2-Oxo-3-methylvalerate (BioDeep_00000015107)

Main id: BioDeep_00000265241

 

natural product PANOMIX_OTCML-2023 BioNovoGene_Lab2019


代谢物信息卡片


(+-)-3-Methyl-2-oxovaleric acid sodium salt

化学式: C6H10O3 (130.063)
中文名称: 3-甲基-2-氧代戊酸
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CCC(C)C(=O)C(=O)O
InChI: InChI=1S/C6H10O3/c1-3-4(2)5(7)6(8)9/h4H,3H2,1-2H3,(H,8,9)

描述信息

CONFIDENCE standard compound; ML_ID 14
3-Methyl-2-oxovaleric acid is a neurotoxin, an acidogen, and a metabotoxin, and also an abnormal metabolite that arises from the incomplete breakdown of branched-chain amino acids.

同义名列表

7 个代谢物同义名

(+-)-3-Methyl-2-oxovaleric acid sodium salt; (3S)-3-Methyl-2-oxopentanoic acid; 3-Methyl-2-oxopentanoic acid; 3-Methyl-2-oxovaleric acid; 2-Oxo-3-methylvaleic acid; 2-Oxo-3-methylvalerate; 3-Methyl-2-oxopentanoate



数据库引用编号

17 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

3 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 CASP3, CAT, FASN, KHK, MAPK14, MMUT, MTOR, NEFH, PRKX, S100B
Peripheral membrane protein 2 ACHE, MTOR
Endoplasmic reticulum membrane 3 MTOR, PROS1, PSEN1
Nucleus 8 ACHE, CASP3, EBF1, MAPK14, MTOR, PRKX, PSEN1, S100B
cytosol 7 CASP3, CAT, FASN, KHK, MAPK14, MTOR, S100B
dendrite 2 MTOR, PSEN1
phagocytic vesicle 1 MTOR
centrosome 1 PSEN1
nucleoplasm 6 CASP3, MAPK14, MTOR, PRKX, PSEN1, S100B
Cell membrane 3 ACHE, PSEN1, TNF
Cytoplasmic side 1 MTOR
Cell projection, axon 2 NEFH, PSEN1
Cell projection, growth cone 1 PSEN1
Cytoplasmic granule 1 PSEN1
Early endosome membrane 1 PSEN1
Multi-pass membrane protein 1 PSEN1
Golgi apparatus membrane 2 MTOR, PSEN1
Synapse 2 ACHE, PSEN1
cell cortex 1 PSEN1
cell junction 1 PSEN1
cell surface 3 ACHE, PSEN1, TNF
ciliary rootlet 1 PSEN1
dendritic shaft 1 PSEN1
gamma-secretase complex 1 PSEN1
glutamatergic synapse 3 CASP3, MAPK14, PSEN1
Golgi apparatus 3 ACHE, FASN, PSEN1
Golgi membrane 4 INS, MTOR, PROS1, PSEN1
growth cone 1 PSEN1
lysosomal membrane 3 EGF, MTOR, PSEN1
mitochondrial inner membrane 1 PSEN1
neuromuscular junction 2 ACHE, PSEN1
neuronal cell body 4 CASP3, PSEN1, S100B, TNF
postsynapse 1 PSEN1
presynaptic membrane 1 PSEN1
sarcolemma 1 PSEN1
smooth endoplasmic reticulum 1 PSEN1
synaptic vesicle 1 PSEN1
Lysosome 1 MTOR
plasma membrane 8 ACHE, EGF, FASN, IGHE, KNG1, PROS1, PSEN1, TNF
Membrane 6 ACHE, CAT, EGF, FASN, MTOR, PSEN1
axon 2 NEFH, PSEN1
extracellular exosome 6 CAT, EGF, FASN, KHK, KNG1, PROS1
Lysosome membrane 1 MTOR
endoplasmic reticulum 2 PROS1, PSEN1
extracellular space 9 ACHE, EGF, IGHE, IL6, INS, KNG1, PROS1, S100B, TNF
perinuclear region of cytoplasm 2 ACHE, S100B
Schaffer collateral - CA1 synapse 1 NEFH
mitochondrion 4 CAT, MAPK14, MMUT, PSEN1
protein-containing complex 2 CAT, PSEN1
intracellular membrane-bounded organelle 2 CAT, S100B
Microsome membrane 1 MTOR
postsynaptic density 2 CASP3, NEFH
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 1 IGHE
Secreted 5 ACHE, IL6, INS, PROS1, S100B
extracellular region 11 ACHE, CAT, EGF, IGHE, IL6, INS, KNG1, MAPK14, PROS1, S100B, TNF
Mitochondrion outer membrane 1 MTOR
mitochondrial outer membrane 1 MTOR
Mitochondrion matrix 1 MMUT
mitochondrial matrix 2 CAT, MMUT
Extracellular side 1 ACHE
nuclear membrane 1 PSEN1
external side of plasma membrane 1 TNF
