Imazamox (BioDeep_00000397785)

Main id: BioDeep_00000001542

 


代谢物信息卡片


Imazamox

化学式: C15H19N3O4 (305.1375)
中文名称: 甲氧咪草烟
谱图信息: 最多检出来源 Homo sapiens(not specific) 50%

分子结构信息

SMILES: CC(C)C1(C(=O)NC(=N1)C2=C(C=C(C=N2)COC)C(=O)O)C
InChI: InChI=1S/C15H19N3O4/c1-8(2)15(3)14(21)17-12(18-15)11-10(13(19)20)5-9(6-16-11)7-22-4/h5-6,8H,7H2,1-4H3,(H,19,20)(H,17,18,21)

描述信息

2-(4-isopropyl-4-methyl-5-oxo-4,5-dihydro-1H-imidazol-2-yl)-5-(methoxymethyl)nicotinic acid is a pyridinemonocarboxylic acid that is nicotinic acid which is substituted substituted at position 5 by a methoxymethyl group and at position 2 by a 4,5-dihydro-1H-imidazol-2-yl group, that in turn is substituted by isopropyl, methyl, and oxo groups at positions 4, 4, and 5, respectively. It is a pyridinemonocarboxylic acid, an ether, an imidazolone and a member of imidazolines.
Imazamox is a member of the imidazolinone class of herbicides. It is registered for post-emergence control of broadleaf weeds and grass in alfalfa, edible legumes and soybeans. It is a systemic herbicide that moves throughout the plant tissue and prevents plants from producing an essential enzyme, acetolactate synthase (ALS), which is not found in animals. This enzyme is key for the biosynthesis of branched chain amino acids. Susceptible plants will stop growing soon after treatment, but plant death and decomposition will occur over several weeks.

同义名列表

2 个代谢物同义名

Imazamox; Imazamox



数据库引用编号

36 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 7 ARHGAP45, CASP3, CYP1A1, HPGDS, NKX2-5, NR3C1, NR3C2
Peripheral membrane protein 2 CYP1A1, CYP1B1
Endoplasmic reticulum membrane 6 CYP1A1, CYP1A2, CYP1B1, ILVBL, NR3C2, SFTPD
Nucleus 4 CASP3, NKX2-5, NR3C1, NR3C2
cytosol 6 ARHGAP45, CASP3, CDA, HPGDS, NR3C1, NR3C2
centrosome 1 NR3C1
nucleoplasm 6 CASP3, HFE, HPGDS, NKX2-5, NR3C1, NR3C2
RNA polymerase II transcription regulator complex 1 NKX2-5
Cell membrane 2 HFE, SCN2A
ruffle membrane 1 ARHGAP45
Multi-pass membrane protein 1 SCN2A
Synapse 1 NR3C1
glutamatergic synapse 2 CASP3, SCN2A
Golgi membrane 1 INS
mitochondrial inner membrane 1 CYP1A1
