Sepiapterin (BioDeep_00000405226)

Main id: BioDeep_00000001431

 

PANOMIX_OTCML-2023


代谢物信息卡片


L-Sepiapterin

化学式: C9H11N5O3 (237.0862)
中文名称: L-墨蝶呤
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC(C(=O)C1=NC2=C(NC1)N=C(NC2=O)N)O
InChI: InChI=1S/C9H11N5O3/c1-3(15)6(16)4-2-11-7-5(12-4)8(17)14-9(10)13-7/h3,15H,2H2,1H3,(H4,10,11,13,14,17)/t3-/m0/s1

描述信息

C307 - Biological Agent

同义名列表

3 个代谢物同义名

L-Sepiapterin; Sepiapterin; Sepiapterin



数据库引用编号

15 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 13 ARG1, CAT, DHFR, GCH1, GUCY1A1, NOS1, NOS2, NOS3, PTS, SPR, TH, VEGFA, XDH
Peripheral membrane protein 1 NOS1
Endoplasmic reticulum membrane 1 HSP90B1
Nucleus 9 ARG1, GCH1, HSP90B1, MPO, NOS1, NOS2, NOS3, TH, VEGFA
cytosol 15 ARG1, CAT, DHFR, GCH1, GUCY1A1, HSP90B1, IL1B, NOS1, NOS2, NOS3, PAH, PTS, SPR, TH, XDH
dendrite 1 TH
nucleoplasm 6 GCH1, MPO, NOS1, NOS2, NOS3, SPR
Cell membrane 1 TNF
Cell projection, axon 1 TH
Cytoplasmic granule 1 ARG1
Synapse 1 NOS1
cell surface 2 TNF, VEGFA
glutamatergic synapse 1 GUCY1A1
Golgi apparatus 2 NOS3, VEGFA
Golgi membrane 2 INS, NOS3
neuronal cell body 1 TNF
sarcolemma 1 NOS1
smooth endoplasmic reticulum 2 HSP90B1, TH
synaptic vesicle 1 TH
Cytoplasm, cytosol 2 IL1B, NOS2
Lysosome 2 IL1B, MPO
plasma membrane 5 IFNLR1, NOS1, NOS2, NOS3, TNF
terminal bouton 1 TH
Membrane 4 CAT, HSP90B1, IFNLR1, VEGFA
axon 1 TH
caveola 1 NOS3
extracellular exosome 4 CAT, HSP90B1, MPO, SPR
endoplasmic reticulum 2 HSP90B1, VEGFA
extracellular space 7 ARG1, IL1B, INS, MPO, TNF, VEGFA, XDH
perinuclear region of cytoplasm 5 HSP90B1, NOS1, NOS2, NOS3, TH
adherens junction 1 VEGFA
mitochondrion 7 CAT, DHFR, GCH1, NOS1, PTS, SPR, TH
protein-containing complex 4 CAT, GCH1, HSP90B1, NOS1
intracellular membrane-bounded organelle 2 CAT, MPO
postsynaptic density 1 NOS1
Single-pass type I membrane protein 1 IFNLR1
Secreted 3 IL1B, INS, VEGFA
extracellular region 8 ARG1, CAT, HSP90B1, IL1B, INS, MPO, TNF, VEGFA
cytoplasmic side of plasma membrane 1 TH
mitochondrial matrix 1 CAT
photoreceptor inner segment 1 NOS1
nuclear membrane 1 GCH1
external side of plasma membrane 1 TNF
Secreted, extracellular space, extracellular matrix 1 VEGFA
dendritic spine 1 NOS1
perikaryon 1 TH
cytoplasmic vesicle 2 GCH1, TH
Melanosome membrane 1 TH
midbody 1 HSP90B1
Cytoplasm, P-body 2 NOS2, NOS3
P-body 2 NOS2, NOS3
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Cell membrane, sarcolemma 1 NOS1
Cytoplasm, perinuclear region 3 NOS1, NOS2, TH
Membrane raft 2 NOS1, TNF
focal adhesion 2 CAT, HSP90B1
GABA-ergic synapse 1 GUCY1A1
extracellular matrix 1 VEGFA
Peroxisome 3 CAT, NOS2, XDH
sarcoplasmic reticulum 2 NOS1, XDH
Peroxisome matrix 1 CAT
peroxisomal matrix 2 CAT, NOS2
peroxisomal membrane 1 CAT
Cell projection, dendritic spine 1 NOS1
collagen-containing extracellular matrix 1 HSP90B1
secretory granule 3 IL1B, MPO, VEGFA
neuron projection 1 TH
phagocytic cup 1 TNF
cell periphery 1 NOS1
cytoskeleton 2 NOS1, NOS3
endosome lumen 1 INS
