • J Yuto, T Ide, M Kasai. ATP-sensitive anion channel from rat brain synaptosomal membranes incorporated into planar lipid bilayers. Biophysical journal. 1997 Feb; 72(2 Pt 1):720-7. doi: 10.1016/s0006-3495(97)78708-3. [PMID: 9017199]
  • T Takenaka, Y Kanno, Y Kitamura, K Hayashi, H Suzuki, T Saruta. Role of chloride channels in afferent arteriolar constriction. Kidney international. 1996 Sep; 50(3):864-72. doi: 10.1038/ki.1996.386. [PMID: 8872961]
  • S L Waters, R G Schnellmann. Extracellular acidosis and chloride channel inhibitors act in the late phase of cellular injury to prevent death. The Journal of pharmacology and experimental therapeutics. 1996 Sep; 278(3):1012-7. doi: . [PMID: 8819480]
  • G Seki, S Taniguchi, S Uwatoko, K Suzuki, K Kurokawa. Activation of the basolateral Cl- conductance by cAMP in rabbit renal proximal tubule S3 segments. Pflugers Archiv : European journal of physiology. 1995 May; 430(1):88-95. doi: 10.1007/bf00373843. [PMID: 7667081]
  • R F Husted, K A Volk, R D Sigmund, J B Stokes. Anion secretion by the inner medullary collecting duct. Evidence for involvement of the cystic fibrosis transmembrane conductance regulator. The Journal of clinical investigation. 1995 Feb; 95(2):644-50. doi: 10.1172/jci117709. [PMID: 7532187]
  • W B Reeves, R W Gurich. Calcium-dependent chloride channels in endosomes from rabbit kidney cortex. The American journal of physiology. 1994 Mar; 266(3 Pt 1):C741-50. doi: 10.1152/ajpcell.1994.266.3.c741. [PMID: 8166237]
  • S Weber-Schürholz, E Wischmeyer, M Laurien, H Jockusch, T Schürholz, D W Landry, Q al-Awqati. Indanyloxyacetic acid-sensitive chloride channels from outer membranes of skeletal muscle. The Journal of biological chemistry. 1993 Jan; 268(1):547-51. doi: . [PMID: 7678003]
  • I Marten, C Zeilinger, C Redhead, D W Landry, Q al-Awqati, R Hedrich. Identification and modulation of a voltage-dependent anion channel in the plasma membrane of guard cells by high-affinity ligands. The EMBO journal. 1992 Oct; 11(10):3569-75. doi: 10.1002/j.1460-2075.1992.tb05440.x. [PMID: 1382976]
  • A J Pope, S K Richardson, R J Ife, D J Keeling. Characterisation of the effects of anthranilic and (indanyloxy) acetic acid derivatives on chloride transport in membrane vesicles. Biochimica et biophysica acta. 1991 Aug; 1067(1):51-63. doi: 10.1016/0005-2736(91)90025-4. [PMID: 1651113]
  • T Schürholz, M Wilimzig, E Katsiou, R Eichenlaub. Anion channel forming activity from the plant pathogenic bacterium Clavibacter michiganense ssp. nebraskense. The Journal of membrane biology. 1991 Jul; 123(1):1-8. doi: 10.1007/bf01993957. [PMID: 1723101]
  • A K Singh, G B Afink, C J Venglarik, R P Wang, R J Bridges. Colonic Cl channel blockade by three classes of compounds. The American journal of physiology. 1991 Jul; 261(1 Pt 1):C51-63. doi: 10.1152/ajpcell.1991.261.1.c51. [PMID: 1713412]
  • D J Abraham, A S Mehanna, F S Williams, E J Cragoe, O W Woltersdorf. Design, synthesis, and testing of potential antisickling agents. 7. Ethacrynic acid analogues. Journal of medicinal chemistry. 1989 Nov; 32(11):2460-7. doi: 10.1021/jm00131a008. [PMID: 2810334]
  • A G Zacchei, T I Wishousky. GLC determination of the polyvalent saluretic uricosuric agent (2-cyclopentyl-6,7-dichloro-2-methyl-1-oxo-5-indanyloxy)acetic acid in biological fluids. Journal of pharmaceutical sciences. 1978 Feb; 67(2):162-4. doi: 10.1002/jps.2600670210. [PMID: 413902]
  • S A Kudinov, E M Makogonenko, I R Alekseenko. [Some properties of Mg 2+, Ca 2+-AtPase of brain microsomal fractions and synaptic plasma membranes in the solubilized state]. Ukrainskii biokhimicheskii zhurnal (1978). 1978 Jan; 50(1):53-6. doi: NULL. [PMID: 24293]
  • O W Woltersdorf, S J deSolms, E M Schultz, E J Cragoe. (Acylaryloxy)acetic acid diuretics. 1. (2-Alkyl- and 2,2-dialkyl-1-oxo-5-indanyloxy)acetic acids. Journal of medicinal chemistry. 1977 Nov; 20(11):1400-8. doi: 10.1021/jm00221a010. [PMID: 915900]