neuronal cell body 1 CASP3
presynaptic membrane 1 SCN2A
Lysosome 1 SFTPD
plasma membrane 4 ARHGAP45, HFE, MUC5B, SCN2A
Membrane 6 ARHGAP45, CYP1B1, HFE, ILVBL, NR3C1, SCN2A
axon 1 SCN2A
extracellular exosome 1 MUC5B
extracellular space 4 HFE, INS, MUC5B, SFTPD
perinuclear region of cytoplasm 1 HFE
intercalated disc 1 SCN2A
mitochondrion 3 CYP1A1, CYP1B1, NR3C1
protein-containing complex 2 NKX2-5, NR3C1
intracellular membrane-bounded organelle 5 CYP1A1, CYP1A2, CYP1B1, HPGDS, MUC5B
Microsome membrane 3 CYP1A1, CYP1A2, CYP1B1
postsynaptic density 1 CASP3
Single-pass type I membrane protein 1 HFE
Secreted 1 INS
extracellular region 4 ARHGAP45, CDA, INS, SFTPD
Single-pass membrane protein 1 ILVBL
basal part of cell 1 HFE
mitochondrial matrix 1 NR3C1
transcription regulator complex 1 NKX2-5
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 NR3C1
external side of plasma membrane 1 HFE
multivesicular body 1 SFTPD
T-tubule 1 SCN2A
cytoplasmic vesicle 1 HFE
Early endosome 1 HFE
apical part of cell 1 HFE
recycling endosome 1 HFE
Cell projection, ruffle membrane 1 ARHGAP45
Mitochondrion inner membrane 1 CYP1A1
Cytoplasm, cytoskeleton, spindle 1 NR3C1
spindle 1 NR3C1
extracellular matrix 1 MUC5B
collagen trimer 1 SFTPD
nuclear speck 1 NR3C1
receptor complex 1 NR3C2
chromatin 3 NKX2-5, NR3C1, NR3C2
acetolactate synthase complex 1 ILVBL
Chromosome 1 NR3C1
Endomembrane system 1 HFE
endosome lumen 1 INS
Nucleus, nucleoplasm 1 NR3C1
ficolin-1-rich granule lumen 1 CDA
secretory granule lumen 3 ARHGAP45, CDA, INS
HFE-transferrin receptor complex 1 HFE
Golgi lumen 2 INS, MUC5B
endoplasmic reticulum lumen 1 INS
tertiary granule lumen 1 CDA
endocytic vesicle 1 SFTPD
transport vesicle 1 INS
node of Ranvier 1 SCN2A
paranode region of axon 1 SCN2A
azurophil granule lumen 1 ARHGAP45
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
clathrin-coated endocytic vesicle 1 SFTPD
protein-DNA complex 1 NKX2-5
death-inducing signaling complex 1 CASP3
voltage-gated sodium channel complex 1 SCN2A
[Isoform Alpha]: Cytoplasm 1 NR3C1
[Isoform Beta]: Nucleus 1 NR3C1
[Isoform Alpha-B]: Nucleus 1 NR3C1
Nkx-2.5 complex 1 NKX2-5