Melanosome 1 HSP90B1
Cytoplasm, Stress granule 1 NOS3
cytoplasmic stress granule 1 NOS3
sperm plasma membrane 1 HSP90B1
azurophil granule 1 MPO
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 2 CAT, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 2 HSP90B1, INS
platelet alpha granule lumen 1 VEGFA
specific granule lumen 1 ARG1
endocytic vesicle membrane 1 NOS3
transport vesicle 1 INS
Secreted, extracellular exosome 1 IL1B
azurophil granule lumen 2 ARG1, MPO
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
Sarcoplasmic reticulum lumen 1 HSP90B1
phagocytic vesicle lumen 1 MPO
guanylate cyclase complex, soluble 1 GUCY1A1
endocytic vesicle lumen 1 HSP90B1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
cortical cytoskeleton 1 NOS2
catalase complex 1 CAT
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle 1 TH
endoplasmic reticulum chaperone complex 1 HSP90B1
neuron projection terminus 1 GCH1
[N-VEGF]: Cytoplasm 1 VEGFA
[VEGFA]: Secreted 1 VEGFA
[Isoform L-VEGF189]: Endoplasmic reticulum 1 VEGFA
[Isoform VEGF121]: Secreted 1 VEGFA
[Isoform VEGF165]: Secreted 1 VEGFA
VEGF-A complex 1 VEGFA
interleukin-28 receptor complex 1 IFNLR1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Christopher S Rabender, Eleonora Mezzaroma, Vasily A Yakovlev, Adolfo G Mauro, Aldo Bonaventura, Antonio Abbate, Ross B Mikkelsen. Mitigation of Radiation-Induced Lung and Heart Injuries in Mice by Oral Sepiapterin after Irradiation. Radiation research. 2021 05; 195(5):463-473. doi: 10.1667/rade-20-00249.1. [PMID: 33822229]
  • Shimaa Eissa, Shahad Alkhaldi, Raja Chinnappan, Ayesha Siddiqua, Mai Abduljabbar, Anas M Abdel Rahman, Majed Dasouki, Mohammed Zourob. Selection, characterization, and electrochemical biosensing application of DNA aptamers for sepiapterin. Talanta. 2020 Aug; 216(?):120951. doi: 10.1016/j.talanta.2020.120951. [PMID: 32456943]
  • Masahide Fujita, Débora da Luz Scheffer, Bruna Lenfers Turnes, Shane J F Cronin, Alban Latrémolière, Michael Costigan, Clifford J Woolf, Alexandra Latini, Nick A Andrews. Sepiapterin Reductase Inhibition Leading to Selective Reduction of Inflammatory Joint Pain in Mice and Increased Urinary Sepiapterin Levels in Humans and Mice. Arthritis & rheumatology (Hoboken, N.J.). 2020 01; 72(1):57-66. doi: 10.1002/art.41060. [PMID: 31350812]
  • Neil Smith, Nicola Longo, Keith Levert, Keith Hyland, Nenad Blau. Phase I clinical evaluation of CNSA-001 (sepiapterin), a novel pharmacological treatment for phenylketonuria and tetrahydrobiopterin deficiencies, in healthy volunteers. Molecular genetics and metabolism. 2019 04; 126(4):406-412. doi: 10.1016/j.ymgme.2019.02.001. [PMID: 30922814]
  • Claudia Carducci, Silvia Santagata, Jennifer Friedman, Elisabetta Pasquini, Carla Carducci, Manuela Tolve, Antonio Angeloni, Vincenzo Leuzzi. Urine sepiapterin excretion as a new diagnostic marker for sepiapterin reductase deficiency. Molecular genetics and metabolism. 2015 Aug; 115(4):157-60. doi: 10.1016/j.ymgme.2015.06.009. [PMID: 26123188]
