Subcellular Location: phagophore assembly site

Found 500 associated metabolites.

31 associated genes. ATG101, ATG13, ATG14, ATG2A, ATG2B, ATG3, ATG7, ATG9A, ATG9B, BCAS3, BECN1, BECN2, ILRUN, NBR1, PHAF1, PIK3C3, RB1CC1, SNX30, SNX7, SQSTM1, STX12, TAX1BP1, ULK1, ULK2, ULK3, VMP1, WDR45, WDR45B, WIPI1, WIPI2, ZFYVE1

Isoimperatorin

7,4-[(3-methyl-2-butenyl)oxy]-7H-furo[3,2-g]-1-benzopyran-7-one

C16H14O4 (270.0892)


Isoimperatorin is a member of the class of compounds known as psoralens. Psoralens are organic compounds containing a psoralen moiety, which consists of a furan fused to a chromenone to for 7H-furo[3,2-g]chromen-7-one. Isoimperatorin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Isoimperatorin can be found in a number of food items such as parsley, lime, wild celery, and parsnip, which makes isoimperatorin a potential biomarker for the consumption of these food products. Isoimperatorin is a non-carcinogenic (not listed by IARC) potentially toxic compound. If the compound has been ingested, rapid gastric lavage should be performed using 5\\\\% sodium bicarbonate. For skin contact, the skin should be washed with soap and water. If the compound has entered the eyes, they should be washed with large quantities of isotonic saline or water. In serious cases, atropine and/or pralidoxime should be administered. Anti-cholinergic drugs work to counteract the effects of excess acetylcholine and reactivate AChE. Atropine can be used as an antidote in conjunction with pralidoxime or other pyridinium oximes (such as trimedoxime or obidoxime), though the use of -oximes has been found to be of no benefit, or possibly harmful, in at least two meta-analyses. Atropine is a muscarinic antagonist, and thus blocks the action of acetylcholine peripherally (T3DB). D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM. Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM.

   

Quercitrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O11 (448.1006)


Quercitrin, also known as quercimelin or quercitronic acid, belongs to the class of organic compounds known as flavonoid-3-o-glycosides. These are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. Quercitrin exists in all living organisms, ranging from bacteria to humans. Quercitrin is found, on average, in the highest concentration within a few different foods, such as lingonberries, american cranberries, and olives and in a lower concentration in common beans, tea, and welsh onions. Quercitrin has also been detected, but not quantified, in several different foods, such as guava, bilberries, common pea, apricots, and spearmints. Quercitrin is a quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. It has a role as an antioxidant, an antileishmanial agent, an EC 1.1.1.184 [carbonyl reductase (NADPH)] inhibitor, an EC 1.1.1.21 (aldehyde reductase) inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor and a plant metabolite. It is a monosaccharide derivative, a tetrahydroxyflavone, an alpha-L-rhamnoside and a quercetin O-glycoside. It is a conjugate acid of a quercitrin-7-olate. Quercitrin is a natural product found in Xylopia emarginata, Lotus ucrainicus, and other organisms with data available. Quercitrin is a glycoside formed from the flavonoid quercetin and the deoxy sugar rhamnose. It is a constituent of the dye quercitron. Quercitrin is found in many foods, some of which are garden tomato (variety), kiwi, italian sweet red pepper, and guava. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. [Raw Data] CBA03_Quercitrin_pos_10eV.txt [Raw Data] CBA03_Quercitrin_pos_20eV.txt [Raw Data] CBA03_Quercitrin_neg_50eV.txt [Raw Data] CBA03_Quercitrin_neg_30eV.txt [Raw Data] CBA03_Quercitrin_neg_10eV.txt [Raw Data] CBA03_Quercitrin_neg_40eV.txt [Raw Data] CBA03_Quercitrin_neg_20eV.txt [Raw Data] CBA03_Quercitrin_pos_50eV.txt [Raw Data] CBA03_Quercitrin_pos_30eV.txt [Raw Data] CBA03_Quercitrin_pos_40eV.txt Quercitrin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=522-12-3 (retrieved 2024-07-09) (CAS RN: 522-12-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2].

   

Sarsasapogenin

(2aR,4S,5S,6aS,6bS,8aS,8bR,9S,10R,11aS,12aS,12bR)-5,6a,8a,9-tetramethyldocosahydrospiro[naphtho[2,1:4,5]indeno[2,1-b]furan-10,2-pyran]-4-ol

C27H44O3 (416.329)


(25S)-5beta-spirostan-3beta-ol is a sapogenin. Sarsasapogenin is a natural product found in Yucca gloriosa, Narthecium ossifragum, and other organisms with data available. Constituent of Radix sarsaparilla (sarsaparilla root). Sarsasapogenin is found in asparagus, herbs and spices, and fenugreek. Sarsasapogenin is found in asparagus. Sarsasapogenin is a constituent of Radix sarsaparilla (sarsaparilla root) C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product > C823 - Saponin C1907 - Drug, Natural Product Sarsasapogenin is a sapogenin from the Chinese medical herb Anemarrhena asphodeloides Bunge, with antidiabetic, anti-oxidative, anticancer and anti-inflamatory activities. Sarsasapogenin is a sapogenin from the Chinese medical herb Anemarrhena asphodeloides Bunge, with antidiabetic, anti-oxidative, anticancer and anti-inflamatory activities.

   

Gamabufogenin

5-[(3S,5R,8R,9S,10S,11R,13R,14S,17R)-3,11,14-trihydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]pyran-2-one

C24H34O5 (402.2406)


Gamabufogenin is a steroid lactone. It is functionally related to a bufanolide. Gamabufotalin is a natural product found in Bufotes viridis, Bufo, and other organisms with data available. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides Gamabufotalin (Gamabufagin), a main active compound isolated from Chinese medicine Chansu, has been shown to strongly inhibit cancer cell growth and inflammatory response. Gamabufotalin could inhibite angiogenesis by inhibiting the activation of VEGFR-2 signaling pathways. Gamabufotalin (Gamabufagin), a main active compound isolated from Chinese medicine Chansu, has been shown to strongly inhibit cancer cell growth and inflammatory response. Gamabufotalin could inhibite angiogenesis by inhibiting the activation of VEGFR-2 signaling pathways.

   

Pollenin A

4H-1-Benzopyran-4-one, 3,5,7,8-tetrahydroxy-2-(4-hydroxyphenyl)-

C15H10O7 (302.0427)


Herbacetin is a pentahydroxyflavone that is kaempferol substituted by a hydroxy group at position 8. It is a natural flavonoid from flaxseed which exerts antioxidant, anti-inflammatory and anticancer activities. It has a role as an EC 4.1.1.17 (ornithine decarboxylase) inhibitor, an antineoplastic agent, an apoptosis inducer, an angiogenesis inhibitor, a plant metabolite, an antilipemic drug, an anti-inflammatory agent and an EC 3.4.22.69 (SARS coronavirus main proteinase) inhibitor. It is a pentahydroxyflavone and a 7-hydroxyflavonol. It is functionally related to a kaempferol. Herbacetin is a natural product found in Sedum anglicum, Sedum apoleipon, and other organisms with data available. See also: Larrea tridentata whole (part of). Isolated from pollen of Camellia sinensis (tea). Pollenin A is found in tea. Herbacetin is a natural flavonoid from flaxseed, exerts various pharmacological activities, including antioxidant, anti-inflammatory and anticancer effects[1]. Herbacetin is an Ornithine decarboxylase (ODC) allosteric inhibitor, directly binds to Asp44, Asp243, and Glu384 on ODC. Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the first step of polyamine biosynthesis[2]. Herbacetin is a natural flavonoid from flaxseed, exerts various pharmacological activities, including antioxidant, anti-inflammatory and anticancer effects[1]. Herbacetin is an Ornithine decarboxylase (ODC) allosteric inhibitor, directly binds to Asp44, Asp243, and Glu384 on ODC. Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the first step of polyamine biosynthesis[2].

   

Collettiside I

(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-[(1S,2S,4S,5R,6R,7S,8R,9S,12S,13R,16S)-5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icos-18-ene-6,2-oxane]-16-yl]oxyoxane-3,4,5-triol

C33H52O8 (576.3662)


Diosgenin 3-O-beta-D-glucoside is a sterol 3-beta-D-glucoside having diosgenin as the sterol component. It has a role as a metabolite. It is a sterol 3-beta-D-glucoside, a monosaccharide derivative, a hexacyclic triterpenoid and a spiroketal. It is functionally related to a diosgenin. It derives from a hydride of a spirostan. Disogluside is a natural product found in Allium rotundum, Allium narcissiflorum, and other organisms with data available. Capsicoside A3 is found in herbs and spices. Capsicoside A3 is a constituent of Capsicum annuum roots. C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent Diosgenin glucoside, a saponin compound extracted from Trillium tschonoskii, provides neuroprotection by regulating microglial M1 polarization. Diosgenin glucoside protects against spinal cord injury by regulating autophagy and alleviating apoptosis [1][2]. Diosgenin glucoside, a saponin compound extracted from Trillium tschonoskii, provides neuroprotection by regulating microglial M1 polarization. Diosgenin glucoside protects against spinal cord injury by regulating autophagy and alleviating apoptosis [1][2].

   

Glycocholic acid

((R)-4-((3R,5S,7R,8R,9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoyl)glycine;Glycocholic acid

C26H43NO6 (465.309)


Glycocholic acid is an acyl glycine and a bile acid-glycine conjugate. It is a secondary bile acid produced by the action of enzymes existing in the microbial flora of the colonic environment. Bacteroides, Bifidobacterium, Clostridium and Lactobacillus are involved in bile acid metabolism and produce glycocholic acid (PMID: 6265737; 10629797). In hepatocytes, both primary and secondary bile acids undergo amino acid conjugation at the C-24 carboxylic acid on the side chain, and almost all bile acids in the bile duct therefore exist in a glycine conjugated form (PMID: 16949895). More specifically, glycocholic acid or cholylglycine, is a crystalline bile acid involved in the emulsification of fats. It occurs as a sodium salt in the bile of mammals. Its anion is called glycocholate. As the glycine conjugate of cholic acid, this compound acts as a detergent to solubilize fats for absorption and is itself absorbed (PubChem). Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). Glycocholic acid is found to be associated with alpha-1-antitrypsin deficiency, which is an inborn error of metabolism. Glycocholic acid is a bile acid glycine conjugate having cholic acid as the bile acid component. It has a role as a human metabolite. It is functionally related to a cholic acid and a glycochenodeoxycholic acid. It is a conjugate acid of a glycocholate. Glycocholic acid is a natural product found in Caenorhabditis elegans and Homo sapiens with data available. The glycine conjugate of CHOLIC ACID. It acts as a detergent to solubilize fats for absorption and is itself absorbed. Glycocholic acid, or cholylglycine, is a crystalline bile acid involved in the emulsification of fats. It occurs as a sodium salt in the bile of mammals. It is a conjugate of cholic acid with glycine. Its anion is called glycocholate. [Wikipedia] A bile acid glycine conjugate having cholic acid as the bile acid component. Glycocholic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=475-31-0 (retrieved 2024-07-01) (CAS RN: 475-31-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1]. Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1].

   

Phillyrin

(2S,3R,4S,5S,6R)-2-[4-[(3R,3aR,6S,6aR)-3-(3,4-dimethoxyphenyl)-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-6-yl]-2-methoxyphenoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C27H34O11 (534.2101)


Forsythin is a lignan and a glycoside. Phillyrin is a natural product found in Forsythia suspensa, Phillyrea latifolia, and other organisms with data available. Annotation level-1 2-[4-[3-(3,4-Dimethoxyphenyl)-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-6-yl]-2-methoxyphenoxy]-6-(hydroxymethyl)oxane-3,4,5-triol is a natural product found in Pteris semipinnata with data available. Phillyrin is isolated from Forsythia suspensa Vahl (Oleaceae), has antibacterial and anti-inflammatory activities. Phillyrin has potential inductive effects on rat CYP1A2 and CYP2D1 activities, without affecting CYP2C11 and CYP3A1/2 activities[1]. Phillyrin has anti-influenza A virus activities[2]. Phillyrin is isolated from Forsythia suspensa Vahl (Oleaceae), has antibacterial and anti-inflammatory activities. Phillyrin has potential inductive effects on rat CYP1A2 and CYP2D1 activities, without affecting CYP2C11 and CYP3A1/2 activities[1]. Phillyrin has anti-influenza A virus activities[2].

   

Spinosin

6-((2S,3R,4S,5S,6R)-4,5-Dihydroxy-6-(hydroxymethyl)-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2-yl)-5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-4H-chromen-4-one

C28H32O15 (608.1741)


Spinosin is a flavone C-glycoside that is flavone substituted by hydroxy groups at positions 5 and 4, a methoxy group at position 7 and a 2-O-beta-D-glucopyranosyl-beta-D-glucopyranosyl residue at position 6 via a C-glycosidic linkage. It has a role as a plant metabolite and an anxiolytic drug. It is a flavone C-glycoside, a dihydroxyflavone and a monomethoxyflavone. It is functionally related to a flavone. Spinosin is a natural product found in Clutia abyssinica, Galipea trifoliata, and other organisms with data available. A flavone C-glycoside that is flavone substituted by hydroxy groups at positions 5 and 4, a methoxy group at position 7 and a 2-O-beta-D-glucopyranosyl-beta-D-glucopyranosyl residue at position 6 via a C-glycosidic linkage. Spinosyn a C-glycoside flavonoid isolated from the seeds of Zizyphus jujube, with neuroprotective effects. Spinosin inhibits Aβ1-42 production and aggregation via activating Nrf2/HO-1 pathway[1][2][3]. Spinosyn a C-glycoside flavonoid isolated from the seeds of Zizyphus jujube, with neuroprotective effects. Spinosin inhibits Aβ1-42 production and aggregation via activating Nrf2/HO-1 pathway[1][2][3].

   

Narirutin

(S)-5-hydroxy-2-(4-hydroxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C27H32O14 (580.1792)


Narirutin is a disaccharide derivative that is (S)-naringenin substituted by a 6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an anti-inflammatory agent, an antioxidant and a metabolite. It is a disaccharide derivative, a dihydroxyflavanone, a member of 4-hydroxyflavanones, a (2S)-flavan-4-one and a rutinoside. It is functionally related to a (S)-naringenin. Narirutin is a natural product found in Cyclopia subternata, Citrus latipes, and other organisms with data available. See also: Tangerine peel (part of). obtained from Camellia sinensis (tea). Narirutin is found in many foods, some of which are lemon, globe artichoke, grapefruit, and grapefruit/pummelo hybrid. Narirutin is found in globe artichoke. Narirutin is obtained from Camellia sinensis (tea Narirutin, one of the active constituents isolated from citrus fruits, has antioxidant and anti-inflammatory activities. Narirutin is a shikimate kinase inhibitor with anti-tubercular potency[1][2]. Narirutin, one of the active constituents isolated from citrus fruits, has antioxidant and anti-inflammatory activities. Narirutin is a shikimate kinase inhibitor with anti-tubercular potency[1][2].

   

Isoliquiritin

(E)-1-(2,4-Dihydroxyphenyl)-3-(4-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)phenyl)prop-2-en-1-one

C21H22O9 (418.1264)


Isoliquiritin is a monosaccharide derivative that is trans-chalcone substituted by hydroxy groups at positions 2 and 4 and a beta-D-glucopyranosyloxy group at position 4 respectively. It has a role as an antineoplastic agent and a plant metabolite. It is a member of chalcones, a member of resorcinols, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a trans-chalcone. Isoliquiritin is a natural product found in Allium chinense, Portulaca oleracea, and other organisms with data available. See also: Glycyrrhiza Glabra (part of). Isoliquiritin is found in fruits. Isoliquiritin is isolated from Glycyrrhiza specie Isolated from Glycyrrhiza subspecies Isoliquiritin is found in tea and fruits. Isoliquiritin, isolated from Licorice Root, inhibits angiogenesis and tube formation. Isoliquiritin also exhibits antidepressant-like effects and antifungal activity[1][2][3]. Isoliquiritin, isolated from Licorice Root, inhibits angiogenesis and tube formation. Isoliquiritin also exhibits antidepressant-like effects and antifungal activity[1][2][3].

   

(2R,3R,4R)-2-Amino-4-hydroxy-3-methylpentanoic acid

(2S,3R,4S)-2-Amino-4-hydroxy-3-methylpentanoic acid (H-L-Ile(4-OH)-OH)

C6H13NO3 (147.0895)


(4S)-4-hydroxy-L-isoleucine is an L-isoleucine derivative that is L-isoleucine bearing a (4S)-hydroxy substituent. It has a role as a plant metabolite. It is an amino alcohol, a L-isoleucine derivative and a non-proteinogenic L-alpha-amino acid. It is a tautomer of a (4S)-4-hydroxy-L-isoleucine zwitterion. See also: Fenugreek seed (part of). L-Ribo-2-Amino-4-hydroxy-3-methylpentanoic acid is found in herbs and spices. L-Ribo-2-Amino-4-hydroxy-3-methylpentanoic acid is a major constituent of Trigonella foenum-graecum (fenugreek (2S,3R,4S)-4-Hydroxyisoleucine is an orally active compound isolated from Trigonella foenum-graecum, with anti-diabetes and anti-diabetic nephropathy activity[1]. (2S,3R,4S)-4-Hydroxyisoleucine is an orally active compound isolated from Trigonella foenum-graecum, with anti-diabetes and anti-diabetic nephropathy activity[1]. 4-Hydroxyisoleucine (4-?Hydroxy-?L-?isoleucine) is an amino acid which can be extracted and purified from fenugreek seeds. 4-Hydroxyisoleucine (4-?Hydroxy-?L-?isoleucine) displays an insulinotropic activity of great interest[1]. 4-Hydroxyisoleucine (4-?Hydroxy-?L-?isoleucine) is an amino acid which can be extracted and purified from fenugreek seeds. 4-Hydroxyisoleucine (4-?Hydroxy-?L-?isoleucine) displays an insulinotropic activity of great interest[1].

   

Ingenol

1H-2,8A-METHANOCYCLOPENTA(A)CYCLOPROPA(E)CYCLODECEN-11-ONE, 1A,2,5,5A,6,9,10,10A-OCTAHYDRO-5,5A,6-TRIHYDROXY-4-(HYDROXYMETHYL)-1,1,7,9-TETRAMETHYL-, (1AR-(1A.ALPHA.,2.BETA.,5.BETA.,5A.BETA.,6.BETA.,8A.ALPHA.,9.ALPHA.,10A.ALPHA.))-

C20H28O5 (348.1937)


Ingenol is a tetracyclic diterpenoid that is 1a,2,5,5a,6,9,10,10a-octahydro-1H-2,8a-methanocyclopenta[a]cyclopropa[e][10]annulen-11-one substituted at positions 5, 5a and 6 by hydroxy groups, positions 1, 1, 7 and 9 by methyl groups, position 4 by a hydroxymethyl group and position 1 by an oxo group (the 1aR,2S,5R,5aR,6S,8aS,9R,10aR diastereomer). It is a tetracyclic diterpenoid and a cyclic terpene ketone. Ingenol is a natural product found in Euphorbia villosa, Euphorbia illirica, and other organisms with data available. Ingenol is a PKC activator, with a Ki of 30 μM, with antitumor activity. Ingenol is a PKC activator, with a Ki of 30 μM, with antitumor activity.

   

Pectolinarigenin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-6-methoxy-2-(4-methoxyphenyl)-

C17H14O6 (314.079)


Pectolinarigenin is a dimethoxyflavone that is the 6,4-dimethyl ether derivative of scutellarein. It has a role as a plant metabolite. It is a dimethoxyflavone and a dihydroxyflavone. It is functionally related to a scutellarein. Pectolinarigenin is a natural product found in Eupatorium cannabinum, Chromolaena odorata, and other organisms with data available. Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2]. Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2]. Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2].

   

Kaempferitrin

7-((6-deoxy-alpha-L-mannopyranosyl)oxy)-5-hydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-1-benzopyran-3-yl 6-deoxy-alpha-L-mannopyranoside

C27H30O14 (578.1635)


Kaempferol 3,7-di-O-alpha-L-rhamnoside is a glycosyloxyflavone that is kaempferol attached to alpha-L-rhamnopyranosyl residues at positions 3 and 7 respectively via glycosidic linkages. It has been isolated from the aerial parts of Vicia faba and Lotus edulis. It has a role as a bone density conservation agent, a hypoglycemic agent, an immunomodulator, an anti-inflammatory agent, an antineoplastic agent, a plant metabolite, an apoptosis inducer and an antidepressant. It is an alpha-L-rhamnoside, a monosaccharide derivative, a dihydroxyflavone, a glycosyloxyflavone and a polyphenol. It is functionally related to a kaempferol. Kaempferitrin is a natural product found in Ficus septica, Cleome amblyocarpa, and other organisms with data available. See also: Selenicereus grandiflorus stem (part of). A glycosyloxyflavone that is kaempferol attached to alpha-L-rhamnopyranosyl residues at positions 3 and 7 respectively via glycosidic linkages. It has been isolated from the aerial parts of Vicia faba and Lotus edulis. Kaempferitrin is found in linden. Kaempferitrin is a chemical compound. It can be isolated from the leaves of Hedyotis verticillata. Kaempferitrin is a natural flavonoid, possesses antinociceptive, anti-inflammatory, anti-diabetic, antitumoral and chemopreventive effects, and activates insulin signaling pathway. Kaempferitrin is a natural flavonoid, possesses antinociceptive, anti-inflammatory, anti-diabetic, antitumoral and chemopreventive effects, and activates insulin signaling pathway.

   

Atractylenolide

(4aS-trans)- 4a,5,6,7,8,8a-hexahydro-3,8a-dimethyl-5-methylenenaphtho[2,3-b]furan-2(4H)-one

C15H18O2 (230.1307)


Atractylenolide I is a natural product found in Solanum lyratum, Atractylodes japonica, and other organisms with data available. Atractylenolide I is a sesquiterpene derived from the rhizome of Atractylodes macrocephala, possesses diverse bioactivities, such as neuroprotective, anti-allergic, anti-inflammatory and anticancer properties. Atractylenolide I reduces protein levels of phosphorylated JAK2 and STAT3 in A375 cells, and acts as a TLR4-antagonizing agent. Atractylenolide I is a sesquiterpene derived from the rhizome of Atractylodes macrocephala, possesses diverse bioactivities, such as neuroprotective, anti-allergic, anti-inflammatory and anticancer properties. Atractylenolide I reduces protein levels of phosphorylated JAK2 and STAT3 in A375 cells, and acts as a TLR4-antagonizing agent.

   

Astragaloside

[(2S,3R,4S,5R)-4,5-dihydroxy-2-[[(1S,3R,6S,8R,9S,11S,12S,14S,15R,16R)-14-hydroxy-15-[(2R,5S)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-9-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-pentacyclo[9.7.0.01,3.03,8.012,16]octadecanyl]oxy]oxan-3-yl] acetate

C43H70O15 (826.4714)


Astragaloside II is a triterpenoid saponin that is cycloastragenol glycosylated at positions 3 and 6 by 2-O-acetyl-beta-D-xylosyl and beta-D-glucosyl residues respectively. It has a role as a plant metabolite. It is a beta-D-glucoside, a monosaccharide derivative, a member of oxolanes, a pentacyclic triterpenoid and a triterpenoid saponin. It is functionally related to a cycloastragenol. Astragaloside II is a natural product found in Euphorbia glareosa, Astragalus hoantchy, and other organisms with data available. See also: Astragalus propinquus root (part of). A triterpenoid saponin that is cycloastragenol glycosylated at positions 3 and 6 by 2-O-acetyl-beta-D-xylosyl and beta-D-glucosyl residues respectively. Astragaloside II is a natural compound isolated from Astragalus membranaceus. Astragaloside II is a natural compound isolated from Astragalus membranaceus.

   

Asperuloside

(2aS-(2aalpha,4aalpha,5alpha,7balpha))-5-(beta-D-glucopyranosyloxy)-2a,4a,5,7b-tetrahydro-1-oxo-1H-2,6-dioxacyclopent(cd)inden-4-ylmethyl acetate

C18H22O11 (414.1162)


Asperuloside is a iridoid monoterpenoid glycoside isolated from Galium verum. It has a role as a metabolite. It is an iridoid monoterpenoid, a beta-D-glucoside, a monosaccharide derivative, an acetate ester and a gamma-lactone. Asperuloside is a natural product found in Lasianthus curtisii, Galium spurium, and other organisms with data available. See also: Galium aparine whole (part of). A iridoid monoterpenoid glycoside isolated from Galium verum. Asperuloside is an iridoid isolated from Hedyotis diffusa, with anti-inflammatory activity. Asperuloside inhibits inducible nitric oxide synthase (iNOS), suppresses NF-κB and MAPK signaling pathways[1]. Asperuloside is an iridoid isolated from Hedyotis diffusa, with anti-inflammatory activity. Asperuloside inhibits inducible nitric oxide synthase (iNOS), suppresses NF-κB and MAPK signaling pathways[1].

   

Harpagoside

(E)-3-phenylprop-2-enoic acid [(1S,4aS,5R,7S,7aS)-4a,5-dihydroxy-7-methyl-1-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-1,5,6,7a-tetrahydrocyclopenta[c]pyran-7-yl] ester

C24H30O11 (494.1788)


Harpagoside is a terpene glycoside. Harpagoside is a natural product found in Verbascum lychnitis, Verbascum sinuatum, and other organisms with data available. See also: Harpagophytum procumbens root (part of); Harpagophytum zeyheri root (part of). Origin: Plant; SubCategory_DNP: Monoterpenoids, Iridoid monoterpenoids Harpagoside is isolated from Harpagophytum procumbens. Harpagoside has inhibitory effects on COX-1 and COX-2 activity and inhibits NO production[1]. Harpagoside is isolated from Harpagophytum procumbens. Harpagoside has inhibitory effects on COX-1 and COX-2 activity and inhibits NO production[1].

   

Phorbol

1,1a,1b,4,4a,7a,7b,8,9,9a-Decahydro-4a,7b,9,9a-tetrahydroxy-3-(hydroxymethyl)-1,1,6,8-tetramethyl-5H-cyclopropa(3,4)benz(1,2-e)azulen-5-one (1aR-(1aalpha,1bbeta,4abeta,7aalpha,7balpha,8alpha,9beta,9aalpha))-

C20H28O6 (364.1886)


Phorbol is a white solid. (NTP, 1992) Phorbol is a diterpenoid with the structure of tigliane hydroxylated at C-4, -9, -12(beta), -13 and -20, with an oxo group at C-3 and unsaturation at the 1- and 6-positions. It is a tetracyclic diterpenoid, an enone, a cyclic ketone, a tertiary alcohol and a tertiary alpha-hydroxy ketone. It derives from a hydride of a tigliane. Phorbol is a natural product found in Euphorbia tirucalli, Croton tiglium, and Rehmannia glutinosa with data available. Phorbol is a natural, plant-derived organic compound. It is a member of the tigliane family of diterpenes. Phorbol was first isolated in 1934 as the hydrolysis product of croton oil, which is derived from the seeds of the purging croton, Croton tiglium. The structure of phorbol was determined in 1967. It is very soluble in most polar organic solvents, as well as in water. Phorbol is a highly toxic diterpene, whose esters have important biological properties. Phorbol is a highly toxic diterpene, whose esters have important biological properties.

   

Cafestol

5A,8-METHANO-5AH-CYCLOHEPTA(5,6)NAPHTHO(2,1-B)FURAN-7-METHANOL, 3B,4,5,6,7,8,9,10,10A,10B,11,12-DODECAHYDRO-7-HYDROXY-10B-METHYL-, (3BS-(3B.ALPHA.,5A.BETA.,7.BETA.,8.BETA.,10A.ALPHA.,10B.BETA.))-

C20H28O3 (316.2038)


Cafestol is an organic heteropentacyclic compound and furan diterpenoid with formula C20H28O3 obtained from the unsaponifiable fraction of coffee oil (a lipid fraction obtained from coffee beans by organic solvent extraction). It has a role as a plant metabolite, an apoptosis inducer, a hypoglycemic agent, an angiogenesis inhibitor, an antineoplastic agent, an antioxidant and an anti-inflammatory agent. It is an organic heteropentacyclic compound, a tertiary alcohol, a diterpenoid, a member of furans and a primary alcohol. Cafestol is a natural product found in Coffea arabica, Diplospora dubia, and other organisms with data available. Cafestol is found in arabica coffee. Cafestol is a constituent of coffee bean oil. Cafestol is present in boiled-type coffee beverages. Possesses hypercholesterolaemic activity. Diterpenoid constits. of coffee products are associated with cardiotoxic properties Cafestol is a diterpene molecule present in coffee Cafestol is a diterpene molecule and is a constituent of coffee bean oil. It is found in boiled-type coffee beverages. Possesses hypercholesterolaemic activity. Diterpenoid constitsuents of coffee products are associated with cardiotoxic props. Cafestol, one of the major components of coffee, is a coffee-specific diterpene from. Cafestol is a ERK inhibitor for AP-1-targeted activity against PGE2 production and the mRNA expression of cyclooxygenase (COX)-2 in LPS-activated RAW264.7 cells. Cafestol has strong inhibitory activity on PGE2 production by suppressing the NF-kB activation pathway. Cafestol contributes to its beneficial effects through various biological activities such as chemopreventive, antitumorigenic, hepatoprotective, antioxidative and antiinflammatory effects[1]. Cafestol, one of the major components of coffee, is a coffee-specific diterpene from. Cafestol is a ERK inhibitor for AP-1-targeted activity against PGE2 production and the mRNA expression of cyclooxygenase (COX)-2 in LPS-activated RAW264.7 cells. Cafestol has strong inhibitory activity on PGE2 production by suppressing the NF-kB activation pathway. Cafestol contributes to its beneficial effects through various biological activities such as chemopreventive, antitumorigenic, hepatoprotective, antioxidative and antiinflammatory effects[1]. Cafestol, one of the major components of coffee, is a coffee-specific diterpene from. Cafestol is a ERK inhibitor for AP-1-targeted activity against PGE2 production and the mRNA expression of cyclooxygenase (COX)-2 in LPS-activated RAW264.7 cells. Cafestol has strong inhibitory activity on PGE2 production by suppressing the NF-kB activation pathway. Cafestol contributes to its beneficial effects through various biological activities such as chemopreventive, antitumorigenic, hepatoprotective, antioxidative and antiinflammatory effects[1].

   

Pinoresinol

PHENOL, 4,4-(TETRAHYDRO-1H,3H-FURO(3,4-C)FURAN-1,4-DIYL)BIS(2-METHOXY-, (1S-(1.ALPHA.,3A.ALPHA.,4.BETA.,6A.ALPHA.))-

C20H22O6 (358.1416)


Epipinoresinol is an enantiomer of pinoresinol having (+)-(1R,3aR,4S,6aR)-configuration. It has a role as a plant metabolite and a marine metabolite. Epipinoresinol is a natural product found in Pandanus utilis, Abeliophyllum distichum, and other organisms with data available. An enantiomer of pinoresinol having (+)-(1R,3aR,4S,6aR)-configuration. (+)-pinoresinol is an enantiomer of pinoresinol having (+)-1S,3aR,4S,6aR-configuration. It has a role as a hypoglycemic agent, a plant metabolite and a phytoestrogen. Pinoresinol is a natural product found in Pandanus utilis, Zanthoxylum beecheyanum, and other organisms with data available. See also: Acai fruit pulp (part of). An enantiomer of pinoresinol having (+)-1S,3aR,4S,6aR-configuration. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.907 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.905 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.897 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.895 Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2]. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2].

   

Theobromine

3,7-dimethylpurine-2,6-dione

C7H8N4O2 (180.0647)


Theobromine is an odorless white crystalline powder. Bitter taste. pH (saturated solution in water): 5.5-7. (NTP, 1992) Theobromine, also known as xantheose, is the principal alkaloid of Theobroma cacao (cacao plant).[4] Theobromine is slightly water-soluble (330 mg/L) with a bitter taste.[5] In industry, theobromine is used as an additive and precursor to some cosmetics.[4] It is found in chocolate, as well as in a number of other foods, including tea (Camellia sinensis), some American hollies (yaupon and guayusa) and the kola nut. It is a white or colourless solid, but commercial samples can appear yellowish.[5] Theobromine is a dimethylxanthine having the two methyl groups located at positions 3 and 7. A purine alkaloid derived from the cacao plant, it is found in chocolate, as well as in a number of other foods, and is a vasodilator, diuretic and heart stimulator. It has a role as an adenosine receptor antagonist, a food component, a plant metabolite, a human blood serum metabolite, a mouse metabolite, a vasodilator agent and a bronchodilator agent. Theobromine (3,7-dimethylxanthine) is the principle alkaloid in Theobroma cacao (the cacao bean) and other plants. A xanthine alkaloid that is used as a bronchodilator and as a vasodilator. It has a weaker diuretic activity than theophylline and is also a less powerful stimulant of smooth muscle. It has practically no stimulant effect on the central nervous system. It was formerly used as a diuretic and in the treatment of angina pectoris and hypertension. (From Martindale, The Extra Pharmacopoeia, 30th ed, pp1318-9) Theobromine is a natural product found in Theobroma grandiflorum, Theobroma mammosum, and other organisms with data available. 3,7-Dimethylxanthine. The principle alkaloid in Theobroma cacao (the cacao bean) and other plants. A xanthine alkaloid that is used as a bronchodilator and as a vasodilator. It has a weaker diuretic activity than THEOPHYLLINE and is also a less powerful stimulant of smooth muscle. It has practically no stimulant effect on the central nervous system. It was formerly used as a diuretic and in the treatment of angina pectoris and hypertension. (From Martindale, The Extra Pharmacopoeia, 30th ed, pp1318-9) See also: Paullinia cupana seed (part of). Theobromine, or 3,7-Dimethylxanthine, is the principle alkaloid in Theobroma cacao (the cacao bean) and other plants. A xanthine alkaloid that is used as a bronchodilator and as a vasodilator. It has a weaker diuretic activity than theophylline and is also a less powerful stimulant of smooth muscle. It has practically no stimulant effect on the central nervous system. It was formerly used as a diuretic and in the treatment of angina pectoris and hypertension. Theobromine is a bitter alkaloid of the methylxanthine family, which also includes the similar compounds theophylline and caffeine. Despite its name, the compound contains no bromine. Theobromine is derived from Theobroma, the genus of the cacao tree, which is composed of the Greek roots theo ("God") and broma ("food"), meaning "food of the gods". It is the primary alkaloid found in cocoa and chocolate, and is one of the causes for chocolates mood-elevating effects. The amount found in chocolate is small enough that chocolate can be safely consumed by humans in large quantities, but animals that metabolize theobromine more slowly, such as cats and dogs, can easily consume enough chocolate to cause chocolate poisoning. Theobromine is a stimulant frequently confused with caffeine. Theobromine has very different effects on the human body from caffeine; it is a mild, lasting stimulant with a mood improving effect, whereas caffeine has a strong, immediate effect and increases stress. In medicine, it is used as a diuretic, vasodilator, and myocardial stimulant. There is a possible association between prostate cancer and theobromine. Theobromine is a contributing factor in acid reflux because it relaxes the esophageal sphincter muscle, allowing stomach acid access to the esophagus. A dimethylxanthine having the two methyl groups located at positions 3 and 7. A purine alkaloid derived from the cacao plant, it is found in chocolate, as well as in a number of other foods, and is a vasodilator, diuretic and heart stimulator. Constituent of tea leaves (Camellia thea), cocoa Theobroma cacao, cola nut (Cola acuminata) and guarana (Paullinia cupana); flavouring ingredient with a bitter taste Biosynthesis Theobromine is a purine alkaloid derived from xanthosine, a nucleoside. Cleavage of the ribose and N-methylation yields 7-methylxanthosine. 7-Methylxanthosine in turn is the precursor to theobromine, which in turn is the precursor to caffeine.[24] Even without dietary intake, theobromine may occur in the body as it is a product of the human metabolism of caffeine, which is metabolised in the liver into 12\% theobromine, 4\% theophylline, and 84\% paraxanthine.[25] In the liver, theobromine is metabolized into xanthine and subsequently into methyluric acid.[26] Important enzymes include CYP1A2 and CYP2E1.[27] The elimination half life of theobromine is between 6 and 8 hours.[1][2] Unlike caffeine, which is highly water-soluble, theobromine is only slightly water-soluble and is more fat soluble, and thus peaks more slowly in the blood. While caffeine peaks after only 30 minutes, theobromine requires 2–3 hours to peak.[28] The primary mechanism of action for theobromine inside the body is inhibition of adenosine receptors.[5] Its effect as a phosphodiesterase inhibitor[29] is thought to be small.[5]

   

Hyoscyamine

BENZENEACETIC ACID, .ALPHA.-(HYDROXYMETHYL)-, (3-ENDO)-8-METHYL-8-AZABICYCLO(3.2.1)OCT-3-YL ESTER, (.ALPHA.S)-

C17H23NO3 (289.1678)


(S)-atropine is an atropine with a 2S-configuration. It is functionally related to a (S)-tropic acid. It is a conjugate base of a (S)-atropinium. Hyoscyamine is a tropane alkaloid and the levo-isomer of [atropine]. It is commonly extracted from plants in the Solanaceae or nightshade family. Research into the action of hyoscyamine in published literature dates back to 1826. Hyoscyamine is used for a wide variety of treatments and therapeutics due to its antimuscarinic properties. Although hyoscyamine is marketed in the United States, it is not FDA approved. Hyoscyamine as a natural plant alkaloid derivative and anticholinergic that is used to treat mild to moderate nausea, motion sickness, hyperactive bladder and allergic rhinitis. Hyoscyamine has not been implicated in causing liver enzyme elevations or clinically apparent acute liver injury. L-Hyoscyamine is a natural product found in Datura ferox, Crenidium spinescens, and other organisms with data available. Hyoscyamine is a belladonna alkaloid derivative and the levorotatory form of racemic atropine isolated from the plants Hyoscyamus niger or Atropa belladonna, which exhibits anticholinergic activity. Hyoscyamine functions as a non-selective, competitive antagonist of muscarinic receptors, thereby inhibiting the parasympathetic activities of acetylcholine on the salivary, bronchial, and sweat glands, as well as the eye, heart, bladder, and gastrointestinal tract. These inhibitory effects cause a decrease in saliva, bronchial mucus, gastric juices, and sweat. Furthermore, its inhibitory action on smooth muscle prevents bladder contraction and decreases gastrointestinal motility. The 3(S)-endo isomer of atropine. Hyoscyamine is a chemical compound, a tropane alkaloid it is the levo-isomer to atropine. It is a secondary metabolite of some plants, particularly henbane (Hyoscamus niger.). Hyoscyamine is used to provide symptomatic relief to various gastrointestinal disorders including spasms, peptic ulcers, irritable bowel syndrome, pancreatitis, colic and cystitis. It has also been used to relieve some heart problems, control some of the symptoms of Parkinsons disease, as well as for control of respiratory secretions in end of life care. A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03B - Belladonna and derivatives, plain > A03BA - Belladonna alkaloids, tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D009184 - Mydriatics D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2269 D002491 - Central Nervous System Agents KEIO_ID H045; [MS2] KO008998 KEIO_ID H045 L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2]. L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2]. L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2].

   

Sclareol

1-Naphthalenepropanol, alpha-ethenyldecahydro-2-hydroxy-alpha,2,5,5,8a-pentamethyl-, (alphaR,1R,2R,4aS,8aS)-: (1R,2R,4aS,8aS)-1-[(3R)-3-hydroxy-3-methylpent-4-en-1-yl]-2,5,5,8a-tetramethyldecahydronaphthalen-2-ol

C20H36O2 (308.2715)


Sclareol is a labdane diterpenoid that is labd-14-ene substituted by hydroxy groups at positions 8 and 13. It has been isolated from Salvia sclarea. It has a role as an antimicrobial agent, an apoptosis inducer, a fragrance, an antifungal agent and a plant metabolite. Sclareol is a natural product found in Curcuma aromatica, Curcuma wenyujin, and other organisms with data available. See also: Clary Sage Oil (part of). Constituent of Salvia sclarea (clary sage). Sclareol is found in many foods, some of which are common thyme, herbs and spices, tea, and nutmeg. Sclareol is found in alcoholic beverages. Sclareol is a constituent of Salvia sclarea (clary sage) Sclareol is isolated from Salvia sclarea with anticarcinogenic activity. Sclareol shows strong cytotoxic activity against mouse leukemia?(P-388), human epidermal?carcinoma?(KB) cells and human?leukemia?cell lines. Sclareol induces cell apoptosis[1]. Sclareol is isolated from Salvia sclarea with anticarcinogenic activity. Sclareol shows strong cytotoxic activity against mouse leukemia?(P-388), human epidermal?carcinoma?(KB) cells and human?leukemia?cell lines. Sclareol induces cell apoptosis[1].

   

Sinapine

Ethanaminium, 2-(((2E)-3-(4-hydroxy-3,5-dimethoxyphenyl)-1-oxo-2-propen-1-yl)oxy)-N,N,N-trimethyl-

[C16H24NO5]+ (310.1654)


Sugar phosphate, also known as sinapoylcholine or sinapine, belongs to coumaric acids and derivatives class of compounds. Those are aromatic compounds containing Aromatic compounds containing a cinnamic acid moiety (or a derivative thereof) hydroxylated at the C2 (ortho-), C3 (meta-), or C4 (para-) carbon atom of the benzene ring. Sugar phosphate is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Sugar phosphate can be found in a number of food items such as common sage, tea leaf willow, broccoli, and sweet bay, which makes sugar phosphate a potential biomarker for the consumption of these food products. Sugar phosphate exists in all living organisms, ranging from bacteria to humans. Sinapine (CAS: 18696-26-9), also known as sinapoylcholine, belongs to the class of organic compounds known as morphinans. These are polycyclic compounds with a four-ring skeleton with three condensed six-member rings forming a partially hydrogenated phenanthrene moiety, one of which is aromatic while the two others are alicyclic. Sinapine is an extremely weak basic (essentially neutral) compound (based on its pKa). Sinapine has been detected, but not quantified, in garden cress and horseradish. Sinapine is found in brassicas. It is a storage protein isolated from the seeds of Brassica napus (rape). This could make sinapine a potential biomarker for the consumption of these foods. Sinapine is an acylcholine in which the acyl group specified is sinapoyl. It has a role as a photosynthetic electron-transport chain inhibitor, an antioxidant and a plant metabolite. It is functionally related to a trans-sinapic acid. Sinapine is a natural product found in Alliaria petiolata, Isatis quadrialata, and other organisms with data available. IPB_RECORD: 244; CONFIDENCE confident structure Sinapine is an alkaloid isolated from seeds of the cruciferous species. Sinapine exhibits anti-inflammatory, anti-oxidant, anti-tumor, anti-angiogenic and radio-protective effects. Sinapine is also an acetylcholinesterase (AChE) inhibitor and can be used for the research of Alzheimer’s disease, ataxia, myasthenia gravis, and Parkinson’s disease[1][2][3][4]. Sinapine is an alkaloid isolated from seeds of the cruciferous species. Sinapine exhibits anti-inflammatory, anti-oxidant, anti-tumor, anti-angiogenic and radio-protective effects. Sinapine is also an acetylcholinesterase (AChE) inhibitor and can be used for the research of Alzheimer’s disease, ataxia, myasthenia gravis, and Parkinson’s disease[1][2][3][4].

   

Dmask

2-Butenoic acid, 3-methyl-, 1-(1,4-dihydro-5,8-dihydroxy-1,4-dioxo-2-naphthalenyl)-4-methyl-3-pentenyl ester, (+)-

C21H22O6 (370.1416)


Dmask is a natural product found in Arnebia hispidissima with data available. Beta,beta-Dimethylacrylshikonin is a hydroxy-1,4-naphthoquinone. beta,beta-Dimethylacrylshikonin is a natural product found in Alkanna cappadocica, Lithospermum erythrorhizon, and other organisms with data available. (Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. (Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. (Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1].

   

Monotropein

(1S,4aS,7R,7aS)-7-Hydroxy-7-(hydroxymethyl)-1-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-1,4a,7,7a-tetrahydrocyclopenta[c]pyran-4-carboxylic acid

C16H22O11 (390.1162)


Monotropein is an iridoid monoterpenoid that is 1,4a,7,7a-tetrahydrocyclopenta[c]pyran substituted by a beta-D-glucopyranosyloxy group at position 1, a carboxylic acid group at position 4, and at position 7 by a hydroxy and hydroxymethyl groups respectively (the 1S,4aS,7R,7aS diastereomer). It has a role as a metabolite and an anti-inflammatory agent. It is a cyclopentapyran, a monocarboxylic acid, an iridoid monoterpenoid, a beta-D-glucoside and a monosaccharide derivative. Monotropein is a natural product found in Vaccinium, Vaccinium macrocarpon, and other organisms with data available. See also: Galium aparine whole (part of). Monotropein is found in bilberry. Monotropein is a constituent of Liquidambar styraciflua (sweet gum) and Liquidambar orientalis (oriental sweet gum). Monotropein is a food flavouring agent. Monotropein is a stabiliser Constituent of Liquidambar styraciflua (sweet gum) and Liquidambar orientalis (oriental sweet gum). Food flavouring agent. Stabiliser. Monotropein is found in bilberry. Monotropein is an iridoid glycoside isolated Morinda officinalis. Monotropein inhibits the expression of inflammatory mediators in dextran sulfate sodium (DSS)-induced colitis mouse model[1]. Monotropein is an iridoid glycoside isolated Morinda officinalis. Monotropein inhibits the expression of inflammatory mediators in dextran sulfate sodium (DSS)-induced colitis mouse model[1].

   

Shionon

2(1H)-CHRYSENONE, HEXADECAHYDRO-1,4B,6A,8,10A,12A-HEXAMETHYL-8-(4-METHYL-3-PENTENYL)-, (1R-(1.ALPHA.,4A.BETA.,4B.ALPHA.,6A.BETA.,8.BETA.,10A.ALPHA.,10B.BETA.,12A.ALPHA.))-

C30H50O (426.3861)


Shionone is a tetracyclic triterpenoid that is perhydrochrysene which is substituted by methyl groups at positions 1, 4bbeta, 6aalpha, 8beta, 10abeta and 12a positions, by a 4-methylpent-3-enyl group at the 8alpha position, and with an oxo group at position 2. It is a tetracyclic triterpenoid and a cyclic terpene ketone. Shionone is a natural product found in Aster baccharoides, Aster poliothamnus, and other organisms with data available. Shionone is the major triterpenoid isolated from Aster tataricus, has anti-tussive, anti-inflammatory activities[1][2]. Shionone possesses a unique six-membered tetracyclic skeleton and 3-oxo-4-monomethyl structure[1]. Shionone is the major triterpenoid isolated from Aster tataricus, has anti-tussive, anti-inflammatory activities[1][2]. Shionone possesses a unique six-membered tetracyclic skeleton and 3-oxo-4-monomethyl structure[1].