文献列表

  • You Zhan, Haozhe Liu, Ziheng Cao, Jiale Qi, Lianyang Bai, Lang Pan. Target-site and non-target-site resistance mechanisms confer mesosulfuron-methyl resistance in Alopecurus aequalis. Plant physiology and biochemistry : PPB. 2024 May; 210(?):108597. doi: 10.1016/j.plaphy.2024.108597. [PMID: 38598868]
  • Myriem Chtourou, Maria D Osuna, José G Vázquez-García, Jorge Lozano-Juste, Rafael De Prado, Joel Torra, Thouraya Souissi. Pro197Ser and the new Trp574Leu mutations together with enhanced metabolism contribute to cross-resistance to ALS inhibiting herbicides in Sinapis alba. Pesticide biochemistry and physiology. 2024 May; 201(?):105882. doi: 10.1016/j.pestbp.2024.105882. [PMID: 38685248]
  • Neeta Soni, Eric P Westra, Giuseppe Allegretta, André L S Araujo, Camila F de Pinho, Sarah Morran, Jens Lerchl, Franck E Dayan, Philip Westra, Todd A Gaines. Survey of ACCase and ALS resistance in winter annual grasses identifies target-site and nontarget-site imazamox resistance in Secale cereale. Pest management science. 2022 Dec; 78(12):5080-5089. doi: 10.1002/ps.7154. [PMID: 36039692]
  • Rui Li, Chenxi Luo, Jingsi Qiu, Yuanfu Li, Hui Zhang, Huihua Tan. Metabolomic and transcriptomic investigation of the mechanism involved in enantioselective toxicity of imazamox in Lemna minor. Journal of hazardous materials. 2022 03; 425(?):127818. doi: 10.1016/j.jhazmat.2021.127818. [PMID: 34875416]
  • Joel Torra, Antonia María Rojano-Delgado, Julio Menéndez, Marisa Salas, Rafael de Prado. Cytochrome P450 metabolism-based herbicide resistance to imazamox and 2,4-D in Papaver rhoeas. Plant physiology and biochemistry : PPB. 2021 Mar; 160(?):51-61. doi: 10.1016/j.plaphy.2021.01.007. [PMID: 33454636]
  • Michelangelo Muzell Trezzi, Ricardo Alcántara-de la Cruz, Antonia M Rojano-Delgado, Estéban Alcántara, Fortunato De Bortoli Pagnoncelli, Matheus Viecelli, Francielli Diesel, Vacilania Pacheco, Rafael De Prado. Influence of temperature on the retention, absorption and translocation of fomesafen and imazamox in Euphorbia heterophylla. Pesticide biochemistry and physiology. 2021 Mar; 173(?):104794. doi: 10.1016/j.pestbp.2021.104794. [PMID: 33771265]
  • José G Vázquez-García, Ricardo Alcántara-de la Cruz, Antonia M Rojano-Delgado, Candelario Palma-Bautista, João M de Portugal Vasconcelos, Rafael De Prado. Multiple Herbicide Resistance Evolution: The Case of Eleusine indica in Brazil. Journal of agricultural and food chemistry. 2021 Feb; 69(4):1197-1205. doi: 10.1021/acs.jafc.0c03999. [PMID: 33470815]
  • Nathalia Garlich, Guilherme Leonardi Garcia, Ana Carolina de Oliveira, Karina Petri Dos Santos, Robinson Antonio Pitelli, Marcelo da Costa Ferreira, Claudinei da Cruz. Electrostatic spraying of imazamox to control the floating aquatic plant Salvinia molesta and its effects on environmental indicators of water quality. Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes. 2021; 56(3):251-258. doi: 10.1080/03601234.2020.1858684. [PMID: 33370160]
  • Nathalia Garlich, Guilherme Leonardi Garcia, Karina Petri Dos Santos, Ana Carolina de Oliveira, Robinson Antonio Pitelli, Marcelo da Costa Ferreira, Claudinei da Cruz. Control of Salvinia molesta with imazamox and analysis of environmental indicators in microcosms. Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes. 2021; 56(11):941-947. doi: 10.1080/03601234.2021.1981101. [PMID: 34554046]
  • Paawan Kaur, Pervinder Kaur, Navjyot Kaur, Deepali Jain, Kuldip Singh, Makhan Singh Bhullar. Dissipation and phytotoxicity of imazethapyr and imazamox in soils amended with β-cyclodextrin-chitosan biocomposite. The Science of the total environment. 2020 Sep; 735(?):139566. doi: 10.1016/j.scitotenv.2020.139566. [PMID: 32485456]