  • Kyung Hye Seo, Ningning Zhuang, Young Shik Park, Ki Hun Park, Kon Ho Lee. Structural basis of a novel activity of bacterial 6-pyruvoyltetrahydropterin synthase homologues distinct from mammalian 6-pyruvoyltetrahydropterin synthase activity. Acta crystallographica. Section D, Biological crystallography. 2014 May; 70(Pt 5):1212-23. doi: 10.1107/s1399004714002016. [PMID: 24816091]
  • James Cassuto, Huijuan Dou, Istvan Czikora, Andras Szabo, Vijay S Patel, Vinayak Kamath, Eric Belin de Chantemele, Attila Feher, Maritza J Romero, Zsolt Bagi. Peroxynitrite disrupts endothelial caveolae leading to eNOS uncoupling and diminished flow-mediated dilation in coronary arterioles of diabetic patients. Diabetes. 2014 Apr; 63(4):1381-93. doi: 10.2337/db13-0577. [PMID: 24353182]
  • Jordan D Miller, Yi Chu, Lauren E Castaneda, Kristine M Serrano, Robert M Brooks, Donald D Heistad. Vascular function during prolonged progression and regression of atherosclerosis in mice. Arteriosclerosis, thrombosis, and vascular biology. 2013 Mar; 33(3):459-65. doi: 10.1161/atvbaha.112.252700. [PMID: 23307875]
  • Huifang Cheng, Hanmin Wang, Xiaofeng Fan, Paisit Paueksakon, Raymond C Harris. Improvement of endothelial nitric oxide synthase activity retards the progression of diabetic nephropathy in db/db mice. Kidney international. 2012 Dec; 82(11):1176-83. doi: 10.1038/ki.2012.248. [PMID: 22785174]
  • Yi-Chen Liao, Ying-Ho Lee, Lea-Yea Chuang, Jinn-Yuh Guh, Ming-Der Shi, Jau-Shyang Huang. Advanced glycation end products-mediated hypertrophy is negatively regulated by tetrahydrobiopterin in renal tubular cells. Molecular and cellular endocrinology. 2012 May; 355(1):71-7. doi: 10.1016/j.mce.2012.01.018. [PMID: 22326994]
  • Cheul Ho Park, Jae Woo Kim. Effect of advanced glycation end products on oxidative stress and senescence of trabecular meshwork cells. Korean journal of ophthalmology : KJO. 2012 Apr; 26(2):123-31. doi: 10.3341/kjo.2012.26.2.123. [PMID: 22511839]
  • Hiromi Jo, Hajime Otani, Fusakazu Jo, Takayuki Shimazu, Toru Okazaki, Kei Yoshioka, Masanori Fujita, Atsushi Kosaki, Toshiji Iwasaka. Inhibition of nitric oxide synthase uncoupling by sepiapterin improves left ventricular function in streptozotocin-induced diabetic mice. Clinical and experimental pharmacology & physiology. 2011 Aug; 38(8):485-93. doi: 10.1111/j.1440-1681.2011.05535.x. [PMID: 21554376]
  • Matthieu Legrand, Asli Kandil, Didier Payen, Can Ince. Effects of sepiapterin infusion on renal oxygenation and early acute renal injury after suprarenal aortic clamping in rats. Journal of cardiovascular pharmacology. 2011 Aug; 58(2):192-8. doi: 10.1097/fjc.0b013e31821f8ec3. [PMID: 21562427]
  • Catherine A Lemarié, Layla Shbat, Chiara Marchesi, Orlando J Angulo, Marie-Eve Deschênes, Mark D Blostein, Pierre Paradis, Ernesto L Schiffrin. Mthfr deficiency induces endothelial progenitor cell senescence via uncoupling of eNOS and downregulation of SIRT1. American journal of physiology. Heart and circulatory physiology. 2011 Mar; 300(3):H745-53. doi: 10.1152/ajpheart.00321.2010. [PMID: 21169404]