   

Yatansin

2H-3,11c-beta-(Epoxymethano)phenanthro(10,1-bc)pyran-3-alpha(3a-beta-H)-carboxylic acid, 1,4,5,6a-beta,7,7a-alpha,10,11,11a,11b-alpha-decahydro-8,11a-beta-dimethyl-5,10-dioxo-1-beta,2-alpha,4-beta,9-tetrahydroxy-, methyl ester, 4-(3-methylcrotonate)

C26H32O11 (520.1945)


Brusatol is a triterpenoid. Brusatol is a natural product found in Brucea javanica and Brucea mollis with data available. Brusatol (NSC?172924) is a unique inhibitor of the Nrf2 pathway that sensitizes a broad spectrum of cancer cells to Cisplatin and other chemotherapeutic agents. Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Brusatol can be developed into an adjuvant chemotherapeutic agent[1]. Brusatol increases cellular apoptosis[2]. Brusatol (NSC?172924) is a unique inhibitor of the Nrf2 pathway that sensitizes a broad spectrum of cancer cells to Cisplatin and other chemotherapeutic agents. Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Brusatol can be developed into an adjuvant chemotherapeutic agent[1]. Brusatol increases cellular apoptosis[2].

   

beta-Sitosterol 3-O-beta-D-galactopyranoside

(2R,3R,4S,5S,6R)-2-(((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C35H60O6 (576.439)


Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. beta-Sitosterol 3-O-beta-D-galactopyranoside is found in herbs and spices. beta-Sitosterol 3-O-beta-D-galactopyranoside is a constituent of Hibiscus sabdariffa (roselle) leaves. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.

   

Jintan

(2S,3S,4S,5R,6R)-6-[(2S,3R,4S,5S,6S)-2-[[(3S,4aR,6aR,6bS,8aS,11S,12aR,14aR,14bS)-11-carboxy-4,4,6a,6b,8a,11,14b-heptamethyl-14-oxo-2,3,4a,5,6,7,8,9,10,12,12a,14a-dodecahydro-1H-picen-3-yl]oxy]-6-carboxy-4,5-dihydroxyoxan-3-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid;azane

C42H61O16.NH4 (839.4303)


Monoammonium glycyrrhizinate is an organic molecular entity. An oleanolic acid from GLYCYRRHIZA that has some antiallergic, antibacterial, and antiviral properties. It is used topically for allergic or infectious skin inflammation and orally for its aldosterone effects in electrolyte regulation. D000893 - Anti-Inflammatory Agents Ammonium glycyrrhizinate (Monoammonium glycyrrhizinate) has various pharmacological actions such as anti-inflammatory, antiallergic, antigastriculcer, and antihepatitis activities. Ammonium glycyrrhizinate (Monoammonium glycyrrhizinate) has various pharmacological actions such as anti-inflammatory, antiallergic, antigastriculcer, and antihepatitis activities.

   

Deltonin

(2S,3R,4R,5R,6S)-2-[(2R,3R,4S,5S,6R)-4-hydroxy-6-(hydroxymethyl)-2-[(1S,2S,4S,5R,6R,7S,8R,9S,12S,13R,16S)-5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icos-18-ene-6,2-oxane]-16-yl]oxy-5-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-3-yl]oxy-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


Deltonin is a triterpenoid. Deltonin is a natural product found in Ophiopogon planiscapus, Allium vineale, and other organisms with data available. Deltonin is found in onion-family vegetables. Deltonin is a constituent of Allium vineale (wild garlic) Deltonin, a steroidal saponin, isolated from Dioscorea zingiberensis, has antitumor activity; Deltonin inhibits ERK1/2 and AKT activation. Deltonin, a steroidal saponin, isolated from Dioscorea zingiberensis, has antitumor activity; Deltonin inhibits ERK1/2 and AKT activation. Deltonin, a steroidal saponin, isolated from Dioscorea zingiberensis, has antitumor activity; Deltonin inhibits ERK1/2 and AKT activation.

   

Senegin III

6-deoxy-alpha-L-mannopyranosyl-(1->3)-[beta-D-galactopyranosyl-(1->4)-beta-D-xylopyranosyl-(1->4)-6-deoxy-alpha-L-mannopyranosyl-(1->2)]-6-deoxy-1-O-[(2beta,3beta)-3-(beta-D-glucopyranosyloxy)-2,23,27-trihydroxy-23,28-dioxoolean-12-en-28-yl]-4-O-[3-(4-methoxyphenyl)prop-2-enoyl]-beta-D-galactopyranose

C75H112O35 (1572.6984)


A triterpenoid saponin isolated from Polygala senega var latifolia and has been shown to exhibit hypoglycemic activity. Senegin III is a triterpenoid saponin isolated from Polygala senega var latifolia and has been shown to exhibit hypoglycemic activity. It has a role as a hypoglycemic agent and a plant metabolite. It is a cinnamate ester, a hydroxy monocarboxylic acid, a pentacyclic triterpenoid and a triterpenoid saponin. It is functionally related to a 4-methoxycinnamic acid. It derives from a hydride of an oleanane. Senegin III is a natural product found in Polygala fallax, Polygala senega, and other organisms with data available. Onjisaponin B is a natural product derived from Polygala tenuifolia. Onjisaponin B enhances autophagy and accelerates the degradation of mutant α-synuclein and huntingtin in PC-12 cells, and exbibits potential therapeutic effects on Parkinson disease and Huntington disease[1]. Onjisaponin B is a natural product derived from Polygala tenuifolia. Onjisaponin B enhances autophagy and accelerates the degradation of mutant α-synuclein and huntingtin in PC-12 cells, and exbibits potential therapeutic effects on Parkinson disease and Huntington disease[1].

   

Pancratistatin

(1,3)Dioxolo(4,5-j)phenanthridin-6(2H)-one, 1,3,4,4a,5,11b-hexahydro-1,2,3,4,7-pentahydroxy-, (1R-(1alpha,2beta,3alpha,4alpha,4aalpha,11bbeta))-

C14H15NO8 (325.0798)


Pancratistatin is a citraconoyl group. Pancratistatin is a natural product found in Delphinium denudatum, Hymenocallis speciosa, and other organisms with data available. Pancratistatin is a isoquinoline alkaloid from amaryllis with antineoplastic activity.

   

Myristoleate (14:1n5)

(Z)-tetradec-9-enoic acid

C14H26O2 (226.1933)


Myristoleic acid, also known as 9-tetradecenoate or myristoleate, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Myristoleic acid is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Myristoleic acid exists in all eukaryotes, ranging from yeast to humans. Outside of the human body, myristoleic acid is found in the highest concentration within a few different foods, such as milk (cow), butter, and margarine-like spreads, and in a lower concentration in creams, meat bouillons, and chocolates. Myristoleic acid has also been detected, but not quantified in, several different foods, such as anchovies, loganberries, sunflowers, yellow zucchinis, and dates. This could make myristoleic acid a potential biomarker for the consumption of these foods. Myristoleic acid is a monounsaturated fatty acid that represents approximately 0.3-0.7\\\\% of the total fatty acid composition of adipose tissue triacylglycerol in humans (PMID: 10393134). It has been suggested that its effective cytotoxic (i.e. cell death inducer) activity could be used for the treatment of prostate cancer (PMID: 11304730). Myristoleic acid is a tetradecenoic acid in which the double bond is at the 9-10 position and has Z configuration. Myristoleic acid has been isolated from Serenoa repens and has cytotoxic and apoptosis-inducing effects. It has a role as an apoptosis inducer, a plant metabolite and an EC 3.1.1.1 (carboxylesterase) inhibitor. It is a tetradecenoic acid and a long-chain fatty acid. It is a conjugate acid of a myristoleate. Myristoleic acid is a natural product found in Gladiolus italicus, Erucaria microcarpa, and other organisms with data available. Myristoleic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A tetradecenoic acid in which the double bond is at the 9-10 position and has Z configuration. Myristoleic acid has been isolated from Serenoa repens and has cytotoxic and apoptosis-inducing effects. Occurs in natural fats, e.g. Cottonseed oil KEIO_ID M044 Myristoleic acid, a cytotoxic component in the extract from Serenoa repens, induces apoptosis and necrosis in human prostatic LNCaP cells[1]. Myristoleic acid, a cytotoxic component in the extract from Serenoa repens, induces apoptosis and necrosis in human prostatic LNCaP cells[1].

   

Gossypetin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-3,5,7,8-tetrahydroxy-

C15H10O8 (318.0376)


Gossypetin is a hexahydroxyflavone having the hydroxy groups placed at the 3-, 3-, 4-, 5- 7- and 8-positions. It has a role as a plant metabolite. It is a 7-hydroxyflavonol and a hexahydroxyflavone. It is a conjugate acid of a gossypetin-3-olate and a gossypetin(1-). Gossypetin is a natural product found in Sedum brevifolium, Rhododendron stenophyllum, and other organisms with data available. See also: Primula veris flower (part of); Larrea tridentata whole (part of). A hexahydroxyflavone having the hydroxy groups placed at the 3-, 3-, 4-, 5- 7- and 8-positions.

   

Capillarisin

5,7-dihydroxy-2-(4-hydroxyphenoxy)-6-methoxy-4H-chromen-4-one

C16H12O7 (316.0583)


Capillarisin is a member of coumarins. Capillarisin is a natural product found in Artemisia capillaris with data available.

   

(-)-3-Isothujone

Bicyclo(3.1.0)hexan-3-one, 4-methyl-1-(1-methylethyl)-, (1-alpha,4-alpha,5-alpha)-(+-)-

C10H16O (152.1201)


(-)-3-Isothujone is found in alcoholic beverages. Ingredient of absinthe. Presence in food and beverages regulated by legislation.Thujone is a ketone and a monoterpene that occurs naturally in two diastereomeric forms: (-)-alpha-thujone and (+)-beta-thujone. It has a menthol odor. In addition to (-)-alpha-thujone and (+)-beta-thujone, there are their enantiomeric forms, (+)-alpha-thujone and (-)-beta-thujone. (Wikipedia (-)-alpha-thujone is the (1S,4R,5R)-stereoisomer of alpha-thujone. It is an enantiomer of a (+)-alpha-thujone. alpha-Thujone is a natural product found in Xylopia sericea, Rhododendron mucronulatum, and other organisms with data available. See also: Artemisia absinthium whole (part of). A thujane monoterpenoid that is thujane substituted by an oxo group at position 3. Ingredient of absinthe. Presence in food and beverages regulated by legislation α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3].

   

D-Citronellol

Purifying relief soothing gel essence

C10H20O (156.1514)


Citronellol is formally classified as alkylalcohol although it is biochemically a monoterpenoid as it is synthesized from isoprene units. Citronellol is a neutral compound. It is a naturally occurring organic compound found in cannabis plants (PMID:6991645 ). Citronellol occurs in many essential oils as either ‚Äì or + enantiomers. -Citronellol is found in the oils of rose (18-55\\\\\\%) and Pelargonium geraniums while + citronellol is found in citronella oils extracted from the leaves and stems of Cymbopogon nardus or citronella grass. Citronellol has a citrus, floral, and geranium taste with a floral¬†leathery¬†waxy¬†rose¬†citrus odor ( Ref:DOI ). It is used in perfumery to add scents to soaps and incense. It is an insect repellent that repels mosquitos at short distances (PMID:2862274 ). Citronellol is found in highest concentrations in gingers, sweet basils, and winter savories and in lower concentrations in highbush blueberries, bilberries, and cardamoms. Citronellol has also been detected in blackcurrants, fennels, evergreen blackberries, herbs and spices, and nutmegs making citronellol a potential biomarker for the consumption of these foods. Citronellol has promising pharmacological activities (PMID:30453001 ) against human lung cancer (PMID:31280209 ), against induced rat breast cancer (PMID:31313341 ), has antifungal activity against Candida species (PMID:32150884 ) and has anti-hypertensive properties (PMID:26872991 ). (R)-(+)-citronellol is a citronellol that is oct-6-ene substituted by a hydroxy group at position 1 and methyl groups at positions 3 and 7 (the 3R-enantiomer). It is an enantiomer of a (S)-(-)-citronellol. D-Citronellol is a natural product found in Azadirachta indica, Saxifraga stolonifera, and other organisms with data available. See also: beta-CITRONELLOL, (R)-; GERANIOL (component of); beta-CITRONELLOL, (R)-; GERANIOL; LINALOOL, (+/-)- (component of) ... View More ... Constituent of black cumin (Nigella sativa) seeds. A common constituent of plant oils, especies in the Rutaceae. D-Citronellol is found in herbs and spices. (R)-Citronellol (D-Citronellol) is an alcoholic monoterpene found in geranium essential oil. (R)-Citronellol inhibits degranulation of mast cells and does not affect caffeine bitterness perception. (R)-Citronellol can be used in decorative cosmetics, toiletries as well as in non-cosmetic products[1][2][3]. (R)-Citronellol (D-Citronellol) is an alcoholic monoterpene found in geranium essential oil. (R)-Citronellol inhibits degranulation of mast cells and does not affect caffeine bitterness perception. (R)-Citronellol can be used in decorative cosmetics, toiletries as well as in non-cosmetic products[1][2][3]. Citronellol ((±)-Citronellol) is a monoterpene Pelargonium graveolens. Citronellol ((±)-Citronellol) induces necroptosis of cancer cell via up-regulating TNF-α, RIP1/RIP3 activities, down-regulating caspase-3/caspase-8 activities and increasing ROS (reactive oxygen species) accumulation[1]. Citronellol ((±)-Citronellol) is a monoterpene Pelargonium graveolens. Citronellol ((±)-Citronellol) induces necroptosis of cancer cell via up-regulating TNF-α, RIP1/RIP3 activities, down-regulating caspase-3/caspase-8 activities and increasing ROS (reactive oxygen species) accumulation[1].

   

Epicatechin-(2beta->7,4beta->8)-epicatechin-(4beta->8)-epicatechin

InChI=1/C45H36O18/c46-18-10-27(54)33-31(11-18)62-45(17-3-6-22(49)26(53)9-17)44(59)38(33)36-32(63-45)14-29(56)35-37(39(58)41(61-43(35)36)16-2-5-21(48)25(52)8-16)34-28(55)13-23(50)19-12-30(57)40(60-42(19)34)15-1-4-20(47)24(51)7-15/h1-11,13-14,30,37-41,44,46

C45H36O18 (864.1902)


Cinnamtannin B-1 is a proanthocyanidin found in Cinnamomum cassia and Cinnamomum zeylanicum. It has a role as a cyclooxygenase 2 inhibitor and a plant metabolite. Cinnamtannin B1 is a natural product found in Cinnamomum aromaticum, Cinnamomum burmanni, and other organisms with data available. See also: Cinnamon (part of). Isolated from cinnamon bark (Cinnamomum zeylanicum) and from cowberry (Vaccinium vitis-idaea). Epicatechin-(2beta->7,4beta->8)-epicatechin-(4beta->8)-epicatechin is found in many foods, some of which are fruits, herbs and spices, ceylon cinnamon, and lingonberry. Epicatechin-(2beta->7,4beta->8)-epicatechin-(4beta->8)-epicatechin is found in ceylan cinnamon. Epicatechin-(2beta->7,4beta->8)-epicatechin-(4beta->8)-epicatechin is isolated from cinnamon bark (Cinnamomum zeylanicum) and from cowberry (Vaccinium vitis-idaea). A proanthocyanidin found in Cinnamomum cassia and Cinnamomum zeylanicum. Cinnamtannin B-1 is a proanthocyanidin with multiple biological functions, including antioxidant effects and inhibiting the production of reactive oxygen species (ROS). Cinnamtannin B-1 inhibits RANKL-induced osteoclastogenesis and prevents ovariectomy-induced osteoporosis in vivo. Cinnamtannin B-1 can be used for the research osteoporosis and colon cancers[1][2].

   

3-Methylbenzaldehyde

3-methylbenzaldehyde;3-Methylbenzaldehyde, stab. with 0.1\\% hydroquinone

C8H8O (120.0575)


3-Methylbenzaldehyde, also known as 3-tolylaldehyde, belongs to the class of organic compounds known as benzoyl derivatives. These are organic compounds containing an acyl moiety of benzoic acid with the formula (C6H5CO-). 3-Methylbenzaldehyde exists in all living organisms, ranging from bacteria to humans. 3-Methylbenzaldehyde is a sweet, benzaldehyde, and cherry tasting compound. 3-Methylbenzaldehyde has been detected, but not quantified, in several different foods, such as sweet cherries, alcoholic beverages, garden tomato, coffee and coffee products, and tea. This could make 3-methylbenzaldehyde a potential biomarker for the consumption of these foods. A tolualdehyde compound with the methyl substituent at the 3-position. M-tolualdehyde is a tolualdehyde compound with the methyl substituent at the 3-position. It has a role as a plant metabolite. 3-Methylbenzaldehyde is a natural product found in Aloe africana, Cichorium endivia, and other organisms with data available. Flavouring ingredient. Component of FEMA 3068; see further under 4-Methylbenzaldehyde BHW21-S. 3-Methylbenzaldehyde is found in many foods, some of which are coffee and coffee products, nuts, tea, and garden tomato. A tolualdehyde compound with the methyl substituent at the 3-position. m-Tolualdehyde (3-Methylbenzaldehyde) is a tolualdehyde compound with the methyl substituent at the 3-position. m-Tolualdehyde can be used as a food additive. m-Tolualdehyde (3-Methylbenzaldehyde) is a tolualdehyde compound with the methyl substituent at the 3-position. m-Tolualdehyde can be used as a food additive.

   

Santonin

InChI=1/C15H18O3/c1-8-10-4-6-15(3)7-5-11(16)9(2)12(15)13(10)18-14(8)17/h5,7-8,10,13H,4,6H2,1-3H3/t8-,10-,13-,15-/m0/s

C15H18O3 (246.1256)


Alpha-santonin is a santonin that is 3a,5,5a,9b-tetrahydronaphtho[1,2-b]furan-2,8(3H,4H)-dione substituted by methyl groups at positions 3, 5a and 9. It has a role as a plant metabolite. It is a botanical anti-fungal agent and a santonin. Santonin is a natural product found in Artemisia spicigera, Artemisia diffusa, and other organisms with data available. Anthelmintic isolated from the dried unexpanded flower heads of Artemisia maritima and other species of Artemisia found principally in Russian and Chinese Turkestan and the Southern Ural region. (From Merck, 11th ed.) See also: ... View More ... A santonin that is 3a,5,5a,9b-tetrahydronaphtho[1,2-b]furan-2,8(3H,4H)-dione substituted by methyl groups at positions 3, 5a and 9. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent ADP-ribose 1"-2" cyclic phosphate is a cyclic phosphate nucleotide that arises from tRNA processing. In eukaryotic cells, pre-tRNAs spliced by a pathway that produces a 3,5-phosphodiester, 2-phosphomonoester linkage contain a 2-phosphate group adjacent to the tRNA anticodon. This 2-phosphate is transferred to NAD to give adenosine diphosphate (ADP)-ribose 1", 2"-cyclic phosphate (Appr>p), which is subsequently metabolized to ADP-ribose 1-phosphate (Appr-1p). The latter reaction is catalyzed by a cyclic phosphodiesterase (CPDase). (PMID: 9148938). One molecule of ADP-ribose 1",2"-cyclic phosphate (Appr>p) is formed during each of the approximately 500 000 tRNA splicing events. [HMDB] Constituent of Physalis peruviana (Cape gooseberry). Withaperuvin F is found in fruits. Alkaloid found on the leaf surfaces of Brassica oleracea cv. botrytis (cauliflower) [DFC]. Cabbage identification factor 1 is found in brassicas. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2267 INTERNAL_ID 2267; CONFIDENCE Reference Standard (Level 1) relative retention time with respect to 9-anthracene Carboxylic Acid is 0.918 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.917 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.915 [Raw Data] CB081_Santonin_pos_30eV_CB000033.txt [Raw Data] CB081_Santonin_pos_10eV_CB000033.txt [Raw Data] CB081_Santonin_pos_40eV_CB000033.txt [Raw Data] CB081_Santonin_pos_20eV_CB000033.txt [Raw Data] CB081_Santonin_pos_50eV_CB000033.txt Santonin is an active principle of the plant Artemisia cina, which is formely used to treat worms[1]. Santonin is an active principle of the plant Artemisia cina, which is formely used to treat worms[1].

   

Orcinol

InChI=1/C7H8O2/c1-5-2-6(8)4-7(9)3-5/h2-4,8-9H,1H

C7H8O2 (124.0524)


Orcinol is a 5-alkylresorcinol in which the alkyl group is specified as methyl. It has a role as an Aspergillus metabolite. It is a 5-alkylresorcinol and a dihydroxytoluene. Orcinol is a natural product found in Calluna vulgaris, Rumex patientia, and other organisms with data available. A 5-alkylresorcinol in which the alkyl group is specified as methyl. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.272 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.266 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.263 KEIO_ID O013

   

Falcarindiol

(Z)-(3S,8S)-Heptadeca-1,9-diene-4,6-diyne-3,8-diol

C17H24O2 (260.1776)


Constituent of roots of several plants including the common carrot (Daucus carota) and Angelica acutiloba (Dong Dang Gui). Falcarindiol is found in many foods, some of which are wild carrot, carrot, garden tomato (variety), and caraway. Falcarindiol is found in caraway. Falcarindiol is a constituent of roots of several plants including the common carrot (Daucus carota) and Angelica acutiloba (Dong Dang Gui). Falcarindiol is a natural product found in Anthriscus nitida, Chaerophyllum aureum, and other organisms with data available. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.

   

Angustifoline

(1R,2R,9S,10S)-10-Prop-2-enyl-7,11-diazatricyclo[7.3.1.02,7]tridecan-6-one

C14H22N2O (234.1732)


Angustifoline is a member of quinolizidines and a cyclic ketone. 4-(Prop-2-en-1-yl)decahydro-8H-1,5-methanopyrido[1,2-a][1,5]diazocin-8-one is a natural product found in Haplophyllum thesioides, Lupinus hintonii, and other organisms with data available. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 54 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 18 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 33 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 40 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 25 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 10 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 3

   

Sugiol

9(1H)-Phenanthrenone, 2,3,4,4a,10,10a-hexahydro-6-hydroxy-1,1,4a-trimethyl-7-(1-methylethyl)-, (4aS-trans)-

C20H28O2 (300.2089)


Sugiol is an abietane diterpenoid that is ferruginol in which the methylene group para to the phenolic hydroxy group has been substituted by an oxo group. It has a role as a plant metabolite, an antiviral agent, an antineoplastic agent, an antioxidant and a radical scavenger. It is an abietane diterpenoid, a carbotricyclic compound, a meroterpenoid, a member of phenols and a cyclic terpene ketone. It is functionally related to a ferruginol. Sugiol is a natural product found in Austrocedrus chilensis, Libocedrus bidwillii, and other organisms with data available. An abietane diterpenoid that is ferruginol in which the methylene group para to the phenolic hydroxy group has been substituted by an oxo group.

   

Canadine

(1S)-16,17-dimethoxy-5,7-dioxa-13-azapentacyclo[11.8.0.02,10.04,8.015,20]henicosa-2,4(8),9,15(20),16,18-hexaene

C20H21NO4 (339.1471)


(S)-canadine is the (S)-enantiomer of canadine. It has a role as a plant metabolite. It is an an (S)-7,8,13,14-tetrahydroprotoberberine and a canadine. It is functionally related to a (S)-nandinine. It is an enantiomer of a (R)-canadine. (S)-Canadine is a natural product found in Hydrastis canadensis, Corydalis turtschaninovii, and other organisms with data available. The (S)-enantiomer of canadine. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.721 D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators relative retention time with respect to 9-anthracene Carboxylic Acid is 0.718 Tetrahydroberberine is an isoquinoline alkaloid isolated from Corydalis Corydalis, with uM-level affinity for D2 and 5-HT1A receptors. Tetrahydroberberine is a different kind of living thing that can be extended and divided into parts. Tetrahydroberberine is a kind of effective D2 receptor antagonistic force. Tetrahydroberberine has the ability to strengthen the stomach and relieve the pressure on the stomach[1][2][3]. Tetrahydroberberine is an isoquinoline alkaloid isolated from Corydalis Corydalis, with uM-level affinity for D2 and 5-HT1A receptors.

   

Cedorol

Cedrol;[3R-(3alpha,3abeta,6alpha,7beta,8aalpha)]-octahydro-3,6,8,8-tetramethyl-1H-3a,7-methanoazulen-6-ol

C15H26O (222.1984)


Cedrol, also known as alpha-cedrol or (+)-cedrol, is a member of the class of compounds known as cedrane and isocedrane sesquiterpenoids. Cedrane and isocedrane sesquiterpenoids are sesquiternoids with a structure based on the cedrane or the isocedrane skeleton. Cedrane is a tricyclic molecules a 3,6,8,8-tetramethyl-1H-3a,7-methano-azulene moiety. Isocedrane is a rearranged cedrane arising from the migration of methyl group moved from the 6-position to the 4-position. Thus, cedrol is considered to be an isoprenoid lipid molecule. Cedrol is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Cedrol can be found in ginger, which makes cedrol a potential biomarker for the consumption of this food product. Cedrol is a sesquiterpene alcohol found in the essential oil of conifers (cedar oil), especially in the genera Cupressus (cypress) and Juniperus (juniper). It has also been identified in Origanum onites, a plant related to oregano. Its main uses are in the chemistry of aroma compounds. It makes up about 19\\\\% of cedarwood oil Texas and 15.8\\\\% of cedarwood oil Virginia . Cedrol is a bioactive sesquiterpene, a potent competitive inhibitor of cytochrome P-450 (CYP) enzymes. Cedrol inhibits CYP2B6-mediated bupropion hydroxylase and CYP3A4-mediated midazolam hydroxylation with Ki of 0.9 μM and 3.4 μM, respectively. Cedrol also has weak inhibitory effect on CYP2C8, CYP2C9, and CYP2C19 enzymes[1]. Cedrol is found in cedar essential oil and poetesses anti-septic, anti-inflammatory, anti-spasmodic, tonic, astringent, diuretic, insecticidal, and anti-fungal activities[2]. Cedrol is a bioactive sesquiterpene, a potent competitive inhibitor of cytochrome P-450 (CYP) enzymes. Cedrol inhibits CYP2B6-mediated bupropion hydroxylase and CYP3A4-mediated midazolam hydroxylation with Ki of 0.9 μM and 3.4 μM, respectively. Cedrol also has weak inhibitory effect on CYP2C8, CYP2C9, and CYP2C19 enzymes[1]. Cedrol is found in cedar essential oil and poetesses anti-septic, anti-inflammatory, anti-spasmodic, tonic, astringent, diuretic, insecticidal, and anti-fungal activities[2].

   

Proscillaridin

5-[(3S,8R,9S,10R,13R,14S,17R)-14-hydroxy-10,13-dimethyl-3-[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy-1,2,3,6,7,8,9,11,12,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl]pyran-2-one

C30H42O8 (530.288)


Proscillaridin is an organic molecular entity. Proscillaridin is a cardiac glycoside that is derived from plants of the genus Scilla and in Drimia maritima (Scilla maritima). Studies suggest the potential cytotoxic and anticancer property of proscillaridin, based on evidence of the drug potently disrupting topoisomerase I and II activity at nanomolar drug concentrations and triggering cell death and blocking cell proliferation of glioblastoma cell lines. Proscillaridin is a natural product found in Drimia indica with data available. A cardiotonic glycoside isolated from Scilla maritima var. alba (Squill). C - Cardiovascular system > C01 - Cardiac therapy > C01A - Cardiac glycosides > C01AB - Scilla glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides C78274 - Agent Affecting Cardiovascular System > C78322 - Cardiotonic Agent D002317 - Cardiovascular Agents D004791 - Enzyme Inhibitors Proscillaridin A is a potent poison of topoisomerase I/II activity with IC50 values of 30 nM and 100 nM, respectively[1]. Proscillaridin A is a potent poison of topoisomerase I/II activity with IC50 values of 30 nM and 100 nM, respectively[1].

   

Afzelechin

2H-1-Benzopyran-3,5,7-triol, 3,4-dihydro-2-(4-hydroxyphenyl)-, (2R-trans)-

C15H14O5 (274.0841)


Afzelechin is a tetrahydroxyflavan that is (2S)-flavan substituted by hydroxy groups at positions 3, 5, 7 and 4 respectively. It has a role as a plant metabolite and an EC 3.2.1.20 (alpha-glucosidase) inhibitor. It is a tetrahydroxyflavan and a catechin. It derives from a hydride of a (2S)-flavan. Afzelechin is a natural product found in Cassipourea gummiflua, Bergenia ligulata, and other organisms with data available. A tetrahydroxyflavan that is (2S)-flavan substituted by hydroxy groups at positions 3, 5, 7 and 4 respectively.

   

Isochamaejasmin

(2S,3R)-3-[(2R,3S)-5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxo-2,3-dihydrochromen-3-yl]-5,7-dihydroxy-2-(4-hydroxyphenyl)-2,3-dihydrochromen-4-one

C30H22O10 (542.1213)


Chamaejasmin is a natural product found in Brackenridgea zanguebarica, Stellera chamaejasme, and other organisms with data available. Isochamaejasmin is a biflavonoid that consists of two units of 5,7,4-trihydroxyflavanone joined together at position 3 and 3. It has a role as a plant metabolite. It is a biflavonoid and a hydroxyflavone. Isochamaejasmin is a natural product found in Brackenridgea zanguebarica, Stellera chamaejasme, and Ormocarpum kirkii with data available.

   

chrysoplenol D

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5-hydroxy-3,6,7-trimethoxy-

C18H16O8 (360.0845)


3,4,5-trihydroxy-3,6,7-trimethoxyflavone is a trimethoxyflavone that is the 3,6,7-trimethyl ether derivative of quercetagetin. It has a role as an antineoplastic agent and a metabolite. It is a trihydroxyflavone and a trimethoxyflavone. It is functionally related to a quercetagetin. Chrysosplenol D is a natural product found in Psiadia viscosa, Chrysosplenium oppositifolium, and other organisms with data available. See also: Vitex negundo fruit (part of). Chrysosplenol D is a methoxy flavonoid that induces ERK1/2-mediated apoptosis in triple negative human breast cancer cells. Chrysosplenol D also exhibits anti-inflammatory and moderate antitrypanosomal activities[1][2][3][4]. Chrysosplenol D is a methoxy flavonoid that induces ERK1/2-mediated apoptosis in triple negative human breast cancer cells. Chrysosplenol D also exhibits anti-inflammatory and moderate antitrypanosomal activities[1][2][3][4].

   

5-O-Methylvisamminol

5H-Furo[3,2-g][1]benzopyran-5-one, 2,3-dihydro-2-(1-hydroxy-1-methylethyl)-4-methoxy-7-methyl-, (2S)-

C16H18O5 (290.1154)


5-O-Methylvisamminol is an oxacycle and an organic heterotricyclic compound. 5-O-Methylvisamminol is a natural product found in Saposhnikovia divaricata, Angelica japonica, and Prionosciadium thapsoides with data available. 5-O-Methylvisamminol, a (furo) chromone identified in the extract of T. glauca, has a limited occurrence in the plant kingdom. 5-O-Methylvisamminol is useful in (chemical) phylogeny and is a possible excellent chemotaxonomic marker (family and/or subfamily level) for Apiaceae[1]. 5-O-Methylvisamminol, a (furo) chromone identified in the extract of T. glauca, has a limited occurrence in the plant kingdom. 5-O-Methylvisamminol is useful in (chemical) phylogeny and is a possible excellent chemotaxonomic marker (family and/or subfamily level) for Apiaceae[1].

   

Gypenoside LXXV

(beta,12beta)-3,12-dihydroxydammar-24-en-20-yl 6-O-beta-D-glucopyranosyl-beta-D-glucopyranoside

C42H72O13 (784.4973)


Gypenoside LXXV is a ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy group at position 20 has been converted to the corresponding beta-D-glucopyranosyl-(1->6)-beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite. It is a 12beta-hydroxy steroid, a beta-D-glucoside, a disaccharide derivative, a ginsenoside, a tetracyclic triterpenoid, a 3beta-hydroxy steroid and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. Gypenoside LXXV is a natural product found in Gynostemma pentaphyllum with data available. A ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy group at position 20 has been converted to the corresponding beta-D-glucopyranosyl-(1->6)-beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position.

   

Gardoside

(1S,4aS,6S,7aS)-6-hydroxy-7-methylidene-1-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-4a,5,6,7a-tetrahydro-1H-cyclopenta[c]pyran-4-carboxylic acid

C16H22O10 (374.1213)


Gardoside is a glycoside. Gardoside is a natural product found in Plantago atrata, Gardenia jasminoides, and other organisms with data available.

   

Octacosanoic acid

Octacosanoic acid, puriss., synthetic, >=98.5\\% (GC)

C28H56O2 (424.428)


Octacosanoic acid is a very-long-chain fatty acid found in human brain and visceral organs (PMID:2474624). Octacosanoic acid is a higher aliphatic primary acids purified from sugar-cane (Saccharum officinarum L.) wax that has been shown to inhibit platelet aggregation induced ex vivo by addition of agonists to platelet-rich plasma (PRP) of rats, guinea pigs, and healthy human volunteers. (PMID:5099499). Octacosanoic acid is formed from octacosanol via beta-oxidation. (PMID:15847942). Octacosanoic acid is a straight-chain saturated fatty acid that is octacosane in which one of the terminal methyl groups has been oxidised to the corresponding carboxy group. It has a role as a plant metabolite. It is a straight-chain saturated fatty acid and an ultra-long-chain fatty acid. It is a conjugate acid of an octacosanoate. Octacosanoic acid is a natural product found in Lysimachia patungensis, Rhizophora apiculata, and other organisms with data available. A straight-chain saturated fatty acid that is octacosane in which one of the terminal methyl groups has been oxidised to the corresponding carboxy group. Octacosanoic acid is a very-long-chain fatty acid found in human brain and visceral organs (PMID: 2474624)

   

1-Methylxanthine

2-hydroxy-1-methyl-6,9-dihydro-1H-purin-6-one

C6H6N4O2 (166.0491)


1-Methylxanthine is one of the major metabolites of caffeine in humans. The oxidation of 1-methylxanthine to 1-methyluric acid occurs so rapidly that the parent compound could not be detected in plasma, and only low concentrations could be detected in the brain (PMID: 28863020). 1-methylxanthine is the major metabolites of caffeine in the human. The oxidation of 1-methylxanthine to 1-methyluric acid occurred so rapidly that the parent compound could not be detected in plasma, and only low concentrations could be detected in brain. (PMID: 28863020 [HMDB] 1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2]. 1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2].

   

(RS)-3,5-DHPG

(S)-3,5-Dihydroxyphenylglycine

C8H9NO4 (183.0532)


D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists DHPG ((RS)-3,5-DHPG) is an amino acid, which acts as a selective and potent agonist of group I mGluR (mGluR 1 and mGluR 5), shows no effect on Group II or Group III mGluRs[1]. DHPG ((RS)-3,5-DHPG) is also an effective antagonist of mGluRs linked to phospholipase D[2].

   

Beta-Tyrosine

3-Amino-3-(4-hydroxyphenyl)propionic acid

C9H11NO3 (181.0739)


The use of tyrosine kinase receptor inhibitors is increasingly becoming a valuable therapeutic alternative in tumors carrying activated tyrosine kinase receptors. GMR beta tyrosine residues are not necessary for activation of the JAK/STAT pathway, or for proliferation, viability, or adhesion signaling in Ba/F3 cells, although tyrosine residues significantly affect the magnitude of the response. (PMID:10372132). The use of tyrosine kinase receptor inhibitors is increasingly becoming a valuable therapeutic alternative in tumors carrying activated tyrosine kinase receptors. KEIO_ID A176

   

3-Indoleacetonitrile

2-(1H-indol-3-yl)acetonitrile

C10H8N2 (156.0687)


3-Indoleacetonitrile is a phytoalexin. Phytoalexins are antibiotics produced by plants that are under attack. Phytoalexins tend to fall into several classes including terpenoids, glycosteroids, and alkaloids; however, researchers often find it convenient to extend the definition to include all phytochemicals that are part of the plants defensive arsenal. Phytoalexins produced in plants act as toxins to the attacking organism. They may puncture the cell wall, delay maturation, disrupt metabolism, or prevent the reproduction of the pathogen in question. However, phytoalexins are often targeted to specific predators; a plant that has anti-insect phytoalexins may not have the ability to repel a fungal attack. 3-Indoleacetonitrile is common in cruciferous vegetables such as cabbage, cauliflower, broccoli, and Brussels sprouts. Dietary indoles in cruciferous vegetables induce cytochrome P450 enzymes and have prevented tumours in various animal models. Consumption of Brassica vegetables is associated with a reduced risk of cancer of the alimentary tract in animal models and human populations (PMID:15612779, 15884814, 2342128, 3014947, 3880668, 6334634, 6419397, 6426808, 6584878, 6725517, 6838646, 7123561). Myrosinase-induced hydrolysis product of indole glucosinolates, found in cabbage and other crucifers Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID I022 3-Indoleacetonitrile is an endogenous metabolite. 3-Indoleacetonitrile is an endogenous metabolite.

   

3-Methylxanthine

3-methyl-2,3,6,7-tetrahydro-1H-purine-2,6-dione

C6H6N4O2 (166.0491)


3-methyl-9H-xanthine is a 3-methylxanthine tautomer where the imidazole proton is located at the 9-position. It has a role as a metabolite. It is a tautomer of a 3-methyl-7H-xanthine. 3-Methylxanthine, also known as 3 MX or purine analog, belongs to the class of organic compounds known as xanthines. These are purine derivatives with a ketone group conjugated at carbons 2 and 6 of the purine moiety. 3-Methylxanthine is a caffeine and a theophylline metabolite. (PMID 16870158, 16678550) 3-Methylxanthine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1076-22-8 (retrieved 2024-07-02) (CAS RN: 1076-22-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 3-Methylxanthine, a xanthine derivative, is a cyclic guanosine monophosphate (GMP) inhibitor, with an IC50 of 920 μM on guinea-pig isolated trachealis muscle. 3-Methylxanthine, a xanthine derivative, is a cyclic guanosine monophosphate (GMP) inhibitor, with an IC50 of 920 μM on guinea-pig isolated trachealis muscle.

   

3-hydroxy-3-methylglutarate

beta-Hydroxy-beta-methylglutaric acid

C6H10O5 (162.0528)


3-Hydroxymethylglutaric acid is an "off-product" intermediate in the leucine degradation process. It is produced by defective or inefficient versions of 3-hydroxy-3-methylglutaryl-CoA lyase, an enzyme that normally catalyzes the conversion of 3-hydroxy-3-methylglutaryl-CoA to acetyl-CoA and acetoacetate. If this enzyme is defective, 3-hydroxy-3-methylglutaryl-CoA will accumulate in the mitochondria. Increased concentrations of 3-hydroxy-3-methylglutaryl-CoA can lead to a disruption of the esterified CoA:free CoA ratio and ultimately to mitochondrial toxicity. Detoxification of these CoA end products occurs via the transfer of the 3-hydroxymethylglutaryl moiety to carnitine, forming 3-hydroxymethylglutaric-carnitine, which is then transferred across the inner mitochondrial membrane where 3-hydroxymethylglutaric acid is released as the free acid. 3-Hydroxymethylglutaric acid has been found to accumulate in the urine of patients affected by 3-Hydroxy-3-methylglutaric aciduria, a rare inborn error of metabolism (OMIM: 246450). 3-Hydroxy-3-methylglutaric aciduria is caused by significantly reduced enzyme activity of the intramitochondrial 3-hydroxy-3-methylglutaryl-CoA lyase (EC 4.1.3.4), the enzyme that catalyzes the final step of leucine degradation. This enzyme also plays a key role in ketone body formation. The profile of urinary organic acids for individuals with 3-hydroxy-3-methylglutaric aciduria is different from that of the other identified defects of leucine degradation, such as maple syrup urine disease (OMIM: 248600), isovaleric acidemia (OMIM: 243500), and methylcrotonylglycinemia (OMIM: 210200). The urinary organic acid profile of 3-hydroxy-3-methylglutaric aciduria includes elevated concentrations of 3-hydroxy-3-isovaleric, 3-hydroxy-3-methylglutaric, 3-methylglutaconic, and 3-methylglutaric acids (PMID: 10916782, 9658458, 3063529). Clinical manifestations of 3-hydroxy-3-methylglutaric aciduria include hepatomegaly, lethargy, coma, and apnea. Biochemically, there is a characteristic absence of ketosis with hypoglycemia, acidosis, hypertransaminasemia, and variable hyperammonemia. Therefore, when present in sufficiently high concentrations, 3-hydroxymethylglutaric acid can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. As noted above, chronically high levels of 3-hydroxymethylglutaric acid are associated with the inborn error of metabolism 3-hydroxy-3-methylglutaryl-CoA lyase deficiency. 3-Hydroxymethylglutaric acid is an organic acid. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart, liver, and kidney abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of the untreated IEMs mentioned above. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. 3-hydroxymethylglutaric acid, also known as meglutol or dicrotalic acid, is a member of the class of compounds known as hydroxy fatty acids. Hydroxy fatty acids are fatty acids in which the chain bears a hydroxyl group. 3-hydroxymethylglutaric acid is soluble (in water) and a weakly acidic compound (based on its pKa). 3-hydroxymethylglutaric acid can be synthesized from glutaric acid. 3-hydroxymethylglutaric acid is also a parent compound for other transformation products, including but not limited to, viscumneoside VII, viscumneoside IV, and yanuthone D. 3-hydroxymethylglutaric acid can be found in flaxseed, which makes 3-hydroxymethylglutaric acid a potential biomarker for the consumption of this food product. 3-hydroxymethylglutaric acid can be found primarily in saliva and urine. 3-hydroxymethylglutaric acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Chronically high levels of 3-hydroxymethylglutaric acid are associated with the inborn error of metabolism: 3-Hydroxy-3-Methylglutaryl-CoA Lyase Deficiency (T3DB). Meglutol is an antilipidemic agent that lowers cholesterol, triglycerides, and serum beta-lipoproteins and phospholipids, and inhibits hydroxymethylglutaryl-CoA reductase activity, which is the rate-limiting enzyme in cholesterol biosynthesis. Meglutol is an antilipidemic agent that lowers cholesterol, triglycerides, and serum beta-lipoproteins and phospholipids, and inhibits hydroxymethylglutaryl-CoA reductase activity, which is the rate-limiting enzyme in cholesterol biosynthesis.

   

6-HYDROXYMELATONIN

3-(N-Acetylaminoethyl)-6-hydroxy-5-methoxyindole

C13H16N2O3 (248.1161)


A member of the class of tryptamines that is melatonin with a hydroxy group substituent at position 6. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D020011 - Protective Agents > D002316 - Cardiotonic Agents D002317 - Cardiovascular Agents 6-Hydroxymelatonin is a primary metabolic of Melatonin, which is metabolized by cytochrome P450 (CYP) 1A2.

   

D-Alanyl-D-alanine

(2R)-2-[(2R)-2-aminopropanamido]propanoic acid

C6H12N2O3 (160.0848)


The ATP-dependent carboxylate-amine/thiol ligase superfamily is known to contain enzymes catalyzing the formation of various types of peptide, one of which is d-alanyl-d-alanine.(PMID: 16030213). The glycopeptide antibiotic vancomycin acts by binding to the D-alanyl-D-alanine terminus of the cell wall precursor lipid II in the cytoplasmic membrane.(PMID: 17418637). D-alanine-D-alanine ligase from Thermotoga maritima ATCC 43589 (TmDdl) was a useful biocatalyst for synthesizing D-amino acid dipeptides.D-Alanine-D-alanine ligase (Ddl) catalyzes the biosynthesis of an essential bacterial peptidoglycan precursor D-alanyl-D-alanine and it represents an important target for development of new antibacterial drugs. (PMID: 17267218). D-Alanyl-D-alanine is a microbial metabolite. Alanyl-alanine, also known as ala-ala or A-a dipeptide, is a member of the class of compounds known as dipeptides. Dipeptides are organic compounds containing a sequence of exactly two alpha-amino acids joined by a peptide bond. Alanyl-alanine is soluble (in water) and a weakly acidic compound (based on its pKa). Alanyl-alanine can be found in chives, which makes alanyl-alanine a potential biomarker for the consumption of this food product. Alanyl-alanine can be found primarily in feces. Alanyl-alanine exists in all living organisms, ranging from bacteria to humans. Acquisition and generation of the data is financially supported in part by CREST/JST. D-Ala-D-Ala constitutes the terminus of the peptide part of the peptidoglycan monomer unit and is involved in the transpeptidation reaction as the substrate. D-Ala-D-Ala is catalyzed by D-Alanine-D-Alanine ligase. D-Ala-D-Ala is a bacterial endogenous metabolite[1][2].

   

ST 24:4;O5

1beta,3beta,14beta-trihydroxy-5beta-bufa-20,22-dienolide

C24H34O5 (402.2406)


C78276 - Agent Affecting Digestive System or Metabolism > C66913 - Cholagogues or Choleretic Agents D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids Same as: D01693

   

5,6-Dihydrothymine

Dihydro-5-methyl-2,4(1H,3H)-pyrimidinedione

C5H8N2O2 (128.0586)


Dihydrothymine (CAS: 696-04-8) is an intermediate breakdown product of thymine. Dihydropyrimidine dehydrogenase catalyzes the reduction of thymine into 5,6-dihydrothymine; then dihydropyrimidinase hydrolyzes 5,6-dihydrothymine into N-carbamyl-beta-alanine. Finally, beta-ureidopropionase catalyzes the conversion of N-carbamyl-beta-alanine into beta-alanine. When present at abnormally high levels, dihydrothymine can be toxic, although the mechanism of toxicity is not clear. In particular, patients with dihydropyrimidinase deficiency exhibit highly increased concentrations of 5,6-dihydrouracil and 5,6-dihydrothymine; and moderately increased concentrations of uracil and thymine can be detected in urine. Dihydropyrimidinase deficiency is a disorder that can cause neurological and gastrointestinal problems in some affected individuals. The most common neurological abnormalities that occur are intellectual disability, seizures, weak muscle tone (hypotonia), abnormally small head size (microcephaly), and autistic behaviours that affect communication and social interaction. Gastrointestinal problems that occur in dihydropyrimidinase deficiency include the backflow of acidic stomach contents into the esophagus (gastroesophageal reflux) and recurrent episodes of vomiting. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 5,6-Dihydro-5-methyluracil (Dihydrothymine), an intermediate breakdown product of thymine, comes from animal or plants. 5,6-Dihydro-5-methyluracil (Dihydrothymine) can be toxic when present at abnormally high levels[1].