  • Gabriela Breccia, Liliana Picardi, Graciela Nestares. Cultivar variation for imazamox resistance in wheat (Triticum aestivum L.): Insights into enzymatic assays for early selection. Plant physiology and biochemistry : PPB. 2020 Jun; 151(?):438-442. doi: 10.1016/j.plaphy.2020.03.045. [PMID: 32289637]
  • Manuel Fernández-Escalada, Ainhoa Zulet-González, Miriam Gil-Monreal, Mercedes Royuela, Ana Zabalza. Physiological performance of glyphosate and imazamox mixtures on Amaranthus palmeri sensitive and resistant to glyphosate. Scientific reports. 2019 12; 9(1):18225. doi: 10.1038/s41598-019-54642-9. [PMID: 31796801]
  • Antonia M Rojano-Delgado, João M Portugal, Candelario Palma-Bautista, Ricardo Alcántara-de la Cruz, Joel Torra, Esteban Alcántara, Rafael De Prado. Target site as the main mechanism of resistance to imazamox in a Euphorbia heterophylla biotype. Scientific reports. 2019 10; 9(1):15423. doi: 10.1038/s41598-019-51682-z. [PMID: 31659241]
  • Ignaz J Buerge, Roy Kasteel, Astrid Bächli, Thomas Poiger. Behavior of the Chiral Herbicide Imazamox in Soils: Enantiomer Composition Differentiates between Biodegradation and Photodegradation. Environmental science & technology. 2019 05; 53(10):5733-5740. doi: 10.1021/acs.est.8b07210. [PMID: 31017768]
  • Ignaz J Buerge, Astrid Bächli, Roy Kasteel, Reto Portmann, Rocío López-Cabeza, Lars F Schwab, Thomas Poiger. Behavior of the Chiral Herbicide Imazamox in Soils: pH-Dependent, Enantioselective Degradation, Formation and Degradation of Several Chiral Metabolites. Environmental science & technology. 2019 05; 53(10):5725-5732. doi: 10.1021/acs.est.8b07209. [PMID: 31017764]
  • S Ntoanidou, P Madesis, I Eleftherohorinos. Resistance of Rapistrum rugosum to tribenuron and imazamox due to Trp574 or Pro197 substitution in the acetolactate synthase. Pesticide biochemistry and physiology. 2019 Feb; 154(?):1-6. doi: 10.1016/j.pestbp.2018.12.001. [PMID: 30765051]
  • Dobrinka Balabanova, Tony Remans, Andon Vassilev, Ann Cuypers, Jaco Vangronsveld. Possible involvement of glutathione S-transferases in imazamox detoxification in an imidazolinone-resistant sunflower hybrid. Journal of plant physiology. 2018 Feb; 221(?):62-65. doi: 10.1016/j.jplph.2017.12.008. [PMID: 29247888]
  • Alice A Wright, Rajkumar Sasidharan, Liisa Koski, Marianela Rodriguez-Carres, Daniel G Peterson, Vijay K Nandula, Jeffery D Ray, Jason A Bond, David R Shaw. Transcriptomic changes in Echinochloa colona in response to treatment with the herbicide imazamox. Planta. 2018 Feb; 247(2):369-379. doi: 10.1007/s00425-017-2784-7. [PMID: 29022094]
  • Vipan Kumar, Prashant Jha. First report of Ser653Asn mutation endowing high-level resistance to imazamox in downy brome (Bromus tectorum L.). Pest management science. 2017 Dec; 73(12):2585-2591. doi: 10.1002/ps.4673. [PMID: 28734097]
  • Rafael Domínguez-Mendez, Ricardo Alcántara-de la Cruz, Antonia M Rojano-Delgado, Pablo T Fernández-Moreno, Raphael Aponte, Rafael De Prado. Multiple mechanisms are involved in new imazamox-resistant varieties of durum and soft wheat. Scientific reports. 2017 11; 7(1):14839. doi: 10.1038/s41598-017-13874-3. [PMID: 29093532]
  • Miriam Gil-Monreal, Ana Zabalza, Tagnon D Missihoun, Peter Dörmann, Dorothea Bartels, Mercedes Royuela. Induction of the PDH bypass and upregulation of the ALDH7B4 in plants treated with herbicides inhibiting amino acid biosynthesis. Plant science : an international journal of experimental plant biology. 2017 Nov; 264(?):16-28. doi: 10.1016/j.plantsci.2017.08.003. [PMID: 28969796]