Early endosome 1 PSEN1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Membrane raft 2 PSEN1, TNF
Cytoplasm, cytoskeleton 1 NEFH
focal adhesion 1 CAT
Peroxisome 1 CAT
basement membrane 1 ACHE
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Nucleus, PML body 1 MTOR
PML body 1 MTOR
collagen-containing extracellular matrix 1 KNG1
nuclear speck 1 MAPK14
nuclear outer membrane 1 PSEN1
ruffle 1 S100B
Cell projection, neuron projection 1 PSEN1
neuron projection 1 PSEN1
chromatin 1 EBF1
IgE immunoglobulin complex 1 IGHE
phagocytic cup 1 TNF
cytoskeleton 1 NEFH
Secreted, extracellular space 1 KNG1
spindle pole 1 MAPK14
blood microparticle 2 KNG1, PROS1
Lipid-anchor, GPI-anchor 1 ACHE
[Isoform 2]: Cell membrane 1 IGHE
nuclear envelope 1 MTOR
Endomembrane system 1 MTOR
endosome lumen 1 INS
Melanosome 1 FASN
side of membrane 1 ACHE
ficolin-1-rich granule lumen 2 CAT, MAPK14
secretory granule lumen 3 CAT, INS, MAPK14
Golgi lumen 2 INS, PROS1
endoplasmic reticulum lumen 3 IL6, INS, KNG1
platelet alpha granule lumen 3 EGF, KNG1, PROS1
kinetochore 1 PSEN1
transport vesicle 1 INS
azurophil granule membrane 1 PSEN1
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
aggresome 1 PSEN1
neurofilament 1 NEFH
clathrin-coated endocytic vesicle membrane 1 EGF
synaptic cleft 1 ACHE
death-inducing signaling complex 1 CASP3
Rough endoplasmic reticulum 1 PSEN1
Cytoplasmic vesicle, phagosome 1 MTOR
[Isoform 3]: Cell membrane 1 IGHE
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
[Isoform 1]: Secreted 1 IGHE
IgE B cell receptor complex 1 IGHE
immunoglobulin complex, circulating 1 IGHE
catalase complex 1 CAT
interleukin-6 receptor complex 1 IL6
postsynaptic intermediate filament cytoskeleton 1 NEFH
neurofibrillary tangle 1 NEFH
[Isoform H]: Cell membrane 1 ACHE
glycogen granule 1 FASN
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Woong B Kwon, Kevin J Touchette, Aude Simongiovanni, Kostas Syriopoulos, Anna Wessels, Hans H Stein. Excess dietary leucine in diets for growing pigs reduces growth performance, biological value of protein, protein retention, and serotonin synthesis1. Journal of animal science. 2019 Oct; 97(10):4282-4292. doi: 10.1093/jas/skz259. [PMID: 31410464]
  • Katsumi Shibata. Urinary Excretion of 2-Oxo Acids Is Greater in Rats with Streptozotocin-Induced Diabetes. Journal of nutritional science and vitaminology. 2018; 64(4):292-295. doi: 10.3177/jnsv.64.292. [PMID: 30175794]
  • Kurt Lächler, Janet Imhof, Michael Reichelt, Jonathan Gershenzon, Stefan Binder. The cytosolic branched-chain aminotransferases of Arabidopsis thaliana influence methionine supply, salvage and glucosinolate metabolism. Plant molecular biology. 2015 May; 88(1-2):119-31. doi: 10.1007/s11103-015-0312-3. [PMID: 25851613]
  • Claire L Boulangé, Sandrine P Claus, Chieh J Chou, Sebastiano Collino, Ivan Montoliu, Sunil Kochhar, Elaine Holmes, Serge Rezzi, Jeremy K Nicholson, Marc E Dumas, François-Pierre J Martin. Early metabolic adaptation in C57BL/6 mice resistant to high fat diet induced weight gain involves an activation of mitochondrial oxidative pathways. Journal of proteome research. 2013 Apr; 12(4):1956-68. doi: 10.1021/pr400051s. [PMID: 23473242]
  • Jia V Li, Jasmina Saric, Yulan Wang, Jennifer Keiser, Jürg Utzinger, Elaine Holmes. Chemometric analysis of biofluids from mice experimentally infected with Schistosoma mansoni. Parasites & vectors. 2011 Sep; 4(?):179. doi: 10.1186/1756-3305-4-179. [PMID: 21929782]