   

Homocysteine

(2S)-2-amino-4-sulfanylbutanoic acid

C4H9NO2S (135.0354)


A high level of blood serum homocysteine is a powerful risk factor for cardiovascular disease. Unfortunately, one study which attempted to decrease the risk by lowering homocysteine was not fruitful. This study was conducted on nearly 5000 Norwegian heart attack survivors who already had severe, late-stage heart disease. No study has yet been conducted in a preventive capacity on subjects who are in a relatively good state of health.; Elevated levels of homocysteine have been linked to increased fractures in elderly persons. The high level of homocysteine will auto-oxidize and react with reactive oxygen intermediates and damage endothelial cells and has a higher risk to form a thrombus. Homocysteine does not affect bone density. Instead, it appears that homocysteine affects collagen by interfering with the cross-linking between the collagen fibers and the tissues they reinforce. Whereas the HOPE-2 trial showed a reduction in stroke incidence, in those with stroke there is a high rate of hip fractures in the affected side. A trial with 2 homocysteine-lowering vitamins (folate and B12) in people with prior stroke, there was an 80\\\\\\% reduction in fractures, mainly hip, after 2 years. Interestingly, also here, bone density (and the number of falls) were identical in the vitamin and the placebo groups.; Homocysteine is a sulfur-containing amino acid that arises during methionine metabolism. Although its concentration in plasma is only about 10 micromolar (uM), even moderate hyperhomocysteinemia is associated with increased incidence of cardiovascular disease and Alzheimers disease. Elevations in plasma homocysteine are commonly found as a result of vitamin deficiencies, polymorphisms of enzymes of methionine metabolism, and renal disease. Pyridoxal, folic acid, riboflavin, and Vitamin B(12) are all required for methionine metabolism, and deficiency of each of these vitamins result in elevated plasma homocysteine. A polymorphism of methylenetetrahydrofolate reductase (C677T), which is quite common in most populations with a homozygosity rate of 10-15 \\\\\\%, is associated with moderate hyperhomocysteinemia, especially in the context of marginal folate intake. Plasma homocysteine is inversely related to plasma creatinine in patients with renal disease. This is due to an impairment in homocysteine removal in renal disease. The role of these factors, and of modifiable lifestyle factors, in affecting methionine metabolism and in determining plasma homocysteine levels is discussed. Homocysteine is an independent cardiovascular disease (CVD) risk factor modifiable by nutrition and possibly exercise. Homocysteine was first identified as an important biological compound in 1932 and linked with human disease in 1962 when elevated urinary homocysteine levels were found in children with mental retardation. This condition, called homocysteinuria, was later associated with premature occlusive CVD, even in children. These observations led to research investigating the relationship of elevated homocysteine levels and CVD in a wide variety of populations including middle age and elderly men and women with and without traditional risk factors for CVD. (PMID 17136938, 15630149); Homocysteine is an amino acid with the formula HSCH2CH2CH(NH2)CO2H. It is a homologue of the amino acid cysteine, differing by an additional methylene (-CH2-) group. It is biosynthesized from methionine by the removal of its terminal C? methyl group. Homocysteine can be recycled into methionine or converted into cysteine with the aid of B-vitamins.; Studies reported in 2006 have shown that giving vitamins [folic acid, B6 and B12] to reduce homocysteine levels may not quickly offer benefit, however a significant 25\\\\\\% reduction in stroke was found in the HOPE-2 study even in patients mostly with existing serious arterial decline although the overall death rate was not significantly changed by the intervention in the trial. Clearly, reducing homocysteine does not quickly repair existing... Homocysteine (CAS: 454-29-5) is a sulfur-containing amino acid that arises during methionine metabolism. Although its concentration in plasma is only about 10 micromolar (uM), even moderate hyperhomocysteinemia is associated with an increased incidence of cardiovascular disease and Alzheimers disease. Elevations in plasma homocysteine are commonly found as a result of vitamin deficiencies, polymorphisms of enzymes of methionine metabolism, and renal disease. It has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Pyridoxal, folic acid, riboflavin, and vitamin B(12) are all required for methionine metabolism, and deficiency of each of these vitamins result in elevated plasma homocysteine. A polymorphism of methylenetetrahydrofolate reductase (C677T), which is quite common in most populations with a homozygosity rate of 10-15 \\\\\\%, is associated with moderate hyperhomocysteinemia, especially in the context of marginal folate intake. Plasma homocysteine is inversely related to plasma creatinine in patients with renal disease. This is due to an impairment in homocysteine removal in renal disease. The role of these factors, and of modifiable lifestyle factors, in affecting methionine metabolism and in determining plasma homocysteine levels is discussed. Homocysteine is an independent cardiovascular disease (CVD) risk factor modifiable by nutrition and possibly exercise. Homocysteine was first identified as an important biological compound in 1932 and linked with human disease in 1962 when elevated urinary homocysteine levels were found in children with mental retardation. This condition, called homocystinuria, was later associated with premature occlusive CVD, even in children. These observations led to research investigating the relationship of elevated homocysteine levels and CVD in a wide variety of populations including middle age and elderly men and women with and without traditional risk factors for CVD (PMID: 17136938 , 15630149). Moreover, homocysteine is found to be associated with cystathionine beta-synthase deficiency, cystathioninuria, methylenetetrahydrofolate reductase deficiency, and sulfite oxidase deficiency, which are inborn errors of metabolism. [Spectral] L-Homocysteine (exact mass = 135.0354) and L-Valine (exact mass = 117.07898) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Homocysteine is biosynthesized naturally via a multi-step process.[9] First, methionine receives an adenosine group from ATP, a reaction catalyzed by S-adenosyl-methionine synthetase, to give S-adenosyl methionine (SAM-e). SAM-e then transfers the methyl group to an acceptor molecule, (e.g., norepinephrine as an acceptor during epinephrine synthesis, DNA methyltransferase as an intermediate acceptor in the process of DNA methylation). The adenosine is then hydrolyzed to yield L-homocysteine. L-Homocysteine has two primary fates: conversion via tetrahydrofolate (THF) back into L-methionine or conversion to L-cysteine.[10] Biosynthesis of cysteine Mammals biosynthesize the amino acid cysteine via homocysteine. Cystathionine β-synthase catalyses the condensation of homocysteine and serine to give cystathionine. This reaction uses pyridoxine (vitamin B6) as a cofactor. Cystathionine γ-lyase then converts this double amino acid to cysteine, ammonia, and α-ketobutyrate. Bacteria and plants rely on a different pathway to produce cysteine, relying on O-acetylserine.[11] Methionine salvage Homocysteine can be recycled into methionine. This process uses N5-methyl tetrahydrofolate as the methyl donor and cobalamin (vitamin B12)-related enzymes. More detail on these enzymes can be found in the article for methionine synthase. Other reactions of biochemical significance Homocysteine can cyclize to give homocysteine thiolactone, a five-membered heterocycle. Because of this "self-looping" reaction, homocysteine-containing peptides tend to cleave themselves by reactions generating oxidative stress.[12] Homocysteine also acts as an allosteric antagonist at Dopamine D2 receptors.[13] It has been proposed that both homocysteine and its thiolactone may have played a significant role in the appearance of life on the early Earth.[14] L-Homocysteine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=454-28-4 (retrieved 2024-06-29) (CAS RN: 6027-13-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). DL-Homocysteine is a weak neurotoxin, and can affect the production of kynurenic acid in the brain. DL-Homocysteine is a weak neurotoxin, and can affect the production of kynurenic acid in the brain. L-Homocysteine, a homocysteine metabolite, is a homocysteine that has L configuration. L-Homocysteine induces upregulation of cathepsin V that mediates vascular endothelial inflammation in hyperhomocysteinaemia[1][2].

   

Glycylleucine

(2S)-2-(2-aminoacetamido)-4-methylpentanoic acid

C8H16N2O3 (188.1161)


Glycylleucine is a dipeptide composed of glycine and leucine. It is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis. It appears to be a common substrate for glycyl-leucine dipeptidase. A dipeptide that appears to be a common substrate for glycyl-leucine dipeptidase. [HMDB] KEIO_ID G071 Glycyl-l-leucine is a dipeptide that can be a common substrate for?glycyl-leucine?dipeptidase.

   

L-Histidinol

(2S)-2-amino-3-(1H-imidazol-5-yl)propan-1-ol

C6H11N3O (141.0902)


L-Histidinol, a structural analogue of the essential amino acid L-histidine, enhances the toxicity of a variety of anticancer drugs for many tumour cells of animal origin (PMID:8297120). L-Histidinol inhibits human myristoyl-CoA:protein-myristoyltransferase (hNMT), an essential eukaryotic enzyme that catalyzes the cotranslational transfer of myristate into the NH2-terminal glycine residue of a number of important proteins of diverse function (PMID:9778369). L-Histidinol, a structural analogue of the essential amino acid L-histidine, enhances the toxicity of a variety of anticancer drugs for many tumor cells of animal origin. (PMID 8297120)

   

Triethanolamine

Triethanolamine tartrate (1:1), (R-(r*,r*))-isomer

C6H15NO3 (149.1052)


Triethanolamine, also known as H3TEA or trolamine, belongs to the class of organic compounds known as 1,2-aminoalcohols. These are organic compounds containing an alkyl chain with an amine group bound to the C1 atom and an alcohol group bound to the C2 atom. A 2009 study stated that patch test reactions reveal a slight irritant potential instead of a true allergic response in several cases, and also indicated the risk of skin sensitization to TEOA seems to be very low. Triethanolamine is a drug. Triethanolamine is a potentially toxic compound. Triethanolamine aka Trolamine (abbr. as TEOA to distinguish it from TEA which is for triethylamine) is a viscous organic compound that is both a tertiary amine and a triol. TEOA is used to provide a sensitivity boost to silver-halide-based holograms, and also as a swelling agent to color shift holograms. Approximately 150,000 tonnes were produced in 1999. D - Dermatologicals > D03 - Preparations for treatment of wounds and ulcers > D03A - Cicatrizants Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID T022

   

N-Acetyltryptophan

(2S)-2-[(1-hydroxyethylidene)amino]-3-(1H-indol-3-yl)propanoic acid

C13H14N2O3 (246.1004)


N-Acetyl-L-tryptophan or N-Acetyltryptophan, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetyltryptophan can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetyltryptophan is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-tryptophan. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\\\% of all human proteins and 68\\\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetyltryptophan can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free tryptophan can also occur. Many N-acetylamino acids, including N-acetyltryptophan are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557). N-Acetyltryptophan has also been used as a protein stabilizer. It prevents protein molecules from oxidative degradation by scavenging oxygen dissolved in protein solutions (PMID: 21903216 ). N-Acetyltryptophan has been identified as a catabolite of tryptophan generated by the gut microbiota. After absorption through the intestinal epithelium, tryptophan catabolites enter the bloodstream and are later excreted in the urine (PMID: 28916042). N-Acetyltryptophan is an inhibitor of cytochrome c release and an antagonist of the neurokinin 1 receptor (NK-1R). These inhibitory effects are thought have a useful role in neuroprotection. For instance, in mouse models of amyotrophic lateral sclerosis (ALS) the administration of N-Acetyltryptophan has been shown delay disease onset, extend survival, and ameliorate deterioration in motor performance ALS transgenic mice (PMID: 25986728). N-acetyltryptophan has been shown to significantly reduce blood-brain barrier permeability and improve functional outcome in rat models of traumatic brain injury (PMID: 29256408). N-Acetyltryptophan has also been shown to have a role in preventing hepatic ischemia-reperfusion injury. This is thought to occur through de-activation of the RIP2/caspase/IL-1beta signaling pathway (PMID: 31184936). D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors Ac-DL-Trp-OH is an endogenous metabolite. Ac-DL-Trp-OH is an endogenous metabolite. N-Acetyl-L-tryptophan is an endogenous metabolite.

   

Phenyl dihydrogen phosphate

Phenylphosphate, monopotassium salt

C6H7O4P (174.0082)


CONFIDENCE standard compound; INTERNAL_ID 2498 KEIO_ID P033

   

Eprosartan

4-({2-butyl-5-[(1E)-2-carboxy-2-(thiophen-2-ylmethyl)eth-1-en-1-yl]-1H-imidazol-1-yl}methyl)benzoic acid

C23H24N2O4S (424.1457)


Eprosartan is an angiotensin II receptor antagonist used for the treatment of high blood pressure. It acts on the renin-angiotensin system in two ways to decrease total peripheral resistance. First, it blocks the binding of angiotensin II to AT1 receptors in vascular smooth muscle, causing vascular dilatation. Second, it inhibits sympathetic norepinephrine production, further reducing blood pressure. C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09C - Angiotensin ii receptor blockers (arbs), plain > C09CA - Angiotensin ii receptor blockers (arbs), plain C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C66930 - Angiotensin II Receptor Antagonist D057911 - Angiotensin Receptor Antagonists > D057912 - Angiotensin II Type 2 Receptor Blockers COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 2776 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Eprosartan (SKF-108566J free base) is a selective, competitive, nonpeptid and orally active angiotensin II receptor antagonist, used as an antihypertensive. Eprosartan binds angiotensin II receptor with IC50s of 9.2 nM and 3.9 nM in rat and human adrenal cortical membranes, respectively [1].

   

Sulfanilic acid

4-Sulfanilic acid, zinc (2:1) salt

C6H7NO3S (173.0147)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 652 KEIO_ID S073

   

Floxuridine

5-fluoro-1-[(2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-1,2,3,4-tetrahydropyrimidine-2,4-dione

C9H11FN2O5 (246.0652)


An antineoplastic antimetabolite that is metabolized to fluorouracil when administered by rapid injection. Floxuridine is available as a sterile, nonpyrogenic, lyophilized powder for reconstitution. When administered by slow, continuous, intra-arterial infusion, it is converted to floxuridine monophosphate. It has been used to treat hepatic metastases of gastrointestinal adenocarcinomas and for palliation in malignant neoplasms of the liver and gastrointestinal tract. [PubChem] L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents Floxuridine (5-Fluorouracil 2'-deoxyriboside) is a?pyrimidine?analog?and known as an?oncology antimetabolite. Floxuridine inhibits Poly(ADP-Ribose) polymerase and induces DNA damage by activating the ATM and ATR checkpoint signaling pathways in vitro. Floxuridine is a extreamly potent inhibitor for S. aureus infection and induces cell apoptosis[1][2]. Floxuridine has antiviral effects against HSV and CMV[3].

   

Threonic acid

2,3,4-Trihydroxy-(threo)-butanoic acid

C4H8O5 (136.0372)


Threonic acid, also known as threonate, belongs to the class of organic compounds known as sugar acids and derivatives. Sugar acids and derivatives are compounds containing a saccharide unit which bears a carboxylic acid group. Threonic acid is a sugar acid derived from threose. The L-isomer is a metabolite of ascorbic acid (vitamin C). One study suggested that because L-threonate inhibits DKK1 expression in vitro, it may have potential in the treatment of androgenic alopecia (PMID:21034532). Threonic acid is probably derived from glycated proteins or from degradation of ascorbic acid. It is a normal component in aqueous humour and blood (PMID:10420182). Threonic acid is a substrate of L-threonate 3-dehydrogenase (EC 1.1.1.129) in the ascorbate and aldarate metabolism pathway (KEGG). It has been found to be a microbial metabolite (PMID:20615997). L-threonic acid, also known as L-threonate or L-threonic acid magnesium salt, belongs to sugar acids and derivatives class of compounds. Those are compounds containing a saccharide unit which bears a carboxylic acid group. L-threonic acid is soluble (in water) and a weakly acidic compound (based on its pKa). L-threonic acid can be found in a number of food items such as buffalo currant, yam, purslane, and bayberry, which makes L-threonic acid a potential biomarker for the consumption of these food products. L-threonic acid can be found primarily in blood. Threonic acid is a sugar acid derived from threose. The L-isomer is a metabolite of ascorbic acid (vitamin C). One study suggested that because L-threonate inhibits DKK1 expression in vitro, it may have potential in treatment of androgenic alopecia .

   

Diethylphosphate

Diethyl phosphate, chromium (+3) salt

C4H11O4P (154.0395)


Diethylphosphate is product of metabolism and of environmental degradation of Chlorpyrifos (CPF; a commonly used diethylphosphorothionate organophosphorus (OP) insecticide) and are routinely measured in urine as biomarkers of exposure. (PMID: 17590257). [HMDB] Diethylphosphate is product of metabolism and of environmental degradation of Chlorpyrifos (CPF; a commonly used diethylphosphorothionate organophosphorus (OP) insecticide) and are routinely measured in urine as biomarkers of exposure. (PMID: 17590257). KEIO_ID D141 Diethylphosphate (DEP) is product of metabolism and of environmental degradation of a commonly used insecticide Chlorpyrifos.

   

Perillic acid

4-(1-Methylethenyl)-1-cyclohexene-1-carboxylic acid

C10H14O2 (166.0994)


Perillic acid, also known as perillate, belongs to the class of organic compounds known as menthane monoterpenoids. These are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Perillic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Perillic acid is an intermediate in the Limonene and pinene degradation pathway. (KEGG); Its measurement in urine is used to monitor cancer patients receiving oral Limonene (a farnesyl transferase inhibitor that has shown antitumor properties)(PubMed ID 8723738 ). Perillic acid is found in cardamom. C471 - Enzyme Inhibitor > C2020 - Farnesyl Transferase Inhibitor

   

Etodolac

(1,8-Diethyl-1,3,4,9-tetrahydro-pyrano[3,4-b]indol-1-yl)-acetic acid

C17H21NO3 (287.1521)


Etodolac is only found in individuals that have used or taken this drug. It is a non-steroidal anti-inflammatory drug (NSAID) with anti-inflammatory, analgesic and antipyretic properties. Its therapeutic effects are due to its ability to inhibit prostaglandin synthesis. It is indicated for relief of signs and symptoms of rheumatoid arthritis and osteoarthritis. Similar to other NSAIDs, the anti-inflammatory effects of etodolac result from inhibition of the enzyme cycooxygenase (COX). This decreases the synthesis of peripheral prostaglandins involved in mediating inflammation. Etodolac binds to the upper portion of the COX enzyme active site and prevents its substrate, arachidonic acid, from entering the active site. Etodolac was previously thought to be a non-selective COX inhibitor, but it is now known to be 5 – 50 times more selective for COX-2 than COX-1. Antipyresis may occur by central action on the hypothalamus, resulting in peripheral dilation, increased cutaneous blood flow, and subsequent heat loss. M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AB - Acetic acid derivatives and related substances D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D004791 - Enzyme Inhibitors > D016861 - Cyclooxygenase Inhibitors > D052246 - Cyclooxygenase 2 Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D006133 - Growth Substances > D010937 - Plant Growth Regulators > D007210 - Indoleacetic Acids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents KEIO_ID E034; [MS2] KO008956 KEIO_ID E034

   

5-Fluorouridine

1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-fluoro-1,2,3,4-tetrahydropyrimidine-2,4-dione

C9H11FN2O6 (262.0601)


5-Fluorouridine is a metabolite of fluorouracil. Fluorouracil (5-FU or f5U) (sold under the brand names Adrucil, Carac, Efudix, Efudex and Fluoroplex) is a drug that is a pyrimidine analog which is used in the treatment of cancer. It is a suicide inhibitor and works through irreversible inhibition of thymidylate synthase. It belongs to the family of drugs called antimetabolites. It is typically administered with leucovorin. (Wikipedia) 5-Fluorouridine, a metabolite of 5-fluorouracil (HY-90006), is a potent ribozyme self-cleavage inhibitor. 5-Fluorouridine incorporates into both total and poly A RNA and has antiproliferative activity. 5-Fluorouridine induces apoptosis[1][2][3].

   

Amprenavir

(3S)-Tetrahydro-3-furanyl ((1S,2R)-3-(((4-aminophenyl)sulphonyl)(2-methylpropyl)amino)-2-hydroxy-1-(phenylmethyl)propyl)carbamic acid

C25H35N3O6S (505.2246)


Amprenavir is only found in individuals that have used or taken this drug. It is a protease inhibitor used to treat HIV infection.Amprenavir inhibits the HIV viral proteinase enzyme which prevents cleavage of the gag-pol polyprotein, resulting in noninfectious, immature viral particles. J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AE - Protease inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D000084762 - Viral Protease Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C97366 - HIV Protease Inhibitor C254 - Anti-Infective Agent > C281 - Antiviral Agent > C1660 - Anti-HIV Agent D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors

   

Dexamethasone Acetate

Dexamethasone-17-acetate

C24H31FO6 (434.2105)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D000893 - Anti-Inflammatory Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3264 CONFIDENCE standard compound; INTERNAL_ID 2835

   

Butylate

N,N-bis(2-methylpropyl)(ethylsulfanyl)formamide

C11H23NOS (217.15)


   

Vernam

N,N-dipropyl(propylsulfanyl)formamide

C10H21NOS (203.1344)


   

Cytisine

Cytisine

C11H14N2O (190.1106)


N - Nervous system > N07 - Other nervous system drugs > N07B - Drugs used in addictive disorders > N07BA - Drugs used in nicotine dependence C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist > C73579 - Nicotinic Agonist relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.052 Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3]. Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3]. Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3].

   

TOLYLFLUANID

dichloro-N-[(dimethylamino)sulphonyl]fluoro-N-(p-tolyl)methanesulphenamide

C10H13Cl2FN2O2S2 (345.978)


   

alpha-Solanine

alpha-Solanine

C45H73NO15 (867.498)


[Raw Data] CB083_Solanine_pos_30eV_isCID-10eV_rep000003.txt [Raw Data] CB083_Solanine_pos_40eV_isCID-10eV_rep000003.txt [Raw Data] CB083_Solanine_pos_50eV_isCID-10eV_rep000003.txt [Raw Data] CB083_Solanine_pos_20eV_isCID-10eV_rep000003.txt [Raw Data] CB083_Solanine_pos_10eV_isCID-10eV_rep000003.txt α-solanine, a bioactive component and one of the major steroidal glycoalkaloids in Solanum nigrum, has been observed to inhibit growth and induce apoptosis in cancer cells[1]. α-solanine, a bioactive component and one of the major steroidal glycoalkaloids in Solanum nigrum, has been observed to inhibit growth and induce apoptosis in cancer cells[1].

   

Bisphenol B

4-[2-(4-hydroxyphenyl)butan-2-yl]phenol

C16H18O2 (242.1307)


   

But-2-enoic acid

beta-Methylacrylic acid

C4H6O2 (86.0368)


But-2-enoic acid, also known as (2E)-2-butenoate or alpha-crotonic acid, belongs to the class of organic compounds known as straight chain organic acids. These are organic acids with a straight aliphatic chain. But-2-enoic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Food flavour component KEIO_ID C093 NSC 8751 is an endogenous metabolite. NSC 8751 is an endogenous metabolite.

   

Acephate

N-[methoxy(methylsulfanyl)phosphoryl]ethanimidic acid

C4H10NO3PS (183.0119)


CONFIDENCE standard compound; INTERNAL_ID 702; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1493; ORIGINAL_PRECURSOR_SCAN_NO 1491 CONFIDENCE standard compound; INTERNAL_ID 702; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3008; ORIGINAL_PRECURSOR_SCAN_NO 3003 CONFIDENCE standard compound; INTERNAL_ID 702; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1469; ORIGINAL_PRECURSOR_SCAN_NO 1467 CONFIDENCE standard compound; INTERNAL_ID 702; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1489; ORIGINAL_PRECURSOR_SCAN_NO 1488 CONFIDENCE standard compound; INTERNAL_ID 702; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3023; ORIGINAL_PRECURSOR_SCAN_NO 3020 CONFIDENCE standard compound; INTERNAL_ID 702; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3022; ORIGINAL_PRECURSOR_SCAN_NO 3018 CONFIDENCE standard compound; INTERNAL_ID 702; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3000; ORIGINAL_PRECURSOR_SCAN_NO 2996 CONFIDENCE standard compound; INTERNAL_ID 702; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1491; ORIGINAL_PRECURSOR_SCAN_NO 1488 CONFIDENCE standard compound; INTERNAL_ID 702; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1478; ORIGINAL_PRECURSOR_SCAN_NO 1476 CONFIDENCE standard compound; INTERNAL_ID 702; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3021; ORIGINAL_PRECURSOR_SCAN_NO 3018 CONFIDENCE standard compound; INTERNAL_ID 702; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3035; ORIGINAL_PRECURSOR_SCAN_NO 3030 CONFIDENCE standard compound; INTERNAL_ID 702; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1488; ORIGINAL_PRECURSOR_SCAN_NO 1486 C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor CONFIDENCE standard compound; INTERNAL_ID 3111 D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

BUPROFEZIN

Pesticide5_Buprofezin_C16H23N3OS_(2Z)-2-(tert-Butylimino)-3-(1-methylethyl)-5-phenyl-1,3,5-thiadiazinan-4-one

C16H23N3OS (305.1562)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 402; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10057; ORIGINAL_PRECURSOR_SCAN_NO 10056 CONFIDENCE standard compound; INTERNAL_ID 402; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10079; ORIGINAL_PRECURSOR_SCAN_NO 10078 CONFIDENCE standard compound; INTERNAL_ID 402; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10113; ORIGINAL_PRECURSOR_SCAN_NO 10111 ORIGINAL_ACQUISITION_NO 10127; CONFIDENCE standard compound; INTERNAL_ID 402; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_PRECURSOR_SCAN_NO 10126 CONFIDENCE standard compound; INTERNAL_ID 402; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10127; ORIGINAL_PRECURSOR_SCAN_NO 10126 CONFIDENCE standard compound; INTERNAL_ID 402; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10097; ORIGINAL_PRECURSOR_SCAN_NO 10096 CONFIDENCE standard compound; INTERNAL_ID 402; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10129; ORIGINAL_PRECURSOR_SCAN_NO 10128

   

AICAR

{[(2R,3S,4R,5R)-5-(5-amino-4-carbamoyl-1H-imidazol-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}phosphonic acid

C9H15N4O8P (338.0627)


Aicar, also known as 5-phosphoribosyl-5-amino-4-imidazolecarboxamide or 5-aminoimidazole-4-carboxamide ribotide, is a member of the class of compounds known as 1-ribosyl-imidazolecarboxamides. 1-ribosyl-imidazolecarboxamides are organic compounds containing the imidazole ring linked to a ribose ring through a 1-2 bond. Aicar is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Aicar can be found in a number of food items such as safflower, greenthread tea, common pea, and wild leek, which makes aicar a potential biomarker for the consumption of these food products. Aicar can be found primarily in saliva, as well as in human skeletal muscle tissue. Aicar exists in all living species, ranging from bacteria to humans. In humans, aicar is involved in few metabolic pathways, which include azathioprine action pathway, mercaptopurine action pathway, purine metabolism, and thioguanine action pathway. Aicar is also involved in several metabolic disorders, some of which include mitochondrial DNA depletion syndrome, purine nucleoside phosphorylase deficiency, xanthinuria type II, and gout or kelley-seegmiller syndrome. AICAR also known as ZMP is an analog of AMP that is capable of stimulating AMP-dependent protein kinase activity(AMPK). AICAR is an intermediate in the generation of inosine monophosphate. AICAR is being clinically used to treat and protect against cardiac ischemic injury. AICAR can enter cardiac cells to inhibit adenosine kinase and adenosine deaminase. It enhances the rate of nucleotide re-synthesis increasing adenosine generation from adenosine monophosphate only during conditions of myocardial ischemia. AICAR increases glucose uptake by inducing translocation of GLUT4 and/or by activating the p38 MAPK pathway. Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map D007004 - Hypoglycemic Agents Corona-virus KEIO_ID A133 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Pyrodone

4-(2-ethylhexyl)-4-azatricyclo[5.2.1.0²,⁶]dec-8-ene-3,5-dione

C17H25NO2 (275.1885)


   

Diisobutyl adipate

5-((4-(4-(Diethylamino)butyl)-1-piperidinyl)acetyl)-10,11-dihydrobenzo(b,e)(1,4)diazepine-11-one

C14H26O4 (258.1831)


Diisobutyl adipate is a food additive [Goodscents]. Food additive [Goodscents]

   

Ouabain

3-[(1R,3S,5S,8R,9S,10R,11R,13R,14S,17R)-1,5,11,14-tetrahydroxy-10-(hydroxymethyl)-13-methyl-3-[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy-2,3,4,6,7,8,9,11,12,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl]-2H-furan-5-one

C29H44O12 (584.2833)


Ouabain is only found in individuals that have used or taken this drug. It is a cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like digitalis. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-exchanging ATPase. [PubChem]Ouabain inhibits the Na-K-ATPase membrane pump, resulting in an increase in intracellular sodium and calcium concentrations. Increased intracellular concentrations of calcium may promote activation of contractile proteins (e.g., actin, myosin). Ouabain also acts on the electrical activity of the heart, increasing the slope of phase 4 depolarization, shortening the action potential duration, and decreasing the maximal diastolic potential. CONFIDENCE standard compound; INTERNAL_ID 472; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6235; ORIGINAL_PRECURSOR_SCAN_NO 6233 CONFIDENCE standard compound; INTERNAL_ID 472; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6272; ORIGINAL_PRECURSOR_SCAN_NO 6270 CONFIDENCE standard compound; INTERNAL_ID 472; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6219; ORIGINAL_PRECURSOR_SCAN_NO 6216 CONFIDENCE standard compound; INTERNAL_ID 472; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6224; ORIGINAL_PRECURSOR_SCAN_NO 6220 CONFIDENCE standard compound; INTERNAL_ID 472; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6194; ORIGINAL_PRECURSOR_SCAN_NO 6191 C - Cardiovascular system > C01 - Cardiac therapy > C01A - Cardiac glycosides > C01AC - Strophanthus glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D013328 - Strophanthins [Raw Data] CB084_Ouabain_pos_50eV_CB000036.txt [Raw Data] CB084_Ouabain_pos_10eV_CB000036.txt [Raw Data] CB084_Ouabain_pos_30eV_CB000036.txt [Raw Data] CB084_Ouabain_pos_20eV_CB000036.txt [Raw Data] CB084_Ouabain_pos_40eV_CB000036.txt D002317 - Cardiovascular Agents D004791 - Enzyme Inhibitors

   

2-hydroxyflutamide

2-hydroxy-2-methyl-N-[4-nitro-3-(trifluoromethyl)phenyl]propanimidic acid

C11H11F3N2O4 (292.0671)


2-hydroxyflutamide is a metabolite of flutamide. Flutamide is an oral nonsteroidal antiandrogen drug primarily used to treat prostate cancer. It competes with testosterone and its powerful metabolite, dihydrotestosterone (DHT) for binding to androgen receptors in the prostate gland. By doing so, it prevents them from stimulating the prostate cancer cells to grow. Flutamide has been largely replaced by a newer member of this class, bicalutamide, due to a better side-effect profile. (Wikipedia) CONFIDENCE standard compound; INTERNAL_ID 401; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4455; ORIGINAL_PRECURSOR_SCAN_NO 4452 CONFIDENCE standard compound; INTERNAL_ID 401; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4545; ORIGINAL_PRECURSOR_SCAN_NO 4543 CONFIDENCE standard compound; INTERNAL_ID 401; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4476; ORIGINAL_PRECURSOR_SCAN_NO 4471 CONFIDENCE standard compound; INTERNAL_ID 401; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4446; ORIGINAL_PRECURSOR_SCAN_NO 4442 CONFIDENCE standard compound; INTERNAL_ID 401; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4449; ORIGINAL_PRECURSOR_SCAN_NO 4447 D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D000726 - Androgen Antagonists C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C146993 - Androgen Receptor Inhibitor C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist > C242 - Anti-Androgen

   

oxybenzone

2-Hydroxy-4-methoxybenzophenone

C14H12O3 (228.0786)


D020011 - Protective Agents > D011837 - Radiation-Protective Agents > D013473 - Sunscreening Agents C1892 - Chemopreventive Agent > C851 - Sunscreen D003879 - Dermatologic Agents D003358 - Cosmetics Same as: D05309 CONFIDENCE standard compound; INTERNAL_ID 754; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4381; ORIGINAL_PRECURSOR_SCAN_NO 4379 CONFIDENCE standard compound; INTERNAL_ID 754; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4375; ORIGINAL_PRECURSOR_SCAN_NO 4373 CONFIDENCE standard compound; INTERNAL_ID 754; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4383; ORIGINAL_PRECURSOR_SCAN_NO 4379 CONFIDENCE standard compound; INTERNAL_ID 754; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4381; ORIGINAL_PRECURSOR_SCAN_NO 4376 CONFIDENCE standard compound; INTERNAL_ID 754; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4396; ORIGINAL_PRECURSOR_SCAN_NO 4394 CONFIDENCE standard compound; INTERNAL_ID 754; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4398; ORIGINAL_PRECURSOR_SCAN_NO 4397 CONFIDENCE standard compound; INTERNAL_ID 754; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9607; ORIGINAL_PRECURSOR_SCAN_NO 9606 CONFIDENCE standard compound; INTERNAL_ID 754; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9642; ORIGINAL_PRECURSOR_SCAN_NO 9638 CONFIDENCE standard compound; INTERNAL_ID 754; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9614; ORIGINAL_PRECURSOR_SCAN_NO 9611 CONFIDENCE standard compound; INTERNAL_ID 754; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9638; ORIGINAL_PRECURSOR_SCAN_NO 9635 CONFIDENCE standard compound; INTERNAL_ID 754; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9643; ORIGINAL_PRECURSOR_SCAN_NO 9641 CONFIDENCE standard compound; INTERNAL_ID 754; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9646; ORIGINAL_PRECURSOR_SCAN_NO 9641 CONFIDENCE standard compound; INTERNAL_ID 2758 CONFIDENCE standard compound; INTERNAL_ID 8629 CONFIDENCE standard compound; INTERNAL_ID 8143 CONFIDENCE standard compound; EAWAG_UCHEM_ID 230

   

Sebacic acid

Sebacic acid, monocadmium salt

C10H18O4 (202.1205)


Sebacic acid is a saturated, straight-chain naturally occurring dicarboxylic acid with 10 carbon atoms. Sebacic acid is a normal urinary acid. In patients with multiple acyl-CoA-dehydrogenase deficiency (MADD), also known as glutaric aciduria type II (GAII), a group of metabolic disorders due to deficiency of either electron transfer flavoprotein or electron transfer flavoprotein ubiquinone oxidoreductase, biochemical data shows an increase in urine sebacic acid excretion. Sebacic acid is found to be associated with carnitine-acylcarnitine translocase deficiency and medium chain acyl-CoA dehydrogenase deficiency, which are inborn errors of metabolism. Sebacic acid is a white flake or powdered crystal slightly soluble in water that has been proposed as an alternative energy substrate in total parenteral nutrition. Sebacic Acid was named from the Latin sebaceus (tallow candle) or sebum (tallow) in reference to its use in the manufacture of candles. Sebacic acid and its derivatives such as azelaic acid have a variety of industrial uses as plasticizers, lubricants, hydraulic fluids, cosmetics, candles, etc. It is used in the synthesis of polyamide and alkyd resins. It is also used as an intermediate for aromatics, antiseptics and painting materials (PMID: 10556649, 1738216, 8442769, 12706375). Sebacic acid is a saturated, straight-chain naturally occurring dicarboxylic acid with 10 carbon atoms. Sebacic acid is a normal urinary acid. In patients with multiple acyl-CoA-dehydrogenase deficiency (MADD) or glutaric aciduria type II (GAII) are a group of metabolic disorders due to deficiency of either electron transfer flavoprotein or electron transfer flavoprotein ubiquinone oxidoreductase, biochemical data shows an increase in urine sebacic acid excretion. CONFIDENCE standard compound; INTERNAL_ID 671; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4109; ORIGINAL_PRECURSOR_SCAN_NO 4104 CONFIDENCE standard compound; INTERNAL_ID 671; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4132; ORIGINAL_PRECURSOR_SCAN_NO 4130 CONFIDENCE standard compound; INTERNAL_ID 671; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4118; ORIGINAL_PRECURSOR_SCAN_NO 4114 CONFIDENCE standard compound; INTERNAL_ID 671; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4132; ORIGINAL_PRECURSOR_SCAN_NO 4129 CONFIDENCE standard compound; INTERNAL_ID 671; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4099; ORIGINAL_PRECURSOR_SCAN_NO 4095 CONFIDENCE standard compound; INTERNAL_ID 671; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4127; ORIGINAL_PRECURSOR_SCAN_NO 4123 Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID S017 Decanedioic acid, a normal urinary acid, is found to be associated with carnitine-acylcarnitine translocase deficiency and medium chain acyl-CoA dehydrogenase deficiency. Decanedioic acid, a normal urinary acid, is found to be associated with carnitine-acylcarnitine translocase deficiency and medium chain acyl-CoA dehydrogenase deficiency.

   

Aflatoxin M1

Cyclopenta(c)furo(3,2:4,5)furo(2,3-h)(1)benzopyran-1,11-dione, 2,3,6a,9a-tetrahydro-9a-hydroxy-4-methoxy-

C17H12O7 (328.0583)


D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D000348 - Aflatoxins

   

Corilagin

(1S,19R,21S,22R,23R)-6,7,8,11,12,13,22,23-octahydroxy-3,16-dioxo-2,17,20-trioxatetracyclo[17.3.1.0^{4,9}.0^{10,15}]tricosa-4,6,8,10,12,14-hexaen-21-yl 3,4,5-trihydroxybenzoate

C27H22O18 (634.0806)


Corilagin is a member of the class of compounds known as ellagitannins, a class of hydrolyzable tannins. Hydrolyzable tannins are tannins with a structure characterized by either of the following models: (1) a structure containing galloyl units (in some cases, shikimic acid units) linked to diverse polyol carbohydrate, catechin, or triterpenoid units, or (2) a structure containing at least two galloyl units C-C coupled to each other and not containing a glycosidically linked catechin unit. Corilagin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Corilagin can be found in pomegranate, which makes corilagin a potential biomarker for the consumption of this food product. Corilagin was first isolated in 1951 from Dividivi extract and from Caesalpinia coriaria, hence the name of the molecule. It can also be found in Alchornea glandulosa and in the leaves of Punica granatum (pomegranate) (Wikipedia). Corilagin has been shown to exhibit thrombolytic function (PMID: 14750026). Corilagin is an ellagitannin with a hexahydroxydiphenoyl group bridging over the 3-O and 6-O of the glucose core. It has a role as an antihypertensive agent, an EC 3.4.15.1 (peptidyl-dipeptidase A) inhibitor, a non-steroidal anti-inflammatory drug and an antioxidant. It is an ellagitannin and a gallate ester. Corilagin is a natural product found in Euphorbia fischeriana, Euphorbia hyssopifolia, and other organisms with data available. Corilagin is a gallotannin. It can be found in Alchornea glandulosa. [Wikipedia] Corilagin, a gallotannin, has anti-tumor, anti-inflammatory and hepatoprotective activities. Corilagin inhibits activity of reverse transcriptase of RNA tumor viruses. Corilagin also inhibits the growth of Staphylococcus aureus with a MIC of 25 μg/mL. Corilagin shows anti-tumor activity on hepatocellular carcinoma and ovarian cancer model. Corilagin shows low toxicity to normal cells and tissues[1][2][3]. Corilagin, a gallotannin, has anti-tumor, anti-inflammatory and hepatoprotective activities. Corilagin inhibits activity of reverse transcriptase of RNA tumor viruses. Corilagin also inhibits the growth of Staphylococcus aureus with a MIC of 25 μg/mL. Corilagin shows anti-tumor activity on hepatocellular carcinoma and ovarian cancer model. Corilagin shows low toxicity to normal cells and tissues[1][2][3].

   

12,13-DiHOME

(9Z,12S,13S)-12,13-dihydroxyoctadec-9-enoic acid

C18H34O4 (314.2457)


12,13-DHOME (CAS: 263399-35-5), also known as 12,13-dihydroxy-9-octadecenoic acid or 12,13-DiHOME, is the epoxide hydrolase metabolite of the leukotoxin 12,13-EpOME. 12,13-EpOME acts as a protoxin, with the corresponding epoxide hydrolase 12,13-DHOME specifically exerting toxicity. Both the EpOME and the DHOME are shown to have neutrophil chemotactic activity. 12,13-DHOME suppress the neutrophil respiratory burst by a mechanism distinct from that of respiratory burst inhibitors such as cyclosporin H or lipoxin A4, which inhibit multiple aspects of neutrophil activation. 12,13-DHOME is a derivative of the linoleic acid diol that has been reported to be toxic in human tissue preparations. 12,13-DHOME is a naturally occurring proliferator-activated receptor (PPAR) gamma2 ligand, which stimulates adipocytes and inhibits osteoblast differentiation (PMID: 17435320, 12021203, 12127265). 12,13-DHOME is the epoxide hydrolase metabolite of the leukotoxin12,13-EpOME. 12,13-EpOMEs act as a protoxin, with the corresponding epoxide hydrolase 12,13-DiHOME specifically exerting toxicity. Both the EpOME and the DiHOME are shown to have neutrophil chemotactic activity. 12,13-DiHOME suppress the neutrophil respiratory burst by a mechanism distinct from that of respiratory burst inhibitors such as cyclosporin H or lipoxin A4,which inhibit multiple aspects of neutrophil activation. 12,13-DHOME is a derivative of linoleic acid diol that have been reported to be toxic in humans tissue preparations. 12,13-DHOME is a naturally occurring proliferator-activated receptor (PPAR) gamma2 ligand, which stimulates adipocytes and inhibits osteoblast differentiation. (PMID: 17435320, 12021203, 12127265) [HMDB]

   

Dezocine

5,11-Methanobenzocyclodecen-3-ol, 13-amino-5,6,7,8,9,10,11,12-octahydro-5-methyl-, (5alpha,11alpha,13S*)

C16H23NO (245.178)


Dezocine is a partial opiate drug and is used for pain management. Dezocine is a very effective alternative to fentanyl when administered during outpatient laparoscopy, although is associated with an increased incidence of postoperative nausea. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics N - Nervous system > N02 - Analgesics > N02A - Opioids

   

Epibatidine

(+/-)-epibatidine

C11H13ClN2 (208.0767)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Oxethazaine

2-[(2-hydroxyethyl)({[methyl(2-methyl-1-phenylpropan-2-yl)carbamoyl]methyl})amino]-N-methyl-N-(2-methyl-1-phenylpropan-2-yl)acetamide

C28H41N3O3 (467.3148)


C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AD - Local anesthetics D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent Same as: D01152

   

Matairesinol

(3R,4R)-Dihydro-3,4-bis[(4-hydroxy-3-methoxyphenyl)methyl]-2(3H)-furanone; (-)-Matairesinol; (8R,8R)-(-)-Matairesinol

C20H22O6 (358.1416)


Matairesinol belongs to the class of organic compounds known as dibenzylbutyrolactone lignans. These are lignan compounds containing a 3,4-dibenzyloxolan-2-one moiety. Matairesinol is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, matairesinol is found, on average, in the highest concentration in a few different foods such as sesame, burdocks, and flaxseeds, and in a lower concentration in oats, asparagus, and poppies. Matairesinol has also been detected, but not quantified in, several different foods, such as silver lindens, tamarinds, cherry tomato, skunk currants, and fireweeds. This could make matairesinol a potential biomarker for the consumption of these foods. Matairesinol is composed of gamma-butyrolactone in which the 3 and 4 positions are substituted by 4-hydroxy-3-methoxybenzyl groups (the 3R,4R-diastereomer). (-)-matairesinol is a lignan that is gamma-butyrolactone in which the 3 and 4 positions are substituted by 4-hydroxy-3-methoxybenzyl groups (the 3R,4R-diastereomer). It has a role as a phytoestrogen, a plant metabolite, an angiogenesis inhibitor and an anti-asthmatic agent. It is a polyphenol, a lignan and a gamma-lactone. Matairesinol is a natural product found in Crossosoma bigelovii, Brassica oleracea var. sabauda, and other organisms with data available. See also: Arctium lappa fruit (part of); Pumpkin Seed (part of). Matairesinol is a plant lignan. It occurs with secoisolariciresinol in numerous foods such as oil seeds, whole grains, vegetables, and fruits. (-)-Matairesinol is found in many foods, some of which are caraway, pecan nut, cereals and cereal products, and longan. A lignan that is gamma-butyrolactone in which the 3 and 4 positions are substituted by 4-hydroxy-3-methoxybenzyl groups (the 3R,4R-diastereomer). Matairesinol confers anti-allergic effects in an allergic dermatitis mouse model. DfE-induced changes in IL-4 and IFN-γ mRNA expression in the ears of NC/Nga mice were reversed by matairesinol application[1]. Matairesinol confers anti-allergic effects in an allergic dermatitis mouse model. DfE-induced changes in IL-4 and IFN-γ mRNA expression in the ears of NC/Nga mice were reversed by matairesinol application[1].

   

ORYZALIN

ORYZALIN

C12H18N4O6S (346.0947)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents D000890 - Anti-Infective Agents > D013424 - Sulfanilamides D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 3099 CONFIDENCE standard compound; INTERNAL_ID 2333 CONFIDENCE standard compound; INTERNAL_ID 8465

   

Rhein

4,5-dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carboxylic acid

C15H8O6 (284.0321)


Rhein appears as yellow needles (from methanol) or yellow-brown powder. (NTP, 1992) Rhein is a dihydroxyanthraquinone. Rhein is an anthraquinone metabolite of rheinanthrone and senna glycoside is present in many medicinal plants including Rheum palmatum, Cassia tora, Polygonum multiflorum, and Aloe barbadensis. It is known to have hepatoprotective, nephroprotective, anti-cancer, anti-inflammatory, and several other protective effects. Rhein is a natural product found in Cassia renigera, Rheum compactum, and other organisms with data available. Present in Rheum palmatum (Chinese rhubarb). Rhein is found in dock, green vegetables, and garden rhubarb. Rhein is found in dock. Rhein is present in Rheum palmatum (Chinese rhubarb D004791 - Enzyme Inhibitors KEIO_ID R037

   

Machete

N-(butoxymethyl)-2-chloro-N-(2,6-diethylphenyl)acetamide

C17H26ClNO2 (311.1652)


CONFIDENCE standard compound; INTERNAL_ID 560; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10349; ORIGINAL_PRECURSOR_SCAN_NO 10345 CONFIDENCE standard compound; INTERNAL_ID 560; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10330; ORIGINAL_PRECURSOR_SCAN_NO 10326 CONFIDENCE standard compound; INTERNAL_ID 560; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10216; ORIGINAL_PRECURSOR_SCAN_NO 10211 CONFIDENCE standard compound; INTERNAL_ID 560; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10284; ORIGINAL_PRECURSOR_SCAN_NO 10281 CONFIDENCE standard compound; INTERNAL_ID 560; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10304; ORIGINAL_PRECURSOR_SCAN_NO 10299 CONFIDENCE standard compound; INTERNAL_ID 560; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10247; ORIGINAL_PRECURSOR_SCAN_NO 10245 D010575 - Pesticides > D006540 - Herbicides D009676 - Noxae > D002273 - Carcinogens D016573 - Agrochemicals

   

Punicic acid

cis-9, trans-11, trans-13-octadecatrienoic acid

C18H30O2 (278.2246)


alpha-Eleostearic acid is found in bitter gourd. alpha-Eleostearic acid is isolated from seed oil of Momordica charantia (bitter melon Isolated from seed oil of Momordica charantia (bitter melon). alpha-Eleostearic acid is found in bitter gourd and fruits.