  • S Ntoanidou, P Madesis, G Diamantidis, I Eleftherohorinos. Trp574 substitution in the acetolactate synthase of Sinapis arvensis confers cross-resistance to tribenuron and imazamox. Pesticide biochemistry and physiology. 2017 Oct; 142(?):9-14. doi: 10.1016/j.pestbp.2016.12.008. [PMID: 29107252]
  • Alexandra Morris, Ebony G Murrell, Talan Klein, Bruce H Noden. Effect of two commercial herbicides on life history traits of a human disease vector, Aedes aegypti, in the laboratory setting. Ecotoxicology (London, England). 2016 Jul; 25(5):863-70. doi: 10.1007/s10646-016-1643-9. [PMID: 26965703]
  • O Armendáriz, M Gil-Monreal, A Zulet, A Zabalza, M Royuela. Both foliar and residual applications of herbicides that inhibit amino acid biosynthesis induce alternative respiration and aerobic fermentation in pea roots. Plant biology (Stuttgart, Germany). 2016 May; 18(3):382-90. doi: 10.1111/plb.12412. [PMID: 26560850]
  • Jing Wei, Xiaoxiao Zhang, Xuesheng Li, Dongqiang Zeng, Huihua Tan. Enantioselective Phytotoxicity of Imazamox Against Maize Seedlings. Bulletin of environmental contamination and toxicology. 2016 Feb; 96(2):242-7. doi: 10.1007/s00128-015-1682-6. [PMID: 26508428]
  • Laura Scarabel, Fanny Pernin, Christophe Délye. Occurrence, genetic control and evolution of non-target-site based resistance to herbicides inhibiting acetolactate synthase (ALS) in the dicot weed Papaver rhoeas. Plant science : an international journal of experimental plant biology. 2015 Sep; 238(?):158-69. doi: 10.1016/j.plantsci.2015.06.008. [PMID: 26259184]
  • Parul Jain, Bunyamin Tar'an. Analysis of acetohydroxyacid synthase1 gene in chickpea conferring resistance to imazamox herbicide. Genome. 2014 Nov; 57(11-12):593-600. doi: 10.1139/gen-2014-0145. [PMID: 25830785]
  • Antonia M Rojano-Delgado, Feliciano Priego-Capote, Rafael De Prado, María Dolores Luque de Castro. Ultrasound-assisted extraction with LC-TOF/MS identification and LC-UV determination of imazamox and its metabolites in leaves of wheat plants. Phytochemical analysis : PCA. 2014 Jul; 25(4):357-63. doi: 10.1002/pca.2467. [PMID: 23934624]
  • A García-Garijo, N A Tejera, C Lluch, F Palma. Metabolic responses in root nodules of Phaseolus vulgaris and Vicia sativa exposed to the imazamox herbicide. Pesticide biochemistry and physiology. 2014 May; 111(?):19-23. doi: 10.1016/j.pestbp.2014.04.005. [PMID: 24861929]
  • Amaranta García-Garijo, Francisco Palma, Carmen Lluch, Noel A Tejera. Physiological and biochemical responses of common vetch to the imazamox accumulation. Plant physiology and biochemistry : PPB. 2013 Dec; 73(?):321-5. doi: 10.1016/j.plaphy.2013.10.013. [PMID: 24184452]
  • Amaia Zulet, Miriam Gil-Monreal, Joji Grace Villamor, Ana Zabalza, Renier A L van der Hoorn, Mercedes Royuela. Proteolytic pathways induced by herbicides that inhibit amino acid biosynthesis. PloS one. 2013; 8(9):e73847. doi: 10.1371/journal.pone.0073847. [PMID: 24040092]
  • Heping Han, Qin Yu, Edison Purba, Mei Li, Michael Walsh, Shane Friesen, Stephen B Powles. A novel amino acid substitution Ala-122-Tyr in ALS confers high-level and broad resistance across ALS-inhibiting herbicides. Pest management science. 2012 Aug; 68(8):1164-70. doi: 10.1002/ps.3278. [PMID: 22431132]
  • Hyejin Lee, Steven E Ullrich, Ian C Burke, Joseph Yenish, Timothy C Paulitz. Interactions between the root pathogen Rhizoctonia solani AG-8 and acetolactate-synthase-inhibiting herbicides in barley. Pest management science. 2012 Jun; 68(6):845-52. doi: 10.1002/ps.2336. [PMID: 22307918]