  • Jia V Li, Jasmina Saric, Yulan Wang, Jürg Utzinger, Elaine Holmes, Oliver Balmer. Metabonomic investigation of single and multiple strain Trypanosoma brucei brucei infections. The American journal of tropical medicine and hygiene. 2011 Jan; 84(1):91-8. doi: 10.4269/ajtmh.2011.10-0402. [PMID: 21212208]
  • Jan-Willem de Kraker, Jonathan Gershenzon. From amino acid to glucosinolate biosynthesis: protein sequence changes in the evolution of methylthioalkylmalate synthase in Arabidopsis. The Plant cell. 2011 Jan; 23(1):38-53. doi: 10.1105/tpc.110.079269. [PMID: 21205930]
  • Junfang Wu, Wenxin Xu, Zhenping Ming, Huifen Dong, Huiru Tang, Yulan Wang. Metabolic changes reveal the development of schistosomiasis in mice. PLoS neglected tropical diseases. 2010 Aug; 4(8):. doi: 10.1371/journal.pntd.0000807. [PMID: 20824219]
  • Gregory S Maloney, Andrej Kochevenko, Denise M Tieman, Takayuki Tohge, Uri Krieger, Dani Zamir, Mark G Taylor, Alisdair R Fernie, Harry J Klee. Characterization of the branched-chain amino acid aminotransferase enzyme family in tomato. Plant physiology. 2010 Jul; 153(3):925-36. doi: 10.1104/pp.110.154922. [PMID: 20435740]
  • Susan C Connor, Michael K Hansen, Adam Corner, Randall F Smith, Terence E Ryan. Integration of metabolomics and transcriptomics data to aid biomarker discovery in type 2 diabetes. Molecular bioSystems. 2010 May; 6(5):909-21. doi: 10.1039/b914182k. [PMID: 20567778]
  • Markus Karl Wiltafsky, Michael Walter Pfaffl, Franz Xaver Roth. The effects of branched-chain amino acid interactions on growth performance, blood metabolites, enzyme kinetics and transcriptomics in weaned pigs. The British journal of nutrition. 2010 Apr; 103(7):964-76. doi: 10.1017/s0007114509992212. [PMID: 20196890]
  • ". Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS biology. 2010 Feb; 8(2):e1000313. doi: 10.1371/journal.pbio.1000313. [PMID: 20186266]
  • K V Katkar, A C Suthar, V S Chauhan. The chemistry, pharmacologic, and therapeutic applications of Polyalthia longifolia. Pharmacognosy reviews. 2010 Jan; 4(7):62-8. doi: 10.4103/0973-7847.65329. [PMID: 22228943]
  • Tanja Knill, Michael Reichelt, Christian Paetz, Jonathan Gershenzon, Stefan Binder. Arabidopsis thaliana encodes a bacterial-type heterodimeric isopropylmalate isomerase involved in both Leu biosynthesis and the Met chain elongation pathway of glucosinolate formation. Plant molecular biology. 2009 Oct; 71(3):227-39. doi: 10.1007/s11103-009-9519-5. [PMID: 19597944]
  • F Lahnsteiner. The role of free amino acids in semen of rainbow trout Oncorhynchus mykiss and carp Cyprinus carpio. Journal of fish biology. 2009 Sep; 75(4):816-33. doi: 10.1111/j.1095-8649.2009.02317.x. [PMID: 20738581]
  • Carolyn M Slupsky, Andriy Cheypesh, Danny V Chao, Hao Fu, Kathryn N Rankin, Thomas J Marrie, Paige Lacy. Streptococcus pneumoniae and Staphylococcus aureus pneumonia induce distinct metabolic responses. Journal of proteome research. 2009 Jun; 8(6):3029-36. doi: 10.1021/pr900103y. [PMID: 19368345]
  • Chang Shi, Chun-Qi Wu, An-Min Cao, He-Zhang Sheng, Xian-Zhong Yan, Ming-Yang Liao. NMR-spectroscopy-based metabonomic approach to the analysis of Bay41-4109, a novel anti-HBV compound, induced hepatotoxicity in rats. Toxicology letters. 2007 Sep; 173(3):161-7. doi: 10.1016/j.toxlet.2007.07.010. [PMID: 17826925]