   

Hypotaurine

2-aminoethane-1-sulfinic acid

C2H7NO2S (109.0197)


Hypotaurine belongs to the class of organic compounds known as sulfinic acids. Sulfinic acids are compounds containing a sulfinic acid functional group, with the general structure RS(=O)OH (R = organyl, not H). Hypotaurine exists in all living species, ranging from bacteria to humans. Within humans, hypotaurine participates in a number of enzymatic reactions. In particular, hypotaurine can be biosynthesized from cysteamine; which is catalyzed by the enzyme 2-aminoethanethiol dioxygenase. In addition, hypotaurine can be biosynthesized from 3-sulfinoalanine through its interaction with the enzyme cysteine sulfinic acid decarboxylase. In humans, hypotaurine is involved in taurine and hypotaurine metabolism. [Spectral] Hypotaurine (exact mass = 109.01975) and Cytosine (exact mass = 111.04326) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Hypotaurine is a product of enzyme cysteamine dioxygenase [EC 1.13.11.19] in taurine and hypotaurine metabolism pathway (KEGG). It may function as an antioxidant and a protective agent under physiological conditions (PMID 14992269). [HMDB] Hypotaurine (2-aminoethanesulfinic acid), an intermediate in taurine biosynthesis from cysteine in astrocytes, is an endogenous inhibitory amino acid of the glycine receptor. Antioxidant[1].

   

2-Aminobenzimidazole

2-Aminobenzimidazole tartrate(2:1), (L)-(+)-isomer

C7H7N3 (133.064)


CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2161; ORIGINAL_PRECURSOR_SCAN_NO 2159 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2163; ORIGINAL_PRECURSOR_SCAN_NO 2161 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4547; ORIGINAL_PRECURSOR_SCAN_NO 4545 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4569; ORIGINAL_PRECURSOR_SCAN_NO 4568 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4534; ORIGINAL_PRECURSOR_SCAN_NO 4533 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2155; ORIGINAL_PRECURSOR_SCAN_NO 2153 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4517; ORIGINAL_PRECURSOR_SCAN_NO 4515 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4544; ORIGINAL_PRECURSOR_SCAN_NO 4543 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4549; ORIGINAL_PRECURSOR_SCAN_NO 4547 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2165; ORIGINAL_PRECURSOR_SCAN_NO 2163 CONFIDENCE standard compound; EAWAG_UCHEM_ID 138 CONFIDENCE standard compound; INTERNAL_ID 2003 CONFIDENCE standard compound; INTERNAL_ID 4008 KEIO_ID A042

   

1-Methylnicotinamide

N(1)-Methylnicotinamide iodide, 3-(aminocarbonyl-13C)-labeled

[C7H9N2O]+ (137.0715)


1-Methylnicotinamide is a metabolite of nicotinamide and is produced primarily in the liver. It has anti-inflammatory properties (PMID 16197374). It is a product of nicotinamide N-methyltransferase [EC 2.1.1.1] in the pathway of nicotinate and nicotinamide metabolism (KEGG). 1-Methylnicotinamide may be an endogenous activator of prostacyclin production and thus may regulate thrombotic as well as inflammatory processes in the cardiovascular system (PMID: 17641676). [HMDB] 1-Methylnicotinamide is a metabolite of nicotinamide and is produced primarily in the liver. It has anti-inflammatory properties (PMID 16197374). It is a product of nicotinamide N-methyltransferase [EC 2.1.1.1] in the pathway of nicotinate and nicotinamide metabolism (KEGG). 1-Methylnicotinamide may be an endogenous activator of prostacyclin production and thus may regulate thrombotic as well as inflammatory processes in the cardiovascular system (PMID: 17641676). 1-Methylnicotinamide. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=3106-60-3 (retrieved 2024-08-06) (CAS RN: 3106-60-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

AdoMet

(2S)-2-amino-4-[[(2S,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl-methylsulfonio]butanoate

C15H22N6O5S (398.1372)


[Spectral] S-Adenosyl-L-methionine (exact mass = 398.13724) and L-Histidine (exact mass = 155.06948) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AA - Amino acids and derivatives Acquisition and generation of the data is financially supported in part by CREST/JST. C26170 - Protective Agent > C275 - Antioxidant COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Ribothymidine

1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-methyl-1,2,3,4-tetrahydropyrimidine-2,4-dione

C10H14N2O6 (258.0852)


Ribothymidine is an endogenous methylated nucleoside found in human fluids; methylated purine bases are present in higher amounts in tumor-bearing patients compared to healthy controls.DNA hypermethylation is a common finding in malignant cells and has been explored as a therapeutic target for hypomethylating agents. When chemical bonds to DNA, the DNA becomes damaged and proper and complete replication cannot occur to make the normal intended cell. A DNA adduct is an abnormal piece of DNA covalently-bonded to a cancer-causing chemical. This has shown to be the start of a cancerous cell, or carcinogenesis. DNA adducts in scientific experiments are used as bio-markers and as such are themselves measured to reflect quantitatively, for comparison, the amount of cancer in the subject. (PMID: 3506820, 17044778, 17264127, 16799933) [HMDB] Ribothymidine is an endogenous methylated nucleoside found in human fluids; methylated purine bases are present in higher amounts in tumor-bearing patients compared to healthy controls.DNA hypermethylation is a common finding in malignant cells and has been explored as a therapeutic target for hypomethylating agents. When chemical bonds to DNA, the DNA becomes damaged and proper and complete replication cannot occur to make the normal intended cell. A DNA adduct is an abnormal piece of DNA covalently-bonded to a cancer-causing chemical. This has shown to be the start of a cancerous cell, or carcinogenesis. DNA adducts in scientific experiments are used as bio-markers and as such are themselves measured to reflect quantitatively, for comparison, the amount of cancer in the subject. (PMID:3506820, 17044778, 17264127, 16799933). 5-Methyluridine is a is an endogenous methylated nucleoside found in human fluids. 5-Methyluridine is a is an endogenous methylated nucleoside found in human fluids.

   

Diphenoxylate

Ethyl 1-(3-cyano-3,3-diphenylpropyl)-4-phenyl-4-piperidinecarboxylic acid

C30H32N2O2 (452.2464)


A meperidine congener used as an antidiarrheal, usually in combination with atropine. At high doses, it acts like morphine. Its unesterified metabolite difenoxin has similar properties and is used similarly. It has little or no analgesic activity. This medication is classified as a Schedule V under the Controlled Substances Act by the Food and Drug Administration (FDA) and the DEA in the United States when used in preparations. When diphenoxylate is used alone, it is classified as a Schedule II. A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07D - Antipropulsives > A07DA - Antipropulsives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics C78276 - Agent Affecting Digestive System or Metabolism > C266 - Antidiarrheal Agent D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D005765 - Gastrointestinal Agents > D000930 - Antidiarrheals

   

Norvaline

alpha -DL-Aminopentanoic acid

C5H11NO2 (117.079)


Norvaline is a non-proteinogenic branched-chain amino acid with the chemical formula C5H11NO2, isomeric with valine. It has previously been reported to be a natural component of an antifungal peptide of Bacillus subtilis. Norvaline and other modified branched chain amino acids have received attention in recent studies, as they appear to be incorporated in some recombinant proteins found in E. coli. This amino acid is often made synthetically. DL-Norvaline, a derivative of L-norvaline, L-norvaline is a non-competitive inhibitor of arginase. DL-Norvaline, a derivative of L-norvaline, L-norvaline is a non-competitive inhibitor of arginase.

   

Tolterodine

2-[(1R)-3-[bis(propan-2-yl)amino]-1-phenylpropyl]-4-methylphenol

C22H31NO (325.2406)


Tolterodine is only found in individuals that have used or taken this drug. It is an antimuscarinic drug that is used to treat urinary incontinence. Tolterodine acts on M2 and M3 subtypes of muscarinic receptors.Both tolterodine and its active metabolite, 5-hydroxymethyltolterodine, act as competitive antagonists at muscarinic receptors. This antagonism results in inhibition of bladder contraction, decrease in detrusor pressure, and an incomplete emptying of the bladder. G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BD - Drugs for urinary frequency and incontinence C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D000089162 - Genitourinary Agents > D064804 - Urological Agents Tolterodine(PNU-200583) is a potent muscarinic receptor antagonists that show selectivity for the urinary bladder over salivary glands in vivo. IC50 Value: Target: mAChR in vitro: Carbachol-induced contractions of isolated guinea pig bladder were effectively inhibited by tolterodine (IC50 14 nM) and 5-HM (IC50 5.7 nM). The IC50 values were in the microM range and the antimuscarinic potency of tolterodine was 27, 200 and 370-485 times higher, respectively, than its potency in blocking histamine receptors, alpha-adrenoceptors and calcium channels. The active metabolite, 5-HM, was >900 times less potent at these sites than at bladder muscarinic receptors [1]. in vivo: Tolterodine was extensively metabolized in vivo [2]. In the passive-avoidance test, tolterodine at 1 or 3 mg/kg had no effect on memory; the latency to cross and percentage of animals crossing were comparable to controls. In contrast, scopolamine induced a memory deficit; the latency to cross was decreased, and the number of animals crossing was increased [3].

   

3-Hydroxyaspartic acid

D-Aspartic acid,3-hydroxy-, (3S)-rel-

C4H7NO5 (149.0324)


A hydroxy-amino acid that is aspartic acid in which one of the methylene hydrogens has been replaced by a hydroxy group. D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids KEIO_ID H086

   

Vaccenic acid

11-Octadecenoic acid, (e)-isomer

C18H34O2 (282.2559)


Vaccenic acid is a naturally occurring trans fatty acid. It is the predominant kind of trans-fatty acid found in human milk, in the fat of ruminants, and in dairy products such as milk, butter, and yogurt. Trans fat in human milk may depend on trans fat content in food. Its IUPAC name is (11E)-11-octadecenoic acid, and its lipid shorthand name is 18:1 trans-11. The name was derived from the Latin vacca (cow). Vaccenic acid belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Vaccenic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Occurs in small proportions in ruminant fats (e.g., butter) via biohydrogenation of dietary polyene acids. Vaccenic acid is found in many foods, some of which are almond, romaine lettuce, butter, and pak choy. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level.

   

Oxymetholone

17-Hydroxy-2-(hydroxymethylene)-17-methylandrostan-3-one, (2E,5alpha,17beta)-

C21H32O3 (332.2351)


A - Alimentary tract and metabolism > A14 - Anabolic agents for systemic use > A14A - Anabolic steroids > A14AA - Androstan derivatives D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D000728 - Androgens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid

   

Betaine aldehyde

N,N,N-Trimethyl-2-oxo-ethanaminium

[C5H12NO]+ (102.0919)


Betaine aldehyde, also known as BTL, belongs to the class of organic compounds known as tetraalkylammonium salts. These are organonitrogen compounds containing a quaternary ammonium substituted with four alkyl chains. Betaine aldehyde is an extremely weak basic (essentially neutral) compound (based on its pKa). In humans, betaine aldehyde is involved in betaine metabolism. Outside of the human body, betaine aldehyde has been detected, but not quantified in, several different foods, such as sourdoughs, summer savouries, loganberries, burbots, and celery stalks. This could make betaine aldehyde a potential biomarker for the consumption of these foods. Betaine aldehyde is an intermediate in the metabolism of glycine, serine, and threonine. The human aldehyde dehydrogenase (EC 1.2.1.3) facilitates the conversion of betaine aldehyde into glycine betaine. Betaine aldehyde is a substrate for choline dehydrogenase (PMID: 12467448, 7646513). Betaine aldehyde is an intermediate in the metabolism of glycine, serine and threonine. The human aldehyde dehydrogenase (EC 1.2.1.3) facilitates the conversion of betaine aldehyde to glycine betaine. Betaine aldehyde is a substrate for Choline dehydrogenase (mitochondrial). (PMID: 12467448, 7646513) [HMDB]. Betaine aldehyde is found in many foods, some of which are celery leaves, pummelo, star anise, and grape. COVID info from COVID-19 Disease Map KEIO_ID B044 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Isovaline

(S)-2-AMINO-2-METHYLBUTYRIC ACID

C5H11NO2 (117.079)


KEIO_ID A189

   

(S)-2-Azetidinecarboxylic acid

1-Azetidinecarboxylicacid, 2-(aminocarbonyl)-, 1,1-dimethylethyl ester, (2S)-

C4H7NO2 (101.0477)


Azetidine-2-carboxylic acid is an azetidinecarboxylic acid that is azetidine substituted by a carboxy group at position 2. It is a plant non-protein amino acid. It has a role as a plant metabolite and a teratogenic agent. It is an azetidinecarboxylic acid and an amino acid. A proline analog that acts as a stoichiometric replacement of proline. It causes the production of abnormal proteins with impaired biological activity. (S)-2-Azetidinecarboxylic acid is found in common beet. (S)-2-Azetidinecarboxylic acid is present in roots and leaves of Convallaria majalis (lily-of-the-valley). Convallaria majalis is banned by the FDA from food use in the US Present in roots and leaves of Convallaria majalis (lily-of-the-valley). Convallaria majalis is banned by the FDA from food use in the USA. (S)-2-Azetidinecarboxylic acid is found in red beetroot and common beet. An azetidinecarboxylic acid that is azetidine substituted by a carboxy group at position 2. It is a plant non-protein amino acid. KEIO_ID A219 Azetidine-2-carboxylic acid is a non proteinogenic amino acid homologue of proline. Found in common beets. Azetidine-2-carboxylic acid can be misincorporated into proteins in place of proline in many species, including humans. Toxic and teratogenic agent[1][2]. Azetidine-2-carboxylic acid is a non proteinogenic amino acid homologue of proline. Found in common beets. Azetidine-2-carboxylic acid can be misincorporated into proteins in place of proline in many species, including humans. Toxic and teratogenic agent[1][2]. L-Azetidine-2-carboxylic acid is an endogenous metabolite. L-Azetidine-2-carboxylic acid is an endogenous metabolite.

   

Fomepizole

4 Methylpyrazole monohydrochloride

C4H6N2 (82.0531)


Fomepizole is used as an antidote in confirmed or suspected methanol or ethylene glycol poisoning. Fomepizole is a competitive inhibitor of alcohol dehydrogenase, the enzyme that catalyzes the initial steps in the metabolism of ethylene glycol and methanol to their toxic metabolites. V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes D020011 - Protective Agents > D000931 - Antidotes D004791 - Enzyme Inhibitors C471 - Enzyme Inhibitor KEIO_ID M124

   

Neomycin

(2S,3S,4R,5R,6R)-5-amino-2-(aminomethyl)-6-{[(2R,3S,4R,5S)-5-{[(1R,2R,3S,5R,6S)-3,5-diamino-2-{[(2R,3R,4R,5S,6R)-3-amino-6-(aminomethyl)-4,5-dihydroxyoxan-2-yl]oxy}-6-hydroxycyclohexyl]oxy}-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl]oxy}oxane-3,4-diol

C23H46N6O13 (614.3123)


A component of neomycin that is produced by Streptomyces fradiae. On hydrolysis it yields neamine and neobiosamine B. (From Merck Index, 11th ed). Neomycin is a bactericidal aminoglycoside antibiotic that binds to the 30S ribosome of susceptible organisms. Binding interferes with mRNA binding and acceptor tRNA sites and results in the production of non-functional or toxic peptides. A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AA - Antibiotics B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions > B05CA - Antiinfectives D - Dermatologicals > D09 - Medicated dressings > D09A - Medicated dressings > D09AA - Medicated dressings with antiinfectives D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06A - Antibiotics for topical use S - Sensory organs > S03 - Ophthalmological and otological preparations > S03A - Antiinfectives > S03AA - Antiinfectives R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01G - Aminoglycoside antibacterials R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations > R02AB - Antibiotics S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AA - Antibiotics S - Sensory organs > S02 - Otologicals > S02A - Antiinfectives > S02AA - Antiinfectives C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic KEIO_ID N022

   

Tioconazole

1-{2-[(2-chlorothiophen-3-yl)methoxy]-2-(2,4-dichlorophenyl)ethyl}-1H-imidazole

C16H13Cl3N2OS (385.9814)


Tioconazole is an antifungal medication of the Imidazole class used to treat infections caused by a fungus or yeast. Tioconazole topical (skin) preparations are also available for ringworm, jock itch, athletes foot, and tinea versicolor or sun fungus. Tioconazole interacts with 14-alpha demethylase, a cytochrome P-450 enzyme that converts lanosterol to ergosterol, an essential component of the yeast membrane. In this way, tioconazole inhibits ergosterol synthesis, resulting in increased cellular permeability. G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AF - Imidazole derivatives D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AC - Imidazole and triazole derivatives D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D065088 - Steroid Synthesis Inhibitors D004791 - Enzyme Inhibitors > D065088 - Steroid Synthesis Inhibitors > D058888 - 14-alpha Demethylase Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent KEIO_ID T123; [MS2] KO009265 KEIO_ID T123

   

Masoprocol

4-[(2S,3R)-3-[(3,4-dihydroxyphenyl)methyl]-2-methylbutyl]benzene-1,2-diol

C18H22O4 (302.1518)


Masoprocol is the meso-form of nordihydroguaiaretic acid. An antioxidant found in the creosote bush, Larrea divaricata, it is a potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. It also inhibits (though to a lesser extent) formyltetrahydrofolate synthetase, carboxylesterase, and cyclooxygenase. It has a role as an antineoplastic agent, a lipoxygenase inhibitor, a hypoglycemic agent and a metabolite. Masoprocol is a natural product found in Larrea divaricata, Schisandra chinensis, and Larrea tridentata with data available. Masoprocol is a naturally occurring antioxidant dicatechol originally derived from the creosote bush Larrea divaricatta with antipromoter, anti-inflammatory, and antineoplastic activities. Masoprocol directly inhibits activation of two receptor tyrosine kinases (RTKs), the insulin-like growth factor receptor (IGF-1R) and the c-erbB2/HER2/neu receptor, resulting in decreased proliferation of susceptible tumor cell populations. This agent may induce apoptosis in susceptible tumor cell populations as a result of disruption of the actin cytoskeleton in association with the activation of stress activated protein kinases (SAPKs). In addition, masoprocol inhibits arachidonic acid 5-lipoxygenase (5LOX), resulting in diminished synthesis of inflammatory mediators such as prostaglandins and leukotrienes. It may prevent leukocyte infiltration into tissues and the release of reactive oxygen species. A potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. The compound also inhibits formyltetrahydrofolate synthetase, carboxylesterase, and cyclooxygenase to a lesser extent. It also serves as an antioxidant in fats and oils. A potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. The compound also inhibits formyltetrahydrofolate synthetase, carboxylesterase, and cyclooxygenase to a lesser extent. It also serves as an antioxidant in fats and oils. Masoprocol, also known as actinex or meso-ndga, belongs to the class of organic compounds known as dibenzylbutane lignans. These are lignan compounds containing a 2,3-dibenzylbutane moiety. Symptoms of overdose or allergic reaction include bluish coloration of skin, dizziness, or feeling faint, wheezing or trouble in breathing. Masoprocol also inhibits prostaglandins but the significance of this action is not yet known. Masoprocol is a drug which is used for the treatment of actinic keratoses (precancerous skin growths that can become malignant if left untreated). It also serves as an antioxidant in fats and oils. Masoprocol is a potentially toxic compound. It is not known exactly how masoprocol works. Although the exact mechanism of action is not known, studies have shown that masoprocol is a potent 5-lipoxygenase inhibitor and has antiproliferative activity against keratinocytes in tissue culture, but the relationship between this activity and its effectiveness in actinic keratoses is unknown. A potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. The meso-form of nordihydroguaiaretic acid. An antioxidant found in the creosote bush, Larrea divaricata, it is a potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. It also inhibits (though to a lesser extent) formyltetrahydrofolate synthetase, carboxylesterase, and cyclooxygenase. D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1322 - Lipooxygenase Inhibitor D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4658; ORIGINAL_PRECURSOR_SCAN_NO 4657 CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4580; ORIGINAL_PRECURSOR_SCAN_NO 4576 CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4551; ORIGINAL_PRECURSOR_SCAN_NO 4548 CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4643; ORIGINAL_PRECURSOR_SCAN_NO 4642 CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4651; ORIGINAL_PRECURSOR_SCAN_NO 4650 CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4591; ORIGINAL_PRECURSOR_SCAN_NO 4587 Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Nordihydroguaiaretic acid is a 5-lipoxygenase (5LOX) (IC50=8 μM) and tyrosine kinase inhibitor. Nordihydroguaiaretic acid is a 5-lipoxygenase (5LOX) (IC50=8 μM) and tyrosine kinase inhibitor. Nordihydroguaiaretic acid is a 5-lipoxygenase (5LOX) (IC50=8 μM) and tyrosine kinase inhibitor.

   

Himbacine

(+)-Himbacine

C22H35NO2 (345.2668)


A piperidine alkaloid that is decahydronaphtho[2,3-c]furan-1(3H)-one substituted by a methyl group at position 3 and a 2-[(2R,6S)-1,6-dimethylpiperidin-2-yl]ethenyl group at position 4. It has been isolated from the bark of Australian magnolias. D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics relative retention time with respect to 9-anthracene Carboxylic Acid is 0.814 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.809

   

9,10-Phenanthrenequinone

9,10-dihydrophenanthrene-9,10-dione

C14H8O2 (208.0524)


CONFIDENCE standard compound; INTERNAL_ID 19 D009676 - Noxae > D009153 - Mutagens

   

2-Hydroxychalcone

2-Propen-1-one,1-(2-hydroxyphenyl)-3-phenyl-, (2E)-

C15H12O2 (224.0837)


   

Benzoin

alpha -Hydroxy-alpha -phenylacetophenone

C14H12O2 (212.0837)


(±)-Benzoin is a flavouring ingredient.Benzoin is an organic compound with the formula PhCH(OH)C(O)Ph. It is a hydroxy ketone attached to two phenyl groups. It appears as off-white crystals, with a light camphor-like odor. Benzoin is synthesized from benzaldehyde in the benzoin condensation. It is chiral and it exists as a pair of enantiomers: (R)-benzoin and (S)-benzoin. (Wikipedia C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent Flavouring ingredient Benzoin is a kind of alsamic resin isolated from the styracaceae family. Benzoin can be used as a colour additive used for marking plants[1].

   

(-)-Wikstromol

dihydro-3-hydroxy-3,4-bis((4-hydroxy-3-methoxyphenyl)methyl)-2(3H)-furanone

C20H22O7 (374.1365)


(-)-Wikstromol is found in fruits. (-)-Wikstromol is obtained from Pinus palustris (pitch pine) and Carissa edulis (agam obtained from Pinus palustris (pitch pine) and Carissa edulis (agam). (-)-Wikstromol is found in fruits and sesame.

   

Chebulagic acid

chebulagic acid

C41H30O27 (954.0974)


D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059004 - Topoisomerase I Inhibitors D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors Chebulagic acid is a COX-LOX dual inhibitor isolated from the fruits of Terminalia chebula Retz, on angiogenesis. Chebulagic acid is a M2 serine to asparagine 31 mutation (S31N) inhibitor and influenza antiviral. Chebulagic acid also against SARS-CoV-2 viral replication with an EC50 of 9.76 μM. Chebulagic acid is a COX-LOX dual inhibitor isolated from the fruits of Terminalia chebula Retz, on angiogenesis. Chebulagic acid is a M2 serine to asparagine 31 mutation (S31N) inhibitor and influenza antiviral. Chebulagic acid also against SARS-CoV-2 viral replication with an EC50 of 9.76 μM. Chebulagic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=23094-71-5 (retrieved 2024-09-27) (CAS RN: 23094-71-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Geniposidic acid

7-(hydroxymethyl)-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1H,4aH,5H,7aH-cyclopenta[c]pyran-4-carboxylic acid

C16H22O10 (374.1213)


Geniposidic acid is found in beverages. Geniposidic acid is a constituent of Genipa americana (genipap) Constituent of Genipa americana (genipap). Geniposidic acid is found in beverages and fruits. Geniposidic acid has radiation protection and anti-cancer activity. Geniposidic acid has radiation protection and anti-cancer activity.

   

5,7-Dimethoxyflavone

5,7-dimethoxy-2-phenyl-4H-1-benzopyran-4-one

C17H14O4 (282.0892)


5,7-Dimethoxyflavone is found in tea. 5,7-Dimethoxyflavone is a constituent of Leptospermum scoparium (red tea). Constituent of Leptospermum scoparium (red tea). 5,7-Dimethylchrysin is found in tea. 5,7-Dimethoxyflavone is one of the major components of Kaempferia parviflora, has anti-obesity, anti-inflammatory, and antineoplastic effects. 5,7-Dimethoxyflavone inhibits cytochrome P450 (CYP) 3As. 5,7-Dimethoxyflavone is also a potent Breast Cancer Resistance Protein (BCRP) inhibitor[1][2]. 5,7-Dimethoxyflavone is one of the major components of Kaempferia parviflora, has anti-obesity, anti-inflammatory, and antineoplastic effects. 5,7-Dimethoxyflavone inhibits cytochrome P450 (CYP) 3As. 5,7-Dimethoxyflavone is also a potent Breast Cancer Resistance Protein (BCRP) inhibitor[1][2].

   

Tomatine

2-[(2-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{5,7,9,13-tetramethyl-5-oxaspiro[pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane-6,2-piperidine]oxy}oxan-3-yl]oxy}-5-hydroxy-6-(hydroxymethyl)-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C50H83NO21 (1033.5457)


Tomatine is a mildly toxic glycoalkaloid or glycospirosolane (steroidal alkaloids whose structure contains a spirosolane skeleton) found in the stems and leaves of tomato plants as well as in the fruit of unripened (green) tomatoes (up to 500 mg/kg). Red, ripe tomatoes have somewhat reduced amounts of tomatine. A toxic dose of tomatine for an adult human would appear to require the consumption of at least 500 g of tomato leaves in one sitting (“Toxic Plants of North America” (Iowa State University Press, 2001)). Tomatine is known to have fungicidal and antimicrobial properties and is likely produced by tomato plants as a defense against bacteria, fungi, viruses, and insects (PMID: 19514731). Some microbes produce an enzyme called tomatinase which can degrade tomatine, rendering it ineffective as an antimicrobial (PMID: 18835993).Tomatine has historically been used as a reagent in analytical chemistry for precipitating cholesterol from solution (PMID: 4362143). When lab animals ingest tomatine, essentially all of it passes through the animal unabsorbed. Tomatine apparently binds to cholesterol in the digestive tract, and the largely insoluble combination is excreted — ridding the body of both the alkaloid and cholesterol. Experiments with hamsters have shown that both tomatine-rich green tomatoes and purified tomatine can substantially lower the levels of undesirable LDL cholesterol while maintaining normal levels of HDL (PMID: 10942315). Experiments with high-tomatine green tomato extracts were recently shown to strongly inhibit the growth of a number of human cancer cell lines including breast (MCF-7), colon (HT-29), gastric (AGS), and hepatoma (liver) (HepG2), as well as normal human liver cells (PMID: 19514731). Other studies have found that purified tomatine is an outstanding immunoadjuvant capable of stimulating potent antigen-specific humoral and cellular immune responses that contribute to protection against malaria, Francisella tularensis and regression of experimental tumors (PMID: 15193398). Tomatine is a mildly toxic glycoalkaloid or glycospirosolane (steroidal alkaloids whose structure contains a spirosolane skeleton) found in the stems and leaves of tomato plants as well as in the fruit of unripened (green) tomatoes (up to 500 mg/kg). Red, ripe tomatoes have somewhat reduced amounts of tomatine. A toxic dose of tomatine for an adult human would appear to require the consumption of at least 500 g of tomato leaves in one sitting (“Toxic Plants of North America” (Iowa State University Press, 2001)). Tomatine is known to have fungicidal and antimicrobial properties and is likely produced by tomato plants as a defense against bacteria, fungi, viruses, and insects (PMID: 19514731). Some microbes produce an enzyme called tomatinase which can degrade tomatine, rendering it ineffective as an antimicrobial (PMID: 18835993).Tomatine has historically been used as a reagent in analytical chemistry for precipitating cholesterol from solution (PMID: 4362143). When lab animals ingest tomatine, essentially all of it passes through the animal unabsorbed. Tomatine apparently binds to cholesterol in the digestive tract, and the largely insoluble combination is excreted — ridding the body of both the alkaloid and cholesterol. Experiments with hamsters have shown that both tomatine-rich green tomatoes and purified tomatine can substantially lower the levels of undesirable LDL cholesterol while maintaining norma D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents Tomatine is a glycoalkaloid, found in the tomato plant (Lycopersicon esculentum Mill.). Tomatine elicits neurotoxicity in RIP1 kinase and caspase-independent manner. Tomatine promotes the upregulation of nuclear apoptosis inducing factor (AIF) in neuroblastoma cells. Tomatine also inhibits 20S proteasome activity[1]. Tomatine is a glycoalkaloid, found in the tomato plant (Lycopersicon esculentum Mill.). Tomatine elicits neurotoxicity in RIP1 kinase and caspase-independent manner. Tomatine promotes the upregulation of nuclear apoptosis inducing factor (AIF) in neuroblastoma cells. Tomatine also inhibits 20S proteasome activity[1].

   

Securinine

6,10-METHANOPYRIDO(1,2-A)AZEPINE-.GAMMA.9(6H),.ALPHA.-ACETIC ACID,1,2,3,4,10,10A-HEXAHYDRO-10-HYDROXY-, .GAMMA.-LACTONE

C13H15NO2 (217.1103)


Securinine is a member of indolizines. Securinine is a natural product found in Flueggea suffruticosa, Flueggea virosa, and other organisms with data available. See also: Phyllanthus amarus top (part of). relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.052 (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. Allosecurinine (Phyllochrysine) is a Securinega alkaloid isolated from Phyllanthus glaucus [1].

   

Phyllanthin

4-[(2S,3S)-3-[(3,4-dimethoxyphenyl)methyl]-4-methoxy-2-(methoxymethyl)butyl]-1,2-dimethoxy-benzene

C24H34O6 (418.2355)


Phyllanthin is a major bioactive lignan component of Phyllanthus amarus. Phyllanthin exhibits high antioxidative and hepatoprotective properties[1]. Phyllanthin is a major bioactive lignan component of Phyllanthus amarus. Phyllanthin exhibits high antioxidative and hepatoprotective properties[1].

   

1-Hydroxyisoquinoline

1,2-dihydroisoquinolin-1-one

C9H7NO (145.0528)


CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 70 COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Enterolactone

()-trans-dihydro-3R,4R-bis[(3-hydroxyphenyl)methyl]-2(3H)-furanone

C18H18O4 (298.1205)


Enterolactone (CAS: 78473-71-9) is a mammalian lignan that has a similar biphenolic structure to lignans from plants. Lignans are compounds with estrogenic properties and are probably the most important source of phytoestrogens in western diets. Mammalian lignans are formed from precursors that are contained mainly in vegetables, whole grain products, and berries, via the action of intestinal microflora. Enterolactone is produced in the colon by the action of bacteria on secoisolariciresinol, matairesinol, and its glycosides. Secoisolariciresinol is converted to enterodiol which is subsequently converted to enterolactone as it passes through the colon. Matairesinol is converted directly to enterolactone. Enterolactone has been shown to possess weakly estrogenic and antiestrogenic activities, and it has been suggested that the high production of this antiestrogenic mammalian lignans in the gut may serve to protect against breast cancer in women and prostate cancer in men; however epidemiological evidence to date is conflicting (PMID: 16168401, 12270221, 11216511, 12107024). Enterolactone is a biomarker for the consumption of soybeans and other soy products. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens

   

Dihydroresveratrol

5-[2-(4-hydroxyphenyl)ethyl]benzene-1,3-diol

C14H14O3 (230.0943)


A polyphenol metabolite detected in biological fluids [PhenolExplorer] Dihydroresveratrol, a potent phytoestrogen, is a hormone receptor modulator. Dihydroresveratrol exhibits proliferative effects in androgen-independent prostate and breast cancer cells at picomolar and nanomolar concentrations[1]. Dihydroresveratrol, a potent phytoestrogen, is a hormone receptor modulator. Dihydroresveratrol exhibits proliferative effects in androgen-independent prostate and breast cancer cells at picomolar and nanomolar concentrations[1].

   

Cytidine triphosphate

({[({[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)phosphonic acid

C9H16N3O14P3 (482.9845)


Cytidine triphosphate (CTP), also known as 5-CTP, is pyrimidine nucleoside triphosphate. Formally, CTP is an ester of cytidine and triphosphoric acid. It belongs to the class of organic compounds known as pentose phosphates. These are carbohydrate derivatives containing a pentose substituted by one or more phosphate groups. CTP, much like ATP, consists of a base (cytosine), a ribose sugar, and three phosphate groups. CTP is a high-energy molecule similar to ATP, but its role as an energy coupler is limited to a much smaller subset of metabolic reactions. CTP exists in all living species, ranging from bacteria to plants to humans and is used in the synthesis of RNA via RNA polymerase. Another enzyme known as cytidine triphosphate synthetase (CTPS) mediates the conversion of uridine triphosphate (UTP) into cytidine triphosphate (CTP) which is the rate-limiting step of de novo CTP biosynthesis. CTPS catalyzes a complex set of reactions that include the ATP-dependent transfer of the amide nitrogen from glutamine (i.e., glutaminase reaction) to the C-4 position of UTP to generate CTP. GTP stimulates the glutaminase reaction by accelerating the formation of a covalent glutaminyl enzyme intermediate. CTPS activity regulates the intracellular rates of RNA synthesis, DNA synthesis, and phospholipid synthesis. CTPS is an established target for a number of antiviral, antineoplastic, and antiparasitic drugs. CTP also acts as an inhibitor of the enzyme known as aspartate carbamoyltransferase, which is used in pyrimidine biosynthesis. CTP also reacts with nitrogen-containing alcohols to form coenzymes that participate in the formation of phospholipids. In particular, CTP is the direct precursor of the activated, phospholipid pathway intermediates CDP-diacylglycerol, CDP-choline, and CDP-ethanolamine ((PMID: 18439916). CDP-diacylglycerol is the source of the phosphatidyl moiety for phosphatidylserine, phosphatidylethanolamine, and phosphatidylcholine (synthesized by way of the CDP-diacylglycerol pathway) as well as phosphatidylglycerol, cardiolipin, and phosphatidylinositol (PMID: 18439916). Cytidine triphosphate, also known as 5-ctp or cytidine 5-triphosphoric acid, is a member of the class of compounds known as pentose phosphates. Pentose phosphates are carbohydrate derivatives containing a pentose substituted by one or more phosphate groups. Cytidine triphosphate is soluble (in water) and an extremely strong acidic compound (based on its pKa). Cytidine triphosphate can be found in a number of food items such as lowbush blueberry, black radish, american pokeweed, and cherry tomato, which makes cytidine triphosphate a potential biomarker for the consumption of these food products. Cytidine triphosphate can be found primarily in cellular cytoplasm, as well as throughout all human tissues. Cytidine triphosphate exists in all living species, ranging from bacteria to humans. In humans, cytidine triphosphate is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-14:0/i-17:0/i-16:0/i-21:0), cardiolipin biosynthesis cl(a-13:0/a-21:0/i-22:0/i-17:0), phosphatidylethanolamine biosynthesis PE(18:2(9Z,12Z)/24:0), and cardiolipin biosynthesis cl(i-13:0/a-21:0/a-15:0/i-16:0). Cytidine triphosphate is also involved in several metabolic disorders, some of which include sialuria or french type sialuria, tay-sachs disease, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and g(m2)-gangliosidosis: variant B, tay-sachs disease. Cytidine triphosphate is a high-energy molecule similar to ATP, but its role as an energy coupler is limited to a much smaller subset of metabolic reactions. Cytidine triphosphate is a coenzyme in metabolic reactions like the synthesis of glycerophospholipids and glycosylation of proteins . Cytidine 5′-triphosphate (Cytidine triphosphate; 5'-CTP) is a nucleoside triphosphate and serves as a building block for nucleotides and nucleic acids, lipid biosynthesis. Cytidine triphosphate synthase can catalyze the formation of cytidine 5′-triphosphate from uridine 5′-triphosphate (UTP). Cytidine 5′-triphosphate is an essential biomolecule?in the de novo?pyrimidine biosynthetic pathway in?T. gondii[1].

   

(-)-trans-Carveol

(1S-trans)-2-Methyl-5-(1-methylvinyl)cyclohex-2-en-1-ol

C10H16O (152.1201)


Carveol is a natural terpenoid alcohol that is a constituent of spearmint oil. It has an odor and flavor that resemble those of spearmint and caraway. Consequently, it is used as a fragrance in cosmetics and as a flavor additive in the food industry. Constituent of Valencia orange essence oil. Flavouring ingredient Carveol is an endogenous metabolite. Carveol is an endogenous metabolite.

   

Methyl isobutyl ketone

2-Methylpropyl methyl ketone

C6H12O (100.0888)


Methyl isobutyl ketone (MIBK) is an organic solvent. MIBK is among the top ten most popular organic solvents used in industry. MIBK is occasionally found as a volatile component of urine. MIBK in urine is considered as a biological marker of occupational exposure to this solvent. Olfactory perception is significant but adaptation may occur. The typical toxicity effects of MIBK in humans exposed at 50 to 100 ppm are mucous membrane irritation and weak effects on the central nervous system (CNS) such as headache. Visual dysfunction has been reported in workers exposed to a mixture of organic solvents containing MIBK. Memory impairment was detected in clinical observation on a 44-year-old man who had been exposed to MIBK at 100 ppm for more than 10 years. Regarding to the route of absorption, skin penetration of MIBK is substantial. (PMID: 12592578, 17485256, 16464817, 5556886). Present in orange, lemon, concord grape, vinegar, cheeses, cooked beef, roasted peanut and other foodstuffs. Flavouring ingredient

   

Butylbenzene

1-Butylbenzene

C10H14 (134.1095)


Butylbenzene belongs to the family of Substituted Benzenes. These are aromatic compounds containing a benzene substituted at one or more positions.

   

Lactucin

4-hydroxy-9-(hydroxymethyl)-6-methyl-3-methylidene-2H,3H,3aH,4H,5H,7H,9aH,9bH-azuleno[4,5-b]furan-2,7-dione

C15H16O5 (276.0998)


Lactucin is found in chicory. Lactucin is a constituent of Cichorium intybus (chicory) Lactucin is a bitter substance that forms a white crystalline solid and belongs to the group of sesquiterpene lactones. It is found in some varieties of lettuce and is an ingredient of lactucarium. It has been shown to have analgesic and sedative properties Constituent of Cichorium intybus (chicory)

   

Tosyllysine Chloromethyl Ketone

N-(7-amino-1-chloro-2-oxoheptan-3-yl)-4-methylbenzenesulfonamide

C14H21ClN2O3S (332.0961)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015842 - Serine Proteinase Inhibitors D009676 - Noxae > D000477 - Alkylating Agents > D000590 - Amino Acid Chloromethyl Ketones D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors

   

Dihydroxyfumaric acid

2-Butenedioic acid,2,3-dihydroxy-, (2E)-

C4H4O6 (148.0008)


Dihydroxyfumaric acid is a known generator of superoxide anions and by hydroxyl free radicals. Dihydroxyfumarate exposure can cause insulin inhibitory effects. It can spontaneously convert to hydroxypyruvate or to oxaloglycolate. [HMDB] Dihydroxyfumaric acid is a known generator of superoxide anions and by hydroxyl free radicals. Dihydroxyfumarate exposure can cause insulin inhibitory effects. It can spontaneously convert to hydroxypyruvate or to oxaloglycolate.

   

UDP-N-acetylmuraminate

(2r)-2-{[(2r,3r,4r,5s,6r)-3-(Acetylamino)-2-{[(S)-{[(R)-{[(2r,3s,4r,5r)-5-(2,4-Dioxo-3,4-Dihydropyrimidin-1(2h)-Yl)-3,4-Dihydroxytetrahydrofuran-2-Yl]methoxy}(Hydroxy)phosphoryl]oxy}(Hydroxy)phosphoryl]oxy}-5-Hydroxy-6-(Hydroxymethyl)tetrahydro-2h-Pyran-4-Yl]oxy}propanoic Acid

C20H31N3O19P2 (679.1027)


UDP-N-acetylmuraminate is a nucleoside diphosphate sugar which is formed from UDP-N-acetylglucosamine and phosphoenolpyruvate. It serves as the building block upon which peptidoglycan is formed. UDP-N-acetylmuraminate, also known as UDP-MurNAc, is a key molecule in the biosynthesis of bacterial cell walls. It is a nucleotide sugar, which means it consists of a nucleotide (uridine diphosphate, UDP) linked to a sugar molecule (N-acetylmuramic acid, MurNAc). This compound plays a critical role in the formation of peptidoglycan, the essential structural component of the bacterial cell wall. Here are some key points about UDP-N-acetylmuraminate: Biosynthesis: UDP-MurNAc is synthesized from UDP-N-acetylglucosamine (UDP-GlcNAc) through a series of enzymatic reactions. The addition of a lactyl group to UDP-GlcNAc forms UDP-MurNAc. Peptidoglycan Precursor: It serves as a precursor for the synthesis of peptidoglycan, which is a polymer made up of alternating units of N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc). The peptide chains attached to MurNAc units cross-link to provide structural strength to the cell wall. Enzymatic Processing: UDP-MurNAc is further processed by enzymes such as Mur synthases, which add amino acids to form the pentapeptide chain attached to the MurNAc residue. This pentapeptide is crucial for the cross-linking of peptidoglycan layers. Target for Antibiotics: Since peptidoglycan synthesis is unique to bacteria, enzymes involved in the biosynthesis and processing of UDP-MurNAc are targets for antibiotics. Inhibiting these enzymes can prevent proper cell wall formation, leading to bacterial cell death. Importance in Bacterial Growth: The availability of UDP-MurNAc is essential for bacterial growth and cell division, as it is a direct precursor to the building blocks of the cell wall. Research and Applications: Understanding the biosynthesis and function of UDP-MurNAc is important for developing new antibiotics, as well as for basic research in bacterial cell biology. UDP-N-acetylmuraminate is a vital molecule in the construction of the bacterial cell wall, and its biosynthesis and function are of significant interest in both basic research and the development of antibacterial therapies. A nucleoside diphosphate sugar which is formed from UDP-N-acetylglucosamine and phosphoenolpyruvate. It serves as the building block upon which peptidoglycan is formed [HMDB]

   

7-Dehydrocholesterol

(1S,2R,5S,11R,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-7,9-dien-5-ol

C27H44O (384.3392)


7-Dehydrocholesterol (7-DHC), also known as provitamin D3 or 5,7-cholestadien-3-b-ol, belongs to the class of organic compounds known as cholesterols and derivatives. Cholesterols and derivatives are compounds containing a 3-hydroxylated cholestane core. Thus, 7-dehydrocholesterol is also classified as a sterol. 7-Dehydrocholesterol is known as a zoosterol, meaning that it is a sterol isolated from animals (to distinguish those sterols isolated from plants which are called phytosterols). 7-DHC functions in the serum as a cholesterol precursor and is photochemically converted to vitamin D3 in the skin. Therefore 7-DHC functions as provitamin-D3. The presence of 7-DHC in human skin enables humans and other mammals to manufacture vitamin D3 (cholecalciferol) from ultraviolet rays in the sun light, via an intermediate isomer pre-vitamin D3. 7-DHC absorbs UV light most effectively at wavelengths between 290 and 320 nm and, thus, the production of vitamin D3 will occur primarily at those wavelengths (PMID: 9625080). The two most important factors that govern the generation of pre-vitamin D3 are the quantity (intensity) and quality (appropriate wavelength) of the UVB irradiation reaching the 7-dehydrocholesterol deep in the stratum basale and stratum spinosum (PMID: 9625080). 7-DHC is also found in the milk of several mammalian species, including cows (PMID: 10999630; PMID: 225459). It was discovered by Nobel-laureate organic chemist Adolf Windaus. 7-DHC can be produced by animals and plants via different pathways (PMID: 23717318). It is not produced by fungi in significant amounts. 7-DHC is made by some algae and can also be produced by some bacteria. 7-Dehydrocholesterol is a zoosterol (a sterol produced by animals rather than plants). It is a provitamin-D. The presence of this compound in skin enables humans to manufacture vitamin D3 from ultra-violet rays in the sun light, via an intermediate isomer provitamin D3. It is also found in breast milk. [HMDB] D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins 7-Dehydrocholesterol is biosynthetic precursor of cholesterol and vitamin D3. 7-Dehydrocholesterol is biosynthetic precursor of cholesterol and vitamin D3.