  • Mechelle J Owen, Danica E Goggin, Stephen B Powles. Identification of resistance to either paraquat or ALS-inhibiting herbicides in two Western Australian Hordeum leporinum biotypes. Pest management science. 2012 May; 68(5):757-63. doi: 10.1002/ps.2323. [PMID: 22290852]
  • Nikolaos S Kaloumenos, Vasiliki N Adamouli, Christos A Dordas, Ilias G Eleftherohorinos. Corn poppy (Papaver rhoeas) cross-resistance to ALS-inhibiting herbicides. Pest management science. 2011 May; 67(5):574-85. doi: 10.1002/ps.2104. [PMID: 21308964]
  • Christophe Délye, Fanny Pernin, Laura Scarabel. Evolution and diversity of the mechanisms endowing resistance to herbicides inhibiting acetolactate-synthase (ALS) in corn poppy (Papaver rhoeas L.). Plant science : an international journal of experimental plant biology. 2011 Feb; 180(2):333-42. doi: 10.1016/j.plantsci.2010.10.007. [PMID: 21421378]
  • Beiquan Mou. Mutations in lettuce improvement. International journal of plant genomics. 2011; 2011(?):723518. doi: 10.1155/2011/723518. [PMID: 22287955]
  • E Kathryn Barto, Monika Hilker, Frank Müller, Brian K Mohney, Jeffrey D Weidenhamer, Matthias C Rillig. The fungal fast lane: common mycorrhizal networks extend bioactive zones of allelochemicals in soils. PloS one. 2011; 6(11):e27195. doi: 10.1371/journal.pone.0027195. [PMID: 22110615]
  • Christian J Willenborg, Anita L Brûlé-Babel, Rene C Van Acker. Identification of a hybridization window that facilitates sizeable reductions of pollen-mediated gene flow in spring wheat. Transgenic research. 2010 Jun; 19(3):449-60. doi: 10.1007/s11248-009-9322-8. [PMID: 19763864]
  • E Mateos-Naranjo, S Redondo-Gómez, L Cox, J Cornejo, M E Figueroa. Effectiveness of glyphosate and imazamox on the control of the invasive cordgrass Spartina densiflora. Ecotoxicology and environmental safety. 2009 Sep; 72(6):1694-700. doi: 10.1016/j.ecoenv.2009.06.003. [PMID: 19577295]
  • Carlos A Sala, Mariano Bulos, Mariel Echarte, Sherry R Whitt, Robert Ascenzi. Molecular and biochemical characterization of an induced mutation conferring imidazolinone resistance in sunflower. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik. 2008 Dec; 118(1):105-12. doi: 10.1007/s00122-008-0880-6. [PMID: 18784913]
  • Edson José Fragiorge, Alexandre Azenha Alves de Rezende, Ulrich Graf, Mário Antônio Spanó. Comparative genotoxicity evaluation of imidazolinone herbicides in somatic cells of Drosophila melanogaster. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2008 Jan; 46(1):393-401. doi: 10.1016/j.fct.2007.08.022. [PMID: 17910989]
  • Alejandro Perez-Jones, Carol A Mallory-Smith, Jennifer L Hansen, Robert S Zemetra. Introgression of an imidazolinone-resistance gene from winter wheat (Triticum aestivum L.) into jointed goatgrass (Aegilops cylindrica Host). TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik. 2006 Dec; 114(1):177-86. doi: 10.1007/s00122-006-0421-0. [PMID: 17058103]
  • J P Ruiz-Santaella, Y Bakkaliu, M D Osuna, R de Prado. Evaluation of resistance in Cyperus difformis populations to ALS inhibiting herbicides. Communications in agricultural and applied biological sciences. 2004; 69(3):91-6. doi: . [PMID: 15759399]
  • G Plaza, M D Osuna, R De Prado. Cross resistance to ALS-inhibiting herbicides in Euphorbia heterophylla L. biotypes resistant to imazethapyr. Communications in agricultural and applied biological sciences. 2003; 68(4 Pt A):335-9. doi: . [PMID: 15149128]
  • C Casado, M D Osuna, R De Prado. Evaluation of resistance in Amaranthus quitensis Kunth populations to imazethapyr and other imidazolinones. Communications in agricultural and applied biological sciences. 2003; 68(4 Pt A):323-9. doi: . [PMID: 15149126]