  • Akiko Ohashi, Yuko Sugawara, Kaori Mamada, Yoshinori Harada, Tomomi Sumi, Naohiko Anzai, Shin Aizawa, Hiroyuki Hasegawa. Membrane transport of sepiapterin and dihydrobiopterin by equilibrative nucleoside transporters: a plausible gateway for the salvage pathway of tetrahydrobiopterin biosynthesis. Molecular genetics and metabolism. 2011 Jan; 102(1):18-28. doi: 10.1016/j.ymgme.2010.09.005. [PMID: 20956085]
  • Mya Thida, John Earl, Yan Zhao, Hans Wang, Chi S Tse, Janine J Vickers, Matthew Sutton, Sharon L H Ong, Trevor A Mori, Kevin D Croft, Judith A Whitworth, Yi Zhang. Effects of sepiapterin supplementation and NOS inhibition on glucocorticoid-induced hypertension. American journal of hypertension. 2010 May; 23(5):569-74. doi: 10.1038/ajh.2010.27. [PMID: 20186125]
  • Galen M Pieper, Irina A Ionova, Brian C Cooley, Raymond Q Migrino, Ashwani K Khanna, Jennifer Whitsett, Jeannette Vásquez-Vivar. Sepiapterin decreases acute rejection and apoptosis in cardiac transplants independently of changes in nitric oxide and inducible nitric-oxide synthase dimerization. The Journal of pharmacology and experimental therapeutics. 2009 Jun; 329(3):890-9. doi: 10.1124/jpet.108.148569. [PMID: 19307452]
  • Marcel M Verbeek, Michel A A P Willemsen, Ron A Wevers, Aart J Lagerwerf, Nico G G M Abeling, Nenad Blau, Beat Thöny, Euthymia Vargiami, Dimitrios I Zafeiriou. Two Greek siblings with sepiapterin reductase deficiency. Molecular genetics and metabolism. 2008 Aug; 94(4):403-409. doi: 10.1016/j.ymgme.2008.04.003. [PMID: 18502672]
  • Jennifer Whitsett, Matthew J Picklo, Jeannette Vasquez-Vivar. 4-Hydroxy-2-nonenal increases superoxide anion radical in endothelial cells via stimulated GTP cyclohydrolase proteasomal degradation. Arteriosclerosis, thrombosis, and vascular biology. 2007 Nov; 27(11):2340-7. doi: 10.1161/atvbaha.107.153742. [PMID: 17872449]
  • John W Elrod, Mark R Duranski, Will Langston, James J M Greer, Ling Tao, Tammy R Dugas, Christopher G Kevil, Hunter C Champion, David J Lefer. eNOS gene therapy exacerbates hepatic ischemia-reperfusion injury in diabetes: a role for eNOS uncoupling. Circulation research. 2006 Jul; 99(1):78-85. doi: 10.1161/01.res.0000231306.03510.77. [PMID: 16763164]
  • Jan-Zhong Sheng, Dianna Wang, Andrew P Braun. DAF-FM (4-amino-5-methylamino-2',7'-difluorofluorescein) diacetate detects impairment of agonist-stimulated nitric oxide synthesis by elevated glucose in human vascular endothelial cells: reversal by vitamin C and L-sepiapterin. The Journal of pharmacology and experimental therapeutics. 2005 Nov; 315(2):931-40. doi: 10.1124/jpet.105.087932. [PMID: 16093274]
  • Xiao-Wu Qu, Larry G Thaete, Ranna A Rozenfeld, Yaqin Zhu, Isabelle G De Plaen, Michael S Caplan, Wei Hsueh. Tetrahydrobiopterin prevents platelet-activating factor-induced intestinal hypoperfusion and necrosis: Role of neuronal nitric oxide synthase. Critical care medicine. 2005 May; 33(5):1050-6. doi: 10.1097/01.ccm.0000162908.14887.36. [PMID: 15891335]