   

myo-Inositol 1,3,4,5,6-pentakisphosphate

{[(1R,2S,3r,4R,5S,6r)-3-hydroxy-2,4,5,6-tetrakis(phosphonooxy)cyclohexyl]oxy}phosphonic acid

C6H17O21P5 (579.895)


myo-Inositol 1,3,4,5,6-pentakisphosphate, also known as Ins(1,3,4,5,6)P5 or inositol pentaphosphate, is an inositol polyphosphate of emerging significance in cellular signalling. Both Ins(1,3,4,5,6)P5 and its C-2 epimer scyllo-inositol pentakisphosphate (scyllo-InsP(5)) were synthesized from the same myo-inositol-based precursor (PMID: 16755629). InsP6, Ins(1,3,4,5,6)P5, and their close metabolic relatives are amongst the more abundant intracellular inositol polyphosphates. They are involved in chromatin organization, DNA maintenance, gene transcription, nuclear mRNA transport, membrane trafficking, and control of cell proliferation (PMID: 14992690). myo-Inositol 1,3,4,5,6-pentakisphosphate (Ins(1,3,4,5,6)P(5)), an inositol polyphosphate of emerging significance in cellular signalling, and its C-2 epimer scyllo-inositol pentakisphosphate (scyllo-InsP(5)) were synthesised from the same myo-inositol-based precursor. (PMID: 16755629)

   

neamine

5-amino-2-(aminomethyl)-6-(4,6-diamino-2,3-dihydroxycyclohexyl)oxyoxane-3,4-diol

C12H26N4O6 (322.1852)


C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic

   

Hydrogen selenide

Hydrogen selenide, 75Se-labeled

H2Se (81.9322)


Hydrogen selenide is a metabolite of selenium which could have potential antiangiogenic effect in the chemoprevention of cancer. The hydrogen selenide is a key intermediate in the selenium methylation metabolism of inorganic and organic selenium compounds. Accumulation of the hydrogen selenide resulting from inhibition of the selenium methylation metabolism, detoxification metabolic pathway of selenium, is found in animals following repeated administration of a toxic dose of selenocystine. The excess of the hydrogen selenide produced by inhibition of the selenium methylation metabolism contributes to the hepatotoxicity caused by selenocystine. (PMID: 9414580, 11799926) [HMDB] Hydrogen selenide is a metabolite of selenium which could have potential antiangiogenic effect in the chemoprevention of cancer. The hydrogen selenide is a key intermediate in the selenium methylation metabolism of inorganic and organic selenium compounds. Accumulation of the hydrogen selenide resulting from inhibition of the selenium methylation metabolism, detoxification metabolic pathway of selenium, is found in animals following repeated administration of a toxic dose of selenocystine. The excess of the hydrogen selenide produced by inhibition of the selenium methylation metabolism contributes to the hepatotoxicity caused by selenocystine. (PMID: 9414580, 11799926).

   

TOLRESTAT

TOLRESTAT

C16H14F3NO3S (357.0646)


A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10X - Other drugs used in diabetes > A10XA - Aldose reductase inhibitors C471 - Enzyme Inhibitor > C72880 - Aldose Reductase Inhibitor D004791 - Enzyme Inhibitors

   

1,4-Dithiane

Tetrahydro-1,4-dithiin

C4H8S2 (120.0067)


1,4-Dithiane, also known as p-dithiane or fema 3831, belongs to the class of organic compounds known as dithianes. Dithianes are compounds containing a dithiane moiety, which is composed of a cyclohexane core structure wherein two methylene units are replaced by sulfur centres. A dithiane that is cyclohexane in which the -CH2- units at positions 1 and 2 have been replaced by sulfur atoms. 1,4-Dithiane is possibly neutral. 1,4-Dithiane is a fishy, garlic, and onion tasting compound. 1,4-Dithiane has been detected, but not quantified, in garden tomato. This could make 1,4-dithiane a potential biomarker for the consumption of these foods. Food additive listed in the EAFUS food additive database (Jan. 2001). Flavouring used in seasonings. 1,4-Dithiane is found in garden tomato.

   

4-Chlorocatechol

4-Chloro-benzene-1,2-diol

C6H5ClO2 (143.9978)


4-chlorocatechol belongs to the family of Catechols. These are compounds containing a 1,2-benzenediol moeity.

   

Perillyl aldehyde

4-(1-Methylethenyl)-1-cyclohexene1-carboxyaldehyde

C10H14O (150.1045)


(s)-perillaldehyde, also known as P-mentha-1,8-dien-7-al, is a member of the class of compounds known as menthane monoterpenoids. Menthane monoterpenoids are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Thus, (s)-perillaldehyde is considered to be an isoprenoid lipid molecule (s)-perillaldehyde is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (s)-perillaldehyde is a cherry, fat, and fatty tasting compound found in herbs and spices, which makes (s)-perillaldehyde a potential biomarker for the consumption of this food product (s)-perillaldehyde can be found primarily in saliva. Perillaldehyde, or perilla aldehyde, is a natural organic compound found most abundantly in the perennial herb perilla, but also in a wide variety of other plants and essential oils. It is a monoterpenoid containing an aldehyde functional group.

   

Dimercaprol

2,3-Dimercaptopropanol, cadmium

C3H8OS2 (124.0017)


Dimercaprol is a traditional chelating agent developed by British biochemists at Oxford University during World War II. It was developed as an experimental antidote against the arsenic-based poison gas Lewisite. It has been used clinically since 1949 in arsenic, cadmium and mercury poisoning. In addition, it has in the past been used for the treatment of Wilsons disease, a genetic disorder in which the body tends to retain copper. Dimercaprol is a potentially toxic drug, and its use may be accompanied by multiple side effects. V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes D064449 - Sequestering Agents > D002614 - Chelating Agents

   

DG(10:0/10:0/0:0)

(2S)-1-(decanoyloxy)-3-hydroxypropan-2-yl decanoate

C23H44O5 (400.3189)


DG(10:0/10:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(10:0/10:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate

[(2R,3S)-2,3-dihydroxy-3-(1H-indol-3-yl)propoxy]phosphonic acid

C11H14NO6P (287.0559)


Indole-3-glycerol phosphate, also known as c1-(3-indolyl)-glycerol 3-phosphate, is a member of the class of compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. Indole-3-glycerol phosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Indole-3-glycerol phosphate can be found in a number of food items such as german camomile, lambsquarters, other soy product, and hazelnut, which makes indole-3-glycerol phosphate a potential biomarker for the consumption of these food products. Indole-3-glycerol phosphate may be a unique E.coli metabolite. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents

   

N-Acetyl-9-O-acetylneuraminic acid

(2S,4S,5R,6R)-6-[(1R,2R)-3-(acetyloxy)-1,2-dihydroxypropyl]-5-acetamido-2,4-dihydroxyoxane-2-carboxylic acid

C13H21NO10 (351.1165)


N-Acetyl-9-O-acetylneuraminic acid (alternatively 9-O-acetyl-N-acetylneuraminic acid) is an O acetylated sialic acid identified in human colon by using high-pressure liquid chromatography and gas-liquid chromatography/mass spectrometry (PMID 3623000). It also has been suggested that 9-O-acetyl-N-acetylneuraminic acid is an essential component of the cell surface receptor of influenza C virus (PMID 3700379). 9-O-acetyl-N-acetylneuraminic acid is an O acetylated sialic acid identified in human colon by using high-pressure liquid chromatography and gas-liquid chromatography/mass spectrometry. (PMID 3623000) It also has been suggested that 9-O-acetyl-N-acetylneuraminic acid is an essential component of the cell surface receptor of influenza C virus. (PMID 3700379) [HMDB]

   

3,4-Dihydroxyphenylacetaldehyde

Dopal (3,4-Dihydroxyphenyl)acetaldehyde)

C8H8O3 (152.0473)


3,4-Dihydroxyphenylacetaldehyde (DOPAL) is a metabolite of the monoamine oxidase-catalyzed oxidative deamination of dopamine. Aldehydes are highly reactive molecules formed during the biotransformation of numerous endogenous and exogenous compounds, including biogenic amines. DOPAL generates a free radical and activates mitochondrial permeability transition, a mechanism implicated in neuron death. There is an increasing body of evidence suggesting that these compounds are neurotoxic, and it has been recently hypothesized that neurodegenerative disorders may be associated with increased levels of this biogenic aldehyde. It is possible to speculate that reduced detoxification of 3,4- dihydroxymandelaldehyde from impaired or deficient aldehyde dehydrogenase function may be a contributing factor in the suggested neurotoxicity of these compounds. Aldehyde dehydrogenases are a group of NAD(P)+ -dependent enzymes that catalyze the oxidation of aldehydes, such as those derived from catecholamines, to their corresponding carboxylic acids. To date, 19 aldehyde dehydrogenase genes have been identified in the human genome. Mutations in these genes and subsequent inborn errors in aldehyde metabolism are the molecular basis of several diseases. Several pharmaceutical agents and environmental toxins (i.e.: 4-hydroxy-2-nonenal) are also known to disrupt or inhibit aldehyde dehydrogenase function. (PMID: 17379813, 14697885, 11164826, 16956664 [HMDB]. 3,4-Dihydroxyphenylacetaldehyde is found in many foods, some of which are asian pear, pak choy, papaya, and abiyuch. 3,4-Dihydroxyphenylacetaldehyde (DOPAL) is a metabolite of the monoamine oxidase-catalyzed oxidative deamination of dopamine. Aldehydes are highly reactive molecules formed during the biotransformation of numerous endogenous and exogenous compounds, including biogenic amines. DOPAL generates a free radical and activates mitochondrial permeability transition, a mechanism implicated in neuron death. There is an increasing body of evidence suggesting that these compounds are neurotoxic, and it has been recently hypothesized that neurodegenerative disorders may be associated with increased levels of this biogenic aldehyde. It is possible to speculate that reduced detoxification of 3,4- dihydroxymandelaldehyde from impaired or deficient aldehyde dehydrogenase function may be a contributing factor in the suggested neurotoxicity of these compounds. Aldehyde dehydrogenases are a group of NAD(P)+ -dependent enzymes that catalyze the oxidation of aldehydes, such as those derived from catecholamines, to their corresponding carboxylic acids. To date, 19 aldehyde dehydrogenase genes have been identified in the human genome. Mutations in these genes and subsequent inborn errors in aldehyde metabolism are the molecular basis of several diseases. Several pharmaceutical agents and environmental toxins (i.e.: 4-hydroxy-2-nonenal) are also known to disrupt or inhibit aldehyde dehydrogenase function. (PMID: 17379813, 14697885, 11164826, 16956664. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Androst-5-ene-3beta,17beta-diol

(1S,2R,5S,10R,11S,14S,15S)-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-ene-5,14-diol

C19H30O2 (290.2246)


5-Androstenediol is a direct metabolite of the most abundant steroid produced by the human adrenal cortex, dehydroepiandrosterone (DHEA). 5-Androstenediol is less androgenic than 4-androstenediol, and stimulates the immune system. When administered to rats in vivo, 5-androstenediol has approximately 1/70 the androgenicity of DHEA, 1/185 the androgenicity of androstenedione, and 1/475 the androgenicity of testosterone (Wikipedia). Because it induces production of white blood cells and platelets, 5-androstenediol is being developed as a radiation countermeasure as Neumune (HE2100). An intermediate in testosterone biosynthesis, found in the testis or the adrenal glands. 5-Androstenediol, derived from dehydroepiandrosterone by the reduction of the 17-keto group (17-hydroxysteroid dehydrogenases), is converted to testosterone by the oxidation of the 3-beta hydroxyl group to a 3-keto group (3-fydroxysteroid dehydrogenase). Androstenediol is a term used to refer to two different steroids with molecular weights of 290.44: 4-androstenediol (4-androstene-3beta,17beta-diol) and 5-androstenediol (5-androstene-3beta,17beta-diol). 4-Androstenediol is closer to testosterone structurally, and has androgenic effects. 5-Androstenediol is a direct metabolite of the most abundant steroid produced by the human adrenal cortex, dehydroepiandrosterone (DHEA). 5-Androstenediol is less androgenic than 4-androstenediol, and stimulates the immune system. When administered to rats in vivo, 5-androstenediol has approximately 1/70 the androgenicity of DHEA, 1/185 the androgenicity of androstenedione, and 1/475 the androgenicity of testosterone (Coffey, 1988). Because it induces production of white blood cells and platelets, 5-androstenediol is being developed as a radiation countermeasure as Neumune(HE2100). D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid

   

2-(a-Hydroxyethyl)thiamine diphosphate

3-[(4-amino-2-methylpyrimidin-5-yl)methyl]-5-(2-{[hydroxy(phosphonooxy)phosphoryl]oxy}ethyl)-2-(1-hydroxyethyl)-4-methyl-1,3-thiazol-3-ium

C14H23N4O8P2S+ (469.0712)


2-Hydroxyethyl-ThPP is involved in Glycolysis, Gluconeogenesis, Alanine and aspartate matabolism, Valine, Leucine and isoleucine biosynthesis, Pyruvate metabolism, and Butanoate metabolism [Kegg: c05125] [HMDB] 2-Hydroxyethyl-ThPP is involved in Glycolysis, Gluconeogenesis, Alanine and aspartate matabolism, Valine, Leucine and isoleucine biosynthesis, Pyruvate metabolism, and Butanoate metabolism [Kegg: c05125].

   

stylopine

6,7,12b,13e-Tetrahydro-4H-bis[1,3]benzodioxolo[5,6-a:4,5- g]quinolizine

C19H17NO4 (323.1158)


   

Tautomycin

Tautomycin from Streptomyces spiroverticillatus

C41H66O13 (766.4503)


D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D004791 - Enzyme Inhibitors

   

3b,5a,6b-Cholestanetriol

(1S,2R,5S,7R,8R,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecane-5,7,8-triol

C27H48O3 (420.3603)


3b,5a,6b-Cholestanetriol is a product of cholesterol oxidation found in human plasma. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites

   

20a,22b-Dihydroxycholesterol

(2R,3R)-2-[(1S,2R,10S,11S,14S,15S)-5-hydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-14-yl]-6-methylheptane-2,3-diol

C27H46O3 (418.3447)


20alpha,22beta-Dihydroxycholesterol is an intermediate in C21-Steroid hormone metabolism. 20alpha,22beta-Dihydroxycholesterol is the 8th to last step in the synthesis of 3alpha,11beta,21-Trihydroxy-20-oxo-5beta-pregnan-18-al and is converted from 20alpha-Hydroxycholesterol via the enzyme cytochrome P450 (EC 1.14.15.6). It is then converted to Pregnenolone via the enzyme cytochrome P450 (EC 1.14.15.6). [HMDB] 20alpha,22beta-Dihydroxycholesterol is an intermediate in C21-Steroid hormone metabolism. 20alpha,22beta-Dihydroxycholesterol is the 8th to last step in the synthesis of 3alpha,11beta,21-Trihydroxy-20-oxo-5beta-pregnan-18-al and is converted from 20alpha-Hydroxycholesterol via the enzyme cytochrome P450 (EC 1.14.15.6). It is then converted to Pregnenolone via the enzyme cytochrome P450 (EC 1.14.15.6).

   

Biotinyl-5'-AMP

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({5-[(4S)-2-oxo-hexahydro-1H-thieno[3,4-d]imidazolidin-4-yl]pentanoyl}oxy)phosphinic acid

C20H28N7O9PS (573.1407)


5-biotinyl-AMP (B-AMP) is the active form of biotin in mammals. In human cells, biotin is essential to maintain metabolic homeostasis and as regulator of gene expression. The vitamin biotin plays an essential role in gluconeogenesis, fatty acid synthesis, and carbohydrate metabolism because of its role as cofactor of five carboxylases; pyruvate carboxylase (PC), propionyl-CoA carboxylase (PCC), methylcrotonyl-CoA carboxylase, and two forms of acetyl-CoA carboxylase (ACC-1 and ACC-2). Carboxylase biotinylation is catalyzed by the enzyme holocarboxylase synthetase (HCS) through a reaction that involves the transformation of biotin into B-AMP and its subsequent attachment to a specific lysine residue in the carboxylases. B-AMP is also required to activate a signal transduction cascade that includes a soluble guanylate cyclase (sGC) and cGMP-dependent protein kinase (PKG). The regulatory role of biotin in the biotin cycle seems to be limited to the expression of proteins involved in the transport and utilization of exogenous vitamin while having no effect on biotinidase mRNA levels, enzyme responsible for biotin recycling during carboxylase turnover. Multiple carboxylase deficiency (MCD) is a life-threatening disease characterized by the lack of carboxylase activities because of deficiency of HCS activity. (PMID: 15905112, 11959985). 5-biotinyl-AMP (B-AMP) is the active form of biotin in mammals. In human cells, biotin is essential to maintain metabolic homeostasis and as regulator of gene expression. The vitamin biotin plays an essential role in gluconeogenesis, fatty acid synthesis, and carbohydrate metabolism because of its role as cofactor of five carboxylases; pyruvate carboxylase (PC), propionyl-CoA carboxylase (PCC), methylcrotonyl-CoA carboxylase, and two forms of acetyl-CoA carboxylase (ACC-1 and ACC-2).

   

Delta-12-Prostaglandin J2

(5Z)-7-[(1S,5E)-5-[(3S)-3-hydroxyoctylidene]-4-oxocyclopent-2-en-1-yl]hept-5-enoic acid

C20H30O4 (334.2144)


Delta-12-Prostaglandin J2 (d12-PGJ2) is the ultimate metabolite of Prostaglandin D2 (PGD2). PGD2 is an unstable molecule and undergoes dehydration to form PGJ2 in aqueous solution, and is then converted to d12-PGJ2, in the presence of serum albumin or plasma. d12-PGJ2 forms a conjugate with the thiol of glutathione (GSH) and GSH suppresses the d12-PGJ2-induced HSP synthesis and subsequent inhibition of cell growth (HSPs are a set of proteins synthesized in response to heat shock or to other environmental stresses). d12-PGJ2 has been shown to stimulate alkaline phosphatase activity and calcification of human osteoblastic cells, the potency of the PGs being comparable to that of 1-a,25-dihydroxy vitamin D. d12-PGJ2 enhances the type-1 collagen synthesis in human osteoblasts during calcification. Thus, d12-PGJ2 modulates osteogenesis through induction of the syntheses of multiple proteins related to mineralization. Considering that PGD2 is a major arachidonate metabolite in bone marrow, d12-PGJ2, may be physiologically involved in the modulation of osteogenesis. d12-PGJ2 induces heme oxygenase, HO-l. Heme oxygenase is a key enzyme in heme catabolism, oxidatively clearing heme to yield biliverdin, iron and carbon monoxide. The biological function of this enzyme is the conversion of potentially toxic heme to bile and the recovery of the iron. Furthermore, carbon monoxide produced on the enzymatic degradation of heme has been suggested to function as a neural messenger. Two isozymes of heme oxygenase, HO-l and HO-2, have been identified. HO-2 is constitutively expressed, while HO-l is drastically induced in response to a variety of stresses, including heavy metals, heat shock and UV irradiation. (PMID: 8777585)Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. delta-12-Prostaglandin J2 (d12-PGJ2) is the ultimate metabolite of Prostaglandin D2 (PGD2). PGD2 is an unstable molecule and undergoes dehydration to form PGJ2 in aqueous solution, and is then converted to d12-PGJ2, in the presence of serum albumin or plasma. d12-PGJ2 forms a conjugate with the thiol of glutathione (GSH) and GSH suppresses the d12-PGJ2-induced HSP synthesis and subsequent inhibition of cell growth (HSPs are a set of proteins synthesized in response to heat shock or to other environmental stresses). d12-PGJ2 has been shown to stimulate alkaline phosphatase activity and calcification of human osteoblastic cells, the potency of the PGs being comparable to that of 1-a,25-dihydroxy vitamin D. d12-PGJ2 enhances the type-1 collagen synthesis in human osteoblasts during calcification. Thus, d12-PGJ2 modulates osteogenesis through induction of the syntheses of multiple proteins related to mineralization. Considering that PGD2 is a major arachidonate metabolite in bone marrow, d12-PGJ2, may be physiologically involved in the modulation of osteogenesis. d12-PGJ2 induces heme oxygenase, HO-l. Heme oxygenase is a key enzyme in heme catabolism, oxidatively clearing heme to yield biliverdin, iron and carbon monoxide. The biological function of this enzyme is the conversion of potentially toxic heme to bile and the recovery of the iron. Furthermore, carbon monoxide produced on the enzymatic degradation of heme has been suggested to function as a neural messenger. Two isozymes of heme oxygenase, HO-l and HO-2, have been identified. HO-2 is constitutively expressed, while HO-l is drastically induced in response to a variety of stresses, including heavy metals, heat shock and UV irradiation. (PMID: 8777585) D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents

   

11-Dehydro-thromboxane B2

(5E)-7-[(2R,3S,4S)-4-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-6-oxooxan-3-yl]hept-5-enoic acid

C20H32O6 (368.2199)


11-Dehydro-thromboxane B2, a stable thromboxane metabolite, is a full agonist of chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2) in human eosinophils and basophils. Given its production in the allergic lung, antagonism of the 11-dehydro- thromboxane B2/CRTH2axis may be of therapeutic relevance. (PMID 14668348)Thromboxanes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 11-Dehydro-thromboxane B2, a stable thromboxane metabolite, is a full agonist of chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2) in human eosinophils and basophils. Given its production in the allergic lung, antagonism of the 11-dehydro- thromboxane B2/CRTH2axis may be of therapeutic relevance. (PMID 14668348)

   

15(S)-HPETE

15-Hydroperoxy-5,8,11,13-eicosatetraenoic acid, (S)-(e,Z,Z,Z)-isomer

C20H32O4 (336.23)


15(S)-hydroperoxyeicosatetraenoic acid (15(S)-HPETE) is the corresponding hydroperoxide of 15(S)-HETE and undergoes homolytic decomposition to the DNA-reactive bifunctional electrophile 4-oxo-2(E)-nonenal, a precursor of heptanone-etheno-2-deoxyguanosine. Reactive oxygen species convert the omega-6 polyunsaturated fatty acid arachidonic acid into (15-HPETE); vitamin C mediates 15(S)-HPETE decomposition. 15(S)-HPETE initiates apoptosis in vascular smooth muscle cells. 15(S)-HPETE is a lipoxygenase metabolite that affects the expression of cell adhesion molecules (CAMs) involved in the adhesion of leukocytes and/or the accumulation of leukocytes in the vascular endothelium, these being the initial events in endothelial cell injury. 15(S)-HPETE induces a loss of cardiomyocytes membrane integrity. 15-(S)HPETE is a hydroperoxide that enhances the activity of the enzymes lipoxygenase [EC 1.13.11.12] and Na+, K+-ATPase [EC 3.6.3.9] of brain microvessels. Lipoxygenase(s) and Na+-K+-ATPase of brain microvessels may play a significant role in the occurrence of ischemic brain edema. (PMID: 15964853, 15723435, 8655602, 8595608, 2662983). D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

   

Lacto-N-biose I

N-[(2S,3R,4R,5S,6R)-2,5-Dihydroxy-6-(hydroxymethyl)-4-{[(2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]ethanimidate

C14H25NO11 (383.1428)


Lacto-N-biose I is a common oligosaccharide found in human milk and in numerous other tissues. Oligosaccharides are important components of glycoproteins and glycolipids and also occur as free oligosaccharides in several body fluids.(PMID: 14993226; 11925506; 11432777; 9760191; 9592127; 8608564; 7591266; 7627975; 7766648; 1490103; 3146987; 6689405) [HMDB] Lacto-N-biose I is a common oligosaccharide found in human milk and in numerous other tissues. Oligosaccharides are important components of glycoproteins and glycolipids and also occur as free oligosaccharides in several body fluids.(PMID: 14993226; 11925506; 11432777; 9760191; 9592127; 8608564; 7591266; 7627975; 7766648; 1490103; 3146987; 6689405).

   

Algestone

16alpha,17-dihydroxypregn-4-ene-3,20-dione

C21H30O4 (346.2144)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D011372 - Progestins C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents

   

Aztreonam

2-{[(Z)-[(2-amino-1,3-thiazol-4-yl)({[(2S,3S)-2-methyl-4-oxo-1-sulfoazetidin-3-yl]carbamoyl})methylidene]amino]oxy}-2-methylpropanoic acid

C13H17N5O8S2 (435.0519)


Aztreonam is only found in individuals that have used or taken this drug. It is a monocyclic beta-lactam antibiotic originally isolated from Chromobacterium violaceum. It is resistant to beta-lactamases and is used in gram-negative infections, especially of the meninges, bladder, and kidneys. It may cause a superinfection with gram-positive organisms. [PubChem]The bactericidal action of aztreonam results from the inhibition of bacterial cell wall synthesis due to a high affinity of aztreonam for penicillin binding protein 3 (PBP3). By binding to PBP3, aztreonam inhibits the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins. It is possible that aztreonam interferes with an autolysin inhibitor. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DF - Monobactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

Diphenidol

SmithKline beecham brand OF diphenidol hydrochloride

C21H27NO (309.2093)


Diphenidol is only found in individuals that have used or taken this drug. It is an antiemetic agent used in the treatment of vomiting and vertigo. Diphenidol overdose may result in serious toxicity in children.The mechanism by which diphenidol exerts its antiemetic and antivertigo effects is not precisely known. It is thought to diminish vestibular stimulation and depress labyrinthine function and as an antimuscarinic agent. An action on the medullary chemoreceptive trigger zone may also be involved in the antiemetic effect. Diphenidol has no significant sedative, tranquilizing, or antihistaminic action. It has a weak peripheral anticholinergic effect. D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics D002491 - Central Nervous System Agents

   

Diacetylmonoxime

3-hydroxyiminobutan-2-one

C4H7NO2 (101.0477)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002801 - Cholinesterase Reactivators D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D002863 - Chromogenic Compounds D004793 - Enzyme Reactivators D004791 - Enzyme Inhibitors D004396 - Coloring Agents

   

Halofantrine

3-(dibutylamino)-1-[1,3-dichloro-6-(trifluoromethyl)phenanthren-9-yl]propan-1-ol

C26H30Cl2F3NO (499.1656)


Halofantrine is a drug used to treat malaria. It belongs to the phenanthrene class of compounds that includes quinine and lumefantrine. It appears to inhibit polymerisation of heme molecules (by the parasite enzyme heme polymerase), resulting in the parasite being poisoned by its own waste. Halofantrine has been shown to preferentially block open and inactivated HERG channels leading to some degree of cardiotoxicity. P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01B - Antimalarials D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent

   

Phenformin

1-carbamimidamido-N-(2-phenylethyl)methanimidamide

C10H15N5 (205.1327)


A biguanide hypoglycemic agent with actions and uses similar to those of metformin. Although it is generally considered to be associated with an unacceptably high incidence of lactic acidosis, often fatal, it is still available in some countries. (From Martindale, The Extra Pharmacopoeia, 30th ed, p290) A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins > A10BA - Biguanides C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C98234 - Biguanide Antidiabetic Agent D007004 - Hypoglycemic Agents > D001645 - Biguanides

   

magnesium hydroxide

magnesium hydroxide

H2MgO2 (57.9905)


C78276 - Agent Affecting Digestive System or Metabolism > C29697 - Laxative D005765 - Gastrointestinal Agents > D000863 - Antacids

   

Quinupristin

N-[(3S,6S,12R,15S,16R,19S)-25-{[(3S)-1-azabicyclo[2.2.2]octan-3-ylsulfanyl]methyl}-3-{[4-(dimethylamino)phenyl]methyl}-12-ethyl-4,16-dimethyl-2,5,11,14,18,21,24-heptaoxo-19-phenyl-17-oxa-1,4,10,13,20-pentaazatricyclo[20.4.0.0⁶,¹⁰]hexacosan-15-yl]-3-hydroxypyridine-2-carboxamide

C53H67N9O10S (1021.4731)


Quinupristin/dalfopristin is a combination of two antibiotics used to treat infections by staphylococci and by vancomycin-resistant Enterococcus faecium. Dalfopristin inhibits the early phase of protein synthesis in the bacterial ribosome and quinupristin inhibits the late phase of protein synthesis. The combination of the two components acts synergistically and is more effective in vitro than each component alone. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D025361 - Streptogramins Quinupristin is a streptogramin antibiotic. Quinupristin blocks peptide bond synthesis to prevent the extension of polypeptide chains and promote the detachment of incomplete protein chains in the bacterial ribosomal subunits[1] [2].

   

Dalfopristin

(6R,10R,11R,12Z,17Z,19Z,21S)-6-[2-(Diethylamino)ethanesulphonyl]-14,21-dihydroxy-11,19-dimethyl-10-(propan-2-yl)-9,26-dioxa-3,15,28-triazatricyclo[23.2.1.0³,⁷]octacosa-1(27),12,14,17,19,25(28)-hexaene-2,8,23-trione

C34H50N4O9S (690.3298)


Dalfopristin is a combination of two antibiotics (Dalfopristin and quinupristin) used to treat infections by staphylococci and by vancomycin-resistant Enterococcus faecium. It is not effective against Enterococcus faecalis infections. Dalfopristin inhibits the early phase of protein synthesis in the bacterial ribosome and quinupristin inhibits the late phase of protein synthesis. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D025361 - Streptogramins

   

Cinoxacin

5-Ethyl-8-oxo-5,8-dihydro-1,3-dioxa-5,6-diaza-cyclopenta[b]naphthalene-7-carboxylic acid

C12H10N2O5 (262.059)


Cinoxacin is only found in individuals that have used or taken this drug. It is a synthetic antimicrobial related to oxolinic acid and nalidixic acid and used in urinary tract infections. [PubChem]Evidence exists that cinoxacin binds strongly, but reversibly, to DNA, interfering with synthesis of RNA and, consequently, with protein synthesis. It appears to also inhibit DNA gyrase. This enzyme is necessary for proper replicated DNA separation. By inhibiting this enzyme, DNA replication and cell division is inhibited. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D000890 - Anti-Infective Agents D004791 - Enzyme Inhibitors

   

Rifapentine

(7S,9Z,11S,12R,13S,14R,15R,16R,17S,18S,21Z)-26-[(1E)-[(4-cyclopentylpiperazin-1-yl)imino]methyl]-2,15,17,23,27,29-hexahydroxy-11-methoxy-3,7,12,14,16,18,22-heptamethyl-6-oxo-8,30-dioxa-24-azatetracyclo[23.3.1.1^{4,7}.0^{5,28}]triaconta-1(28),2,4,9,19,21,23,25(29),26-nonaen-13-yl acetate

C47H64N4O12 (876.4521)


Rifapentine is only found in individuals that have used or taken this drug. It is an antibiotic drug used in the treatment of tuberculosis.Rifapentine has shown higher bacteriostatic and bactericidal activities especially against intracellular bacteria growing in human monocyte-derived macrophages. Rifapentine inhibits DNA-dependent RNA polymerase in susceptible strains of M. tuberculosis. Rifapentine acts via the inhibition of DNA-dependent RNA polymerase, leading to a suppression of RNA synthesis and cell death. J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04A - Drugs for treatment of tuberculosis > J04AB - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007917 - Leprostatic Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D012294 - Rifamycins C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent

   

Butoconazole

1-[4-(4-Chloro-phenyl)-2-(2,6-dichloro-phenylsulphanyl)-butyl]-1H-imidazole

C19H17Cl3N2S (410.0178)


Butoconazole is only found in individuals that have used or taken this drug. It is an imidazole antifungal used in gynecology.The exact mechanism of the antifungal action of butoconazole is unknown, however, it is presumed to function as other imidazole derivatives via inhibition of steroid synthesis. Imidazoles generally inhibit the conversion of lanosterol to ergosterol via the inhibition of the enzyme cytochrome P450 14α-demethylase, resulting in a change in fungal cell membrane lipid composition. This structural change alters cell permeability and, ultimately, results in the osmotic disruption or growth inhibition of the fungal cell. G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AF - Imidazole derivatives D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent

   

Doxercalciferol

(1R,3S,5Z)-5-[(2E)-2-[(1R,3aS,7aR)-1-[(E,2R,5S)-5,6-dimethylhept-3-en-2-yl]-7a-methyl-2,3,3a,5,6,7-hexahydro-1H-inden-4-ylidene]ethylidene]-4-methylidenecyclohexane-1,3-diol

C28H44O2 (412.3341)


H - Systemic hormonal preparations, excl. sex hormones and insulins > H05 - Calcium homeostasis > H05B - Anti-parathyroid agents D018977 - Micronutrients > D014815 - Vitamins > D004872 - Ergocalciferols D050071 - Bone Density Conservation Agents

   

Dipropyl disulfide

1-(propyldisulfanyl)propane

C6H14S2 (150.0537)


Dipropyl disulfide, also known as 1,1-dithiodipropane or 4,5-dithiaoctane, belongs to the class of organic compounds known as dialkyldisulfides. These are organic compounds containing a disulfide group R-SS-R where R and R are both alkyl groups. Dipropyl disulfide is possibly neutral. Dipropyl disulfide is a burnt, earthy, and green tasting compound. Dipropyl disulfide has been detected, but not quantified, in several different foods, such as chives, cabbages, garden onions, nuts, and brassicas. Constituent of garlic, onion and other Allium subspecies Also present in raw cabbage, roast beef and roasted peanuts. Flavouring agent. Dipropyl disulfide is found in many foods, some of which are garden onion, onion-family vegetables, brassicas, and allium (onion).

   

4,8,13-Duratriene-1,3-diol

Cembra-2,7,11-triene-4,6-diol

C20H34O2 (306.2559)


   

Tetraprenol

2,6,10,14-Hexadecatetraen-1-ol, 3,7,11,15-tetramethyl-, (2E,6E,10E)- (9CI)

C20H34O (290.261)


Geranylgeraniol is an orally acitve vitamin K2 sub-type, an intermediate of the mevalonate pathway. Geranylgeraniol targets NF-kB signaling pathway and could alleviate LPS-induced microglial inflammation in animal model[1][2][3][4]. Geranylgeraniol is an orally acitve vitamin K2 sub-type, an intermediate of the mevalonate pathway. Geranylgeraniol targets NF-kB signaling pathway and could alleviate LPS-induced microglial inflammation in animal model[1][2][3][4].

   

Gnidicin

thymeleatoxin

C36H36O10 (628.2308)


   

Ophiobolin A

(+)-Ophiobolin A

C25H36O4 (400.2613)


   

Pleuromulin

Pleuromutilin

C22H34O5 (378.2406)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Pleuromutilin (Drosophilin B) inhibits bacterial protein synthesis by binding to the 50S ribosomal subunit of bacteria.

   

Ovalicin

4-hydroxy-5-methoxy-4-[2-methyl-3-(3-methylbut-2-en-1-yl)oxiran-2-yl]-1-oxaspiro[2.5]octan-6-one

C16H24O5 (296.1624)


Ovalicin is found in lettuce seeds. Found in lettuce seeds

   

Thujopsene

(-)-thujopsene

C15H24 (204.1878)


A thujopsene that has (S,S,S)-configuration.

   

(-)-Bornyl acetate

(1S,2R)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-yl acetic acid

C12H20O2 (196.1463)


(-)-Bornyl acetate is isolated from Blumea balsamifera, Jasonia sp., Salvia fruticosa, carrot, rosemary, sage and lavender oil. (-)-Bornyl acetate is a flavouring agent [CCD]. Isolated from Blumea balsamifera, Jasonia species, Salvia fruticosa, carrot, rosemary, sage and lavender oil. Flavouring agent [CCD] (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1].

   

Theasinensin A

(2R,3R)-2-{6-[(2R,3R)-5,7-dihydroxy-3-(3,4,5-trihydroxybenzoyloxy)-3,4-dihydro-2H-1-benzopyran-2-yl]-2,3,4,4,5,6-hexahydroxy-[1,1-biphenyl]-2-yl}-5,7-dihydroxy-3,4-dihydro-2H-1-benzopyran-3-yl 3,4,5-trihydroxybenzoate

C44H34O22 (914.1542)


Theasinensin D is found in tea. Theasinensin D is from oolong tea Camellia sinensis var. viridis. From oolong tea Camellia sinensis variety viridis. Theasinensin D is found in tea.

   

5,6,7-Trimethoxyflavone

Baicalein 5,6,7-trimethyl ether

C18H16O5 (312.0998)


5,6,7-Trimethoxyflavone is a novel p38-α MAPK inhibitor with an anti-inflammatory effect. 5,6,7-Trimethoxyflavone is isolated from several plants including Zeyhera tuberculosa, Callicarpa japonica, and Kickxia lanigera[1]. 5,6,7-Trimethoxyflavone is a novel p38-α MAPK inhibitor with an anti-inflammatory effect. 5,6,7-Trimethoxyflavone is isolated from several plants including Zeyhera tuberculosa, Callicarpa japonica, and Kickxia lanigera[1].

   

Cirsiliol

2-(3,4-dihydroxyphenyl)-5-hydroxy-6,7-dimethoxy-4H-chromen-4-one

C17H14O7 (330.0739)


Cirsiliol, also known as 3,4,5-trihydroxy-6,7-dimethoxyflavone or 6,7-dimethoxy-5,3,4-trihydroxyflavone, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, cirsiliol is considered to be a flavonoid lipid molecule. Cirsiliol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Cirsiliol can be found in common sage and lemon verbena, which makes cirsiliol a potential biomarker for the consumption of these food products. Cirsiliol is a potent and selective 5-lipoxygenase inhibitor and a competitive low affinity benzodiazepine receptor ligand. Cirsiliol is a potent and selective 5-lipoxygenase inhibitor and a competitive low affinity benzodiazepine receptor ligand. Cirsiliol is a potent and selective 5-lipoxygenase inhibitor and a competitive low affinity benzodiazepine receptor ligand.

   

Gartanin

1,3,5,8-Tetrahydroxy-2,4-bis(3-methyl-2-butenyl)-9H-xanthen-9-one, 9CI

C23H24O6 (396.1573)


Gartanin is a member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 3, 5 and 8 and prenyl groups at positions 2 and 4. It has a role as an antineoplastic agent and a plant metabolite. It is a member of xanthones and a polyphenol. Gartanin is a natural product found in Morus insignis, Pentadesma butyracea, and other organisms with data available. A member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 3, 5 and 8 and prenyl groups at positions 2 and 4. Constituent of the fruits of Garcinia mangostana (mangosteen). Gartanin is found in fruits and purple mangosteen. Gartanin is found in fruits. Gartanin is a constituent of the fruits of Garcinia mangostana (mangosteen) Gartanin is a natural xanthone of mangosteen, with antioxidant, anti-inflammatory, antifungal, neuroprotective and antineoplastic properties. Gartanin induces cell cycle arrest and autophagy and suppresses migration in human glioma cells[1][2]. Gartanin is a natural xanthone of mangosteen, with antioxidant, anti-inflammatory, antifungal, neuroprotective and antineoplastic properties. Gartanin induces cell cycle arrest and autophagy and suppresses migration in human glioma cells[1][2].

   

Gentisein

1,3,7-Trihydroxy-9H-xanthen-9-one, 9CI

C13H8O5 (244.0372)


Gentisein is a member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 3 and 7. It has a role as a plant metabolite. It is a member of xanthones and a polyphenol. Gentisein is a natural product found in Hypericum scabrum, Cratoxylum formosum, and other organisms with data available. A member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 3 and 7. Gentisein is found in alcoholic beverages. Gentisein is isolated from Gentiana lutea (yellow gentian Gentisein (NSC 329491), the major metabolite of Mangiferin, shows the most potent serotonin uptake inhibition with an IC50 value of 4.7 μM[1][2]. Gentisein (NSC 329491), the major metabolite of Mangiferin, shows the most potent serotonin uptake inhibition with an IC50 value of 4.7 μM[1][2]. Gentisein (NSC 329491), the major metabolite of Mangiferin, shows the most potent serotonin uptake inhibition with an IC50 value of 4.7 μM[1][2].

   

1,3,5-Trihydroxyxanthone

1,3,5-Trihydroxyxanthone

C13H8O5 (244.0372)


A member of the class of xanthones that is xanthone substituted by hydroxy groups at positions 1, 3 and 5. It has been isolated from Anaxagorea luzonensis.

   

Morusin

4H,8H-BENZO(1,2-B:3,4-B)DIPYRAN-4-ONE, 2-(2,4-DIHYDROXYPHENYL)-5-HYDROXY-8,8-DIMETHYL-3-(3-METHYL-2-BUTEN-1-YL)-

C25H24O6 (420.1573)


Morusin is an extended flavonoid that is flavone substituted by hydroxy groups at positions 5, 2 and 4, a prenyl group at position 3 and a 2,2-dimethyl pyran group across positions 7 and 8. It has a role as a plant metabolite and an antineoplastic agent. It is a trihydroxyflavone and an extended flavonoid. Morusin is a natural product found in Morus alba var. multicaulis, Broussonetia papyrifera, and other organisms with data available. An extended flavonoid that is flavone substituted by hydroxy groups at positions 5, 2 and 4, a prenyl group at position 3 and a 2,2-dimethyl pyran group across positions 7 and 8. Morusin is found in fruits. Morusin is a constituent of the root bark of Morus alba (mulberry) and other Morus species Constituent of the root bark of Morus alba (mulberry) and other Morus subspecies Morusin is found in fruits. Morusin is a prenylated flavonoid isolated from Morus alba Linn. with various biological activities, such as antitumor, antioxidant, and anti-bacteria property. Morusin could inhibit NF-κB and STAT3 activity. Morusin is a prenylated flavonoid isolated from Morus alba Linn. with various biological activities, such as antitumor, antioxidant, and anti-bacteria property. Morusin could inhibit NF-κB and STAT3 activity.

   

Robustaflavone

Robustaflavone

C30H18O10 (538.09)


A biflavonoid that is obtained by oxidative coupling of two molecules of apigenin resulting in a bond between positions C-3 of the hydroxyphenyl ring and C-6 of the chromene ring. Isolated from Thuja orientalis and Rhus succedanea it exhibits antioxidant, cytotoxic and anti-hepatitis B activity.

   

Sciadopitysin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-8-[5-(5-hydroxy-7-methoxy-4-oxo-4H-1-benzopyran-2-yl)-2-methoxyphenyl]-2-(4-methoxyphenyl)-

C33H24O10 (580.1369)


Sciadopitysin is a biflavonoid that is a 7, 4, 4-trimethyl ether derivative of amentoflavone. It has a role as a bone density conservation agent and a platelet aggregation inhibitor. It is a biflavonoid, a hydroxyflavone, a methoxyflavone and a ring assembly. It is functionally related to an amentoflavone. Sciadopitysin is a natural product found in Podocarpus elongatus, Podocarpus urbanii, and other organisms with data available. A biflavonoid that is a 7, 4, 4-trimethyl ether derivative of amentoflavone. Sciadopitysin is a type of biflavonoids in leaves from ginkgo biloba[1]. Sciadopitysi inhibits RANKL-induced osteoclastogenesis and bone loss by inhibiting NF-κB activation and reducing the expression of c-Fos and NFATc1[2]. Sciadopitysin is a type of biflavonoids in leaves from ginkgo biloba[1]. Sciadopitysi inhibits RANKL-induced osteoclastogenesis and bone loss by inhibiting NF-κB activation and reducing the expression of c-Fos and NFATc1[2].

   

Sexangularetin

Herbacetin 8-methyl ether

C16H12O7 (316.0583)


   

Diphyllin

9-(1,3-Benzodioxol-5-yl)-4-hydroxy-6,7-dimethoxynaphtho[2,3-c]furan-1(3H)-one; NSC 309691

C21H16O7 (380.0896)


Diphyllin is a lignan. Diphyllin is a natural product found in Haplophyllum alberti-regelii, Haplophyllum bucharicum, and other organisms with data available. Origin: Plant Diphyllin is an arylnaphthalene lignan isolated from Justicia procumbens and is a potent HIV-1 inhibitor with an IC50 of 0.38 μM. Diphyllin is active against vesicular stomatitis virus (VSV) and influenza virus[1]. Diphyllin is a vacuolar type H+-ATPase (V-ATPase) inhibitor with an IC50 value of 17 nM and inhibits lysosomal acidification in human osteoclasts[2]. Diphyllin inhibits NO production with an IC50 of 50 μM and has anticancer and anti-inflammatory activities[3]. Diphyllin is an arylnaphthalene lignan isolated from Justicia procumbens and is a potent HIV-1 inhibitor with an IC50 of 0.38 μM. Diphyllin is active against vesicular stomatitis virus (VSV) and influenza virus[1]. Diphyllin is a vacuolar type H+-ATPase (V-ATPase) inhibitor with an IC50 value of 17 nM and inhibits lysosomal acidification in human osteoclasts[2]. Diphyllin inhibits NO production with an IC50 of 50 μM and has anticancer and anti-inflammatory activities[3].

   

LICARIN A

2-methoxy-4-[(2S,3S)-7-methoxy-3-methyl-5-[(E)-prop-1-enyl]-2,3-dihydro-1-benzofuran-2-yl]phenol

C20H22O4 (326.1518)


(-)-Licarin A is a natural product found in Magnolia dodecapetala, Magnolia kachirachirai, and other organisms with data available. Dehydrodiisoeugenol is a natural product found in Myristica fragrans with data available. Dehydrodiisoeugenol is isolated from Myristica fragrans Houtt, shows anti-inflammatory and anti-bacterial actions[1]. Dehydrodiisoeugenol inhibits LPS- stimulated NF-κB activation and cyclooxygenase (COX)-2 gene expression in murine macrophages[2]. Dehydrodiisoeugenol is isolated from Myristica fragrans Houtt, shows anti-inflammatory and anti-bacterial actions[1]. Dehydrodiisoeugenol inhibits LPS- stimulated NF-κB activation and cyclooxygenase (COX)-2 gene expression in murine macrophages[2]. Licarin A ((+)-Licarin A), a neolignan, significantly and dose-dependently reduces TNF-α production (IC50=12.6 μM) in dinitrophenyl-human serum albumin (DNP-HSA)-stimulated RBL-2H3 cells. Anti-allergic effects. Licarin A reduces TNF-α and PGD2 production, and COX-2 expression[1]. Licarin A ((+)-Licarin A), a neolignan, significantly and dose-dependently reduces TNF-α production (IC50=12.6 μM) in dinitrophenyl-human serum albumin (DNP-HSA)-stimulated RBL-2H3 cells. Anti-allergic effects. Licarin A reduces TNF-α and PGD2 production, and COX-2 expression[1].

   

Graveoline

2-(2H-1,3-benzodioxol-5-yl)-1-methyl-1,4-dihydroquinolin-4-one

C17H13NO3 (279.0895)


Graveoline is found in herbs and spices. Graveoline is an alkaloid from Ruta graveolens (rue). Alkaloid from Ruta graveolens (rue). Graveoline is found in herbs and spices. Graveoline (Rutamine) is an anti-cancer agent that can trigger apoptosis and autophagy in skin melanoma cells. Graveoline also exhibits antifungal activity[1]. Graveoline (Rutamine) is an anti-cancer agent that can trigger apoptosis and autophagy in skin melanoma cells. Graveoline also exhibits antifungal activity[1].

   

Peimine

(3S,4aS,5S,6aS,6bS,8aS,9S,9aS,12S,15aS,15bR,16aS,16bR)-9,12,16b-Trimethyltetracosahydrobenzo[4,5]indeno[1,2-h]pyrido[1,2-b]isoquinoline-3,5,9-triol

C27H45NO3 (431.3399)


Verticine is an alkaloid. Peimine is a natural product found in Fritillaria anhuiensis, Fritillaria cirrhosa, and other organisms with data available. D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents > D014704 - Veratrum Alkaloids Peimine (Verticine) is a natural compound with excellent anti-inflammatory activity. Peimine (Verticine) is a natural compound with excellent anti-inflammatory activity.