  • Cláudia Funchal, Francine Tramontina, André Quincozes dos Santos, Daniela Fraga de Souza, Carlos Alberto Gonçalves, Regina Pessoa-Pureur, Moacir Wajner. Effect of the branched-chain alpha-keto acids accumulating in maple syrup urine disease on S100B release from glial cells. Journal of the neurological sciences. 2007 Sep; 260(1-2):87-94. doi: 10.1016/j.jns.2007.04.011. [PMID: 17499767]
  • Alexander I Shestopalov, Bruce S Kristal. Branched chain keto-acids exert biphasic effects on alpha-ketoglutarate-stimulated respiration in intact rat liver mitochondria. Neurochemical research. 2007 Apr; 32(4-5):947-51. doi: 10.1007/s11064-007-9291-3. [PMID: 17342410]
  • André Wajner, Cristiane Bürger, Carlos Severo Dutra-Filho, Moacir Wajner, Angela Terezinha de Souza Wyse, Clóvis Milton Duval Wannmacher. Synaptic plasma membrane Na(+), K (+)-ATPase activity is significantly reduced by the alpha-keto acids accumulating in maple syrup urine disease in rat cerebral cortex. Metabolic brain disease. 2007 Mar; 22(1):77-88. doi: 10.1007/s11011-007-9046-5. [PMID: 17295076]
  • Anne-Laure Cavin, Anne-Emmanuelle Hay, Andrew Marston, Helen Stoeckli-Evans, Rosario Scopelliti, Drissa Diallo, Kurt Hostettmann. Bioactive diterpenes from the fruits of Detarium microcarpum. Journal of natural products. 2006 May; 69(5):768-73. doi: 10.1021/np058123q. [PMID: 16724838]
  • Cláudia Funchal, Patrícia Fernanda Schuck, André Quincozes Dos Santos, Maria Caroline Jacques-Silva, Carmem Gottfried, Regina Pessoa-Pureur, Moacir Wajner. Creatine and antioxidant treatment prevent the inhibition of creatine kinase activity and the morphological alterations of C6 glioma cells induced by the branched-chain alpha-keto acids accumulating in maple syrup urine disease. Cellular and molecular neurobiology. 2006 Feb; 26(1):67-79. doi: 10.1007/s10571-006-9098-9. [PMID: 16633902]
  • Cláudia Funchal, André Quincozes Dos Santos, Maria Caroline Jacques-Silva, Ariane Zamoner, Carmem Gottfried, Moacir Wajner, Regina Pessoa-Pureur. Branched-chain alpha-keto acids accumulating in maple syrup urine disease induce reorganization of phosphorylated GFAP in C6-glioma cells. Metabolic brain disease. 2005 Sep; 20(3):205-17. doi: 10.1007/s11011-005-7208-x. [PMID: 16167198]
  • Raquel Bridi, César A Braun, Giovanni K Zorzi, Clóvis M D Wannmacher, Moacir Wajner, Eduardo G Lissi, Carlos Severo Dutra-Filho. alpha-keto acids accumulating in maple syrup urine disease stimulate lipid peroxidation and reduce antioxidant defences in cerebral cortex from young rats. Metabolic brain disease. 2005 Jun; 20(2):155-67. doi: 10.1007/s11011-005-4152-8. [PMID: 15938133]
  • Cláudia Funchal, Carmem Gottfried, Lúcia Maria Vieira De Almeida, Moacir Wajner, Regina Pessoa-Pureur. Evidence that the branched-chain alpha-keto acids accumulating in maple syrup urine disease induce morphological alterations and death in cultured astrocytes from rat cerebral cortex. Glia. 2004 Nov; 48(3):230-40. doi: 10.1002/glia.20072. [PMID: 15390119]
  • Cláudia Funchal, Franciele Dall Bello Pessutto, Lúcia Maria Vieira de Almeida, Priscila de Lima Pelaez, Samanta Oliveira Loureiro, Lilian Vivian, Moacir Wajner, Regina Pessoa-Pureur. Alpha-keto-beta-methylvaleric acid increases the in vitro phosphorylation of intermediate filaments in cerebral cortex of young rats through the gabaergic system. Journal of the neurological sciences. 2004 Jan; 217(1):17-24. doi: 10.1016/j.jns.2003.08.003. [PMID: 14675604]
  • Vilson de Castro Vasques, Melissa Avila de Boer, Felipe Diligenti, Fabrício Brinco, Fabrício Mallmann, Carlos Fernando Mello, Moacir Wajner. Intrahippocampal administration of the alpha-keto acids accumulating in maple syrup urine disease provokes learning deficits in rats. Pharmacology, biochemistry, and behavior. 2004 Jan; 77(1):183-90. doi: 10.1016/j.pbb.2003.10.013. [PMID: 14724056]
  • Angela M Sgaravatti, Rafael B Rosa, Patrícia F Schuck, César A J Ribeiro, Clóvis M D Wannmacher, Angela T S Wyse, Carlos S Dutra-Filho, Moacir Wajner. Inhibition of brain energy metabolism by the alpha-keto acids accumulating in maple syrup urine disease. Biochimica et biophysica acta. 2003 Nov; 1639(3):232-8. doi: 10.1016/j.bbadis.2003.09.010. [PMID: 14636955]
  • R Pessoa-Pureur, C Funchal, P de Lima Pelaez, L Vivian, S Oliveira Loureiro, R de Freitas Miranda, M Wajner. Effect of the branched-chain alpha-ketoacids accumulating in maple syrup urine disease on the high molecular weight neurofilament subunit (NF-H) in rat cerebral cortex. Metabolic brain disease. 2002 Jun; 17(2):65-75. doi: 10.1023/a:1015459910869. [PMID: 12083338]
  • A S Coitinho, C F de Mello, T T Lima, J de Bastiani, M R Fighera, M Wajner. Pharmacological evidence that alpha-ketoisovaleric acid induces convulsions through GABAergic and glutamatergic mechanisms in rats. Brain research. 2001 Mar; 894(1):68-73. doi: 10.1016/s0006-8993(00)03321-7. [PMID: 11245816]
  • R G Tavares, C E Santos, C I Tasca, M Wajner, D O Souza, C S Dutra-Filho. Inhibition of glutamate uptake into synaptic vesicles of rat brain by the metabolites accumulating in maple syrup urine disease. Journal of the neurological sciences. 2000 Dec; 181(1-2):44-9. doi: 10.1016/s0022-510x(00)00402-0. [PMID: 11099711]
  • M Reis, M Farage, H Wolosker. Chloride-dependent inhibition of vesicular glutamate uptake by alpha-keto acids accumulated in maple syrup urine disease. Biochimica et biophysica acta. 2000 Jul; 1475(2):114-8. doi: 10.1016/s0304-4165(00)00069-6. [PMID: 10832024]
  • P Schadewaldt, H W Hammen, A C Ott, U Wendel. Renal clearance of branched-chain L-amino and 2-oxo acids in maple syrup urine disease. Journal of inherited metabolic disease. 1999 Aug; 22(6):706-22. doi: 10.1023/a:1005540016376. [PMID: 10472531]
  • P Schadewaldt, U Wendel, H W Hammen. Determination of R- and S-3-methyl-2-oxopentanoate enantiomers in human plasma: suitable method for label enrichment analysis. Journal of chromatography. B, Biomedical applications. 1996 Jul; 682(2):209-18. doi: 10.1016/0378-4347(96)00091-6. [PMID: 8844412]
  • M Wajner, J L Schlottfeldt, K Ckless, C M Wannmacher. Immunosuppressive effects of organic acids accumulating in patients with maple syrup urine disease. Journal of inherited metabolic disease. 1995; 18(2):165-8. doi: 10.1007/bf00711757. [PMID: 7564237]
  • L J Hoffer, A Taveroff, L Robitaille, O A Mamer, M L Reimer. Alpha-keto and alpha-hydroxy branched-chain acid interrelationships in normal humans. The Journal of nutrition. 1993 Sep; 123(9):1513-21. doi: 10.1093/jn/123.9.1513. [PMID: 8360777]
  • Y Matsuo, M Yagi, M Walser. Arteriovenous differences and tissue concentrations of branched-chain ketoacids. The Journal of laboratory and clinical medicine. 1993 Jun; 121(6):779-84. doi: NULL. [PMID: 8505589]
  • U Wendel, G Even, U Langenbeck, P Schadewaldt, W Hummel. Determination of (S)- and (R)-2-oxo-3-methylvaleric acid in plasma of patients with maple syrup urine disease. Clinica chimica acta; international journal of clinical chemistry. 1992 Jun; 208(1-2):85-91. doi: 10.1016/0009-8981(92)90024-k. [PMID: 1638756]
  • V Walker, G A Mills. Effects of birth asphyxia on urinary organic acid excretion. Biology of the neonate. 1992; 61(3):162-72. doi: 10.1159/000243739. [PMID: 1610944]
  • P Schadewaldt, C Dalle-Feste, U Langenbeck, U Wendel. Oral L-alloisoleucine loading studies in healthy subjects and in patients with maple syrup urine disease. Pediatric research. 1991 Nov; 30(5):430-4. doi: 10.1203/00006450-199111000-00007. [PMID: 1754297]
  • D Laouari, P R Parvy, M Burtin, C Kleinknecht, M Broyer. Optimal dietary substitution of racemic ketoanalogues for isoleucine in growing normal and uremic rats. The American journal of clinical nutrition. 1990 Jun; 51(6):1046-53. doi: 10.1093/ajcn/51.6.1046. [PMID: 2349918]
  • P Schadewaldt, H W Hammen, C Dalle-Feste, U Wendel. On the mechanism of L-alloisoleucine formation: studies on a healthy subject and in fibroblasts from normals and patients with maple syrup urine disease. Journal of inherited metabolic disease. 1990; 13(2):137-50. doi: 10.1007/bf01799676. [PMID: 2116545]
  • P Schadewaldt, K Beck, U Wendel. Analysis of maple syrup urine disease in cell culture: use of substrates. Clinica chimica acta; international journal of clinical chemistry. 1989 Sep; 184(1):47-56. doi: 10.1016/0009-8981(89)90255-6. [PMID: 2598467]
  • G J Kasperek. Regulation of branched-chain 2-oxo acid dehydrogenase activity during exercise. The American journal of physiology. 1989 Jan; 256(1 Pt 1):E186-90. doi: 10.1152/ajpendo.1989.256.1.e186. [PMID: 2912141]
  • P Schauder, K Langer, L Herbertz. [Plasma level of branched-chain amino and keto acids in healthy subjects after an intravenous dose of MCT/LCT or LCT]. Beitrage zu Infusionstherapie und klinische Ernahrung. 1988; 20(?):75-87. doi: NULL. [PMID: 3288190]
  • W D Rausch, K Schnecker, J Bruck, P Riederer. [Changes in organic acids in plasma and cerebrospinal fluid in cerebral infarct]. Infusionstherapie und klinische Ernahrung. 1987 Oct; 14(5):209-13. doi: . [PMID: 3679525]
  • M A Funk, K R Lowry, D H Baker. Utilization of the L- and DL-isomers of alpha-keto-beta-methylvaleric acid by rats and comparative efficacy of the keto analogs of branched-chain amino acids provided as ornithine, lysine and histidine salts. The Journal of nutrition. 1987 Sep; 117(9):1550-5. doi: 10.1093/jn/117.9.1550. [PMID: 3116181]
  • M Walser, L M Swain, V Alexander. Measurement of branched-chain ketoacids in plasma by high-performance liquid chromatography. Analytical biochemistry. 1987 Aug; 164(2):287-91. doi: 10.1016/0003-2697(87)90494-5. [PMID: 3674376]
  • P Schauder, D Zavelberg, K Langer, L Herbertz. Sex-specific differences in plasma branched-chain keto acid levels in obesity. The American journal of clinical nutrition. 1987 Jul; 46(1):58-60. doi: 10.1093/ajcn/46.1.58. [PMID: 3300251]