  • Qing Xu, David A Wink, Carol A Colton. Nitric oxide production and regulation of neuronal NOS in tyrosine hydroxylase containing neurons. Experimental neurology. 2004 Aug; 188(2):341-50. doi: 10.1016/j.expneurol.2004.04.016. [PMID: 15246834]
  • Christiane P Tiefenbacher, Ching-Hua Lee, Jolanthe Kapitza, Volker Dietz, Feraydoon Niroomand. Sepiapterin reduces postischemic injury in the rat heart. Pflugers Archiv : European journal of physiology. 2003 Oct; 447(1):1-7. doi: 10.1007/s00424-003-1131-y. [PMID: 12905031]
  • Malarvannan Pannirselvam, Valerie Simon, Subodh Verma, Todd Anderson, Chris R Triggle. Chronic oral supplementation with sepiapterin prevents endothelial dysfunction and oxidative stress in small mesenteric arteries from diabetic (db/db) mice. British journal of pharmacology. 2003 Oct; 140(4):701-6. doi: 10.1038/sj.bjp.0705476. [PMID: 14534153]
  • Nenad Blau, Beat Thöny. Possible impact of tetrahydrobiopterin and sepiapterin on endothelial dysfunction. Arteriosclerosis, thrombosis, and vascular biology. 2003 May; 23(5):913-4; author reply 914. doi: 10.1161/01.atv.0000068647.92130.0d. [PMID: 12740227]
  • Janet Rowe, Suzanne Campbell, Eileen D M Gallery. Nitric oxide production by decidual endothelial cells is not reduced in preeclampsia. Hypertension in pregnancy. 2003; 22(1):63-75. doi: 10.1081/prg-120017005. [PMID: 12648444]
  • Zsolt Bagi, Akos Koller. Lack of nitric oxide mediation of flow-dependent arteriolar dilation in type I diabetes is restored by sepiapterin. Journal of vascular research. 2003 Jan; 40(1):47-57. doi: 10.1159/000068938. [PMID: 12644725]
  • Nada Tomic-Carruthers, Robert Mangan, Raymond Carruthers. Age estimation of Mexican fruit fly (Diptera: Tephritidae) based on accumulation of pterins. Journal of economic entomology. 2002 Dec; 95(6):1319-25. doi: 10.1603/0022-0493-95.6.1319. [PMID: 12539849]
  • Albert Huisman, Ingrid Vos, Ernst E van Faassen, Jaap A Joles, Hermann-Josef Gröne, Pavel Martasek, Anton-Jan van Zonneveld, Anatoly F Vanin, Ton J Rabelink. Anti-inflammatory effects of tetrahydrobiopterin on early rejection in renal allografts: modulation of inducible nitric oxide synthase. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2002 Jul; 16(9):1135-7. doi: 10.1096/fj.01-0890fje. [PMID: 12039851]
  • M Ishii, S Shimizu, S Nawata, Y Kiuchi, T Yamamoto. Involvement of reactive oxygen species and nitric oxide in gastric ischemia-reperfusion injury in rats: protective effect of tetrahydrobiopterin. Digestive diseases and sciences. 2000 Jan; 45(1):93-8. doi: 10.1023/a:1005413511320. [PMID: 10695619]
  • M Ishii, S Shimizu, K Momose, T Yamamoto. SIN-1-induced cytotoxicity in cultured endothelial cells involves reactive oxygen species and nitric oxide: protective effect of sepiapterin. Journal of cardiovascular pharmacology. 1999 Feb; 33(2):295-300. doi: 10.1097/00005344-199902000-00018. [PMID: 10028940]