   

Trachelogenin

2(3H)-FURANONE, 4-((3,4-DIMETHOXYPHENYL)METHYL)DIHYDRO-3-HYDROXY-3-((4-HYDROXY-3-METHOXYPHENYL)METHYL)-, (3S-CIS)-

C21H24O7 (388.1522)


Trachelogenin is a lignan. Trachelogenin is a natural product found in Volutaria tubuliflora, Ipomoea cairica, and other organisms with data available.

   

Tribenuron methyl

tribenuron-methyl [ANSI]

C15H17N5O6S (395.09)


   

Tetraphenylphosphonium

Tetraphenylphosphonium

C24H20P+ (339.1303)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D000970 - Antineoplastic Agents

   

8-Bromoadenosine

2-(6-AMINO-8-BROMO-9H-PURIN-9-YL)-5-(HYDROXYMETHYL)TETRAHYDROFURAN-3,4-DIOL

C10H12BrN5O4 (345.0073)


8-Bromoadenosine is an adenosine analog. Adenosine analogs mostly act as smooth muscle vasodilators and have also been shown to inhibit cancer progression. Its popular products are adenosine phosphate, Acadesine (HY-13417), Clofarabine (HY-A0005), Fludarabine phosphate (HY-B0028) and Vidarabine (HY-B0277)[1].

   

Biapenem

CLI 86815;L 627;LJC 10627

C15H18N4O4S (350.1049)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DH - Carbapenems D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D013845 - Thienamycins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic Same as: D01057

   

Mikamycin A

Virginiamycin Complex

C28H35N3O7 (525.2475)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D025361 - Streptogramins Virginiamycin M1 (Pristinamycin IIA; Ostreogrycin A), produced by?Streptomyces virginiae, is an polyunsaturated macrocyclic lactone antibiotic and acts as a component of Virginiamycin (HY-112665)[1]. Virginiamycin M1 alone is against Staphylococcus aureus with a MIC of 0.25 μg/mL. The combination of Virginiamycin M1 and Virginiamycin S1 (HY-N6680) is 0.125 μg/mL (MIC Value), which can improve the bactericidal effect 1-30 times[2].

   

Pifithrin-Beta

2-p-Tolyl-5,6,7,8-tetrahydrobenzo[d]imidazo[2,1-b]thiazole

C16H16N2S (268.1034)


   

Chloramphenicol Succinate

Chloramphenicol Succinate

C15H16Cl2N2O8 (422.0284)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Same as: D07675

   

Foscan

3-[7,12,17-tris(3-hydroxyphenyl)-21,22,23,24-tetraazapentacyclo[16.2.1.1³,⁶.1⁸,¹¹.1¹³,¹⁶]tetracosa-1,3,5,7,11(23),12,14,16,18(21),19-decaen-2-yl]phenol

C44H32N4O4 (680.2423)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01X - Other antineoplastic agents > L01XD - Sensitizers used in photodynamic/radiation therapy D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents D000970 - Antineoplastic Agents C1420 - Photosensitizing Agent D003879 - Dermatologic Agents Same as: D06066

   
   

Lavoltidine

{1-methyl-5-[(3-{3-[(piperidin-1-yl)methyl]phenoxy}propyl)amino]-1H-1,2,4-triazol-3-yl}methanol

C19H29N5O2 (359.2321)


C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent > C29702 - Histamine-2 Receptor Antagonist D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists

   

Patupilone

epothilone B

C27H41NO6S (507.2654)


An epithilone that is epithilone D in which the double bond in the macrocyclic ring has been oxidised to the corresponding epoxide (the S,S stereoisomer). C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents

   

Pyrrolnitrin

Pyrrolnitrin;3-Chloro-4-(3-chloro-2-nitrophenyl)pyrrole_HCD50

C10H6Cl2N2O2 (255.9806)


A member of the class of pyrroles carrying chloro and 3-chloro-2-nitrophenyl substituents at positions 3 and 4 respectively. D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AA - Antibiotics D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent Same as: D01094

   

Tazarotene

ethyl 6-[2-(4,4-dimethyl-3,4-dihydro-2H-1-benzothiopyran-6-yl)ethynyl]pyridine-3-carboxylate

C21H21NO2S (351.1293)


Tazarotene is only found in individuals that have used or taken this drug. It is a prescription topical retinoid sold as a cream or gel. This medication is approved for treatment of psoriasis, acne, and sun damaged skin (photodamage). [Wikipedia]Although the exact mechanism of tazarotene action is not known, studies have shown that the active form of the drug (tazarotenic acid) binds to all three members of the retinoic acid receptor (RAR) family: RARa, RARb, and RARg, but shows relative selectivity for RARb, and RARg and may modify gene expression. It also has affinity for RXR receptors. C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C804 - Retinoic Acid Agent D - Dermatologicals > D05 - Antipsoriatics > D05A - Antipsoriatics for topical use C308 - Immunotherapeutic Agent > C129820 - Antineoplastic Immunomodulating Agent D003879 - Dermatologic Agents > D007641 - Keratolytic Agents D009676 - Noxae > D013723 - Teratogens Same as: D01132

   

Luliconazole

Luliconazole

C14H9Cl2N3S2 (352.9615)


D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AC - Imidazole and triazole derivatives D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent Same as: D01980

   

4-METHYL-2,4-BIS(4-HYDROXYPHENYL)PENT-1-ENE

Phenol, 4,4-(1,1-dimethyl-3-methylene-1,3-propanediyl)bis-

C18H20O2 (268.1463)


   

tetrapentylammonium

tetrapentylammonium

C20H44N+ (298.3474)


   

Adrenoyl ethanolamide

(7Z,10Z,13Z,16Z)-N-(2-hydroxyethyl)docosa-7,10,13,16-tetraenamide

C24H41NO2 (375.3137)


Adrenoyl ethanolamide is a N-acylethanolamine. N-acylethanolamines (NAEs) constitute a class of lipid compounds naturally present in both animal and plant membranes as constituents of the membrane-bound phospholipid, N-acylphosphatidylethanolamine (NAPE). NAPE is composed of a third fatty acid moiety linked to the amino head group of the commonly occurring membrane phospholipid, phosphatidylethanolamine. NAEs are released from NAPE by phospholipase D-type hydrolases in response to a variety of stimuli. Transient NAE release and accumulation has been attributed a variety of biological activities, including neurotransmission, membrane protection, and immunomodulation in animals. N-oleoylethanolamine is an inhibitor of the sphingolipid signaling pathway, via specific ceramidase inhibition (ceramidase converts ceramide to sphingosine). N-oleoylethanolamine blocks the effects of TNF- and arachidonic acid on intracellular Ca concentration. (PMID: 12692337, 12056855, 12560208, 11997249) [HMDB] Adrenoyl ethanolamide is a N-acylethanolamine. N-acylethanolamines (NAEs) constitute a class of lipid compounds naturally present in both animal and plant membranes as constituents of the membrane-bound phospholipid, N-acylphosphatidylethanolamine (NAPE). NAPE is composed of a third fatty acid moiety linked to the amino head group of the commonly occurring membrane phospholipid, phosphatidylethanolamine. NAEs are released from NAPE by phospholipase D-type hydrolases in response to a variety of stimuli. Transient NAE release and accumulation has been attributed a variety of biological activities, including neurotransmission, membrane protection, and immunomodulation in animals. N-oleoylethanolamine is an inhibitor of the sphingolipid signaling pathway, via specific ceramidase inhibition (ceramidase converts ceramide to sphingosine). N-oleoylethanolamine blocks the effects of TNF- and arachidonic acid on intracellular Ca concentration. (PMID: 12692337, 12056855, 12560208, 11997249).

   

KOdiA-PC

1-Palmitoyl-2-(5-keto-6-octenedioyl)-sn-glycero-3-phosphocholine

C32H58NO11P (663.3747)


   

5-Hydroxynorvaline-betaxanthin

1,1-Dichloro-2-(O-chlorophenyl)-2-(p-chlorophenyl)ethylene

C14H8Cl4 (315.938)


   

Hydroxychlor

alpha,alpha-Bis(4-hydroxyphenyl)-beta,beta,beta-trichloroethane

C14H11Cl3O2 (315.9825)


   

2,3,4,5-Tetrachloro-4'-biphenylol

2,3,4,5-tetrachloro-[1,1-biphenyl]-4-ol

C12H6Cl4O (305.9173)


D004785 - Environmental Pollutants > D011078 - Polychlorinated Biphenyls

   

2,2',4,4'-Tetrachlorobiphenyl

2,4-dichloro-1-(2,4-dichlorophenyl)benzene

C12H6Cl4 (289.9224)


2,2',4,4'-tetrachlorobiphenyl is a tetrachlorobiphenyl that is biphenyl in which each of the phenyl groups is substituted at positions 2 and 4 by chlorines. It is a tetrachlorobiphenyl and a dichlorobenzene. D004785 - Environmental Pollutants > D011078 - Polychlorinated Biphenyls

   

Benzo[ghi]perylene

hexacyclo[12.8.0.0^{2,11}.0^{3,8}.0^{4,21}.0^{17,22}]docosa-1(14),2,4,6,8,10,12,15,17(22),18,20-undecaene

C22H12 (276.0939)


   

2-Chlorobiphenyl

1-Chloro-2-phenylbenzene

C12H9Cl (188.0393)


   

2-Ethylphenol

O-Ethylphenol

C8H10O (122.0732)


2-ethylphenol, also known as phlorol or 1-ethyl-2-hydroxybenzene, is a member of the class of compounds known as 1-hydroxy-4-unsubstituted benzenoids. 1-hydroxy-4-unsubstituted benzenoids are phenols that are unsubstituted at the 4-position. 2-ethylphenol is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 2-ethylphenol can be found in arabica coffee, which makes 2-ethylphenol a potential biomarker for the consumption of this food product. Ethylphenol may refer to: 2-Ethylphenol 3-Ethylphenol 4-Ethylphenol .

   

3-NITROFLUORANTHENE

3-NITROFLUORANTHENE

C16H9NO2 (247.0633)


D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens

   

Silux

2-Hydroxy-3-{4-[2-(4-{2-hydroxy-3-[(2-methylprop-2-enoyl)oxy]propoxy}phenyl)propan-2-yl]phenoxy}propyl 2-methylprop-2-enoic acid

C29H36O8 (512.241)


D001697 - Biomedical and Dental Materials > D003764 - Dental Materials

   

Camphorquinone

1,7,7-trimethylbicyclo[2.2.1]heptane-2,3-dione bornane-2,3-dione

C10H14O2 (166.0994)


   

1,2-Diphenylethane

1,1-(1,2-Ethanediyl)bis(benzene)

C14H14 (182.1095)


   

Paraffin wax

(E)-N-(4-chloro-2-methylphenyl)-N,N-dimethylmethanimidamide

C10H13ClN2 (196.0767)


Masticatory substance in chewing gum base, adhesive component, coatings, glazing agent (Japan). Liquid paraffin, or mineral oil, is a mixture of heavier alkanes, and has a number of names, including nujol, adepsine oil, alboline, glymol, medicinal paraffin, saxol, or USP mineral oil. It has a density of around 0.8 g/cm3. Liquid paraffin (medicinal) is used to aid bowel movement in persons suffering chronic constipation; it passes through the gastrointestinal tract without itself being taken into the body, but it limits the amount of water removed from the stool. In the food industry, where it may be called "wax", it can be used as a lubricant in mechanical mixing, applied to baking tins to ensure that loaves are easily released when cooked and as a coating for fruit or other items requiring a "shiny" appearance for sale. It is often used in infrared spectroscopy, as it has a relatively uncomplicated IR spectrum. When the sample to be tested is made into a mull (a very thick paste), liquid paraffin is added so it can be spread on the transparent (to infrared) mounting plates to be tested.; Paraffin wax (C25H52) is an excellent material to store heat, having a specific heat capacity of 2.14?2.9 J g?1 K?1 (joule per gram per kelvin) and a heat of fusion of 200?220 J g?1. This property is exploited in modified drywall for home building material: it is infused in the drywall during manufacture so that, when installed, it melts during the day, absorbing heat, and solidifies again at night, releasing the heat. Paraffin wax phase change cooling coupled with retractable radiators was used to cool the electronics of the Lunar Rover. Wax expands considerably when it melts and this allows its use in thermostats for industrial, domestic and, particularly, automobile purposes.; Paraffin wax is one of several acceptable candle waxes used in the Jewish menorah ritual.; Pure paraffin wax is an excellent electrical insulator, with an electrical resistivity of between 1013 and 1017 ohm metre. This is better than nearly all other materials except some plastics (notably teflon). It is an effective neutron moderator and was used in James Chadwicks 1932 experiments to identify the neutron. Paraffin wax is found in many foods, some of which are avocado, dill, sugar apple, and soursop. Masticatory substance in chewing gum base, adhesive component, coatings, glazing agent (Japan) D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors D004791 - Enzyme Inhibitors > D014475 - Uncoupling Agents D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

ICI 164384

ICI 164384; N-n-Butyl-N-methyl-11-[3,17beta-dihydroxyestra-1,3,5(10)-trien-7alpha-yl]undecanamide

C34H55NO3 (525.4182)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

Trichlorostibine

Antimony(III) chloride

Cl3Sb (225.8104)


   

1-[(4-Amino-3-methylphenyl)methyl]-5-(2,2-diphenylacetyl)-6,7-dihydro-4H-imidazo[4,5-c]pyridine-6-carboxylic acid

1-((4-Amino-3-methylphenyl)methyl)-5-(diphenylacetyl)-4,5,6,7-tetrahydro-1H-imidazo(4,5C)pyridine-6-carboxylic acid

C29H28N4O3 (480.2161)


   

{4-[({2-[3-Fluoro-4-(Trifluoromethyl)phenyl]-4-Methyl-1,3-Thiazol-5-Yl}methyl)sulfanyl]-2-Methylphenoxy}acetic Acid

2-{4-[({2-[3-fluoro-4-(trifluoromethyl)phenyl]-4-methyl-1,3-thiazol-5-yl}methyl)sulphanyl]-2-methylphenoxy}acetic acid

C21H17F4NO3S2 (471.0586)


CONFIDENCE standard compound; INTERNAL_ID 1372; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10481; ORIGINAL_PRECURSOR_SCAN_NO 10479 CONFIDENCE standard compound; INTERNAL_ID 1372; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10494; ORIGINAL_PRECURSOR_SCAN_NO 10490 CONFIDENCE standard compound; INTERNAL_ID 1372; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10524; ORIGINAL_PRECURSOR_SCAN_NO 10520 CONFIDENCE standard compound; INTERNAL_ID 1372; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10518; ORIGINAL_PRECURSOR_SCAN_NO 10516 CONFIDENCE standard compound; INTERNAL_ID 1372; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10469; ORIGINAL_PRECURSOR_SCAN_NO 10466 CONFIDENCE standard compound; INTERNAL_ID 1372; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10519; ORIGINAL_PRECURSOR_SCAN_NO 10516 CONFIDENCE standard compound; INTERNAL_ID 1372; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5241; ORIGINAL_PRECURSOR_SCAN_NO 5238 CONFIDENCE standard compound; INTERNAL_ID 1372; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5267; ORIGINAL_PRECURSOR_SCAN_NO 5265 CONFIDENCE standard compound; INTERNAL_ID 1372; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5258; ORIGINAL_PRECURSOR_SCAN_NO 5256 CONFIDENCE standard compound; INTERNAL_ID 1372; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5274; ORIGINAL_PRECURSOR_SCAN_NO 5271 CONFIDENCE standard compound; INTERNAL_ID 1372; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5266; ORIGINAL_PRECURSOR_SCAN_NO 5264 CONFIDENCE standard compound; INTERNAL_ID 1372; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5246; ORIGINAL_PRECURSOR_SCAN_NO 5244 GW0742 is a potent PPARβ and PPARδ agonist, with an IC50 of 1 nM for human PPARδ in binding assay, and EC50s of 1 nM, 1.1 μM and 2 μM for human PPARδ, PPARα, and PPARγ, respectively.

   

Myxothiazol

Myxothiazol A

C25H33N3O3S2 (487.1963)


A 2,4-bi-1,3-thiazole substituted at the 4-position with a (1E,3S,4R,5E)-7-amino-3,5-dimethoxy-4-methyl-7-oxohepta-1,5-dien-1-yl] group and at the 2-position with a (2S,3E,5E)-7-methylocta-3,5-dien-2-yl group. It is an inhibitor of coenzyme Q - cytochrome c reductase. D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D004791 - Enzyme Inhibitors

   

Levomycin

Quinomycin a

C51H64N12O12S2 (1100.4208)


D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000970 - Antineoplastic Agents

   
   

Benzeneacetonitrile

laquo omegaraquo -Cyanotoluene

C8H7N (117.0578)


Isolated from oil of garden cress (Lepidium sativum) and other plant oils. Benzeneacetonitrile is found in many foods, some of which are peppermint, garden tomato (variety), papaya, and kohlrabi. Benzeneacetonitrile is found in garden cress. Benzeneacetonitrile is isolated from oil of garden cress (Lepidium sativum) and other plant oils.

   

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone

4-[methyl(nitroso)amino]-1-(pyridin-3-yl)butan-1-one

C10H13N3O2 (207.1008)


4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (also known as NNK) is a potent tobacco-specific nitrosamine derived from nicotine. It plays a key role in human tobacco-related cancers (PMID:24830349). NNK is found in cured tobacco and is also produced during its burning or combustion in cigarettes. NNK is abundantly present in cigarette smoke (20-280 ng/cigarette). Electronic cigarettes (e-cigarettes) do not convert nicotine to NNK due to their lower operating temperatures. NNK is a procarcinogen. This means it must be activated by cytochrome P450 enzymes (CYP2A6 and CYP2B6) to become a carcinogen (PMID:24830349). NNK can also be activated by myeloperoxidase (MPO) and epoxide hydrolase (EPHX1). All activation processes lead to the formation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol from NNK, which is called NNAL (PMID:24830349). NNAL can be detoxified via glucuronidation via glucuronidases. Once NNK is activated to NNAL, this compound initiates a cascade of signalling pathways (for example ERK1/2, NFκB, PI3K/Akt, MAPK, FasL, K-ras), resulting in uncontrolled cellular proliferation and tumorigenesis. NNK is known as a mutagen and can cause point mutations that affect cell growth proliferation and differentiation. NNK also targets the SULT1A1, TGF-beta, and angiotensin II genes. NNK plays a key role in gene silencing, gene modification, and carcinogenesis. NNK has been implicated in tumour promotion by activating nicotinic acetylcholine receptors (nAChRs) and β-adrenergic receptors (β-AdrRs), leading to downstream activation of parallel signal transduction pathways that facilitate tumour progression (PMID:24830349). Antioxidants such as EGCG (from green tea) inhibit lung tumorigenesis by NNK. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent tobacco-specific nitrosamine in animals. It has been suggested to play a role in human tobacco-related cancers. P450 1A2 catalyzed the formation of keto alcohol and 4-oxo-1-(3-pyridyl)-1-butanone (keto aldehyde) from NNK, with the keto alcohol being the major metabolite. Phenethyl isothiocyanate (PEITC0 is an effective inhibitor of the carcinogenicity or toxicity of chemicals that are activated by P450 1A2.( PMID: 8625495) [HMDB] D009676 - Noxae > D002273 - Carcinogens

   

Nonadecanoic acid

nonadecanoic acid

C19H38O2 (298.2872)


Nonadecanoic acid, also known as n-nonadecanoic acid or nonadecylic acid or C19:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms, with nonadecanoic acid (its ester is called nonadecanoate) having 19 carbon atoms. Nonadecanoic acid is a very hydrophobic molecule, practically insoluble (in water). It is a solid with a melting point of 69.4°C. It can be found in bacteria, plants, and animals (including animal milk) (Nature 176:882; PMID: 14168161). It is secreted by termites (Rhinotermes marginalis) as part of its defence mechanism (Comp. Biochem. Physiol. B 71:731). Nonadecanoic acid is a C19 straight-chain fatty acid of plant or bacterial origin. An intermediate in the biodegradation of n-icosane, it has been shown to inhibit cancer growth. It has a role as a fungal metabolite. It is a straight-chain saturated fatty acid and a long-chain fatty acid. It is a conjugate acid of a nonadecanoate. Nonadecanoic acid is a natural product found in Staphisagria macrosperma, Malva sylvestris, and other organisms with data available. An odd-numbered long chain fatty acid, likely derived from bacterial or plant sources. Nonadecanoic acid has been found in ox fats and vegetable oils. It is also used by certain insects as a phermone. [HMDB]. A C19 straight-chain fatty acid of plant or bacterial origin. An intermediate in the biodegradation of n-icosane, it has been shown to inhibit cancer growth. Nonadecanoic acid is a 19-carbon long saturated fatty acid. Nonadecanoic acid is the major constituent of the substance secreted by Rhinotermes marginalis to defence[1]. Nonadecanoic acid is a 19-carbon long saturated fatty acid. Nonadecanoic acid is the major constituent of the substance secreted by Rhinotermes marginalis to defence[1].

   

Islandicin

Funiculosin

C15H10O5 (270.0528)


   

Didemnin B

Didemnin B

C57H89N7O15 (1111.6416)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic A natural product found particularly in Lyngbya majuscula and Trididemnum solidum. D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C308 - Immunotherapeutic Agent > C574 - Immunosuppressant C784 - Protein Synthesis Inhibitor D000970 - Antineoplastic Agents Didemnin B is a depsipeptide extracted from the marine tunicate Trididemnin cyanophorum. Didemnin B can be used for the research of cancer[1].

   

Azaspiracid

Azaspiracid-1

C47H71NO12 (841.4976)


D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins

   

Capillarin

1H-2-Benzopyran-1-one, 3-(2-butynyl)-

C13H10O2 (198.0681)


   

Chavicol

laquo gammaraquo -(P-Hydroxyphenyl)-alpha -propylene

C9H10O (134.0732)


Chavicol is found in allspice. Chavicol is found in many essential oils, e.g. anise and Gardenia. Chavicol is used in perfumery and flavours. Found in many essential oils, e.g. anise and Gardenia. It is used in perfumery and flavours.

   

Cinobufotalin

(1R,2R,2aR,3aS,3bR,5aS,7S,9aR,9bS,11aR)-5a,7-dihydroxy-9a,11a-dimethyl-1-(2-oxo-2H-pyran-5-yl)hexadecahydronaphtho[1,2:6,7]indeno[1,7a-b]oxiren-2-yl acetate

C26H34O7 (458.2304)


Cinobufotalin is a natural product found in Bufo and Bufo bufo with data available. Cinobufotalin is a bufadienolide isolated from toad venom and utilized in traditional Chinese medicine (TCM) for its cardiotonic, diuretic and hemostatic effects, with potential cytotoxic and antineoplastic activities. Upon administration and although the exact mechanism of action(s) (MoAs) through which this agent exerts its effects have yet to be fully discovered, cinobufotalin causes DNA fragmentation, decreases mitochondrial membrane potential (MMP), increases intracellular calcium (Ca2+) ion concentrations and reactive oxygen species (ROS) production, upregulates Fas protein and activates cytochrome C, various caspases, Bid and Bax. This causes cell cycle arrest, induces apoptosis and inhibits tumor cell growth and survival. In addition, cinobufotalin inhibits the activity of sphingosine kinase 1 (SphK1) and induces pro-apoptotic ceramide production, which further promotes tumor cell apoptosis. Cinobufotalin also induces mitochondrial protein cyclophilin D (Cyp-D)-dependent opening of the mitochondrial permeability transition pore (mPTP), which may contribute to cinobufotalin-induced non-apoptotic death of certain tumor cells. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides Cinobufotalin is a cardiotonic steroids or bufadienolides, is extracted from the skin secretions of the giant toads. Cinobufotalin has been used as a cardiotonic, diuretic and a hemostatic agent, Cinobufotalin is also a potential anti-lung cancer agent[1].

   

Hellebrigenin

3beta,5beta,14beta-Trihydroxy-19-oxo-bufa-20,22-dienolide 3-O-beta-D-glucopyranoside

C24H32O6 (416.2199)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides

   

Oxocamphor

1,7,7-trimethylbicyclo[2.2.1]heptane-2,3-dione bornane-2,3-dione

C10H14O2 (166.0994)


   

inositol 1,3,4,5,6-pentakisphosphate

{[3-hydroxy-2,4,5,6-tetrakis(phosphonooxy)cyclohexyl]oxy}phosphonic acid

C6H17O21P5 (579.895)


   

DL-Homocysteine

2-Amino-4-mercaptobutyric acid

C4H9NO2S (135.0354)


DL-Homocysteine is a weak neurotoxin, and can affect the production of kynurenic acid in the brain. DL-Homocysteine is a weak neurotoxin, and can affect the production of kynurenic acid in the brain.

   

Graveoline

Graveoline

C17H13NO3 (279.0895)


D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Graveoline (Rutamine) is an anti-cancer agent that can trigger apoptosis and autophagy in skin melanoma cells. Graveoline also exhibits antifungal activity[1]. Graveoline (Rutamine) is an anti-cancer agent that can trigger apoptosis and autophagy in skin melanoma cells. Graveoline also exhibits antifungal activity[1].

   

DL-Benzoin

benzoin compound tincture

C14H12O2 (212.0837)


C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent Benzoin is a kind of alsamic resin isolated from the styracaceae family. Benzoin can be used as a colour additive used for marking plants[1].

   

3-amino-3-(4-hydroxyphenyl)propanoic acid

(R)-3-Amino-3-(4-hydroxy-phenyl)-propionic acid

C9H11NO3 (181.0739)


A beta-amino acid comprising propionic acid having amino and 4-hydroxyphenyl groups attached at the 3-position.

   

Cnidin

4-[(3-Methyl-2-buten-1-yl)oxy]-7H-Furo[3,2-g][1]benzopyran-7-one; 7H-Furo[3,2-g][1]benzopyran-7-one, 4-[(3-methyl-2-butenyl)oxy]- (8CI,9CI); Isoimperatorin (6CI); 4-[(3-Methyl-2-buten-1-yl)oxy]-7H-furo[3,2-g][1]benzopyran-7-one

C16H14O4 (270.0892)


Isoimperatorin is a member of the class of psoralens that is psoralen substituted by a prenyloxy group at position 5. Isolated from Angelica dahurica and Angelica koreana, it acts as a acetylcholinesterase inhibitor. It has a role as a metabolite and an EC 3.1.1.7 (acetylcholinesterase) inhibitor. Isoimperatorin is a natural product found in Ferulago sylvatica, Prangos trifida, and other organisms with data available. Isoimperatorin is a tumor necrosis factor antagonist isolated from Glehniae root or from Poncirus trifoliate Raf (L579). Furocoumarins, are phototoxic and photocarcinogenic. They intercalate DNA and photochemically induce mutations. Furocoumarins are botanical phytoalexins found to varying extents in a variety of vegetables and fruits, notably citrus fruits. The levels of furocoumarins present in our diets, while normally well below that causing evident acute phototoxicity, do cause pharmacologically relevant drug interactions. Some are particularly active against cytochrome P450s. For example, in humans, bergamottin and dihydroxybergamottin are responsible for the grapefruit juice effect, in which these furanocoumarins affect the metabolism of certain drugs. See also: Angelica archangelica root (part of). A member of the class of psoralens that is psoralen substituted by a prenyloxy group at position 5. Isolated from Angelica dahurica and Angelica koreana, it acts as a acetylcholinesterase inhibitor. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM. Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM.

   

Canadine

(1S)-16,17-dimethoxy-5,7-dioxa-13-azapentacyclo[11.8.0.0^{2,10.0^{4,8.0^{15,20]henicosa-2,4(8),9,15(20),16,18-hexaene

C20H21NO4 (339.1471)


Canadine is a berberine alkaloid that is 5,8,13,13a-tetrahydro-6H-[1,3]dioxolo[4,5-g]isoquino[3,2-a]isoquinoline substituted by methoxy groups at positions 9 and 10. It is a berberine alkaloid, an organic heteropentacyclic compound, an aromatic ether and an oxacycle. Canadine is a natural product found in Glaucium squamigerum, Hydrastis canadensis, and other organisms with data available. A berberine alkaloid that is 5,8,13,13a-tetrahydro-6H-[1,3]dioxolo[4,5-g]isoquino[3,2-a]isoquinoline substituted by methoxy groups at positions 9 and 10. D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators Tetrahydroberberine is an isoquinoline alkaloid isolated from Corydalis Corydalis, with uM-level affinity for D2 and 5-HT1A receptors. Tetrahydroberberine is a different kind of living thing that can be extended and divided into parts. Tetrahydroberberine is a kind of effective D2 receptor antagonistic force. Tetrahydroberberine has the ability to strengthen the stomach and relieve the pressure on the stomach[1][2][3]. Tetrahydroberberine is an isoquinoline alkaloid isolated from Corydalis Corydalis, with uM-level affinity for D2 and 5-HT1A receptors.

   

Dihydro-resveratrol

5-[2-(4-Hydroxy-phenyl)-ethyl]-benzene-1,3-diol

C14H14O3 (230.0943)


Dihydroresveratrol is a stilbenol that is 1,1-ethane-1,2-diyldibenzene with hydroxy groups at positions 1, 3 and 4. It has a role as a xenobiotic metabolite and a plant metabolite. Dihydroresveratrol is a natural product found in Blasia pusilla, Dioscorea dumetorum, and other organisms with data available. A stilbenol that is 1,1-ethane-1,2-diyldibenzene with hydroxy groups at positions 1, 3 and 4. Dihydroresveratrol, a potent phytoestrogen, is a hormone receptor modulator. Dihydroresveratrol exhibits proliferative effects in androgen-independent prostate and breast cancer cells at picomolar and nanomolar concentrations[1]. Dihydroresveratrol, a potent phytoestrogen, is a hormone receptor modulator. Dihydroresveratrol exhibits proliferative effects in androgen-independent prostate and breast cancer cells at picomolar and nanomolar concentrations[1].

   

Cedrol

(3R-(3.ALPHA.,3A.BETA.,6.ALPHA.,7.BETA.,8A.ALPHA.))-OCTAHYDRO-3,6,8,8-TETRAMETHYL-1H-3A,7-METHANOAZULEN-6-OL

C15H26O (222.1984)


Cedrol is a cedrane sesquiterpenoid and a tertiary alcohol. Cedrol is a natural product found in Xylopia aromatica, Widdringtonia whytei, and other organisms with data available. Cedrol is a bioactive sesquiterpene, a potent competitive inhibitor of cytochrome P-450 (CYP) enzymes. Cedrol inhibits CYP2B6-mediated bupropion hydroxylase and CYP3A4-mediated midazolam hydroxylation with Ki of 0.9 μM and 3.4 μM, respectively. Cedrol also has weak inhibitory effect on CYP2C8, CYP2C9, and CYP2C19 enzymes[1]. Cedrol is found in cedar essential oil and poetesses anti-septic, anti-inflammatory, anti-spasmodic, tonic, astringent, diuretic, insecticidal, and anti-fungal activities[2]. Cedrol is a bioactive sesquiterpene, a potent competitive inhibitor of cytochrome P-450 (CYP) enzymes. Cedrol inhibits CYP2B6-mediated bupropion hydroxylase and CYP3A4-mediated midazolam hydroxylation with Ki of 0.9 μM and 3.4 μM, respectively. Cedrol also has weak inhibitory effect on CYP2C8, CYP2C9, and CYP2C19 enzymes[1]. Cedrol is found in cedar essential oil and poetesses anti-septic, anti-inflammatory, anti-spasmodic, tonic, astringent, diuretic, insecticidal, and anti-fungal activities[2].

   

Carveol

(1S-trans)-2-Methyl-5-(1-methylvinyl)cyclohex-2-en-1-ol

C10H16O (152.1201)


Carveol is a clear colorless liquid. Insoluble in water. Carveol is a limonene monoterpenoid that is cyclohex-2-en-1-ol substituted by a methyl group at position 2 and a prop-1-en-2-yl group at position 5. It has a role as a volatile oil component and a plant metabolite. Carveol is a natural product found in Echinophora tournefortii, Trachyspermum anethifolium, and other organisms with data available. Present in oil of grapefruit (Citrus paradisi), mandarin (Citrus reticulata), blackcurrant berries, celery, black tea, dill, caraway seeds and lambs lettuce. Flavouring agent. Carveol is found in many foods, some of which are fruits, parsley, tea, and cumin. Carveol is found in caraway. Carveol is present in oil of grapefruit (Citrus paradisi), mandarin (Citrus reticulata), blackcurrant berries, celery, black tea, dill, caraway seeds and lambs lettuce. Carveol is a flavouring agent A limonene monoterpenoid that is cyclohex-2-en-1-ol substituted by a methyl group at position 2 and a prop-1-en-2-yl group at position 5. Carveol is an endogenous metabolite. Carveol is an endogenous metabolite.

   

6-Hydroxymelatonin

N-[2-(6-hydroxy-5-methoxy-1H-indol-3-yl)ethyl]acetamide

C13H16N2O3 (248.1161)


6-Hydroxymelatonin, also known as lopac-H-0627, belongs to the class of organic compounds known as hydroxyindoles. These are organic compounds containing an indole moiety that carries a hydroxyl group. 6-Hydroxymelatonin is considered to be a practically insoluble (in water) and relatively neutral molecule. 6-Hydroxymelatonin has been found in human liver and kidney tissues, and has also been detected in multiple biofluids, such as urine and blood. Within the cell, 6-hydroxymelatonin is primarily located in the cytoplasm. 6-Hydroxymelatonin is the main primary metabolite that can be biosynthesized from melatonin through its interaction with the enzyme cytochrome P450 (CYP) 1A2 (PMID: 11452239). In humans, 6-hydroxymelatonin is involved in the tryptophan metabolism pathway. Melatonin is a hormone that is metabolized by cytochrome P450 (CYP) 1A2 to its main primary metabolite 6-hydroxymelatonin. (PMID 11452239) [HMDB]. 6-Hydroxymelatonin is found in many foods, some of which are garden onion, millet, peppermint, and apricot. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D020011 - Protective Agents > D002316 - Cardiotonic Agents D002317 - Cardiovascular Agents 6-Hydroxymelatonin is a primary metabolic of Melatonin, which is metabolized by cytochrome P450 (CYP) 1A2.

   

Erythronic acid

(R*,r*)-2,3,4-trihydroxy-butanoic acid

C4H8O5 (136.0372)


Erythronic acid is a sugar component of aqueous humour (eye). It may be derived from glycated proteins or from degradation of ascorbic acid. Erythronic acid is a normal organic acid present in a healthy adult and pediatric population. It has been found in urine, plasma, CSF, and synovial fluid (PMID: 14708889, 8087979, 8376520, 10420182). Erythronic acid is formed when N-acetyl-D-glucosamine (GlcNAc) is oxidized. GlcNAc is a constituent of hyaluronic acid (HA), a polysaccharide consisting of alternating units of glucuronic acid and GlcNAc, present as an aqueous solution in synovial fluid. In the synovial fluid of patients suffering from rheumatoid arthritis, HA is thought to be degraded either by radicals generated by Fenton chemistry (Fe2+/H2O2) or by NaOCl generated by myeloperoxidase (PMID: 10614067). Erythronic acid is a sugar component of aqueous humour (eye). It may be derived from glycated proteins or from degradation of ascorbic acid. Erythronic acid is a normal organic acid present in a healthy adult and pediatric population. It has been found in urine, plasma, CSF and synovial fluid. (PMID: 14708889, 8087979, 8376520, 10420182) Erythronic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=13752-84-6 (retrieved 2024-07-10) (CAS RN: 13752-84-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Oxybenzone

4-Methoxy-2-hydroxybenzophenone butyric acid

C14H12O3 (228.0786)


Oxybenzone is an organic compound used in sunscreens. It is a derivative of benzophenone. It forms colorless crystals that are readily soluble in most organic solvents. It is used as an ingredient in sunscreen and other cosmetics because it absorbs UV-A ultraviolet rays. D020011 - Protective Agents > D011837 - Radiation-Protective Agents > D013473 - Sunscreening Agents C1892 - Chemopreventive Agent > C851 - Sunscreen D003879 - Dermatologic Agents D003358 - Cosmetics Same as: D05309

   

1alpha,3beta,22R-Trihydroxyergosta-5,24E-dien-26-oic acid 3-O-b-D-glucoside 26-O-[b-D-glucosyl-(1->2)-6-acetyl-b-D-glucosyl] ester

6-[(Acetyloxy)methyl]-4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl (2Z)-5-hydroxy-6-(3-hydroxy-2,15-dimethyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-14-yl)-2,3-dimethylhept-2-enoic acid

C48H76O21 (988.4879)


1alpha,3beta,22R-Trihydroxyergosta-5,24E-dien-26-oic acid 3-O-b-D-glucoside 26-O-[b-D-glucosyl-(1->2)-6-acetyl-b-D-glucosyl] ester is found in fruits. 1alpha,3beta,22R-Trihydroxyergosta-5,24E-dien-26-oic acid 3-O-b-D-glucoside 26-O-[b-D-glucosyl-(1->2)-6-acetyl-b-D-glucosyl] ester is a constituent of Physalis peruviana (Cape gooseberry).

   

(+)-Epibatidine

2-(6-chloropyridin-3-yl)-7-azabicyclo[2.2.1]heptane

C11H13ClN2 (208.0767)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics

   

3,5-Dihydroxyphenylglycine

2-amino-2-(3,5-dihydroxyphenyl)acetic acid

C8H9NO4 (183.0532)


D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists DHPG ((RS)-3,5-DHPG) is an amino acid, which acts as a selective and potent agonist of group I mGluR (mGluR 1 and mGluR 5), shows no effect on Group II or Group III mGluRs[1]. DHPG ((RS)-3,5-DHPG) is also an effective antagonist of mGluRs linked to phospholipase D[2].

   

1,9-Heptadecadiene-4,6-diyne-3,8-diol, (3S,8S,9Z)-

1,9-Heptadecadiene-4,6-diyne-3,8-diol, (3S,8S,9Z)-

C17H24O2 (260.1776)


   

Androst-5-ene-3beta,17beta-diol

2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-ene-5,14-diol

C19H30O2 (290.2246)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents

   

2,3-Butanedione monoxime

Potassium 2,3-butanedione monoximate

C4H7NO2 (101.0477)


   

2,3,4-Trihydroxybutanoic acid

2,3,4-trihydroxybutanoic acid

C4H8O5 (136.0372)


   

4alpha-Phorbol

1,6,13,14-tetrahydroxy-8-(hydroxymethyl)-4,12,12,15-tetramethyltetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-5-one

C20H28O6 (364.1886)


   

Afimoxifene

4-(1-{4-[2-(dimethylamino)ethoxy]phenyl}-2-phenylbut-1-en-1-yl)phenol

C26H29NO2 (387.2198)


   

alpha-Eleostearic acid

9cis,11trans,13trans-Conjugated linolenic acid

C18H30O2 (278.2246)


   

[(1S,2R,3S,4S,6R,7R,14R)-4-Ethenyl-3-hydroxy-2,4,7,14-tetramethyl-9-oxo-6-tricyclo[5.4.3.01,8]tetradecanyl] 2-hydroxyacetate

[(1S,2R,3S,4S,6R,7R,14R)-4-Ethenyl-3-hydroxy-2,4,7,14-tetramethyl-9-oxo-6-tricyclo[5.4.3.01,8]tetradecanyl] 2-hydroxyacetic acid

C22H34O5 (378.2406)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Pleuromutilin (Drosophilin B) inhibits bacterial protein synthesis by binding to the 50S ribosomal subunit of bacteria.

   

Applaud

2-Tert-butylimino-3-isopropyl-5-phenyl-3,4,5,6-tetrahydro-2H-1,3,5-thiadiazin-4-one

C16H23N3OS (305.1562)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

Chebulagic acid

2-[13,14,15,18,19,20,31,35,36-nonahydroxy-2,10,23,28,32-pentaoxo-5-(3,4,5-trihydroxybenzoyloxy)-3,6,9,24,27,33-hexaoxaheptacyclo[28.7.1.0⁴,²⁵.0⁷,²⁶.0¹¹,¹⁶.0¹⁷,²².0³⁴,³⁸]octatriaconta-1(37),11,13,15,17,19,21,34(38),35-nonaen-29-yl]acetic acid

C41H30O27 (954.0974)


D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059004 - Topoisomerase I Inhibitors D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors Chebulagic acid is a COX-LOX dual inhibitor isolated from the fruits of Terminalia chebula Retz, on angiogenesis. Chebulagic acid is a M2 serine to asparagine 31 mutation (S31N) inhibitor and influenza antiviral. Chebulagic acid also against SARS-CoV-2 viral replication with an EC50 of 9.76 μM. Chebulagic acid is a COX-LOX dual inhibitor isolated from the fruits of Terminalia chebula Retz, on angiogenesis. Chebulagic acid is a M2 serine to asparagine 31 mutation (S31N) inhibitor and influenza antiviral. Chebulagic acid also against SARS-CoV-2 viral replication with an EC50 of 9.76 μM. Chebulagic acid is a COX-LOX dual inhibitor isolated from the fruits of Terminalia chebula Retz, on angiogenesis. Chebulagic acid is a M2 serine to asparagine 31 mutation (S31N) inhibitor and influenza antiviral. Chebulagic acid also against SARS-CoV-2 viral replication with an EC50 of 9.76 μM.

   

Dehydrodiisoeugenol

2-methoxy-4-[7-methoxy-3-methyl-5-(prop-1-en-1-yl)-2,3-dihydro-1-benzofuran-2-yl]phenol

C20H22O4 (326.1518)


   

Himbacine

4-[2-(1,6-dimethylpiperidin-2-yl)ethenyl]-3-methyl-decahydro-3H-naphtho[2,3-c]furan-1-one

C22H35NO2 (345.2668)


   

Histidinol

2-amino-3-(3H-imidazol-4-yl)propan-1-ol

C6H11N3O (141.0902)


   

Proscillaridin

5-{11-hydroxy-2,15-dimethyl-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-6-en-14-yl}-2H-pyran-2-one

C30H42O8 (530.288)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides D002317 - Cardiovascular Agents D004791 - Enzyme Inhibitors

   

Tetrahydrocoptisine

5,7,17,19-tetraoxa-13-azahexacyclo[11.11.0.0²,¹⁰.0⁴,⁸.0¹⁵,²³.0¹⁶,²⁰]tetracosa-2(10),3,8,15(23),16(20),21-hexaene

C19H17NO4 (323.1158)


(±)-Stylopine (Tetrahydrocoptisine) is an alkaloid compound originally isolated from Corydalis tubers that exhibits anti-inflammatory and anti-parasitic activities[1][2]. (±)-Stylopine (Tetrahydrocoptisine) is an alkaloid compound originally isolated from Corydalis tubers that exhibits anti-inflammatory and anti-parasitic activities[1][2].

   

Procyanidin A1

5,13-bis(3,4-dihydroxyphenyl)-4,12,14-trioxapentacyclo[11.7.1.0²,¹¹.0³,⁸.0¹⁵,²⁰]henicosa-2,8,10,15,17,19-hexaene-6,9,17,19,21-pentol

C30H24O12 (576.1268)


Procyanidin a1 is a member of the class of compounds known as biflavonoids and polyflavonoids. Biflavonoids and polyflavonoids are organic compounds containing at least two flavan/flavone units. These units are usually linked through CC or C-O-C bonds. Some examples include C2-O-C3, C2-O-C4, C3-C3, and C6-C8. Procyanidin a1 is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Procyanidin a1 can be found in bilberry, which makes procyanidin a1 a potential biomarker for the consumption of this food product. Procyanidin A1 (Proanthocyanidin A1) is a procyanidin dimer, which inhibits degranulation downstream of protein kinase C activation or Ca2+ influx from an internal store in RBL-213 cells. Procyanidin A1 has antiallergic effects[1]. Procyanidin A1 (Proanthocyanidin A1) is a procyanidin dimer, which inhibits degranulation downstream of protein kinase C activation or Ca2+ influx from an internal store in RBL-213 cells. Procyanidin A1 has antiallergic effects[1].

   

5,6-dihydrothymine

Dihydro-5-methyl-2,4(1H,3H)-pyrimidinedione

C5H8N2O2 (128.0586)


Dihydrothymine, also known as 5,6-dihydro-5-methyluracil or 5,6-dihydrothymine, (S)-isomer, is a member of the class of compounds known as hydropyrimidines. Hydropyrimidines are compounds containing a hydrogenated pyrimidine ring (i.e. containing less than the maximum number of double bonds.). Dihydrothymine is soluble (in water) and a very weakly acidic compound (based on its pKa). Dihydrothymine can be found in a number of food items such as hyssop, arrowroot, nopal, and red rice, which makes dihydrothymine a potential biomarker for the consumption of these food products. Dihydrothymine can be found primarily in blood, cerebrospinal fluid (CSF), saliva, and urine, as well as in human prostate tissue. Dihydrothymine exists in all living organisms, ranging from bacteria to humans. In humans, dihydrothymine is involved in the pyrimidine metabolism. Dihydrothymine is also involved in few metabolic disorders, which include beta ureidopropionase deficiency, dihydropyrimidinase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and UMP synthase deficiency (orotic aciduria). Moreover, dihydrothymine is found to be associated with beta-ureidopropionase deficiency and dihydropyrimidinase deficiency. Dihydrothymine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Dihydrothymine is an intermediate in the metabolism of thymine . Dihydropyrimidine dehydrogenase catalyzes the reduction of thymine to 5, 6-dihydrothymine then dihydropyrimidinase hydrolyzes 5, 6-dihydrothymine to N-carbamyl-b-alanine. Finally, beta-ureidopropionase catalyzes the conversion of N-carbamyl-b-alanine to beta-alanine. Accumulation of dihydrothymine in the body has been shown to be toxic (T3DB). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 5,6-Dihydro-5-methyluracil (Dihydrothymine), an intermediate breakdown product of thymine, comes from animal or plants. 5,6-Dihydro-5-methyluracil (Dihydrothymine) can be toxic when present at abnormally high levels[1].

   

FA 14:1

Myristoleic acid (14:1(n-5))

C14H26O2 (226.1933)


Myristoleic acid, a cytotoxic component in the extract from Serenoa repens, induces apoptosis and necrosis in human prostatic LNCaP cells[1]. Myristoleic acid, a cytotoxic component in the extract from Serenoa repens, induces apoptosis and necrosis in human prostatic LNCaP cells[1].

   

Cholylglycine

N-(3Alpha,7Alpha,12Alpha-trihydroxy-5Beta-cholan-24-oyl)-glycine

C26H43NO6 (465.309)


D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D013501 - Surface-Active Agents > D003902 - Detergents Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1]. Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1].