  • F Fiaccadori, G F Elia, H Lehndorff, P Pizzaferri, G Pedretti. [Indications for the use of keto-analogs in internal medicine]. Annali italiani di medicina interna : organo ufficiale della Societa italiana di medicina interna. 1987 Apr; 2(2):143-9. doi: NULL. [PMID: 3079446]
  • C Demigné, C Rémésy, P Fafournoux. Respective contribution of plasma branched-chain amino acids and 2-keto acids to the hepatic metabolism of the carbon moiety of branched-chain amino acids in fed rats. The Journal of nutrition. 1986 Nov; 116(11):2201-8. doi: 10.1093/jn/116.11.2201. [PMID: 3794828]
  • J C Bode. [Branched-chain amino acids and their ketoanalogs: therapeutic uses in patients with chronic liver or kidney failure]. Der Internist. 1985 Jul; 26(7):388-98. doi: NULL. [PMID: 3897107]
  • R H Miller, A E Harper. Metabolism of valine and 3-methyl-2-oxobutanoate by the isolated perfused rat kidney. The Biochemical journal. 1984 Nov; 224(1):109-16. doi: 10.1042/bj2240109. [PMID: 6508752]
  • M Walser. Rationale and indications for the use of alpha-keto analogues. JPEN. Journal of parenteral and enteral nutrition. 1984 Jan; 8(1):37-41. doi: 10.1177/014860718400800137. [PMID: 6366288]
  • R N Dalton, C Chantler. The relationship between branched-chain amino acids and alpha-keto acids in blood in uremia. Kidney international. Supplement. 1983 Dec; 16(?):S61-6. doi: NULL. [PMID: 6588270]
  • R N Dalton, C Chantler. Metabolism of orally administered branched-chain alpha-keto acids. Kidney international. Supplement. 1983 Nov; 15(?):S11-5. doi: . [PMID: 6368946]
  • H Tsuchiya, I Hashizume, T Tokunaga, M Tatsumi, N Takagi, T Hayashi. High-performance liquid chromatography of alpha-keto acids in human saliva. Archives of oral biology. 1983; 28(11):989-92. doi: 10.1016/0003-9969(83)90052-3. [PMID: 6581765]
  • O Yamada, M Shin, K Sano, C Umezawa. Effect of dietary excess leucine on the levels of branched chain alpha-keto acids and ketone bodies in blood and the liver of rats. International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition. 1983; 53(2):192-8. doi: NULL. [PMID: 6885277]
  • P Schauder, D Matthaei, H V Henning, F Scheler, U Langenbeck. Blood levels of branched-chain alpha-keto acids in uremia: effect of an oral glucose tolerance test. Klinische Wochenschrift. 1981 Aug; 59(15):845-9. doi: 10.1007/bf01721054. [PMID: 7021997]
  • S M Hutson, A E Harper. Blood and tissue branched-chain amino and alpha-keto acid concentrations: effect of diet, starvation, and disease. The American journal of clinical nutrition. 1981 Feb; 34(2):173-83. doi: 10.1093/ajcn/34.2.173. [PMID: 7211722]
  • O A Mamer, J A Montgomery, V Y Taguchi. Origin of the two peaks for 2-keto-3-methylvaleric acid produced by the oximation of the keto acids occurring in maple syrup urine disase. Journal of chromatography. 1980 May; 182(2):221-5. doi: 10.1016/s0378-4347(00)81626-6. [PMID: 7380914]
  • D Matthaei, P Schauder, P Kramer, K Grieben, F Scheler, A Mench-Hoinowski, U Langenbeck. Plasma keto-analogues in uraemic patients. Proceedings of the European Dialysis and Transplant Association. European Dialysis and Transplant Association. 1979; 16(?):719-20. doi: NULL. [PMID: 549020]