  • I J Kullo, R S Schwartz, V J Pompili, M Tsutsui, S Milstien, L A Fitzpatrick, Z S Katusic, T O'Brien. Expression and function of recombinant endothelial NO synthase in coronary artery smooth muscle cells. Arteriosclerosis, thrombosis, and vascular biology. 1997 Nov; 17(11):2405-12. doi: 10.1161/01.atv.17.11.2405. [PMID: 9409208]
  • A J Bune, H T Cook. Inhibition of tetrahydrobiopterin synthesis reduces nitric oxide production by isolated glomeruli in immune complex glomerulonephritis. Experimental nephrology. 1996 Jan; 4(1):43-7. doi: NULL. [PMID: 8788599]
  • B Amoah-Apraku, S S Tang, J R Ingelfinger, N J Guzman. Guanosine triphosphate cyclohydrolase I regulates nitric oxide synthesis in renal proximal tubules. Journal of the American Society of Nephrology : JASN. 1995 Feb; 5(8):1630-3. doi: 10.1681/asn.v581630. [PMID: 7756597]
  • H Mühl, J Pfeilschifter. Tetrahydrobiopterin is a limiting factor of nitric oxide generation in interleukin 1 beta-stimulated rat glomerular mesangial cells. Kidney international. 1994 Nov; 46(5):1302-6. doi: 10.1038/ki.1994.398. [PMID: 7531790]
  • N Blau, L Kierat, H C Curtius, M Blaskovics, T Giudici. Hyperphenylalaninaemia presumably due to carbinolamine dehydratase deficiency: loading tests with pterin derivatives. Journal of inherited metabolic disease. 1992; 15(3):409-12. doi: 10.1007/bf02435990. [PMID: 1405481]
  • J L Dhondt, J P Farriaux, A Boudha, C Largillière, J Ringel, M M Roger, R J Leeming. Neonatal hyperphenylalaninemia presumably caused by guanosine triphosphate-cyclohydrolase deficiency. The Journal of pediatrics. 1985 Jun; 106(6):954-6. doi: 10.1016/s0022-3476(85)80251-1. [PMID: 3873535]
  • B Andondonskaja-Renz, H J Zeitler. Separation of pteridines from blood cells and plasma by reverse-phase high-performance liquid chromatography. Analytical biochemistry. 1983 Aug; 133(1):68-78. doi: 10.1016/0003-2697(83)90223-3. [PMID: 6638488]
  • A Niederwieser, H C Curtius, M Wang, D Leupold. Atypical phenylketonuria with defective biopterin metabolism. Monotherapy with tetrahydrobiopterin or sepiapterin, screening and study of biosynthesis in man. European journal of pediatrics. 1982 Mar; 138(2):110-2. doi: 10.1007/bf00441135. [PMID: 7094929]
  • M Häusermann, S Ghisla, A Niederwieser, H C Curtius. New aspects in biopterin biosynthesis in man. FEBS letters. 1981 Aug; 131(2):275-8. doi: 10.1016/0014-5793(81)80383-3. [PMID: 7297676]
  • K Tanaka, M Akino, Y Hagi, M Doi, T Shiota. The enzymatic synthesis of sepiapterin by chicken kidney preparations. The Journal of biological chemistry. 1981 Mar; 256(6):2963-72. doi: . [PMID: 7009601]
  • A Niederwieser, H C Curtius, O Bettoni, J Bieri, B Schircks, M Viscontini, J Schaub. Atypical phenylketonuria caused by 7, 8-dihydrobiopterin synthetase deficiency. Lancet (London, England). 1979 Jan; 1(8108):131-3. doi: 10.1016/s0140-6736(79)90521-x. [PMID: 84153]