   

Ipomic acid

Decanedioic acid

C10H18O4 (202.1205)


Decanedioic acid, a normal urinary acid, is found to be associated with carnitine-acylcarnitine translocase deficiency and medium chain acyl-CoA dehydrogenase deficiency. Decanedioic acid, a normal urinary acid, is found to be associated with carnitine-acylcarnitine translocase deficiency and medium chain acyl-CoA dehydrogenase deficiency.

   

Cytisinicline

(1R,5S)-1,2,3,4,5,6-HEXAHYDRO-8H-1,5-METHANOPYRIDO(1,2-A)(1,5)DIAZOCIN-8-ONE (CYTISINE)

C11H14N2O (190.1106)


Cytisine is an organic heterotricyclic compound that is the toxic principle in Laburnum seeds and is found in many members of the Fabaceae (legume, pea or bean) family. An acetylcholine agonist, it is widely used throughout Eastern Europe as an aid to giving up smoking. It has a role as a nicotinic acetylcholine receptor agonist, a phytotoxin and a plant metabolite. It is an alkaloid, an organic heterotricyclic compound, a secondary amino compound, a lactam and a bridged compound. Cytisine is an alkaloid naturally derived from the Fabaceae family of plants including the genera Laburnum and Cytisus. Recent studies have shown it to be a more effective and significantly more affordable smoking cessation treatment than nicotine replacement therapy. Also known as baptitoxine or sophorine, cytisine has been used as a smoking cessation treatment since 1964, and is relatively unknown in regions outside of central and Eastern Europe. Cytisine is a partial nicotinic acetylcholine agonist with a half-life of 4.8 hours. Recent Phase III clinical trials using Tabex (a brand of Cytisine marketed by Sopharma AD) have shown similar efficacy to varenicline, but at a fraction of the cost. Cytisine is a natural product found in Viscum cruciatum, Thermopsis chinensis, and other organisms with data available. See also: Cytisus scoparius flowering top (part of); Thermopsis lanceolata whole (part of). An organic heterotricyclic compound that is the toxic principle in Laburnum seeds and is found in many members of the Fabaceae (legume, pea or bean) family. An acetylcholine agonist, it is widely used throughout Eastern Europe as an aid to giving up smoking. N - Nervous system > N07 - Other nervous system drugs > N07B - Drugs used in addictive disorders > N07BA - Drugs used in nicotine dependence C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist > C73579 - Nicotinic Agonist Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3]. Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3]. Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3].

   

Tetrahydrocoptisine

5,7,17,19-tetraoxa-13-azahexacyclo[11.11.0.02,10.04,8.015,23.016,20]tetracosa-2,4(8),9,15(23),16(20),21-hexaene

C19H17NO4 (323.1158)


Stylopine is a natural product found in Fumaria capreolata, Fumaria muralis, and other organisms with data available. (±)-Stylopine (Tetrahydrocoptisine) is an alkaloid compound originally isolated from Corydalis tubers that exhibits anti-inflammatory and anti-parasitic activities[1][2]. (±)-Stylopine (Tetrahydrocoptisine) is an alkaloid compound originally isolated from Corydalis tubers that exhibits anti-inflammatory and anti-parasitic activities[1][2].

   

Geniposidic_acid

(1S,4aS,7aS)-7-(hydroxymethyl)-1-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-1,4a,5,7a-tetrahydrocyclopenta[c]pyran-4-carboxylic acid

C16H22O10 (374.1213)


Geniposidic acid is a terpene glycoside. Geniposidic acid is a natural product found in Avicennia officinalis, Gardenia jasminoides, and other organisms with data available. Geniposidic acid has radiation protection and anti-cancer activity. Geniposidic acid has radiation protection and anti-cancer activity.

   

Tomatine

beta-D-Galactopyranoside, (3beta,5alpha,22beta,25S)-spirosolan-3-yl O-beta-D-glucopyranosyl-(1-->2)-O-[beta-D-xylopyranosyl-(1-->3)]-O-beta-D-glucopyranosyl-(1-->4)-

C50H83NO21 (1033.5457)


Tomatine is a steroid alkaloid that is tomatidine in which the hydroxy group at position 3 is linked to lycotetraose, a tetrasaccharide composed of two units of D-glucose, one unit of D-xylose, and one unit of D-galactose. It has a role as an immunological adjuvant, a phytotoxin and an antifungal agent. It is a steroid alkaloid, a tetrasaccharide derivative, an alkaloid antibiotic, a glycoside and a glycoalkaloid. It is functionally related to a tomatidine. Lycopersicin is a natural product found in Solanum acaule, Solanum lycopersicoides, and other organisms with data available. An alkaloid that occurs in the extract of leaves of wild tomato plants. It has been found to inhibit the growth of various fungi and bacteria. It is used as a precipitating agent for steroids. (From The Merck Index, 11th ed) A steroid alkaloid that is tomatidine in which the hydroxy group at position 3 is linked to lycotetraose, a tetrasaccharide composed of two units of D-glucose, one unit of D-xylose, and one unit of D-galactose. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents Tomatine is a glycoalkaloid, found in the tomato plant (Lycopersicon esculentum Mill.). Tomatine elicits neurotoxicity in RIP1 kinase and caspase-independent manner. Tomatine promotes the upregulation of nuclear apoptosis inducing factor (AIF) in neuroblastoma cells. Tomatine also inhibits 20S proteasome activity[1]. Tomatine is a glycoalkaloid, found in the tomato plant (Lycopersicon esculentum Mill.). Tomatine elicits neurotoxicity in RIP1 kinase and caspase-independent manner. Tomatine promotes the upregulation of nuclear apoptosis inducing factor (AIF) in neuroblastoma cells. Tomatine also inhibits 20S proteasome activity[1].

   

pichtosin

(1S,2R,4S)-(-)-Bornyl acetate

C12H20O2 (196.1463)


Flavour and fragrance ingredient [CCD]. (±)-Isobornyl acetate is found in spearmint and rosemary. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1].

   

Benzyl cyanide

Benzeneacetonitrile

C8H7N (117.0578)


A nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a phenyl group.

   

Butylbenzene

n-Butylbenzene

C10H14 (134.1095)


   

Pectolinarigenin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-6-methoxy-2-(4-methoxyphenyl)-

C17H14O6 (314.079)


Pectolinarigenin is a dimethoxyflavone that is the 6,4-dimethyl ether derivative of scutellarein. It has a role as a plant metabolite. It is a dimethoxyflavone and a dihydroxyflavone. It is functionally related to a scutellarein. Pectolinarigenin is a natural product found in Eupatorium cannabinum, Chromolaena odorata, and other organisms with data available. A dimethoxyflavone that is the 6,4-dimethyl ether derivative of scutellarein. Pectolinarigenin, also known as 5,7-dihydroxy-4,6-dimethoxyflavone or 4-methylcapillarisin, is a member of the class of compounds known as 6-o-methylated flavonoids. 6-o-methylated flavonoids are flavonoids with methoxy groups attached to the C6 atom of the flavonoid backbone. Thus, pectolinarigenin is considered to be a flavonoid lipid molecule. Pectolinarigenin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Pectolinarigenin can be found in sunflower and tarragon, which makes pectolinarigenin a potential biomarker for the consumption of these food products. Pectolinarigenin is a Cirsium isolate with anti-inflammatory activity and belongs to the flavones . Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2]. Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2]. Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2].

   

afzelechin

[ 2R,3S, (+) ] -3,4-Dihydro-2- (4-hydroxyphenyl) -2H-1-benzopyran-3,5,7-triol

C15H14O5 (274.0841)


Afzelechin is a flavan-3ol, a type of flavonoids. It can be found in Bergenia ligulata (aka Paashaanbhed in Ayurveda traditional Indian medicine).; Afzelechin-(4alpha?8)-afzelechin (molecular formula : C30H26O10, molar mass : 546.52 g/mol, exact mass : 546.152597, CAS number : 101339-37-1, Pubchem CID : 12395) is a B type proanthocyanidin. Ent-epiafzelechin-3-O-p-hydroxybenzoate-(4??8,2??O?7)-epiafzelechin) is an A-type proanthocyanidin found in apricots (Prunus armeniaca).

   

Cirsiliol

6-Hydroxyluteolin-6,7-dimethyl ether; 6-Methoxyluteolin 7-methyl ether; Crisiliol

C17H14O7 (330.0739)


Cirsiliol is a dimethoxyflavone that is flavone substituted by methoxy groups at positions 6 and 7 and hydroxy groups at positions 5, 3 and 4 respectively. It has a role as a plant metabolite. It is a trihydroxyflavone and a dimethoxyflavone. It is functionally related to a flavone. Cirsiliol is a natural product found in Teucrium montanum, Thymus herba-barona, and other organisms with data available. A dimethoxyflavone that is flavone substituted by methoxy groups at positions 6 and 7 and hydroxy groups at positions 5, 3 and 4 respectively. Cirsiliol is a potent and selective 5-lipoxygenase inhibitor and a competitive low affinity benzodiazepine receptor ligand. Cirsiliol is a potent and selective 5-lipoxygenase inhibitor and a competitive low affinity benzodiazepine receptor ligand. Cirsiliol is a potent and selective 5-lipoxygenase inhibitor and a competitive low affinity benzodiazepine receptor ligand.

   

Lespedin

5-hydroxy-2-(4-hydroxyphenyl)-3,7-bis[[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy]chromen-4-one

C27H30O14 (578.1635)


Annotation level-1 Acquisition and generation of the data is financially supported in part by CREST/JST. Kaempferitrin is a natural flavonoid, possesses antinociceptive, anti-inflammatory, anti-diabetic, antitumoral and chemopreventive effects, and activates insulin signaling pathway. Kaempferitrin is a natural flavonoid, possesses antinociceptive, anti-inflammatory, anti-diabetic, antitumoral and chemopreventive effects, and activates insulin signaling pathway.

   

Morusin

2- (2,4-Dihydroxyphenyl) -5-hydroxy-8,8-dimethyl-3- (3-methyl-2-butenyl) -4H,8H-benzo [ 1,2-b:3,4-b ] dipyran-4-one

C25H24O6 (420.1573)


Morusin is a prenylated flavonoid isolated from Morus alba Linn. with various biological activities, such as antitumor, antioxidant, and anti-bacteria property. Morusin could inhibit NF-κB and STAT3 activity. Morusin is a prenylated flavonoid isolated from Morus alba Linn. with various biological activities, such as antitumor, antioxidant, and anti-bacteria property. Morusin could inhibit NF-κB and STAT3 activity.

   

Narirutin

(S)-5-hydroxy-2-(4-hydroxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C27H32O14 (580.1792)


Narirutin is a disaccharide derivative that is (S)-naringenin substituted by a 6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an anti-inflammatory agent, an antioxidant and a metabolite. It is a disaccharide derivative, a dihydroxyflavanone, a member of 4-hydroxyflavanones, a (2S)-flavan-4-one and a rutinoside. It is functionally related to a (S)-naringenin. Narirutin is a natural product found in Cyclopia subternata, Citrus latipes, and other organisms with data available. See also: Tangerine peel (part of). A disaccharide derivative that is (S)-naringenin substituted by a 6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. Narirutin, one of the active constituents isolated from citrus fruits, has antioxidant and anti-inflammatory activities. Narirutin is a shikimate kinase inhibitor with anti-tubercular potency[1][2]. Narirutin, one of the active constituents isolated from citrus fruits, has antioxidant and anti-inflammatory activities. Narirutin is a shikimate kinase inhibitor with anti-tubercular potency[1][2].

   

Dtxcid6021115

Rifapentine (Priftin)

C47H64N4O12 (876.4521)


J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04A - Drugs for treatment of tuberculosis > J04AB - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007917 - Leprostatic Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D012294 - Rifamycins C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent

   

Thujone

Bicyclo[3.1.0]hexan-3-one,4-methyl-1-(1-methylethyl)-

C10H16O (152.1201)


α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3].

   

Daucosterol

(2R,3R,4S,5S,6R)-2-(((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C35H60O6 (576.439)


Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. A steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.

   

ACon1_001643

4H-1-Benzopyran-4-one,5,6,7-trimethoxy-2-phenyl-

C18H16O5 (312.0998)


5,6,7-trimethoxyflavone is a trimethoxyflavone that is the 5,6,7-trimethyl ether derivative of baicalein. It has been isolated from the plant Callicarpa japonica and has been shown to exhibit antiviral activity. It has a role as a plant metabolite and an anti-HSV-1 agent. It is functionally related to a baicalein. 5,6,7-Trimethoxyflavone is a natural product found in Callicarpa japonica, Friesodielsia velutina, and other organisms with data available. A trimethoxyflavone that is the 5,6,7-trimethyl ether derivative of baicalein. It has been isolated from the plant Callicarpa japonica and has been shown to exhibit antiviral activity. 5,6,7-Trimethoxyflavone is a novel p38-α MAPK inhibitor with an anti-inflammatory effect. 5,6,7-Trimethoxyflavone is isolated from several plants including Zeyhera tuberculosa, Callicarpa japonica, and Kickxia lanigera[1]. 5,6,7-Trimethoxyflavone is a novel p38-α MAPK inhibitor with an anti-inflammatory effect. 5,6,7-Trimethoxyflavone is isolated from several plants including Zeyhera tuberculosa, Callicarpa japonica, and Kickxia lanigera[1].

   

Bornyl_acetate

BICYCLO[2.2.1]HEPTAN-2-OL,1,7,7-TRIMETHYL-, 2-ACETATE, (1S,2R,4S)-

C12H20O2 (196.1463)


Bornyl acetate is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. Bornyl acetate is a potent odorant, exhibiting one of the highest flavor dilution factor (FD factor). Bornyl acetate possesses anti-cancer activity[1][2]. Bornyl acetate is a potent odorant, exhibiting one of the highest flavor dilution factor (FD factor). Bornyl acetate possesses anti-cancer activity[1][2].

   

75O1TFF47Z

4-[(2S,3S)-3-[(3,4-dimethoxyphenyl)methyl]-4-methoxy-2-(methoxymethyl)butyl]-1,2-dimethoxy-benzene

C24H34O6 (418.2355)


Phyllanthin is a lignan. Phyllanthin is a natural product found in Phyllanthus debilis, Phyllanthus amarus, and other organisms with data available. See also: Phyllanthus amarus top (part of). Phyllanthin is a major bioactive lignan component of Phyllanthus amarus. Phyllanthin exhibits high antioxidative and hepatoprotective properties[1]. Phyllanthin is a major bioactive lignan component of Phyllanthus amarus. Phyllanthin exhibits high antioxidative and hepatoprotective properties[1].

   

5,7-Dimethoxyflavone

METHYL5-OXO-6-TRIFLUOROMETHANESULFONYLOXY-1,2,3,5-TETRAHYDROINDOLIZINE-8-CARBOXYLATE

C17H14O4 (282.0892)


Chrysin 5,7-dimethyl ether is a dimethoxyflavone that is the 5,7-dimethyl ether derivative of chrysin. It has a role as a plant metabolite. It is functionally related to a chrysin. 5,7-Dimethoxyflavone is a natural product found in Anaphalis busua, Helichrysum herbaceum, and other organisms with data available. 5,7-Dimethoxyflavone is found in tea. 5,7-Dimethoxyflavone is a constituent of Leptospermum scoparium (red tea). Constituent of Leptospermum scoparium (red tea). 5,7-Dimethylchrysin is found in tea. A dimethoxyflavone that is the 5,7-dimethyl ether derivative of chrysin. 5,7-Dimethoxyflavone is one of the major components of Kaempferia parviflora, has anti-obesity, anti-inflammatory, and antineoplastic effects. 5,7-Dimethoxyflavone inhibits cytochrome P450 (CYP) 3As. 5,7-Dimethoxyflavone is also a potent Breast Cancer Resistance Protein (BCRP) inhibitor[1][2]. 5,7-Dimethoxyflavone is one of the major components of Kaempferia parviflora, has anti-obesity, anti-inflammatory, and antineoplastic effects. 5,7-Dimethoxyflavone inhibits cytochrome P450 (CYP) 3As. 5,7-Dimethoxyflavone is also a potent Breast Cancer Resistance Protein (BCRP) inhibitor[1][2].

   

2-AMINOBENZIMIDAZOLE

1-METHYLBENZOTRIAZOLE

C7H7N3 (133.064)


A member of the class of benzimidazoles that is benzimidazole in which the hydrogen at position 2 is replaced by an amino group. CONFIDENCE standard compound; INTERNAL_ID 2240 CONFIDENCE standard compound; INTERNAL_ID 2003

   

etodolac

etodolac

C17H21NO3 (287.1521)


M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AB - Acetic acid derivatives and related substances D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D004791 - Enzyme Inhibitors > D016861 - Cyclooxygenase Inhibitors > D052246 - Cyclooxygenase 2 Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D006133 - Growth Substances > D010937 - Plant Growth Regulators > D007210 - Indoleacetic Acids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3308

   

Sinapine

Sinapoylcholine

[C16H24NO5]+ (310.1654)


Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2601; CONFIDENCE confident structure Sinapine is an alkaloid isolated from seeds of the cruciferous species. Sinapine exhibits anti-inflammatory, anti-oxidant, anti-tumor, anti-angiogenic and radio-protective effects. Sinapine is also an acetylcholinesterase (AChE) inhibitor and can be used for the research of Alzheimer’s disease, ataxia, myasthenia gravis, and Parkinson’s disease[1][2][3][4]. Sinapine is an alkaloid isolated from seeds of the cruciferous species. Sinapine exhibits anti-inflammatory, anti-oxidant, anti-tumor, anti-angiogenic and radio-protective effects. Sinapine is also an acetylcholinesterase (AChE) inhibitor and can be used for the research of Alzheimer’s disease, ataxia, myasthenia gravis, and Parkinson’s disease[1][2][3][4].

   

S-Adenosylmethionine

S-Adenosylmethionine

[C15H23N6O5S]+ (399.1451)


KEIO_ID A020; [MS2] KO008827 KEIO_ID A020

   

Diphenoxylate

Diphenoxylate(to be removed)

C30H32N2O2 (452.2464)


A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07D - Antipropulsives > A07DA - Antipropulsives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics C78276 - Agent Affecting Digestive System or Metabolism > C266 - Antidiarrheal Agent D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D005765 - Gastrointestinal Agents > D000930 - Antidiarrheals

   

theobromine

theobromine

C7H8N4O2 (180.0647)


R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03D - Other systemic drugs for obstructive airway diseases > R03DA - Xanthines C - Cardiovascular system > C03 - Diuretics > C03B - Low-ceiling diuretics, excl. thiazides > C03BD - Xanthine derivatives D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; YAPQBXQYLJRXSA-UHFFFAOYSA-N_STSL_0032_Theobromine_8000fmol_180416_S2_LC02_MS02_45; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.367 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.359

   

Capillarisin

5,7-dihydroxy-2-(4-hydroxyphenoxy)-6-methoxy-chromen-4-one

C16H12O7 (316.0583)


   

Atropine

BENZENEACETIC ACID, .ALPHA.-(HYDROXYMETHYL)-8-METHYL-8-AZABICYCLO(3.2.1)OCT-3-YL ESTER, ENDO-(+/-)-

C17H23NO3 (289.1678)


Atropine is a racemate composed of equimolar concentrations of (S)- and (R)-atropine. It is obtained from deadly nightshade (Atropa belladonna) and other plants of the family Solanaceae. It has a role as a muscarinic antagonist, an anaesthesia adjuvant, an anti-arrhythmia drug, a mydriatic agent, a parasympatholytic, a bronchodilator agent, a plant metabolite, an antidote to sarin poisoning and a oneirogen. It contains a (S)-atropine and a (R)-atropine. Atropine is an alkaloid originally synthesized from Atropa belladonna. It is a racemic mixture of d-and l-hyoscyamine, of which only l-hyoscyamine is pharmacologically active. Atropine is generally available as a sulfate salt and can be administered by intravenous, subcutaneous, intramuscular, intraosseous, endotracheal and ophthalmic methods. Oral atropine is only available in combination products. Atropine is a competitive, reversible antagonist of muscarinic receptors that blocks the effects of acetylcholine and other choline esters. It has a variety of therapeutic applications, including pupil dilation and the treatment of anticholinergic poisoning and symptomatic bradycardia in the absence of reversible causes. Atropine is a relatively inexpensive drug and is included in the World Health Organization List of Essential Medicines. Atropine is an Anticholinergic and Cholinergic Muscarinic Antagonist. The mechanism of action of atropine is as a Cholinergic Antagonist and Cholinergic Muscarinic Antagonist. Hyoscyamine as a natural plant alkaloid derivative and anticholinergic that is used to treat mild to moderate nausea, motion sickness, hyperactive bladder and allergic rhinitis. Hyoscyamine has not been implicated in causing liver enzyme elevations or clinically apparent acute liver injury. Atropine is a natural product found in Cyphanthera tasmanica, Anthocercis ilicifolia, and other organisms with data available. Atropine Sulfate is the sulfate salt of atropine, a naturally-occurring alkaloid isolated from the plant Atropa belladonna. Atropine functions as a sympathetic, competitive antagonist of muscarinic cholinergic receptors, thereby abolishing the effects of parasympathetic stimulation. This agent may induce tachycardia, inhibit secretions, and relax smooth muscles. (NCI04) Atropine is a synthetically-derived form of the endogenous alkaloid isolated from the plant Atropa belladonna. Atropine functions as a sympathetic, competitive antagonist of muscarinic cholinergic receptors, thereby abolishing the effects of parasympathetic stimulation. This agent may induce tachycardia, inhibit secretions, and relax smooth muscles. (NCI04) Hyoscyamine is a belladonna alkaloid derivative and the levorotatory form of racemic atropine isolated from the plants Hyoscyamus niger or Atropa belladonna, which exhibits anticholinergic activity. Hyoscyamine functions as a non-selective, competitive antagonist of muscarinic receptors, thereby inhibiting the parasympathetic activities of acetylcholine on the salivary, bronchial, and sweat glands, as well as the eye, heart, bladder, and gastrointestinal tract. These inhibitory effects cause a decrease in saliva, bronchial mucus, gastric juices, and sweat. Furthermore, its inhibitory action on smooth muscle prevents bladder contraction and decreases gastrointestinal motility. An alkaloid, originally from Atropa belladonna, but found in other plants, mainly SOLANACEAE. Hyoscyamine is the 3(S)-endo isomer of atropine. A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03B - Belladonna and derivatives, plain > A03BA - Belladonna alkaloids, tertiary amines A racemate composed of equimolar concentrations of (S)- and (R)-atropine . It is obtained from deadly nightshade (Atropa belladonna) and other plants of the family Solanaceae. S - Sensory organs > S01 - Ophthalmologicals > S01F - Mydriatics and cycloplegics > S01FA - Anticholinergics C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D009184 - Mydriatics D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002491 - Central Nervous System Agents Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.421 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.416 Atropine (Tropine tropate) is a competitive muscarinic acetylcholine receptor (mAChR) antagonist with IC50 values of 0.39 and 0.71 nM for Human mAChR M4 and Chicken mAChR M4, respectively. Atropine inhibits ACh-induced relaxations in human pulmonary veins. Atropine can be used for research of anti-myopia and bradycardia[1][2][3][4]. Atropine (Tropine tropate) is a competitive muscarinic acetylcholine receptor (mAChR) antagonist with IC50 values of 0.39 and 0.71 nM for Human mAChR M4 and Chicken mAChR M4, respectively. Atropine inhibits ACh-induced relaxations in human pulmonary veins. Atropine can be used for research of anti-myopia and bradycardia[1][2][3][4]. Atropine (Tropine tropate) is a competitive muscarinic acetylcholine receptor (mAChR) antagonist with IC50 values of 0.39 and 0.71 nM for Human mAChR M4 and Chicken mAChR M4, respectively. Atropine inhibits ACh-induced relaxations in human pulmonary veins. Atropine can be used for research of anti-myopia and bradycardia[1][2][3][4]. L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2]. L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2]. L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2].

   

Geniposidic acid

(1S,4aS,7aS)-7-(hydroxymethyl)-1-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-1,4a,5,7a-tetrahydrocyclopenta[d]pyran-4-carboxylic acid

C16H22O10 (374.1213)


Geniposidic acid has radiation protection and anti-cancer activity. Geniposidic acid has radiation protection and anti-cancer activity.

   

Sclareol

1-Naphthalenepropanol, alpha-ethenyldecahydro-2-hydroxy-alpha,2,5,5,8a-pentamethyl-, (alphaR,1R,2R,4aS,8aS)-: (1R,2R,4aS,8aS)-1-[(3R)-3-hydroxy-3-methylpent-4-en-1-yl]-2,5,5,8a-tetramethyldecahydronaphthalen-2-ol

C20H36O2 (308.2715)


Sclareol is a labdane diterpenoid that is labd-14-ene substituted by hydroxy groups at positions 8 and 13. It has been isolated from Salvia sclarea. It has a role as an antimicrobial agent, an apoptosis inducer, a fragrance, an antifungal agent and a plant metabolite. Sclareol is a natural product found in Curcuma aromatica, Curcuma wenyujin, and other organisms with data available. See also: Clary Sage Oil (part of). A labdane diterpenoid that is labd-14-ene substituted by hydroxy groups at positions 8 and 13. It has been isolated from Salvia sclarea. relative retention time with respect to 9-anthracene Carboxylic Acid is 1.468 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.471 Sclareol is isolated from Salvia sclarea with anticarcinogenic activity. Sclareol shows strong cytotoxic activity against mouse leukemia?(P-388), human epidermal?carcinoma?(KB) cells and human?leukemia?cell lines. Sclareol induces cell apoptosis[1]. Sclareol is isolated from Salvia sclarea with anticarcinogenic activity. Sclareol shows strong cytotoxic activity against mouse leukemia?(P-388), human epidermal?carcinoma?(KB) cells and human?leukemia?cell lines. Sclareol induces cell apoptosis[1].

   

Rhein

2-Anthracenecarboxylic acid, 9,10-dihydro-4,5-dihydroxy-9,10-dioxo-

C15H8O6 (284.0321)


D004791 - Enzyme Inhibitors relative retention time with respect to 9-anthracene Carboxylic Acid is 1.164 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.166

   

Dehydrocholic acid

(4R)-4-[(5S,8R,9S,10S,13R,14S,17R)-10,13-dimethyl-3,7,12-trioxo-1,2,4,5,6,8,9,11,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl]pentanoic acid

C24H34O5 (402.2406)


Dehydrocholic acid is a synthetic bile acid, manufactured by the oxidation of cholic acid. It acts as a hydrocholeretic, increasing bile output to clear increased bile acid load. 3,7,12-trioxo-5beta-cholanic acid is an oxo-5beta-cholanic acid in which three oxo substituents are located at positions 3, 7 and 12 on the cholanic acid skeleton. It has a role as a gastrointestinal drug. It is an oxo-5beta-cholanic acid, a 7-oxo steroid, a 12-oxo steroid and a 3-oxo-5beta-steroid. It is a conjugate acid of a 3,7,12-trioxo-5beta-cholan-24-oate. Dehydrocholic acid is a synthetic bile acid that was prepared from the oxidation of cholic acid with chromic acid. It has been used for stimulation of biliary lipid secretion. The use of dehydrocholic acid in over-the-counter products has been discontinued by Health Canada.

   

Histidinol

Histidinol

C6H11N3O (141.0902)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.044 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.042 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.041 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.040

   

cinoxacin

cinoxacin

C12H10N2O5 (262.059)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D000890 - Anti-Infective Agents D004791 - Enzyme Inhibitors relative retention time with respect to 9-anthracene Carboxylic Acid is 0.746 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.738 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.740

   

Epipinoresinol

(+)-Epipinoresinol

C20H22O6 (358.1416)


relative retention time with respect to 9-anthracene Carboxylic Acid is 1.083 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.823 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.929 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.928

   

Matairesinol

NCGC00169701-03_C20H22O6_2(3H)-Furanone, dihydro-3,4-bis[(4-hydroxy-3-methoxyphenyl)methyl]-, (3R,4R)-

C20H22O6 (358.1416)


Annotation level-1 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 17 INTERNAL_ID 17; CONFIDENCE Reference Standard (Level 1) relative retention time with respect to 9-anthracene Carboxylic Acid is 0.920 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.921 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.910 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.909 Matairesinol confers anti-allergic effects in an allergic dermatitis mouse model. DfE-induced changes in IL-4 and IFN-γ mRNA expression in the ears of NC/Nga mice were reversed by matairesinol application[1]. Matairesinol confers anti-allergic effects in an allergic dermatitis mouse model. DfE-induced changes in IL-4 and IFN-γ mRNA expression in the ears of NC/Nga mice were reversed by matairesinol application[1].

   

Tazarotene

Tazarotene (Avage)

C21H21NO2S (351.1293)


C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C804 - Retinoic Acid Agent D - Dermatologicals > D05 - Antipsoriatics > D05A - Antipsoriatics for topical use C308 - Immunotherapeutic Agent > C129820 - Antineoplastic Immunomodulating Agent D003879 - Dermatologic Agents > D007641 - Keratolytic Agents D009676 - Noxae > D013723 - Teratogens Same as: D01132

   

Amprenavir

Amprenavir (Agenerase)

C25H35N3O6S (505.2246)


J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AE - Protease inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D000084762 - Viral Protease Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C97366 - HIV Protease Inhibitor C254 - Anti-Infective Agent > C281 - Antiviral Agent > C1660 - Anti-HIV Agent D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors

   

tioconazole

tioconazole

C16H13Cl3N2OS (385.9814)


G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AF - Imidazole derivatives D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AC - Imidazole and triazole derivatives D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D065088 - Steroid Synthesis Inhibitors D004791 - Enzyme Inhibitors > D065088 - Steroid Synthesis Inhibitors > D058888 - 14-alpha Demethylase Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent

   

2-Aminoethanesulfinic acid

2-Aminoethanesulfinic acid

C2H7NO2S (109.0197)


An aminosulfinic acid comprising ethylamine having the sulfo group at the 2-position. Hypotaurine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=300-84-5 (retrieved 2024-07-15) (CAS RN: 300-84-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Hypotaurine (2-aminoethanesulfinic acid), an intermediate in taurine biosynthesis from cysteine in astrocytes, is an endogenous inhibitory amino acid of the glycine receptor. Antioxidant[1].

   

Aica ribonucleotide

5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl 5-monophosphate

C9H15N4O8P (338.0627)


A 1-(phosphoribosyl)imidazolecarboxamide that is acadesine in which the hydroxy group at the 5 position has been converted to its monophosphate derivative. COVID info from COVID-19 Disease Map D007004 - Hypoglycemic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

L-Histidinol

L-Histidinol

C6H11N3O (141.0902)


An amino alcohol that is propanol substituted by 1H-imidazol-4-yl group at position 3 and an amino group at position 2 (the 2S stereoisomer).

   

3-Indoleacetonitrile

3-Indolylacetonitrile

C10H8N2 (156.0687)


3-Indoleacetonitrile is an endogenous metabolite. 3-Indoleacetonitrile is an endogenous metabolite.

   

TRIETHANOLAMINE

Triethanolamine Condensate Polymer

C6H15NO3 (149.1052)


D - Dermatologicals > D03 - Preparations for treatment of wounds and ulcers > D03A - Cicatrizants

   

3-Methylxanthine

3-Methylxanthine

C6H6N4O2 (166.0491)


MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; GMSNIKWWOQHZGF-UHFFFAOYSA-N_STSL_0034_3-Methylxanthine_0500fmol_180410_S2_LC02_MS02_57; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. 3-Methylxanthine, a xanthine derivative, is a cyclic guanosine monophosphate (GMP) inhibitor, with an IC50 of 920 μM on guinea-pig isolated trachealis muscle. 3-Methylxanthine, a xanthine derivative, is a cyclic guanosine monophosphate (GMP) inhibitor, with an IC50 of 920 μM on guinea-pig isolated trachealis muscle.

   

Sebacic acid

Sebacic acid

C10H18O4 (202.1205)


An alpha,omega-dicarboxylic acid that is the 1,8-dicarboxy derivative of octane. Decanedioic acid, a normal urinary acid, is found to be associated with carnitine-acylcarnitine translocase deficiency and medium chain acyl-CoA dehydrogenase deficiency. Decanedioic acid, a normal urinary acid, is found to be associated with carnitine-acylcarnitine translocase deficiency and medium chain acyl-CoA dehydrogenase deficiency.

   

Herbacetin

4H-1-Benzopyran-4-one, 3,5,7,8-tetrahydroxy-2-(4-hydroxyphenyl)-

C15H10O7 (302.0427)


Herbacetin is a pentahydroxyflavone that is kaempferol substituted by a hydroxy group at position 8. It is a natural flavonoid from flaxseed which exerts antioxidant, anti-inflammatory and anticancer activities. It has a role as an EC 4.1.1.17 (ornithine decarboxylase) inhibitor, an antineoplastic agent, an apoptosis inducer, an angiogenesis inhibitor, a plant metabolite, an antilipemic drug, an anti-inflammatory agent and an EC 3.4.22.69 (SARS coronavirus main proteinase) inhibitor. It is a pentahydroxyflavone and a 7-hydroxyflavonol. It is functionally related to a kaempferol. Herbacetin is a natural product found in Sedum anglicum, Sedum apoleipon, and other organisms with data available. See also: Larrea tridentata whole (part of). A pentahydroxyflavone that is kaempferol substituted by a hydroxy group at position 8. It is a natural flavonoid from flaxseed which exerts antioxidant, anti-inflammatory and anticancer activities. Herbacetin is a natural flavonoid from flaxseed, exerts various pharmacological activities, including antioxidant, anti-inflammatory and anticancer effects[1]. Herbacetin is an Ornithine decarboxylase (ODC) allosteric inhibitor, directly binds to Asp44, Asp243, and Glu384 on ODC. Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the first step of polyamine biosynthesis[2]. Herbacetin is a natural flavonoid from flaxseed, exerts various pharmacological activities, including antioxidant, anti-inflammatory and anticancer effects[1]. Herbacetin is an Ornithine decarboxylase (ODC) allosteric inhibitor, directly binds to Asp44, Asp243, and Glu384 on ODC. Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the first step of polyamine biosynthesis[2].

   

acephate

Pesticide1_Acephate_C4H10NO3PS_O,S-Dimethyl acetylphosphoramidothioate

C4H10NO3PS (183.0119)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 3111

   

Cafestol

5A,8-METHANO-5AH-CYCLOHEPTA(5,6)NAPHTHO(2,1-B)FURAN-7-METHANOL, 3B,4,5,6,7,8,9,10,10A,10B,11,12-DODECAHYDRO-7-HYDROXY-10B-METHYL-, (3BS-(3B.ALPHA.,5A.BETA.,7.BETA.,8.BETA.,10A.ALPHA.,10B.BETA.))-

C20H28O3 (316.2038)


Cafestol is an organic heteropentacyclic compound and furan diterpenoid with formula C20H28O3 obtained from the unsaponifiable fraction of coffee oil (a lipid fraction obtained from coffee beans by organic solvent extraction). It has a role as a plant metabolite, an apoptosis inducer, a hypoglycemic agent, an angiogenesis inhibitor, an antineoplastic agent, an antioxidant and an anti-inflammatory agent. It is an organic heteropentacyclic compound, a tertiary alcohol, a diterpenoid, a member of furans and a primary alcohol. Cafestol is a natural product found in Coffea arabica, Diplospora dubia, and other organisms with data available. An organic heteropentacyclic compound and furan diterpenoid with formula C20H28O3 obtained from the unsaponifiable fraction of coffee oil (a lipid fraction obtained from coffee beans by organic solvent extraction). Cafestol, one of the major components of coffee, is a coffee-specific diterpene from. Cafestol is a ERK inhibitor for AP-1-targeted activity against PGE2 production and the mRNA expression of cyclooxygenase (COX)-2 in LPS-activated RAW264.7 cells. Cafestol has strong inhibitory activity on PGE2 production by suppressing the NF-kB activation pathway. Cafestol contributes to its beneficial effects through various biological activities such as chemopreventive, antitumorigenic, hepatoprotective, antioxidative and antiinflammatory effects[1]. Cafestol, one of the major components of coffee, is a coffee-specific diterpene from. Cafestol is a ERK inhibitor for AP-1-targeted activity against PGE2 production and the mRNA expression of cyclooxygenase (COX)-2 in LPS-activated RAW264.7 cells. Cafestol has strong inhibitory activity on PGE2 production by suppressing the NF-kB activation pathway. Cafestol contributes to its beneficial effects through various biological activities such as chemopreventive, antitumorigenic, hepatoprotective, antioxidative and antiinflammatory effects[1]. Cafestol, one of the major components of coffee, is a coffee-specific diterpene from. Cafestol is a ERK inhibitor for AP-1-targeted activity against PGE2 production and the mRNA expression of cyclooxygenase (COX)-2 in LPS-activated RAW264.7 cells. Cafestol has strong inhibitory activity on PGE2 production by suppressing the NF-kB activation pathway. Cafestol contributes to its beneficial effects through various biological activities such as chemopreventive, antitumorigenic, hepatoprotective, antioxidative and antiinflammatory effects[1].

   

7-Dehydrocholesterol

(3β)-7-Dehydro Cholesterol

C27H44O (384.3392)


D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins 7-Dehydrocholesterol is biosynthetic precursor of cholesterol and vitamin D3. 7-Dehydrocholesterol is biosynthetic precursor of cholesterol and vitamin D3.

   

Dihydrothymine

5,6-Dihydrothymine

C5H8N2O2 (128.0586)


A pyrimidone obtained by formal addition of hydrogen across the 5,6-position of thymine. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 5,6-Dihydro-5-methyluracil (Dihydrothymine), an intermediate breakdown product of thymine, comes from animal or plants. 5,6-Dihydro-5-methyluracil (Dihydrothymine) can be toxic when present at abnormally high levels[1].

   

Ribothymidine

1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-methyl-1,2,3,4-tetrahydropyrimidine-2,4-dione

C10H14N2O6 (258.0852)


A methyluridine having a single methyl substituent at the 5-position on the uracil ring. 5-Methyluridine is a is an endogenous methylated nucleoside found in human fluids. 5-Methyluridine is a is an endogenous methylated nucleoside found in human fluids.

   

Montanic acid

Octacosanoic acid,synthetic

C28H56O2 (424.428)


   

Methyl isobutyl ketone

Methyl isobutyl ketone

C6H12O (100.0888)


   

Perillic acid

Perillic acid

C10H14O2 (166.0994)


C471 - Enzyme Inhibitor > C2020 - Farnesyl Transferase Inhibitor

   

1-Methylnicotinamide

1-Methylnicotinamide

C7H9N2O+ (137.0715)


A pyridinium ion comprising nicotinamide having a methyl group at the 1-position. It is a metabolite of nicotinamide which was initially considered to be biologically inactive but has emerged as an anti-thrombotic and anti-inflammatory agent. COVID info from COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

2-Hydroxychalcone

2-Propen-1-one,1-(2-hydroxyphenyl)-3-phenyl-, (2E)-

C15H12O2 (224.0837)


2-hydroxychalcone, a natural flavonoid, is a potent antioxidant, inhibiting lipid peroxidation. 2-Hydroxychalcone induces apoptosis by Bcl-2 downregulation. 2-Hydroxychalcone inhibits the activation of NF-kB[1][2][3]. 2-hydroxychalcone, a natural flavonoid, is a potent antioxidant, inhibiting lipid peroxidation. 2-Hydroxychalcone induces apoptosis by Bcl-2 downregulation. 2-Hydroxychalcone inhibits the activation of NF-kB[1][2][3].

   

5-Methyluridine

5-Methyluridine

C10H14N2O6 (258.0852)


CONFIDENCE standard compound; INTERNAL_ID 320 5-Methyluridine is a is an endogenous methylated nucleoside found in human fluids. 5-Methyluridine is a is an endogenous methylated nucleoside found in human fluids.

   
   

Tolterodine

Tolterodine-L-tartrate

C22H31NO (325.2406)


G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BD - Drugs for urinary frequency and incontinence C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D000089162 - Genitourinary Agents > D064804 - Urological Agents Tolterodine(PNU-200583) is a potent muscarinic receptor antagonists that show selectivity for the urinary bladder over salivary glands in vivo. IC50 Value: Target: mAChR in vitro: Carbachol-induced contractions of isolated guinea pig bladder were effectively inhibited by tolterodine (IC50 14 nM) and 5-HM (IC50 5.7 nM). The IC50 values were in the microM range and the antimuscarinic potency of tolterodine was 27, 200 and 370-485 times higher, respectively, than its potency in blocking histamine receptors, alpha-adrenoceptors and calcium channels. The active metabolite, 5-HM, was >900 times less potent at these sites than at bladder muscarinic receptors [1]. in vivo: Tolterodine was extensively metabolized in vivo [2]. In the passive-avoidance test, tolterodine at 1 or 3 mg/kg had no effect on memory; the latency to cross and percentage of animals crossing were comparable to controls. In contrast, scopolamine induced a memory deficit; the latency to cross was decreased, and the number of animals crossing was increased [3].

   

Hyoscyamine

BENZENEACETIC ACID, .ALPHA.-(HYDROXYMETHYL)-, (3-ENDO)-8-METHYL-8-AZABICYCLO(3.2.1)OCT-3-YL ESTER, (.ALPHA.S)-

C17H23NO3 (289.1678)


(S)-atropine is an atropine with a 2S-configuration. It is functionally related to a (S)-tropic acid. It is a conjugate base of a (S)-atropinium. Hyoscyamine is a tropane alkaloid and the levo-isomer of [atropine]. It is commonly extracted from plants in the Solanaceae or nightshade family. Research into the action of hyoscyamine in published literature dates back to 1826. Hyoscyamine is used for a wide variety of treatments and therapeutics due to its antimuscarinic properties. Although hyoscyamine is marketed in the United States, it is not FDA approved. Hyoscyamine as a natural plant alkaloid derivative and anticholinergic that is used to treat mild to moderate nausea, motion sickness, hyperactive bladder and allergic rhinitis. Hyoscyamine has not been implicated in causing liver enzyme elevations or clinically apparent acute liver injury. L-Hyoscyamine is a natural product found in Datura ferox, Crenidium spinescens, and other organisms with data available. Hyoscyamine is a belladonna alkaloid derivative and the levorotatory form of racemic atropine isolated from the plants Hyoscyamus niger or Atropa belladonna, which exhibits anticholinergic activity. Hyoscyamine functions as a non-selective, competitive antagonist of muscarinic receptors, thereby inhibiting the parasympathetic activities of acetylcholine on the salivary, bronchial, and sweat glands, as well as the eye, heart, bladder, and gastrointestinal tract. These inhibitory effects cause a decrease in saliva, bronchial mucus, gastric juices, and sweat. Furthermore, its inhibitory action on smooth muscle prevents bladder contraction and decreases gastrointestinal motility. The 3(S)-endo isomer of atropine. A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03B - Belladonna and derivatives, plain > A03BA - Belladonna alkaloids, tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D009184 - Mydriatics D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002491 - Central Nervous System Agents An atropine with a 2S-configuration. Annotation level-1 L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2]. L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2]. L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2].

   

Enterolactone

3,4-Bis((3-hydroxyphenyl)methyl)dihydro-2-(3H)-furanone

C18H18O4 (298.1205)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens CONFIDENCE standard compound; INTERNAL_ID 483; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3951; ORIGINAL_PRECURSOR_SCAN_NO 3949 CONFIDENCE standard compound; INTERNAL_ID 483; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3959; ORIGINAL_PRECURSOR_SCAN_NO 3958 CONFIDENCE standard compound; INTERNAL_ID 483; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3921; ORIGINAL_PRECURSOR_SCAN_NO 3919 CONFIDENCE standard compound; INTERNAL_ID 483; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3952; ORIGINAL_PRECURSOR_SCAN_NO 3950 CONFIDENCE standard compound; INTERNAL_ID 483; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3939; ORIGINAL_PRECURSOR_SCAN_NO 3935 CONFIDENCE standard compound; INTERNAL_ID 483; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3939; ORIGINAL_PRECURSOR_SCAN_NO 3937 Annotation level-1

   

Isoimperatorin

Isoimperatorin

C16H14O4 (270.0892)


D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Origin: Plant, Coumarins Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM. Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM.

   

3-Hydroxy-3-methylglutaric acid

3-Hydroxy-3-methylglutaric acid

C6H10O5 (162.0528)


D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents C - Cardiovascular system > C10 - Lipid modifying agents > C10A - Lipid modifying agents, plain D004791 - Enzyme Inhibitors > D019161 - Hydroxymethylglutaryl-CoA Reductase Inhibitors C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent D009676 - Noxae > D000963 - Antimetabolites Meglutol is an antilipidemic agent that lowers cholesterol, triglycerides, and serum beta-lipoproteins and phospholipids, and inhibits hydroxymethylglutaryl-CoA reductase activity, which is the rate-limiting enzyme in cholesterol biosynthesis. Meglutol is an antilipidemic agent that lowers cholesterol, triglycerides, and serum beta-lipoproteins and phospholipids, and inhibits hydroxymethylglutaryl-CoA reductase activity, which is the rate-limiting enzyme in cholesterol biosynthesis.

   

falcarindiol

1,9-Heptadecadiene-4,6-diyne-3,8-diol, (3R,8S,9Z)-

C17H24O2 (260.1776)


(+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.

   

1-Methylxanthine

1-Methylxanthine

C6H6N4O2 (166.0491)


MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; MVOYJPOZRLFTCP-UHFFFAOYSA-N_STSL_0033_1-Methylxanthine_0500fmol_180410_S2_LC02_MS02_41; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. 1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2]. 1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2].

   

AFLATOXIN M1

AFLATOXIN M1

C17H12O7 (328.0583)


A member of the class of aflatoxins that is aflatoxin B1 in which the hydrogen at position 9a is replaced by a hydroxy group. D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D000348 - Aflatoxins CONFIDENCE Reference Standard (Level 1)

   

FA 18:3

(-)-lamenallenic acid;(-)-octadeca-5,6-trans-16-trienoic acid

C18H30O2 (278.2246)


CONFIDENCE standard compound; INTERNAL_ID 143 COVID info from WikiPathways D - Dermatologicals Same as: D07213 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1].

   

Carveol

2-Methyl-5-[1-methylethenyl]-2-cyclohexen-1-ol

C10H16O (152.1201)


Carveol is an endogenous metabolite. Carveol is an endogenous metabolite.

   

4-hydroxytamoxifen

(E/Z)-4-hydroxy Tamoxifen

C26H29NO2 (387.2198)


CONFIDENCE standard compound; INTERNAL_ID 2716

   

Lactucin

Lactucin

C15H16O5 (276.0998)


An azulenofuran that is 3-methylidene-3,3a,4,5,9a,9b-hexahydroazuleno[4,5-b]furan-2,7-dione carrying additional hydroxy, methyl and hydroxymethyl substituents at positions 4, 6 and 9 respectively (the 3aR,4S,9aS,9bR-diastereomer). Found in chicory.

   

Cytisin

Cytisine

C11H14N2O (190.1106)


N - Nervous system > N07 - Other nervous system drugs > N07B - Drugs used in addictive disorders > N07BA - Drugs used in nicotine dependence C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist > C73579 - Nicotinic Agonist CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2241 Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3]. Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3]. Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3].

   

PHENFORMIN

PHENFORMIN

C10H15N5 (205.1327)


A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins > A10BA - Biguanides C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C98234 - Biguanide Antidiabetic Agent D007004 - Hypoglycemic Agents > D001645 - Biguanides CONFIDENCE standard compound; INTERNAL_ID 210; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5226; ORIGINAL_PRECURSOR_SCAN_NO 5225 ORIGINAL_ACQUISITION_NO 5226; CONFIDENCE standard compound; INTERNAL_ID 210; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_PRECURSOR_SCAN_NO 5225 CONFIDENCE standard compound; INTERNAL_ID 210; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5228; ORIGINAL_PRECURSOR_SCAN_NO 5227 CONFIDENCE standard compound; INTERNAL_ID 210; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5267; ORIGINAL_PRECURSOR_SCAN_NO 5265 CONFIDENCE standard compound; INTERNAL_ID 210; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5263; ORIGINAL_PRECURSOR_SCAN_NO 5262 CONFIDENCE standard compound; INTERNAL_ID 210; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5259; ORIGINAL_PRECURSOR_SCAN_NO 5258 CONFIDENCE standard compound; INTERNAL_ID 210; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5264; ORIGINAL_PRECURSOR_SCAN_NO 5262

   

CHLORDIMEFORM

CHLORDIMEFORM

C10H13ClN2 (196.0767)


CONFIDENCE standard compound; INTERNAL_ID 751; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5932; ORIGINAL_PRECURSOR_SCAN_NO 5931 D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors D004791 - Enzyme Inhibitors > D014475 - Uncoupling Agents D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 751; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5943; ORIGINAL_PRECURSOR_SCAN_NO 5942 CONFIDENCE standard compound; INTERNAL_ID 751; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5951; ORIGINAL_PRECURSOR_SCAN_NO 5949 CONFIDENCE standard compound; INTERNAL_ID 751; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5951; ORIGINAL_PRECURSOR_SCAN_NO 5949 CONFIDENCE standard compound; INTERNAL_ID 751; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5958; ORIGINAL_PRECURSOR_SCAN_NO 5956 CONFIDENCE standard compound; INTERNAL_ID 751; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5950; ORIGINAL_PRECURSOR_SCAN_NO 5948

   

Crotonic acid

2-Butenoic acid

C4H6O2 (86.0368)


A but-2-enoic acid with a trans- double bond at C-2. It has been isolated from Daucus carota. But-2-enoic acid is fatty acid formed by the action of fatty acid synthases from acetyl-CoA and malonyl-CoA precursors. It is involved in the fatty acid biosynthesis. Specifically, it is the product of reaction between (R)-3-Hydroxybutyric acid and fatty acid synthase. [HMDB]. NSC 8751 is an endogenous metabolite. NSC 8751 is an endogenous metabolite.

   

Montanate

n-octacosanoic acid

C28H56O2 (424.428)


   

&alpha

DL-alpha-Amino-N-valenic acid

C5H11NO2 (117.079)


DL-Norvaline, a derivative of L-norvaline, L-norvaline is a non-competitive inhibitor of arginase. DL-Norvaline, a derivative of L-norvaline, L-norvaline is a non-competitive inhibitor of arginase.

   

D-xylo-Form

(2R,3R,4R)-2-Amino-4-hydroxy-3-methylpentanoic acid

C6H13NO3 (147.0895)


   

FEMA 2159

endo-(1S)-1,7,7-trimethylbicyclo[2.2.1]Hept-2-yl acetate

C12H20O2 (196.1463)


(-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1].

   

FA 4:1

Dihydrofuran-2(3H)-one

C4H6O2 (86.0368)


NSC 8751 is an endogenous metabolite. NSC 8751 is an endogenous metabolite.

   

2-amino-4-hydroxy-3-methylpentanoic acid

(2R,3R,4R)-2-Amino-4-hydroxy-3-methylpentanoic acid

C6H13NO3 (147.0895)


   

FA 20:5;O2

4-((1R,5S)-5-((R,1E,5Z)-3-hydroxyundeca-1,5-dien-1-yl)-4-oxocyclopent-2-en-1-yl)butanoic acid

C20H30O4 (334.2144)


An oxylipin that is the (5S,6S)-epoxy-(15S)-hydroxy derivative of 7E,9E,11Z,13E-icosa-7,9,11,13-tetraenoic acid. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents

   

FA 20:4;O4

4-(3-{[(1S,2S,3S)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]methyl}oxiran-2-yl)butanoic acid

C20H32O6 (368.2199)


D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

   

7-DHC

cholesta-5,7-dien-3beta-ol

C27H44O (384.3392)


D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins 7-Dehydrocholesterol is biosynthetic precursor of cholesterol and vitamin D3. 7-Dehydrocholesterol is biosynthetic precursor of cholesterol and vitamin D3.

   

Geranyl geraniol

3,7,11,15-tetramethylhexadeca-2E,6E,10E,14-tetraen-1-ol

C20H34O (290.261)


Geranylgeraniol is an orally acitve vitamin K2 sub-type, an intermediate of the mevalonate pathway. Geranylgeraniol targets NF-kB signaling pathway and could alleviate LPS-induced microglial inflammation in animal model[1][2][3][4]. Geranylgeraniol is an orally acitve vitamin K2 sub-type, an intermediate of the mevalonate pathway. Geranylgeraniol targets NF-kB signaling pathway and could alleviate LPS-induced microglial inflammation in animal model[1][2][3][4].

   

Theasinensin A

Theasinensin A

C44H34O22 (914.1542)


A biflavonoid that is obtained by coupling of two molecules of (-)-epigallocatechin 3-gallate resulting in a bond between positions C-2 of the hydroxyphenyl ring. It is a natural product found in oolong tea.

   

5-Fluorouridine

1-[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-fluoro-pyrimidine-2,4-dione

C9H11FN2O6 (262.0601)


5-Fluorouridine, a metabolite of 5-fluorouracil (HY-90006), is a potent ribozyme self-cleavage inhibitor. 5-Fluorouridine incorporates into both total and poly A RNA and has antiproliferative activity. 5-Fluorouridine induces apoptosis[1][2][3].

   

pcb 1

2-Monochlorobiphenyl

C12H9Cl (188.0393)


   
   

2-(6-Aminopurin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol

2-(6-Aminopurin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol

C10H13N5O4 (267.0967)


   

Quinupristin

N-[(3S,6S,12R,15S,16R,19S)-25-[[(3S)-1-Azabicyclo[2.2.2]octan-3-yl]sulfanylmethyl]-3-[[4-(dimethylamino)phenyl]methyl]-12-ethyl-4,16-dimethyl-2,5,11,14,18,21,24-heptaoxo-19-phenyl-17-oxa-1,4,10,13,20-pentazatricyclo[20.4.0.06,10]hexacosan-15-yl]-3-hydroxypyridine-2-carboxamide

C53H67N9O10S (1021.4731)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D025361 - Streptogramins C254 - Anti-Infective Agent > C258 - Antibiotic Quinupristin is a streptogramin antibiotic. Quinupristin blocks peptide bond synthesis to prevent the extension of polypeptide chains and promote the detachment of incomplete protein chains in the bacterial ribosomal subunits[1] [2].

   

Virginiamycin M1

Pristinamycin IIA

C28H35N3O7 (525.2475)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D025361 - Streptogramins C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic Virginiamycin M1 (Pristinamycin IIA; Ostreogrycin A), produced by?Streptomyces virginiae, is an polyunsaturated macrocyclic lactone antibiotic and acts as a component of Virginiamycin (HY-112665)[1]. Virginiamycin M1 alone is against Staphylococcus aureus with a MIC of 0.25 μg/mL. The combination of Virginiamycin M1 and Virginiamycin S1 (HY-N6680) is 0.125 μg/mL (MIC Value), which can improve the bactericidal effect 1-30 times[2].

   

N-n-Butyl-N-methyl-11-(3,17beta-dihydroxyestra-1,3,5(10)-trien-7alpha-yl)undecanamide

N-n-Butyl-N-methyl-11-(3,17beta-dihydroxyestra-1,3,5(10)-trien-7alpha-yl)undecanamide

C34H55NO3 (525.4182)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

Floxuridine

Floxuridine

C9H11FN2O5 (246.0652)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents Floxuridine (5-Fluorouracil 2'-deoxyriboside) is a?pyrimidine?analog?and known as an?oncology antimetabolite. Floxuridine inhibits Poly(ADP-Ribose) polymerase and induces DNA damage by activating the ATM and ATR checkpoint signaling pathways in vitro. Floxuridine is a extreamly potent inhibitor for S. aureus infection and induces cell apoptosis[1][2]. Floxuridine has antiviral effects against HSV and CMV[3].

   

Masoprocol

Masoprocol

C18H22O4 (302.1518)


D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1322 - Lipooxygenase Inhibitor D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3].

   

Oxethazaine

Oxethazaine

C28H41N3O3 (467.3148)


C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AD - Local anesthetics D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

TEMOPORFIN

TEMOPORFIN

C44H32N4O4 (680.2423)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01X - Other antineoplastic agents > L01XD - Sensitizers used in photodynamic/radiation therapy D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents D000970 - Antineoplastic Agents C1420 - Photosensitizing Agent D003879 - Dermatologic Agents

   

GW0742

{4-[({2-[3-Fluoro-4-(Trifluoromethyl)phenyl]-4-Methyl-1,3-Thiazol-5-Yl}methyl)sulfanyl]-2-Methylphenoxy}acetic Acid

C21H17F4NO3S2 (471.0586)


GW0742 is a potent PPARβ and PPARδ agonist, with an IC50 of 1 nM for human PPARδ in binding assay, and EC50s of 1 nM, 1.1 μM and 2 μM for human PPARδ, PPARα, and PPARγ, respectively.

   

Atractylenolide I

(4aS,8aS)-3,8a-dimethyl-5-methylidene-4a,6,7,8-tetrahydro-4H-benzo[f][1]benzoxol-2-one

C15H18O2 (230.1307)


Atractylenolide I is a sesquiterpene derived from the rhizome of Atractylodes macrocephala, possesses diverse bioactivities, such as neuroprotective, anti-allergic, anti-inflammatory and anticancer properties. Atractylenolide I reduces protein levels of phosphorylated JAK2 and STAT3 in A375 cells, and acts as a TLR4-antagonizing agent. Atractylenolide I is a sesquiterpene derived from the rhizome of Atractylodes macrocephala, possesses diverse bioactivities, such as neuroprotective, anti-allergic, anti-inflammatory and anticancer properties. Atractylenolide I reduces protein levels of phosphorylated JAK2 and STAT3 in A375 cells, and acts as a TLR4-antagonizing agent.

   

CORFREE M1

4-02-00-02078 (Beilstein Handbook Reference)

C10H18O4 (202.1205)


Decanedioic acid, a normal urinary acid, is found to be associated with carnitine-acylcarnitine translocase deficiency and medium chain acyl-CoA dehydrogenase deficiency. Decanedioic acid, a normal urinary acid, is found to be associated with carnitine-acylcarnitine translocase deficiency and medium chain acyl-CoA dehydrogenase deficiency.

   

AI3-06287

InChI=1\C4H6O2\c1-2-3-4(5)6\h2-3H,1H3,(H,5,6)\b3-2

C4H6O2 (86.0368)


NSC 8751 is an endogenous metabolite. NSC 8751 is an endogenous metabolite.

   

482-45-1

7H-Furo(3,2-g)(1)benzopyran-7-one, 4-((3-methyl-2-butenyl)oxy)-

C16H14O4 (270.0892)


D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM. Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM.

   

571-74-4

4H-1-Benzopyran-4-one, 3,5,7-trihydroxy-2-(4-hydroxyphenyl)-8-methoxy-

C16H12O7 (316.0583)


   

Phlorol

InChI=1\C8H10O\c1-2-7-5-3-4-6-8(7)9\h3-6,9H,2H2,1H

C8H10O (122.0732)


   

Chavicol

.gamma.-(p-Hydroxyphenyl)-.alpha.-propylene

C9H10O (134.0732)


   

Gentisein

9H-Xanthen-9-one, 1,3,7-trihydroxy-

C13H8O5 (244.0372)


Gentisein (NSC 329491), the major metabolite of Mangiferin, shows the most potent serotonin uptake inhibition with an IC50 value of 4.7 μM[1][2]. Gentisein (NSC 329491), the major metabolite of Mangiferin, shows the most potent serotonin uptake inhibition with an IC50 value of 4.7 μM[1][2]. Gentisein (NSC 329491), the major metabolite of Mangiferin, shows the most potent serotonin uptake inhibition with an IC50 value of 4.7 μM[1][2].

   

c0647

Phenylacetonitrile, liquid [UN2470] [Poison]

C8H7N (117.0578)


   

Orcin

InChI=1\C7H8O2\c1-5-2-6(8)4-7(9)3-5\h2-4,8-9H,1H

C7H8O2 (124.0524)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents

   

520-12-7

4H-1-Benzopyran-4-one, 5,7-dihydroxy-6-methoxy-2-(4-methoxyphenyl)- (9CI)

C17H14O6 (314.079)


Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2]. Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2]. Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2].

   

AI3-36442

(C16-C22) Alkylcarboxylic acid

C19H38O2 (298.2872)


Nonadecanoic acid is a 19-carbon long saturated fatty acid. Nonadecanoic acid is the major constituent of the substance secreted by Rhinotermes marginalis to defence[1]. Nonadecanoic acid is a 19-carbon long saturated fatty acid. Nonadecanoic acid is the major constituent of the substance secreted by Rhinotermes marginalis to defence[1].

   

Thesal

1H-purine-2,6-dione,3,7-dihydro-3,7- dimethyl- (9CI)

C7H8N4O2 (180.0647)


R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03D - Other systemic drugs for obstructive airway diseases > R03DA - Xanthines C - Cardiovascular system > C03 - Diuretics > C03B - Low-ceiling diuretics, excl. thiazides > C03BD - Xanthine derivatives D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

   

Hexone

Methyl isobutyl ketone [UN1245] [Flammable liquid]

C6H12O (100.0888)


   

SSP-SSP

InChI=1\C6H14S2\c1-3-5-7-8-6-4-2\h3-6H2,1-2H

C6H14S2 (150.0537)


   

AIDS-011160

1,3,5-trihydroxy-9-xanthenone

C13H8O5 (244.0372)


   

Actinex

4-[(2S,3R)-4-(3,4-dihydroxyphenyl)-2,3-dimethyl-butyl]benzene-1,2-diol

C18H22O4 (302.1518)


D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1322 - Lipooxygenase Inhibitor D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3].

   

WLN: 4R

InChI=1\C10H14\c1-2-3-7-10-8-5-4-6-9-10\h4-6,8-9H,2-3,7H2,1H

C10H14 (134.1095)


   

c0242

InChI=1\C8H8O\c1-7-3-2-4-8(5-7)6-9\h2-6H,1H

C8H8O (120.0575)


m-Tolualdehyde (3-Methylbenzaldehyde) is a tolualdehyde compound with the methyl substituent at the 3-position. m-Tolualdehyde can be used as a food additive. m-Tolualdehyde (3-Methylbenzaldehyde) is a tolualdehyde compound with the methyl substituent at the 3-position. m-Tolualdehyde can be used as a food additive.

   

Monotropein

(1S,4aS,7R,7aS)-7-hydroxy-7-(hydroxymethyl)-1-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4a,7a-dihydro-1H-cyclopenta[d]pyran-4-carboxylic acid

C16H22O11 (390.1162)


Monotropein is an iridoid glycoside isolated Morinda officinalis. Monotropein inhibits the expression of inflammatory mediators in dextran sulfate sodium (DSS)-induced colitis mouse model[1]. Monotropein is an iridoid glycoside isolated Morinda officinalis. Monotropein inhibits the expression of inflammatory mediators in dextran sulfate sodium (DSS)-induced colitis mouse model[1].

   

58436-28-5

5-[2-(4-hydroxyphenyl)ethyl]benzene-1,3-diol

C14H14O3 (230.0943)


Dihydroresveratrol, a potent phytoestrogen, is a hormone receptor modulator. Dihydroresveratrol exhibits proliferative effects in androgen-independent prostate and breast cancer cells at picomolar and nanomolar concentrations[1]. Dihydroresveratrol, a potent phytoestrogen, is a hormone receptor modulator. Dihydroresveratrol exhibits proliferative effects in androgen-independent prostate and breast cancer cells at picomolar and nanomolar concentrations[1].

   

Shionone

2(1H)-CHRYSENONE, HEXADECAHYDRO-1,4B,6A,8,10A,12A-HEXAMETHYL-8-(4-METHYL-3-PENTENYL)-, (1R-(1.ALPHA.,4A.BETA.,4B.ALPHA.,6A.BETA.,8.BETA.,10A.ALPHA.,10B.BETA.,12A.ALPHA.))-

C30H50O (426.3861)


Shionone is a tetracyclic triterpenoid that is perhydrochrysene which is substituted by methyl groups at positions 1, 4bbeta, 6aalpha, 8beta, 10abeta and 12a positions, by a 4-methylpent-3-enyl group at the 8alpha position, and with an oxo group at position 2. It is a tetracyclic triterpenoid and a cyclic terpene ketone. Shionone is a natural product found in Aster baccharoides, Aster poliothamnus, and other organisms with data available. Shionone is the major triterpenoid isolated from Aster tataricus, has anti-tussive, anti-inflammatory activities[1][2]. Shionone possesses a unique six-membered tetracyclic skeleton and 3-oxo-4-monomethyl structure[1]. Shionone is the major triterpenoid isolated from Aster tataricus, has anti-tussive, anti-inflammatory activities[1][2]. Shionone possesses a unique six-membered tetracyclic skeleton and 3-oxo-4-monomethyl structure[1].

   

80681-42-1

(2S)-2-(1-hydroxy-1-methyl-ethyl)-4-methoxy-7-methyl-2,3-dihydrofuro[3,2-g]chromen-5-one

C16H18O5 (290.1154)


5-O-Methylvisamminol, a (furo) chromone identified in the extract of T. glauca, has a limited occurrence in the plant kingdom. 5-O-Methylvisamminol is useful in (chemical) phylogeny and is a possible excellent chemotaxonomic marker (family and/or subfamily level) for Apiaceae[1]. 5-O-Methylvisamminol, a (furo) chromone identified in the extract of T. glauca, has a limited occurrence in the plant kingdom. 5-O-Methylvisamminol is useful in (chemical) phylogeny and is a possible excellent chemotaxonomic marker (family and/or subfamily level) for Apiaceae[1].

   

Butanex

Acetamide, N-(butoxymethyl)-2-chloro-N-(2,6-diethylphenyl)-

C17H26ClNO2 (311.1652)


D010575 - Pesticides > D006540 - Herbicides D009676 - Noxae > D002273 - Carcinogens D016573 - Agrochemicals

   

Dibenzil

InChI=1\C14H14\c1-3-7-13(8-4-1)11-12-14-9-5-2-6-10-14\h1-10H,11-12H

C14H14 (182.1095)


   

FLUOROLINK(R) D

(e,e,e)-geranylgeraniol

C20H34O (290.261)


A diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. A geranylgeraniol in which all four double bonds have E- (trans-) geometry. Geranylgeraniol, also known as tetraprenol or (2e,6e,10e)-geranylgeraniol, is a member of the class of compounds known as acyclic diterpenoids. Acyclic diterpenoids are diterpenoids (compounds made of four consecutive isoprene units) that do not contain a cycle. Thus, geranylgeraniol is considered to be an isoprenoid lipid molecule. Geranylgeraniol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Geranylgeraniol can be found in flaxseed, which makes geranylgeraniol a potential biomarker for the consumption of this food product. Geranylgeraniol is a diterpene alcohol which plays a role in several important biological processes. It is an intermediate in the biosynthesis of other diterpenes and of vitamins E and K. It also used in the post-translational modification known as geranylgeranylation. Geranylgeraniol is a pheromone for bumblebees and a variety of other insects . Geranylgeraniol is an orally acitve vitamin K2 sub-type, an intermediate of the mevalonate pathway. Geranylgeraniol targets NF-kB signaling pathway and could alleviate LPS-induced microglial inflammation in animal model[1][2][3][4]. Geranylgeraniol is an orally acitve vitamin K2 sub-type, an intermediate of the mevalonate pathway. Geranylgeraniol targets NF-kB signaling pathway and could alleviate LPS-induced microglial inflammation in animal model[1][2][3][4].

   

15(S)-HPETE

15-hydroperoxy-5,8,11,13-eicosatetraenoic acid

C20H32O4 (336.23)


D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides The (S)-enantiomer of 15-HPETE. 15(S)-hydroperoxyeicosatetraenoic acid (15(S)-HPETE) is the corresponding hydroperoxide of 15(S)-HETE and undergoes homolytic decomposition to the DNA-reactive bifunctional electrophile 4-oxo-2(E)-nonenal, a precursor of heptanone-etheno-2-deoxyguanosine. Reactive oxygen species convert the omega-6 polyunsaturated fatty acid arachidonic acid into (15-HPETE); vitamin C mediates 15(S)-HPETE decomposition. 15(S)-HPETE initiates apoptosis in vascular smooth muscle cells. 15(S)-HPETE is a lipoxygenase metabolite that affects the expression of cell adhesion molecules (CAMs) involved in the adhesion of leukocytes and/or the accumulation of leukocytes in the vascular endothelium, these being the initial events in endothelial cell injury. 15(S)-HPETE induces a loss of cardiomyocytes membrane integrity. 15-(S)HPETE is a hydroperoxide that enhances the activity of the enzymes lipoxygenase [EC 1.13.11.12] and Na+, K+-ATPase [EC 3.6.3.9] of brain microvessels. Lipoxygenase(s) and Na+-K+-ATPase of brain microvessels may play a significant role in the occurrence of ischemic brain edema. (PMID: 15964853, 15723435, 8655602, 8595608, 2662983) [HMDB]

   

11-Dehydro-thromboxane B2

(E)-7-[4-Hydroxy-2-[(E)-3-hydroxyoct-1-enyl]-6-oxooxan-3-yl]hept-5-enoic acid

C20H32O6 (368.2199)


A thromboxane obtained by formal oxidation of the hemiacetal hydroxy function of thromboxane B2.

   

Antimony trichloride

Antimony trichloride

Cl3Sb (225.8104)


   

(+)-Himbacine

(+)-Himbacine

C22H35NO2 (345.2668)


D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics

   

Trillin

(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-[(1S,2S,4S,5R,6R,7S,8R,9S,12S,13R,16S)-5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icos-18-ene-6,2-oxane]-16-yl]oxyoxane-3,4,5-triol

C33H52O8 (576.3662)


Diosgenin 3-O-beta-D-glucoside is a sterol 3-beta-D-glucoside having diosgenin as the sterol component. It has a role as a metabolite. It is a sterol 3-beta-D-glucoside, a monosaccharide derivative, a hexacyclic triterpenoid and a spiroketal. It is functionally related to a diosgenin. It derives from a hydride of a spirostan. Disogluside is a natural product found in Allium rotundum, Allium narcissiflorum, and other organisms with data available. C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent A sterol 3-beta-D-glucoside having diosgenin as the sterol component. Diosgenin glucoside, a saponin compound extracted from Trillium tschonoskii, provides neuroprotection by regulating microglial M1 polarization. Diosgenin glucoside protects against spinal cord injury by regulating autophagy and alleviating apoptosis [1][2]. Diosgenin glucoside, a saponin compound extracted from Trillium tschonoskii, provides neuroprotection by regulating microglial M1 polarization. Diosgenin glucoside protects against spinal cord injury by regulating autophagy and alleviating apoptosis [1][2].

   

Isoliquiritin

(E)-1-(2,4-Dihydroxyphenyl)-3-(4-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)phenyl)prop-2-en-1-one

C21H22O9 (418.1264)


Isoliquiritin is a monosaccharide derivative that is trans-chalcone substituted by hydroxy groups at positions 2 and 4 and a beta-D-glucopyranosyloxy group at position 4 respectively. It has a role as an antineoplastic agent and a plant metabolite. It is a member of chalcones, a member of resorcinols, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a trans-chalcone. Isoliquiritin is a natural product found in Allium chinense, Portulaca oleracea, and other organisms with data available. See also: Glycyrrhiza Glabra (part of). A monosaccharide derivative that is trans-chalcone substituted by hydroxy groups at positions 2 and 4 and a beta-D-glucopyranosyloxy group at position 4 respectively. Isoliquiritin, isolated from Licorice Root, inhibits angiogenesis and tube formation. Isoliquiritin also exhibits antidepressant-like effects and antifungal activity[1][2][3]. Isoliquiritin, isolated from Licorice Root, inhibits angiogenesis and tube formation. Isoliquiritin also exhibits antidepressant-like effects and antifungal activity[1][2][3].

   

Adyvia

(2S,3R,4S)-2-Amino-4-hydroxy-3-methylpentanoic acid (H-L-Ile(4-OH)-OH)

C6H13NO3 (147.0895)


(4S)-4-hydroxy-L-isoleucine is an L-isoleucine derivative that is L-isoleucine bearing a (4S)-hydroxy substituent. It has a role as a plant metabolite. It is an amino alcohol, a L-isoleucine derivative and a non-proteinogenic L-alpha-amino acid. It is a tautomer of a (4S)-4-hydroxy-L-isoleucine zwitterion. See also: Fenugreek seed (part of). (2S,3R,4S)-4-Hydroxyisoleucine is an orally active compound isolated from Trigonella foenum-graecum, with anti-diabetes and anti-diabetic nephropathy activity[1]. (2S,3R,4S)-4-Hydroxyisoleucine is an orally active compound isolated from Trigonella foenum-graecum, with anti-diabetes and anti-diabetic nephropathy activity[1]. 4-Hydroxyisoleucine (4-?Hydroxy-?L-?isoleucine) is an amino acid which can be extracted and purified from fenugreek seeds. 4-Hydroxyisoleucine (4-?Hydroxy-?L-?isoleucine) displays an insulinotropic activity of great interest[1]. 4-Hydroxyisoleucine (4-?Hydroxy-?L-?isoleucine) is an amino acid which can be extracted and purified from fenugreek seeds. 4-Hydroxyisoleucine (4-?Hydroxy-?L-?isoleucine) displays an insulinotropic activity of great interest[1].

   

Ligusticum lactone

InChI=1/C12H12O2/c1-2-3-8-11-9-6-4-5-7-10(9)12(13)14-11/h4-8H,2-3H2,1H3/b11-8

C12H12O2 (188.0837)


(Z)-3-butylidenephthalide is a gamma-lactone that is phthalide substituted by a butylidene group at position 3. Isolated from Ligusticum porteri, it exhibits hypoglycemic activity. It has a role as a metabolite, a hypoglycemic agent and an EC 3.2.1.20 (alpha-glucosidase) inhibitor. It is a member of 2-benzofurans and a gamma-lactone. It is functionally related to a 2-benzofuran-1(3H)-one. Butylidenephthalide is a natural product found in Ligusticum striatum, Angelica sinensis, and other organisms with data available. A gamma-lactone that is phthalide substituted by a butylidene group at position 3. Isolated from Ligusticum porteri, it exhibits hypoglycemic activity. 3-Butylidenephthalide (Butylidenephthalide) is a phthalic anhydride derivative identified in Ligusticum chuanxiong Hort, and has larvicidal activity (LC50 of 1.56 mg/g for Spodoptera litura larvae)[1]. 3-Butylidenephthalide (Butylidenephthalide) is a phthalic anhydride derivative identified in Ligusticum chuanxiong Hort, and has larvicidal activity (LC50 of 1.56 mg/g for Spodoptera litura larvae)[1].

   

Sinapine

Ethanaminium, 2-(((2E)-3-(4-hydroxy-3,5-dimethoxyphenyl)-1-oxo-2-propen-1-yl)oxy)-N,N,N-trimethyl-

C16H24NO5+ (310.1654)


Sugar phosphate, also known as sinapoylcholine or sinapine, belongs to coumaric acids and derivatives class of compounds. Those are aromatic compounds containing Aromatic compounds containing a cinnamic acid moiety (or a derivative thereof) hydroxylated at the C2 (ortho-), C3 (meta-), or C4 (para-) carbon atom of the benzene ring. Sugar phosphate is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Sugar phosphate can be found in a number of food items such as common sage, tea leaf willow, broccoli, and sweet bay, which makes sugar phosphate a potential biomarker for the consumption of these food products. Sugar phosphate exists in all living organisms, ranging from bacteria to humans. Sinapine (CAS: 18696-26-9), also known as sinapoylcholine, belongs to the class of organic compounds known as morphinans. These are polycyclic compounds with a four-ring skeleton with three condensed six-member rings forming a partially hydrogenated phenanthrene moiety, one of which is aromatic while the two others are alicyclic. Sinapine is an extremely weak basic (essentially neutral) compound (based on its pKa). Sinapine has been detected, but not quantified, in garden cress and horseradish. Sinapine is found in brassicas. It is a storage protein isolated from the seeds of Brassica napus (rape). This could make sinapine a potential biomarker for the consumption of these foods. Sinapine is an acylcholine in which the acyl group specified is sinapoyl. It has a role as a photosynthetic electron-transport chain inhibitor, an antioxidant and a plant metabolite. It is functionally related to a trans-sinapic acid. Sinapine is a natural product found in Alliaria petiolata, Isatis quadrialata, and other organisms with data available. An acylcholine in which the acyl group specified is sinapoyl. Sinapine is an alkaloid isolated from seeds of the cruciferous species. Sinapine exhibits anti-inflammatory, anti-oxidant, anti-tumor, anti-angiogenic and radio-protective effects. Sinapine is also an acetylcholinesterase (AChE) inhibitor and can be used for the research of Alzheimer’s disease, ataxia, myasthenia gravis, and Parkinson’s disease[1][2][3][4]. Sinapine is an alkaloid isolated from seeds of the cruciferous species. Sinapine exhibits anti-inflammatory, anti-oxidant, anti-tumor, anti-angiogenic and radio-protective effects. Sinapine is also an acetylcholinesterase (AChE) inhibitor and can be used for the research of Alzheimer’s disease, ataxia, myasthenia gravis, and Parkinson’s disease[1][2][3][4].

   

Isoarnebin I

2-Butenoic acid, 3-methyl-, 1-(1,4-dihydro-5,8-dihydroxy-1,4-dioxo-2-naphthalenyl)-4-methyl-3-pentenyl ester, (+)-

C21H22O6 (370.1416)


Beta,beta-Dimethylacrylshikonin is a hydroxy-1,4-naphthoquinone. beta,beta-Dimethylacrylshikonin is a natural product found in Alkanna cappadocica, Lithospermum erythrorhizon, and other organisms with data available. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1].

   

Monotropein

(1S,4aS,7R,7aS)-7-Hydroxy-7-(hydroxymethyl)-1-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-1,4a,7,7a-tetrahydrocyclopenta[c]pyran-4-carboxylic acid

C16H22O11 (390.1162)


Monotropein is an iridoid monoterpenoid that is 1,4a,7,7a-tetrahydrocyclopenta[c]pyran substituted by a beta-D-glucopyranosyloxy group at position 1, a carboxylic acid group at position 4, and at position 7 by a hydroxy and hydroxymethyl groups respectively (the 1S,4aS,7R,7aS diastereomer). It has a role as a metabolite and an anti-inflammatory agent. It is a cyclopentapyran, a monocarboxylic acid, an iridoid monoterpenoid, a beta-D-glucoside and a monosaccharide derivative. Monotropein is a natural product found in Vaccinium, Vaccinium macrocarpon, and other organisms with data available. See also: Galium aparine whole (part of). An iridoid monoterpenoid that is 1,4a,7,7a-tetrahydrocyclopenta[c]pyran substituted by a beta-D-glucopyranosyloxy group at position 1, a carboxylic acid group at position 4, and at position 7 by a hydroxy and hydroxymethyl groups respectively (the 1S,4aS,7R,7aS diastereomer). Monotropein is an iridoid glycoside isolated Morinda officinalis. Monotropein inhibits the expression of inflammatory mediators in dextran sulfate sodium (DSS)-induced colitis mouse model[1]. Monotropein is an iridoid glycoside isolated Morinda officinalis. Monotropein inhibits the expression of inflammatory mediators in dextran sulfate sodium (DSS)-induced colitis mouse model[1].

   

Deltonin

(2S,3R,4R,5R,6S)-2-[(2R,3R,4S,5S,6R)-4-hydroxy-6-(hydroxymethyl)-2-[(1S,2S,4S,5R,6R,7S,8R,9S,12S,13R,16S)-5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icos-18-ene-6,2-oxane]-16-yl]oxy-5-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-3-yl]oxy-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


Deltonin is a triterpenoid. Deltonin is a natural product found in Ophiopogon planiscapus, Allium vineale, and other organisms with data available. Deltonin, a steroidal saponin, isolated from Dioscorea zingiberensis, has antitumor activity; Deltonin inhibits ERK1/2 and AKT activation. Deltonin, a steroidal saponin, isolated from Dioscorea zingiberensis, has antitumor activity; Deltonin inhibits ERK1/2 and AKT activation. Deltonin, a steroidal saponin, isolated from Dioscorea zingiberensis, has antitumor activity; Deltonin inhibits ERK1/2 and AKT activation.

   

Capillarisin

5,7-dihydroxy-2-(4-hydroxyphenoxy)-6-methoxy-4H-chromen-4-one

C16H12O7 (316.0583)


Capillarisin is a member of coumarins. Capillarisin is a natural product found in Artemisia capillaris with data available.

   

chrysoplenol D

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5-hydroxy-3,6,7-trimethoxy-

C18H16O8 (360.0845)


3,4,5-trihydroxy-3,6,7-trimethoxyflavone is a trimethoxyflavone that is the 3,6,7-trimethyl ether derivative of quercetagetin. It has a role as an antineoplastic agent and a metabolite. It is a trihydroxyflavone and a trimethoxyflavone. It is functionally related to a quercetagetin. Chrysosplenol D is a natural product found in Psiadia viscosa, Chrysosplenium oppositifolium, and other organisms with data available. See also: Vitex negundo fruit (part of). A trimethoxyflavone that is the 3,6,7-trimethyl ether derivative of quercetagetin. Chrysosplenol D is a methoxy flavonoid that induces ERK1/2-mediated apoptosis in triple negative human breast cancer cells. Chrysosplenol D also exhibits anti-inflammatory and moderate antitrypanosomal activities[1][2][3][4]. Chrysosplenol D is a methoxy flavonoid that induces ERK1/2-mediated apoptosis in triple negative human breast cancer cells. Chrysosplenol D also exhibits anti-inflammatory and moderate antitrypanosomal activities[1][2][3][4].

   

SULFANILIC ACID

4-Aminobenzenesulfonic acid

C6H7NO3S (173.0147)


An aminobenzenesulfonic acid that is aniline sulfonated at the para-position.

   

Fomepizole

4-Methyl-1H-pyrazole

C4H6N2 (82.0531)


V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes D020011 - Protective Agents > D000931 - Antidotes D004791 - Enzyme Inhibitors C471 - Enzyme Inhibitor

   

1,4-DITHIANE

1,4-DITHIANE

C4H8S2 (120.0067)


   

DIMERCAPROL

DIMERCAPROL

C3H8OS2 (124.0017)


V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes D064449 - Sequestering Agents > D002614 - Chelating Agents

   

9,10-Phenanthrenequinone

9,10-Phenanthrenequinone

C14H8O2 (208.0524)


D009676 - Noxae > D009153 - Mutagens

   

MGK-264

N-(2-Ethylhexyl)-5-norbornene-2,3-dicarboximide

C17H25NO2 (275.1885)


   

Eprosartan

Eprosartan

C23H24N2O4S (424.1457)


C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09C - Angiotensin ii receptor blockers (arbs), plain > C09CA - Angiotensin ii receptor blockers (arbs), plain C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C66930 - Angiotensin II Receptor Antagonist D057911 - Angiotensin Receptor Antagonists > D057912 - Angiotensin II Type 2 Receptor Blockers COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Eprosartan (SKF-108566J free base) is a selective, competitive, nonpeptid and orally active angiotensin II receptor antagonist, used as an antihypertensive. Eprosartan binds angiotensin II receptor with IC50s of 9.2 nM and 3.9 nM in rat and human adrenal cortical membranes, respectively [1].

   

Diethyl phosphate

Diethyl hydrogen phosphate

C4H11O4P (154.0395)


A dialkyl phosphate having ethyl as the alkyl group. Diethylphosphate (DEP) is product of metabolism and of environmental degradation of a commonly used insecticide Chlorpyrifos.

   

PERILLALDEHYDE

dl-Perillaldehyde

C10H14O (150.1045)


   

Phenyl phosphate

Phenyl dihydrogen phosphate

C6H7O4P (174.0082)


An aryl phosphate resulting from the mono-esterification of phosphoric acid with phenol.

   
   

Halofantrine

Halofantrine

C26H30Cl2F3NO (499.1656)


P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01B - Antimalarials D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent

   

p-Allylphenol

p-Allylphenol

C9H10O (134.0732)


   

Propyl disulfide

Dipropyl disulfide

C6H14S2 (150.0537)


An organic disulfide where the alkyl groups specified are propyl. It is a component of the essential oils obtained from Allium.

   

Difenidol

DIPHENIDOL

C21H27NO (309.2093)


D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics D002491 - Central Nervous System Agents

   

3β,5α,6β-Trihydroxycholestane

3beta,5alpha,6beta-Trihydroxycholestane

C27H48O3 (420.3603)


D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites

   

Butoconazole

Butoconazole

C19H17Cl3N2S (410.0178)


G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AF - Imidazole derivatives D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent

   

4-Chlorocatechol

4-Chlorocatechol

C6H5ClO2 (143.9978)


A chlorocatechol that is catechol substituted by a chloro group at position 4.

   

L-Threonic acid

L-Threonic acid

C4H8O5 (136.0372)


The L-enantiomer of threonic acid.

   

dezocine

dezocine

C16H23NO (245.178)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics N - Nervous system > N02 - Analgesics > N02A - Opioids

   

CYTIDINE-5-triphosphATE

cytidine 5-(tetrahydrogen triphosphate)

C9H16N3O14P3 (482.9845)


Cytidine 5′-triphosphate (Cytidine triphosphate; 5'-CTP) is a nucleoside triphosphate and serves as a building block for nucleotides and nucleic acids, lipid biosynthesis. Cytidine triphosphate synthase can catalyze the formation of cytidine 5′-triphosphate from uridine 5′-triphosphate (UTP). Cytidine 5′-triphosphate is an essential biomolecule?in the de novo?pyrimidine biosynthetic pathway in?T. gondii[1].

   

H-Gly-Leu-OH

Glycyl-L-leucine

C8H16N2O3 (188.1161)


Glycyl-l-leucine is a dipeptide that can be a common substrate for?glycyl-leucine?dipeptidase.

   

D-Norvaline

D(-)-Norvaline

C5H11NO2 (117.079)


   

betaine aldehyde

trimethyl-(2-oxoethyl)ammonium

C5H12NO+ (102.0919)


A quaternary ammonium ion that is nitrogen substituted by three methyl groups and a 2-oxoethyl group. It is an intermediate in the metabolism of amino acids like glycine, serine and threonine. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

3,4-Dihydroxyphenylacetaldehyde

3,4-Dihydroxyphenylacetaldehyde

C8H8O3 (152.0473)


A phenylacetaldehyde in which the 3 and 4 positions of the phenyl group are substituted by hydroxy groups. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

delta-12-Prostaglandin J2

delta-12-Prostaglandin J2

C20H30O4 (334.2144)


D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents

   

1-Hydroxyisoquinoline

ISOQUINOLIN-1(2H)-ONE

C9H7NO (145.0528)


COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Tautomycin from Streptomyces spiroverticillatus

Tautomycin from Streptomyces spiroverticillatus

C41H66O13 (766.4503)


D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D004791 - Enzyme Inhibitors

   

Dihydroxyfumaric acid

2-Butenedioic acid,2,3-dihydroxy-, (2E)-

C4H4O6 (148.0008)


   

alpha-Eleostearic acid

alpha-Eleostearic acid

C18H30O2 (278.2246)


   

Cembra-2,7,11-triene-4,6-diol

Cembra-2,7,11-triene-4,6-diol

C20H34O2 (306.2559)


   

Uralsaponin A

Uralsaponin A

C42H62O16 (822.4038)


Glycyrrhizic acid is a triterpenoid saponinl, acting as a direct HMGB1 antagonist, with anti-tumor, anti-diabetic activities. Glycyrrhizic acid is a triterpenoid saponinl, acting as a direct HMGB1 antagonist, with anti-tumor, anti-diabetic activities.

   

Galbeta1,3GlcNAc

6-chloro-2-(n-(2-diethylaminoethyl)-n-methylamino)-ortho-acetotoluidide dihydrochloride

C14H25NO11 (383.1428)


An amino disaccharide consisting of beta-D-galactose linked via a (1->3)-glycosidic bond to N-acetyl-D-glucosamine.

   

2-(alpha-Hydroxyethyl)thiamine diphosphate

2-(alpha-Hydroxyethyl)thiamine diphosphate

C14H23N4O8P2S+ (469.0712)


   
   
   

Azactam

Urobactam

C13H17N5O8S2 (435.0519)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

Oxetacaine

Oxethazaine

C28H41N3O3 (467.3148)


C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AD - Local anesthetics D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent Same as: D01152

   

Foscan

TEMOPORFIN

C44H32N4O4 (680.2423)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01X - Other antineoplastic agents > L01XD - Sensitizers used in photodynamic/radiation therapy D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents D000970 - Antineoplastic Agents C1420 - Photosensitizing Agent D003879 - Dermatologic Agents Same as: D06066

   

loxtidine

LAVOLTIDINE

C19H29N5O2 (359.2321)


C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent > C29702 - Histamine-2 Receptor Antagonist D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists

   

GW 0742

{4-[({2-[3-Fluoro-4-(Trifluoromethyl)phenyl]-4-Methyl-1,3-Thiazol-5-Yl}methyl)sulfanyl]-2-Methylphenoxy}acetic Acid

C21H17F4NO3S2 (471.0586)


GW0742 is a potent PPARβ and PPARδ agonist, with an IC50 of 1 nM for human PPARδ in binding assay, and EC50s of 1 nM, 1.1 μM and 2 μM for human PPARδ, PPARα, and PPARγ, respectively.

   

O-Ethylphenol

O-Ethylphenol

C8H10O (122.0732)


   

Butachlore

Butachlore

C17H26ClNO2 (311.1652)


D010575 - Pesticides > D006540 - Herbicides D009676 - Noxae > D002273 - Carcinogens D016573 - Agrochemicals

   

Bisphenol B

p,p-sec-Butylidenediphenol

C16H18O2 (242.1307)


   
   

Acetyl-L-tryptophan

N-Acetyl-L-tryptophan

C13H14N2O3 (246.1004)


A N-acetyl-L-amino acid that is the N-acetyl derivative of L-tryptophan. D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors N-Acetyl-L-tryptophan is an endogenous metabolite.

   

nnk

4-(N-Nitrosomethylamino)-1-(3-pyridyl)-1-butanone

C10H13N3O2 (207.1008)


D009676 - Noxae > D002273 - Carcinogens

   

12,13-DHOA

(9Z)-12,13-Dihydroxyoctadec-9-enoic acid

C18H34O4 (314.2457)


A DiHOME obtained by formal dihydroxylation of the 12,13-double bond of octadeca-9,12-dienoic acid (the 9Z-geoisomer).

   

Sexangularetin

Herbacetin 8-methyl ether

C16H12O7 (316.0583)


A 7-hydroxyflavonol that is kaempferol substituted by a methoxy group at position 8.

   

Benzo[ghi]perylene

Benzo[ghi]perylene

C22H12 (276.0939)


   

Chlorphenamidine

N-(4-chloro-2-methylphenyl)-N,N-dimethylformamidine

C10H13ClN2 (196.0767)


D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors D004791 - Enzyme Inhibitors > D014475 - Uncoupling Agents D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

DIISOBUTYL ADIPATE

DIISOBUTYL ADIPATE

C14H26O4 (258.1831)


   

2,4-DDE

1,1-Dichloro-2-(O-chlorophenyl)-2-(p-chlorophenyl)ethylene

C14H8Cl4 (315.938)


   

p,P-hydroxy-DDT

1,1,1-Trichloro-2,2-bis(4-hydroxyphenyl)ethane

C14H11Cl3O2 (315.9825)


   

Dibenzyl

1,2-dihydrostilbene

C14H14 (182.1095)


   

Silux

2,2-Bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl]propane

C29H36O8 (512.241)


D001697 - Biomedical and Dental Materials > D003764 - Dental Materials

   

PCB 47

2,2,4,4-TETRACHLOROBIPHENYL

C12H6Cl4 (289.9224)


D004785 - Environmental Pollutants > D011078 - Polychlorinated Biphenyls

   

UDP-N-acetylmuraminate

UDP-N-acetylmuraminate

C20H31N3O19P2 (679.1027)


   

Ovalicine subst.

Ovalicine subst.

C16H24O5 (296.1624)


   

Eleostearic acid

Eleostearic acid

C18H30O2 (278.2246)


   

2,3,4,5-Tetrachloro-4-biphenylol

4-Hydroxy-2,3,4-5-tetrachlorobiphenyl

C12H6Cl4O (305.9173)


D004785 - Environmental Pollutants > D011078 - Polychlorinated Biphenyls

   

N-Acetyl-9-O-acetylneuraminic acid

N-Acetyl-9-O-acetylneuraminic acid

C13H21NO10 (351.1165)


   

20a,22b-Dihydroxycholesterol

20a,22b-Dihydroxycholesterol

C27H46O3 (418.3447)


   

DL-Alanyl-DL-alanine

DL-Alanyl-DL-alanine

C6H12N2O3 (160.0848)


   

PD 123177

1-[(4-Amino-3-methylphenyl)methyl]-5-(2,2-diphenylacetyl)-6,7-dihydro-4H-imidazo[4,5-c]pyridine-6-carboxylic acid

C29H28N4O3 (480.2161)


   

1,2-Didecanoylglycerol

1,2-Didecanoylglycerol

C23H44O5 (400.3189)


   

1-C-(Indol-3-yl)glycerol 3-phosphate

1-C-(Indol-3-yl)glycerol 3-phosphate

C11H14NO6P (287.0559)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents