Homocysteine (BioDeep_00000001340)
Secondary id: BioDeep_00000402827, BioDeep_00000405355
human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Toxin natural product BioNovoGene_Lab2019
Metabolite Card
Formula: C4H9NO2S (135.0353974)
Chinese Names: 同型半胱氨酸, DL-高半胱氨酸, 高半胱氨酸, L-高半胱氨酸
Spectrum Hits:
Top Source Homo sapiens(blood) 10.74%
Last reviewed on 2024-06-29.
Cite this Page
Homocysteine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/homocysteine (retrieved
2024-12-02) (BioDeep RN: BioDeep_00000001340). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Molecular Structure
SMILES: C(CS)C(C(=O)O)N
InChI: InChI=1S/C4H9NO2S/c5-3(1-2-8)4(6)7/h3,8H,1-2,5H2,(H,6,7)
Description
A high level of blood serum homocysteine is a powerful risk factor for cardiovascular disease. Unfortunately, one study which attempted to decrease the risk by lowering homocysteine was not fruitful. This study was conducted on nearly 5000 Norwegian heart attack survivors who already had severe, late-stage heart disease. No study has yet been conducted in a preventive capacity on subjects who are in a relatively good state of health.; Elevated levels of homocysteine have been linked to increased fractures in elderly persons. The high level of homocysteine will auto-oxidize and react with reactive oxygen intermediates and damage endothelial cells and has a higher risk to form a thrombus. Homocysteine does not affect bone density. Instead, it appears that homocysteine affects collagen by interfering with the cross-linking between the collagen fibers and the tissues they reinforce. Whereas the HOPE-2 trial showed a reduction in stroke incidence, in those with stroke there is a high rate of hip fractures in the affected side. A trial with 2 homocysteine-lowering vitamins (folate and B12) in people with prior stroke, there was an 80\\\\\\% reduction in fractures, mainly hip, after 2 years. Interestingly, also here, bone density (and the number of falls) were identical in the vitamin and the placebo groups.; Homocysteine is a sulfur-containing amino acid that arises during methionine metabolism. Although its concentration in plasma is only about 10 micromolar (uM), even moderate hyperhomocysteinemia is associated with increased incidence of cardiovascular disease and Alzheimers disease. Elevations in plasma homocysteine are commonly found as a result of vitamin deficiencies, polymorphisms of enzymes of methionine metabolism, and renal disease. Pyridoxal, folic acid, riboflavin, and Vitamin B(12) are all required for methionine metabolism, and deficiency of each of these vitamins result in elevated plasma homocysteine. A polymorphism of methylenetetrahydrofolate reductase (C677T), which is quite common in most populations with a homozygosity rate of 10-15 \\\\\\%, is associated with moderate hyperhomocysteinemia, especially in the context of marginal folate intake. Plasma homocysteine is inversely related to plasma creatinine in patients with renal disease. This is due to an impairment in homocysteine removal in renal disease. The role of these factors, and of modifiable lifestyle factors, in affecting methionine metabolism and in determining plasma homocysteine levels is discussed. Homocysteine is an independent cardiovascular disease (CVD) risk factor modifiable by nutrition and possibly exercise. Homocysteine was first identified as an important biological compound in 1932 and linked with human disease in 1962 when elevated urinary homocysteine levels were found in children with mental retardation. This condition, called homocysteinuria, was later associated with premature occlusive CVD, even in children. These observations led to research investigating the relationship of elevated homocysteine levels and CVD in a wide variety of populations including middle age and elderly men and women with and without traditional risk factors for CVD. (PMID 17136938, 15630149); Homocysteine is an amino acid with the formula HSCH2CH2CH(NH2)CO2H. It is a homologue of the amino acid cysteine, differing by an additional methylene (-CH2-) group. It is biosynthesized from methionine by the removal of its terminal C? methyl group. Homocysteine can be recycled into methionine or converted into cysteine with the aid of B-vitamins.; Studies reported in 2006 have shown that giving vitamins [folic acid, B6 and B12] to reduce homocysteine levels may not quickly offer benefit, however a significant 25\\\\\\% reduction in stroke was found in the HOPE-2 study even in patients mostly with existing serious arterial decline although the overall death rate was not significantly changed by the intervention in the trial. Clearly, reducing homocysteine does not quickly repair existing...
Homocysteine (CAS: 454-29-5) is a sulfur-containing amino acid that arises during methionine metabolism. Although its concentration in plasma is only about 10 micromolar (uM), even moderate hyperhomocysteinemia is associated with an increased incidence of cardiovascular disease and Alzheimers disease. Elevations in plasma homocysteine are commonly found as a result of vitamin deficiencies, polymorphisms of enzymes of methionine metabolism, and renal disease. It has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Pyridoxal, folic acid, riboflavin, and vitamin B(12) are all required for methionine metabolism, and deficiency of each of these vitamins result in elevated plasma homocysteine. A polymorphism of methylenetetrahydrofolate reductase (C677T), which is quite common in most populations with a homozygosity rate of 10-15 \\\\\\%, is associated with moderate hyperhomocysteinemia, especially in the context of marginal folate intake. Plasma homocysteine is inversely related to plasma creatinine in patients with renal disease. This is due to an impairment in homocysteine removal in renal disease. The role of these factors, and of modifiable lifestyle factors, in affecting methionine metabolism and in determining plasma homocysteine levels is discussed. Homocysteine is an independent cardiovascular disease (CVD) risk factor modifiable by nutrition and possibly exercise. Homocysteine was first identified as an important biological compound in 1932 and linked with human disease in 1962 when elevated urinary homocysteine levels were found in children with mental retardation. This condition, called homocystinuria, was later associated with premature occlusive CVD, even in children. These observations led to research investigating the relationship of elevated homocysteine levels and CVD in a wide variety of populations including middle age and elderly men and women with and without traditional risk factors for CVD (PMID: 17136938 , 15630149). Moreover, homocysteine is found to be associated with cystathionine beta-synthase deficiency, cystathioninuria, methylenetetrahydrofolate reductase deficiency, and sulfite oxidase deficiency, which are inborn errors of metabolism.
[Spectral] L-Homocysteine (exact mass = 135.0354) and L-Valine (exact mass = 117.07898) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions.
Homocysteine is biosynthesized naturally via a multi-step process.[9] First, methionine receives an adenosine group from ATP, a reaction catalyzed by S-adenosyl-methionine synthetase, to give S-adenosyl methionine (SAM-e). SAM-e then transfers the methyl group to an acceptor molecule, (e.g., norepinephrine as an acceptor during epinephrine synthesis, DNA methyltransferase as an intermediate acceptor in the process of DNA methylation). The adenosine is then hydrolyzed to yield L-homocysteine. L-Homocysteine has two primary fates: conversion via tetrahydrofolate (THF) back into L-methionine or conversion to L-cysteine.[10]
Biosynthesis of cysteine
Mammals biosynthesize the amino acid cysteine via homocysteine. Cystathionine β-synthase catalyses the condensation of homocysteine and serine to give cystathionine. This reaction uses pyridoxine (vitamin B6) as a cofactor. Cystathionine γ-lyase then converts this double amino acid to cysteine, ammonia, and α-ketobutyrate. Bacteria and plants rely on a different pathway to produce cysteine, relying on O-acetylserine.[11]
Methionine salvage
Homocysteine can be recycled into methionine. This process uses N5-methyl tetrahydrofolate as the methyl donor and cobalamin (vitamin B12)-related enzymes. More detail on these enzymes can be found in the article for methionine synthase.
Other reactions of biochemical significance
Homocysteine can cyclize to give homocysteine thiolactone, a five-membered heterocycle. Because of this "self-looping" reaction, homocysteine-containing peptides tend to cleave themselves by reactions generating oxidative stress.[12]
Homocysteine also acts as an allosteric antagonist at Dopamine D2 receptors.[13]
It has been proposed that both homocysteine and its thiolactone may have played a significant role in the appearance of life on the early Earth.[14]
L-Homocysteine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=454-28-4 (retrieved 2024-06-29) (CAS RN: 6027-13-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
DL-Homocysteine is a weak neurotoxin, and can affect the production of kynurenic acid in the brain.
DL-Homocysteine is a weak neurotoxin, and can affect the production of kynurenic acid in the brain.
L-Homocysteine, a homocysteine metabolite, is a homocysteine that has L configuration. L-Homocysteine induces upregulation of cathepsin V that mediates vascular endothelial inflammation in hyperhomocysteinaemia[1][2].
Synonyms
32 synonym names
(2S)-2-amino-4-sulfanylbutanoic acid; (S)-2-Amino-4-mercapto-butanoic acid; (S)-2-Amino-4-mercaptobutanoic acid; 2-Amino-4-mercapto-DL-butyric acid; DL-2-Amino-4-mercapto-butyric acid; L-2-Amino-4-mercapto-butyric acid; DL-2-Amino-4-mercaptobutyric acid; 2-Amino-4-mercapto-L-butyric acid; 2-Amino-4-mercapto-butanoic acid; L-2-Amino-4-mercaptobutyric acid; (S)-2-Amino-4-mercapto-butanoate; 2-Amino-4-mercapto-butyric acid; 2-Amino-4-sulfanylbutanoic acid; 2-Amino-4-mercaptobutyric acid; 2-Amino-4-mercapto-DL-butyrate; 2 Amino 4 mercaptobutyric acid; 2-Amino-4-mercapto-butanoate; L-2-Amino-4-mercaptobutyrate; 2-Amino-4-mercapto-butyrate; 2-Amino-4-sulfanylbutanoate; Homocysteine, L isomer; Homocysteine, L-isomer; L-Isomer homocysteine; D,L-Homocysteine; (S)-Homocysteine; DL-Homocysteine; L-Homocysteine; Homocysteine; Homo-cys; Hcy; Homocysteine; L-Homocysteine
Cross Reference
32 cross reference id
- ChEBI: CHEBI:17588
- KEGG: C00155
- PubChem: 91552
- PubChem: 778
- HMDB: HMDB0000742
- Metlin: METLIN3256
- DrugBank: DB04422
- ChEMBL: CHEMBL469662
- Wikipedia: Homocysteine
- MeSH: Homocysteine
- MetaCyc: HOMO-CYS
- KNApSAcK: C00001365
- foodb: FDB001491
- chemspider: 82666
- CAS: 6027-13-0
- MoNA: KNA00053
- MoNA: KNA00409
- MoNA: KNA00056
- MoNA: KNA00408
- MoNA: KNA00410
- PMhub: MS000000355
- PDB-CCD: HCS
- 3DMET: B01174
- NIKKAJI: J228C
- RefMet: Homocysteine
- medchemexpress: HY-W040821
- medchemexpress: HY-W010347
- LOTUS: LTS0225753
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-893
- PubChem: 3455
- KNApSAcK: 17588
- LOTUS: LTS0236288
Classification Terms
Related Pathways
Reactome(0)
BioCyc(12)
- cysteine and homocysteine interconversion
- cysteine biosynthesis/homocysteine degradation
- methionine biosynthesis
- superpathway of lysine, threonine and methionine biosynthesis II
- superpathway of lysine, threonine and methionine biosynthesis I
- formylTHF biosynthesis II
- formylTHF biosynthesis I
- methionine biosynthesis II
- methionine biosynthesis I
- methionine and S-adenosylmethionine synthesis
- folate metabolism
- S-adenosylmethionine cycle
PlantCyc(0)
Biological Process
554 related biological process reactions.
Reactome(34)
- Neuronal System:
DA + SAM ⟶ 3MT + SAH
- Transmission across Chemical Synapses:
DA + SAM ⟶ 3MT + SAH
- Neurotransmitter clearance:
DA + SAM ⟶ 3MT + SAH
- Clearance of dopamine:
DA + SAM ⟶ 3MT + SAH
- Enzymatic degradation of Dopamine by monoamine oxidase:
DA + H2O + Oxygen ⟶ 5HT-N-CH3 + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Cobalamin (Cbl, vitamin B12) transport and metabolism:
Cbl + H+ + Homologues of MMACHC + TPNH ⟶ MMACHC:cob(II)alamin + TPN
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Methylation:
H2O + SAH ⟶ Ade-Rib + HCYS
- Choline catabolism:
BET + HCYS ⟶ DMGLY + L-Met
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Cysteine formation from homocysteine:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + SAH ⟶ Ade-Rib + HCYS
- Methylation:
H2O + SAH ⟶ Ade-Rib + HCYS
- Cysteine formation from homocysteine:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + SAH ⟶ Ade-Rib + HCYS
- Methylation:
H2O + SAH ⟶ Ade-Rib + HCYS
- Cysteine formation from homocysteine:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Enzymatic degradation of Dopamine by monoamine oxidase:
DOPAC + SAM ⟶ HCYS + HVA
BioCyc(17)
- cysteine and homocysteine interconversion:
H2O + cystathionine ⟶ 2-oxobutanoate + L-cysteine + ammonia
- homocysteine and cysteine interconversion:
O-acetyl-L-homoserine + cys ⟶ H+ + L-cystathionine + acetate
- cysteine biosynthesis/homocysteine degradation:
H2O + L-cystathionine ⟶ 2-oxobutanoate + H+ + ammonia + cys
- methionine biosynthesis:
H2O + L-cystathionine ⟶ H+ + L-homocysteine + ammonia + pyruvate
- cysteine biosynthesis/homocysteine degradation:
H2O + L-cystathionine ⟶ 2-oxobutanoate + H+ + ammonia + cys
- aspartate superpathway:
ATP + ammonia + nicotinate adenine dinucleotide ⟶ AMP + H+ + NAD+ + diphosphate
- superpathway of lysine, threonine and methionine biosynthesis II:
H2O + L-cystathionine ⟶ H+ + L-homocysteine + ammonia + pyruvate
- superpathway of lysine, threonine and methionine biosynthesis I:
H2O + L-cystathionine ⟶ H+ + L-homocysteine + ammonia + pyruvate
- methionine biosynthesis II:
H2O + L-cystathionine ⟶ H+ + L-homocysteine + ammonia + pyruvate
- methionine biosynthesis I:
H2O + L-cystathionine ⟶ H+ + L-homocysteine + ammonia + pyruvate
- methionine and S-adenosylmethionine synthesis:
ATP + H2O + met ⟶ S-adenosyl-L-methionine + H+ + diphosphate + phosphate
- folate metabolism:
H+ + ser + tetrahydrofolate ⟶ 5,10-methylene-THF + H2O + gly
- formylTHF biosynthesis II:
H+ + NAD+ + gly + tetrahydrofolate ⟶ 5,10-methylenetetrahydrofolate + CO2 + NADH + ammonia
- formylTHF biosynthesis I:
H+ + NAD+ + gly + tetrahydrofolate ⟶ 5,10-methylenetetrahydrofolate + CO2 + NADH + ammonia
- folate transformations II:
L-serine + a tetrahydrofolate ⟶ H2O + a 5,10-methylenetetrahydrofolate + glycine
- methionine biosynthesis:
O-acetyl-L-homoserine + H2S ⟶ acetate + homocysteine
- S-adenosylmethionine cycle:
ATP + H2O + L-methionine ⟶ SAM + phosphate + pyrophosphate
WikiPathways(13)
- One-carbon metabolism:
Homocystine ⟶ Homocysteine
- One-carbon metabolism:
Homocysteine ⟶ Homocystine
- Methionine de novo and salvage pathway:
Choline ⟶ Betaine
- One-carbon metabolism and related pathways:
5-oxoproline ⟶ Glutamate
- MTHFR deficiency:
Choline ⟶ Phosphocholine
- Disorders of folate metabolism and transport:
Folic acid ⟶ DHF
- Methionine metabolism leading to sulfur amino acids and related disorders:
Adenosine ⟶ AMP
- Folate metabolism:
Thromboxane A2 ⟶ Thromboxane B2
- One-carbon donor:
Methionine ⟶ Decarboxylated SAM
- Folate-alcohol and cancer pathway hypotheses:
Cysteine ⟶ Cystathionine
- Folate metabolism:
Thromboxane A2 ⟶ Thromboxane B2
- Ethanol effects on histone modifications:
Ethanol ⟶ Acetaldehyde
- Metabolic Epileptic Disorders:
P-enolpyruvate ⟶ Pyruvate
Plant Reactome(487)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid metabolism:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid biosynthesis:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Methionine biosynthesis II:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
ATP + H2O + L-Met ⟶ PPi + Pi + SAM
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
ATP + H2O + L-Met ⟶ PPi + Pi + SAM
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
ATP + H2O + L-Met ⟶ PPi + Pi + SAM
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
ATP + H2O + L-Met ⟶ PPi + Pi + SAM
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
ATP + H2O + L-Met ⟶ PPi + Pi + SAM
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
ATP + H2O + L-Met ⟶ PPi + Pi + SAM
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
ATP + H2O + L-Met ⟶ PPi + Pi + SAM
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
ATP + H2O + L-Met ⟶ PPi + Pi + SAM
- SAM cycle:
ATP + H2O + L-Met ⟶ PPi + Pi + SAM
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
ATP + H2O + L-Met ⟶ PPi + Pi + SAM
- SAM cycle:
ATP + H2O + L-Met ⟶ PPi + Pi + SAM
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
ATP + H2O + L-Met ⟶ PPi + Pi + SAM
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
ATP + H2O + L-Met ⟶ PPi + Pi + SAM
- SAM cycle:
ATP + H2O + L-Met ⟶ PPi + Pi + SAM
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
ATP + H2O + L-Met ⟶ PPi + Pi + SAM
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
ATP + H2O + L-Met ⟶ PPi + Pi + SAM
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
ATP + H2O + L-Met ⟶ PPi + Pi + SAM
- SAM cycle:
ATP + H2O + L-Met ⟶ PPi + Pi + SAM
- SAM cycle:
ATP + H2O + L-Met ⟶ PPi + Pi + SAM
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
ATP + H2O + L-Met ⟶ PPi + Pi + SAM
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
ATP + H2O + L-Met ⟶ PPi + Pi + SAM
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- Homocysteine biosynthesis:
H2S + O-acetyl-L-homoserine ⟶ CH3COO- + LHCYS
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SAM cycle:
H2O + SAH ⟶ Ade-Rib + LHCYS
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
- SMM cycle:
LHCYS + SMM ⟶ L-Met
INOH(3)
- Folate metabolism ( Folate metabolism ):
6-Pyruvoyl-5,6,7,8-tetrahydro-pterin + NADPH ⟶ 5,6,7,8-Tetrahydro-biopterin + NADP+
- Methionine and Cysteine metabolism ( Methionine and Cysteine metabolism ):
H2O + L-Cystathionine ⟶ 2-Oxo-butanoic acid + L-Cysteine + NH3
- Glycine and Serine metabolism ( Glycine and Serine metabolism ):
Guanidino-acetic acid + S-Adenosyl-L-methionine ⟶ Creatine + S-Adenosyl-L-homocysteine
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
41 organism taxonomy source information
- 3701 - Arabidopsis: LTS0236288
- 3702 - Arabidopsis thaliana: 10.1186/1752-0509-1-53
- 3702 - Arabidopsis thaliana: LTS0236288
- 2 - Bacteria: LTS0225753
- 2 - Bacteria: LTS0236288
- 3700 - Brassicaceae: LTS0236288
- 7711 - Chordata: LTS0225753
- 7711 - Chordata: LTS0236288
- 543 - Enterobacteriaceae: LTS0225753
- 543 - Enterobacteriaceae: LTS0236288
- 561 - Escherichia: LTS0225753
- 561 - Escherichia: LTS0236288
- 562 - Escherichia coli: LTS0225753
- 562 - Escherichia coli: LTS0236288
- 2759 - Eukaryota: LTS0225753
- 2759 - Eukaryota: LTS0236288
- 1236 - Gammaproteobacteria: LTS0225753
- 1236 - Gammaproteobacteria: LTS0236288
- 9604 - Hominidae: LTS0225753
- 9604 - Hominidae: LTS0236288
- 9605 - Homo: LTS0225753
- 9605 - Homo: LTS0236288
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S10067-006-0396-X
- 9606 - Homo sapiens: 10.1038/NBT.2488
- 9606 - Homo sapiens: 10.2174/092986652012131112142531
- 9606 - Homo sapiens: LTS0225753
- 9606 - Homo sapiens: LTS0236288
- 3398 - Magnoliopsida: LTS0236288
- 40674 - Mammalia: LTS0225753
- 40674 - Mammalia: LTS0236288
- 33208 - Metazoa: LTS0225753
- 33208 - Metazoa: LTS0236288
- 10066 - Muridae: LTS0225753
- 10088 - Mus: LTS0225753
- 10090 - Mus musculus: LTS0225753
- 10090 - Mus musculus: NA
- 35493 - Streptophyta: LTS0236288
- 58023 - Tracheophyta: LTS0236288
- 33090 - Viridiplantae: LTS0236288
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
Literature Reference
- Yifei Lu, Chenqi Xu, Kewei Xie, Bingru Zhao, Minzhou Wang, Cheng Qian, Xuemei Chen, Leyi Gu, Wangshu Wu, Renhua Lu. The relationship between thiamin, folic acid and cognitive function in a rat model of uremia.
Renal failure.
2024 Dec; 46(1):2329257. doi:
10.1080/0886022x.2024.2329257
. [PMID: 38482596] - Qi Sun, Ting Zhang, Yuchen Ren, Yuan Qiu, Xiaogang Luo, Jingfang Yang, Genyan Liu. A two-photon fluorescent probe for highly selective detection of Cys over GSH and Hcy based on the Michael addition and transcyclization mechanism and its application in bioimaging and protein straining in SDS-PAGE.
Analytica chimica acta.
2024 Jun; 1309(?):342687. doi:
10.1016/j.aca.2024.342687
. [PMID: 38772659] - Tatjana Đurašinović, Zorana Lopandić, Isidora Protić-Rosić, Andrijana Nešić, Jovana Trbojević-Ivić, Uta Jappe, Marija Gavrović-Jankulović. Identification of S-adenosyl-l-homocysteine hydrolase from banana fruit as a novel plant panallergen.
Food chemistry.
2024 Mar; 437(Pt 1):137782. doi:
10.1016/j.foodchem.2023.137782
. [PMID: 37871426] - Daniel Leclerc, Karen E Christensen, Alaina M Reagan, Vafa Keser, Yan Luan, Olga V Malysheva, Brandi Wasek, Teodoro Bottiglieri, Marie A Caudill, Gareth R Howell, Rima Rozen. Folate Deficiency and/or the Genetic Variant Mthfr677C >T Can Drive Hepatic Fibrosis or Steatosis in Mice, in a Sex-Specific Manner.
Molecular nutrition & food research.
2024 Mar; 68(5):e2300355. doi:
10.1002/mnfr.202300355
. [PMID: 38327171] - Chaoyi Xia, Xiyue Xing, Wenxia Zhang, Yang Wang, Xin Jin, Yang Wang, Meihong Tian, Xueqing Ba, Fengqi Hao. Cysteine and homocysteine can be exploited by GPX4 in ferroptosis inhibition independent of GSH synthesis.
Redox biology.
2024 Feb; 69(?):102999. doi:
10.1016/j.redox.2023.102999
. [PMID: 38150992] - Stephen G Andrews, Anthony M Koehle, Devendra Paudel, Thomas Neuberger, A Catharine Ross, Vishal Singh, Teodoro Bottiglieri, Rita Castro. Diet-Induced Severe Hyperhomocysteinemia Promotes Atherosclerosis Progression and Dysregulates the Plasma Metabolome in Apolipoprotein-E-Deficient Mice.
Nutrients.
2024 Jan; 16(3):. doi:
10.3390/nu16030330
. [PMID: 38337615] - Chi Zhang, Qiu-Ping Xin, Yun-Bo Xie, Xiang-Yu Guo, En-Hong Xing, Zhi-Jie Dou, Cui Zhao. Relationship between methylenetetrahydrofolate reductase C677T gene polymorphism and neutrophil gelatinase-associated lipocalin in early renal injury in H-type hypertension.
BMC cardiovascular disorders.
2024 Jan; 24(1):55. doi:
10.1186/s12872-024-03704-6
. [PMID: 38238653] - Jinshuai Lan, Li Liu, Zhe Li, Ruifeng Zeng, Lixia Chen, Yitian He, Hai Wei, Yue Ding, Tong Zhang. A multi-signal mitochondria-targeted fluorescent probe for simultaneously distinguishing biothiols and realtime visualizing its metabolism in cancer cells and tumor models.
Talanta.
2024 Jan; 267(?):125104. doi:
10.1016/j.talanta.2023.125104
. [PMID: 37703779] - Meryem Al Fatly, Monique T Mulder, Jeanine Roeters van Lennep, Henk J Blom, Kirsten A C Berk. The effect of diet-induced weight loss on circulating homocysteine levels in people with obesity and type 2 diabetes.
Nutrition journal.
2024 Jan; 23(1):2. doi:
10.1186/s12937-023-00908-y
. [PMID: 38167024] - Ling-Juan Zhu, Jian-Min Shi, Tao Wang, Chao Yu, Wei Zhou, Hui-Hui Bao, Xiao-Shu Cheng. [Association Between Plasma Homocysteine Level and Hyperuricemia in Elderly Patients With Hypertension].
Zhongguo yi xue ke xue yuan xue bao. Acta Academiae Medicinae Sinicae.
2023 Dec; 45(6):897-901. doi:
10.3881/j.issn.1000-503x.15732
. [PMID: 38173099] - Jiangsha Wang, Jie Zhou, Zhengping Shao, Xi Chen, Zhenhai Yu, Wenyan Zhao. Association between serum uric acid and homocysteine levels among adults in the United States: a cross-sectional study.
BMC cardiovascular disorders.
2023 12; 23(1):599. doi:
10.1186/s12872-023-03586-0
. [PMID: 38066416] - Xue Wu, Huaixuan Ao, Xiaoyong Wu, Yunfeng Cao. Sulfur-containing amino acids and risk of schizophrenia.
Schizophrenia research.
2023 Dec; 262(?):8-17. doi:
10.1016/j.schres.2023.10.016
. [PMID: 37918291] - Shuning Zhang, Ji Yang. Factors influencing TCM syndrome types of acute cerebral infarction: A binomial logistic regression analysis.
Medicine.
2023 Nov; 102(46):e36080. doi:
10.1097/md.0000000000036080
. [PMID: 37986281] - Xiuyu Wang, Xing Ma, Yue Zeng, Lingbo Xu, Minghao Zhang. Hypermethylation of the CTRP9 promoter region promotes Hcy induced VSMC lipid deposition and foam cell formation via negatively regulating ER stress.
Scientific reports.
2023 11; 13(1):19438. doi:
10.1038/s41598-023-46981-5
. [PMID: 37945738] - A H Alfeel, S E O Hussein, T Y Elsayed Yousif, A M A Babker, A E Alamin Altoum, A N Mohamed, H O Elzein, T Ahmed, M Saboor, H A Osman, P Kumar, H Ali, E K Abdalhabib. Association between oxidative stress, antioxidant enzymes, and homocysteine in patients with polycystic ovary syndrome.
European review for medical and pharmacological sciences.
2023 Nov; 27(21):10631-10641. doi:
10.26355/eurrev_202311_34343
. [PMID: 37975388] - Nicola A Gillies, Amber M Milan, David Cameron-Smith, Karen D Mumme, Cathryn A Conlon, Pamela R von Hurst, Crystal F Haskell-Ramsay, Beatrix Jones, Nicole C Roy, Jane Coad, Clare R Wall, Kathryn L Beck. Vitamin B and One-Carbon Metabolite Profiles Show Divergent Associations with Cardiometabolic Risk Markers but not Cognitive Function in Older New Zealand Adults: A Secondary Analysis of the REACH Study.
The Journal of nutrition.
2023 Oct; ?(?):. doi:
10.1016/j.tjnut.2023.10.012
. [PMID: 37863266] - Zhengqin Zuo, Zhigang Xu, Chunxia Cheng, Shiyan Yang, Mingxing Li. Predictive Value of Carotid Plaque Contrast-Enhanced Ultrasound Score and Homocysteine in Senile Metabolic Syndrome Complicated by Cerebral Infarction.
Journal of the College of Physicians and Surgeons--Pakistan : JCPSP.
2023 Oct; 33(10):1100-1105. doi:
10.29271/jcpsp.2023.10.1100
. [PMID: 37804013] - Minji Wi, Yumin Kim, Cheol-Hyun Kim, Sangkwan Lee, Gi-Sang Bae, Jungtae Leem, Hongmin Chu. Effectiveness and Safety of Fufang Danshen Dripping Pill (Cardiotonic Pill) on Blood Viscosity and Hemorheological Factors for Cardiovascular Event Prevention in Patients with Type 2 Diabetes Mellitus: Systematic Review and Meta-Analysis.
Medicina (Kaunas, Lithuania).
2023 Sep; 59(10):. doi:
10.3390/medicina59101730
. [PMID: 37893448] - Kinga Ilona Nyulas, Mariana Cornelia Tilinca, Sándor Pál, Erzsébet Májai Fogarasi, Mircea Dumitru Croitoru, Robert Gabriel Tripon, Zoltán Preg, Márta Germán-Salló, Zsuzsánna Simon-Szabó, Enikő Nemes-Nagy. Assessment of vitamin B12 levels and cardiovascular risk factors in metformin- and non-metformin-treated type 2 diabetic patients.
Pakistan journal of pharmaceutical sciences.
2023 Sep; 36(5):1399-1405. doi:
"
. [PMID: 37869915] - Amal Saad-Hussein, Wafaa Ghoneim Shousha, Sara Yahya Mohamed Al-Sadek, Shimaa Shawki Ramadan. Role of MTHFR 677C>T and 1298A>C gene polymorphisms on renal toxicity caused by lead exposure in wastewater treatment plant workers.
Environmental science and pollution research international.
2023 Jul; 30(35):84758-84764. doi:
10.1007/s11356-023-28309-y
. [PMID: 37369904] - Liang Ren, Jing Guo, Weibo Zhao, Ruijing Zuo, Shuang Guo, Chaoguo Jia, Wei Gao. Serum homocysteine relates to elevated lipid level, inflammation and major adverse cardiac event risk in acute myocardial infarction patients.
Biomarkers in medicine.
2023 Jun; ?(?):. doi:
10.2217/bmm-2023-0096
. [PMID: 37284746] - Qing-Heng Wu, Peng-Chao Li, Fang-Hua Zhang, Zhong Hua, Xing-Hua Zhang, Zi-Xue Sun. [To evaluate the efficacy of Yishen Tongluo decoction combined with low-dose tadalafil in the treatment of diabetic erectile dysfunction with kidney deficiency and blood stasis syndrome].
Zhonghua nan ke xue = National journal of andrology.
2023 Jun; 29(6):527-532. doi:
"
. [PMID: 38602726] - Wei Jia, Xixuan Wu, Ning Liu, Zengrun Xia, Lin Shi. Quantitative fusion omics reveals that refrigeration drives methionine degradation through perturbing 5-methyltetrahydropteroyltriglutamate-homocysteine activity.
Food chemistry.
2023 May; 409(?):135322. doi:
10.1016/j.foodchem.2022.135322
. [PMID: 36584532] - Wenzhi Xie, Jinyu Jiang, Dunji Shu, Yanjun Zhang, Sheng Yang, Kai Zhang. Recent Progress in the Rational Design of Biothiol-Responsive Fluorescent Probes.
Molecules (Basel, Switzerland).
2023 May; 28(10):. doi:
10.3390/molecules28104252
. [PMID: 37241992] - Elena C Tore, Simone J P M Eussen, Nasser E Bastani, Pieter C Dagnelie, Amany K Elshorbagy, Pol Grootswagers, Viktor Kožich, Thomas Olsen, Helga Refsum, Kjetil Retterstøl, Coen DA Stehouwer, Emma T K Stolt, Kathrine J Vinknes, Marleen M J van Greevenbroek. The Associations of Habitual Intake of Sulfur Amino Acids, Proteins and Diet Quality with Plasma Sulfur Amino Acid Concentrations: The Maastricht Study.
The Journal of nutrition.
2023 May; ?(?):. doi:
10.1016/j.tjnut.2023.05.008
. [PMID: 37164267] - Abolfazl Akbari, Muhammad Islampanah, Hadise Arhaminiya, Mohammad Mahdi Alvandi Fard, Tannaz Jamialahmadi, Amirhossein Sahebkar. Impact of Statin or Fibrate Therapy on Homocysteine Concentrations: A Systematic Review and Meta-Analysis.
Current medicinal chemistry.
2023 Apr; ?(?):. doi:
10.2174/0929867330666230413090416
. [PMID: 37069715] - Seyedeh Fatemeh Hoseinlar, Masoud Nikanfar, Delara Laghousi, Masoud Darabi, Behrouz Shademan, Alireza Nourazarian. Diagnostic Value of ATG5, Apo-Lipoprotein B-48, Thyroid Hormones, and Homocysteine in Patients with Alzheimer's Disease.
Clinical laboratory.
2023 Mar; 69(3):. doi:
10.7754/clin.lab.2022.220614
. [PMID: 36912305] - Xiaoying Hu, Shucan Ma, Liman Chen, Chunhui Tian, Weiwei Wang. Association between osteoporosis and cardiovascular disease in elderly people: evidence from a retrospective study.
PeerJ.
2023; 11(?):e16546. doi:
10.7717/peerj.16546
. [PMID: 38089913] - Dusan Todorovic, Marija Stojanovic, Kristina Gopcevic, Ana Medic, Sanja Stankovic, Boba Kotlica, Milica Labudovic Borovic, Dragan Djuric. Effects of four weeks lasting aerobic physical activity on cardiovascular biomarkers, oxidative stress and histomorphometric changes of heart and aorta in rats with experimentally induced hyperhomocysteinemia.
Molecular and cellular biochemistry.
2023 Jan; 478(1):161-172. doi:
10.1007/s11010-022-04503-3
. [PMID: 35759142] - Shanshan Li, Yunchao Wang, Lulu Yu, Yuan Gao, Yinghao Yang, Hanghang Zhu, Lu An, Wenxin Yuan, Jinghao Wu, Ce Zong, Yuming Xu, Yusheng Li. Association of Blood Lipid Profile Components with White Matter Hyperintensity Burden in Cerebral Small Vessel Disease.
Current neurovascular research.
2023; 20(2):175-182. doi:
10.2174/1567202620666230524155702
. [PMID: 37226782] - Wenwen Yuan, Yan Shao, Dong Zhao, Bin Zhang. Correlation analysis of lipid accumulation index, triglyceride-glucose index and H-type hypertension and coronary artery disease.
PeerJ.
2023; 11(?):e16069. doi:
10.7717/peerj.16069
. [PMID: 37727694] - Juliana Dias Gonçalves Dos Santos, Fabíola Isabel Suano de Souza, João Carlos Pina Faria, Luciana Satiko Sawamura, Anelise Del Vecchio Gessullo, Roseli Oselka Saccardo Sarni. Homocysteine concentrations in overweight children and adolescents.
Revista da Associacao Medica Brasileira (1992).
2023; 69(2):285-290. doi:
10.1590/1806-9282.20220991
. [PMID: 36722654] - C Y T Kwok, Y K P Poon, P Chook, D S Guo, C Q Lin, Y H Yin, D S Celermajer, K S Woo. A Potential Strategy for Atherosclerosis Prevention in Modernizing China - Hyperhomocysteinemia, MTHFR C677T Polymorphism and Air Pollution (PM2.5) on Atherogenesis in Chinese Adults.
The journal of nutrition, health & aging.
2023; 27(2):134-141. doi:
10.1007/s12603-023-1889-x
. [PMID: 36806868] - Zilong Shen, Zhengmei Zhang, Wenjing Zhao. Relationship between plasma homocysteine and chronic kidney disease in US patients with type 2 diabetes mellitus: a cross-sectional study.
BMC nephrology.
2022 12; 23(1):419. doi:
10.1186/s12882-022-03045-6
. [PMID: 36587192] - Jasna Čerkez Habek, Mirna Vuković Bobić, Dubravko Habek, Sandra Jerković Gulin, Dario Gulin. CARDIOVASCULAR RISK IN WOMEN WITH PREECLAMPSIA.
Acta clinica Croatica.
2022 Dec; 61(4):574-580. doi:
10.20471/acc.2022.61.04.02
. [PMID: 37868169] - Qian-Nan Guo, Ling Wang, Zheng-Yan Liu, Hong-Dan Wang, Li Wang, Jian-Gang Long, Shi-Xiu Liao. Different effects of maternal homocysteine concentration, MTHFR and MTRR genetic polymorphisms on the occurrence of fetal aneuploidy.
Reproductive biomedicine online.
2022 12; 45(6):1207-1215. doi:
10.1016/j.rbmo.2022.06.024
. [PMID: 36210274] - Asmaa A Mahmoud, Hesham M Aboelghar, Sabry Moawad Abdelmageed, Heba M Abdallah, Mohamed I Garib, Nahla M S Abd El Hady. Assessment of asymmetric dimethylarginine and homocysteine in epileptic children receiving antiepileptic drugs.
Pediatric research.
2022 12; 92(6):1606-1612. doi:
10.1038/s41390-022-02132-6
. [PMID: 35688962] - Farnaz Pouriayevali, Marziyeh Tavalaee, Taghi Taktaz-Hafshejani, Maurizio Dattilio, Mohammad H Nasr-Esfahani. Overlapping sperm damages from vitamin B or D deficiency in mice: Insights into the role of clinical supplementations.
Andrologia.
2022 Dec; 54(11):e14592. doi:
10.1111/and.14592
. [PMID: 36123798] - Ayşe Çakır Gündoğdu, Fatih Kar, Cansu Özbayer. Investigation of the Gastroprotective Effect of Betaine-Homocysteine Homeostasis on Oxidative Stress, Inflammation and Apoptosis in Ethanol-Induced Ulcer Model.
Journal of investigative surgery : the official journal of the Academy of Surgical Research.
2022 Nov; 35(11-12):1806-1817. doi:
10.1080/08941939.2022.2126566
. [PMID: 36154440] - Wen-Bin Chu, Tian-Qi Ding, Bo Wen, Jun-Yu Lu, Rong Fan, Xue-Wei Chen. [Alleviating effects of hydrogen on hyperhomocysteinemia and fatty liver induced by high-methionine diet].
Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology.
2022 Nov; 38(6):787-792. doi:
10.12047/j.cjap.6382.2022.143
. [PMID: 37308436] - Akihiro Nakajima, Peter Libby, Satoru Mitomo, Haruhito Yuki, Makoto Araki, Lena Marie Seegers, Iris McNulty, Hang Lee, Midori Ishibashi, Kazuna Kobayashi, Jouke Dijkstra, Toru Ouchi, Hirokazu Onishi, Hiroto Yabushita, Satoshi Matsuoka, Hiroyoshi Kawamoto, Yusuke Watanabe, Kentaro Tanaka, Shengpu Chou, Tomohiko Sato, Toru Naganuma, Masaaki Okutsu, Satoko Tahara, Naoyuki Kurita, Shotaro Nakamura, David J Kuter, Sunao Nakamura, Ik-Kyung Jang. Biomarkers associated with coronary high-risk plaques.
Journal of thrombosis and thrombolysis.
2022 Nov; 54(4):647-659. doi:
10.1007/s11239-022-02709-2
. [PMID: 36205839] - Junying Kong, Ying Deng. Pirfenidone alleviates vascular intima injury caused by hyperhomocysteinemia.
Revista portuguesa de cardiologia : orgao oficial da Sociedade Portuguesa de Cardiologia = Portuguese journal of cardiology : an official journal of the Portuguese Society of Cardiology.
2022 10; 41(10):813-819. doi:
10.1016/j.repc.2021.12.011
. [PMID: 36210587] - Leslie Marisol Lugo-Gavidia, Janis M Nolde, Revathy Carnagarin, Dylan Burger, Justine Chan, Sandi Robinson, Erika Bosio, Vance B Matthews, Markus P Schlaich. Association of Circulating Platelet Extracellular Vesicles and Pulse Wave Velocity with Cardiovascular Risk Estimation.
International journal of molecular sciences.
2022 Sep; 23(18):. doi:
10.3390/ijms231810524
. [PMID: 36142436] - Wei Chen, Zhihua Si, Yanping Bi, Bing Yang. An unusual case of subacute combined degeneration due to nitrous oxide abuse, which relapsed after bariatric surgery: A case report.
Medicine.
2022 Sep; 101(35):e30442. doi:
10.1097/md.0000000000030442
. [PMID: 36107547] - Joanna L Clasen, Alicia K Heath, Heleen Van Puyvelde, Inge Huybrechts, Jin Young Park, Pietro Ferrari, Ghislaine Scelo, Arve Ulvik, Øivind Midttun, Per Magne Ueland, Kim Overvad, Anne Kirstine Eriksen, Anne Tjønneland, Rudolf Kaaks, Verena Katzke, Matthias B Schulze, Domenico Palli, Claudia Agnoli, Paolo Chiodini, Rosario Tumino, Carlotta Sacerdote, Raul Zamora-Ros, Miguel Rodriguez-Barranco, Carmen Santiuste, Eva Ardanaz, Pilar Amiano, Julie A Schmidt, Elisabete Weiderpass, Marc Gunter, Elio Riboli, Amanda J Cross, Mattias Johansson, David C Muller. Biomarkers of the transsulfuration pathway and risk of renal cell carcinoma in the European Prospective Investigation into Cancer and Nutrition (EPIC) study.
International journal of cancer.
2022 09; 151(5):708-716. doi:
10.1002/ijc.34009
. [PMID: 35366005] - Xincheng Huang, Peiyuan He, Linling Wu. Clinical Significance of Peptidase M20 Domain Containing 1 Ii Patients with Carotid Atherosclerosis.
Arquivos brasileiros de cardiologia.
2022 09; 119(3):372-379. doi:
10.36660/abc.20210799
. [PMID: 35544855] - Paul M Ridker, Nader Rifai, Jean MacFadyen, Robert J Glynn, Lixia Jiao, Ph Gabriel Steg, Michael Miller, Eliot A Brinton, Terry A Jacobson, Jean-Claude Tardif, Christie M Ballantyne, R Preston Mason, Deepak L Bhatt. Effects of Randomized Treatment With Icosapent Ethyl and a Mineral Oil Comparator on Interleukin-1β, Interleukin-6, C-Reactive Protein, Oxidized Low-Density Lipoprotein Cholesterol, Homocysteine, Lipoprotein(a), and Lipoprotein-Associated Phospholipase A2: A REDUCE-IT Biomarker Substudy.
Circulation.
2022 08; 146(5):372-379. doi:
10.1161/circulationaha.122.059410
. [PMID: 35762321] - Pinpin Long, Hao Wang, Zirui Zhang, Wending Li, Yizhi Zhang, Shiqi He, Kuai Yu, Haijing Jiang, Xuezhen Liu, Huan Guo, Meian He, Xiaomin Zhang, Tangchun Wu, Yu Yuan. Plasma metal concentrations and their interactions with genetic susceptibility on homocysteine levels.
Ecotoxicology and environmental safety.
2022 Aug; 241(?):113705. doi:
10.1016/j.ecoenv.2022.113705
. [PMID: 35687997] - Francesca Fava, Maria M Ulaszewska, Matthias Scholz, Jan Stanstrup, Lorenzo Nissen, Fulvio Mattivi, Joan Vermeiren, Douwina Bosscher, Carlo Pedrolli, Kieran M Tuohy. Impact of wheat aleurone on biomarkers of cardiovascular disease, gut microbiota and metabolites in adults with high body mass index: a double-blind, placebo-controlled, randomized clinical trial.
European journal of nutrition.
2022 Aug; 61(5):2651-2671. doi:
10.1007/s00394-022-02836-9
. [PMID: 35247098] - Jingjing Li, Fangfang Li, Na Yu, Zewen Liu. The betaine-dependent remethylation pathway is a homocysteine metabolism pathway associated with the carnivorous feeding habits of spiders.
Insect science.
2022 Aug; 29(4):1047-1058. doi:
10.1111/1744-7917.12976
. [PMID: 34647692] - Pierce Marsden, Aakriti A Sharma, Joe-Anthony Rotella. Review article: Clinical manifestations and outcomes of chronic nitrous oxide misuse: A systematic review.
Emergency medicine Australasia : EMA.
2022 08; 34(4):492-503. doi:
10.1111/1742-6723.13997
. [PMID: 35695047] - Jeliyah Clark, Paige Bommarito, Miroslav Stýblo, Marisela Rubio-Andrade, Gonzalo G García-Vargas, Mary V Gamble, Rebecca C Fry. Maternal serum concentrations of one-carbon metabolism factors modify the association between biomarkers of arsenic methylation efficiency and birth weight.
Environmental health : a global access science source.
2022 Jul; 21(1):68. doi:
10.1186/s12940-022-00875-7
. [PMID: 35836250] - Gang Luo, Xiaoyan Wang, Changya Liu. MiR-483-3p improves learning and memory abilities via XPO1 in Alzheimer's disease.
Brain and behavior.
2022 Jul; ?(?):e2680. doi:
10.1002/brb3.2680
. [PMID: 35833267] - Lucyna Ostrowska, Joanna Smarkusz-Zarzecka, Anna Muszyńska, Edyta Adamska-Patruno, Maria Górska, Adam Krętowski. High-Fat or High-Carbohydrate Meal-Does It Affect the Metabolism of Men with Excess Body Weight?.
Nutrients.
2022 Jul; 14(14):. doi:
10.3390/nu14142876
. [PMID: 35889836] - Marsha E Samson, Lorraine F Yeung, Charles E Rose, Yan Ping Qi, Christopher A Taylor, Krista S Crider. Vitamin B-12 malabsorption and renal function are critical considerations in studies of folate and vitamin B-12 interactions in cognitive performance: NHANES 2011-2014.
The American journal of clinical nutrition.
2022 07; 116(1):74-85. doi:
10.1093/ajcn/nqac065
. [PMID: 35584808] - M N Sultana, S Rahman, R Ara. Comparison of the Levels of Blood Homocysteine between Women with Unexplained Infertility and Normal Fertility.
Mymensingh medical journal : MMJ.
2022 Jul; 31(3):683-689. doi:
NULL
. [PMID: 35780351] - Changhua Mo, Xiao Ma, Wen Jian, Qili Huang, Wenbo Zheng, Zhijie Yang, Yutao Xu, Chun Gui. High mobility group box 1 and homocysteine as preprocedural predictors for contrast-induced acute kidney injury after percutaneous coronary artery intervention.
International urology and nephrology.
2022 Jul; 54(7):1663-1671. doi:
10.1007/s11255-021-03050-y
. [PMID: 34727314] - Ulrike Mütze, Florian Gleich, Sven F Garbade, Céline Plisson, Luis Aldámiz-Echevarría, Francisco Arrieta, Diana Ballhausen, Matthias Zielonka, Danijela Petković Ramadža, Matthias R Baumgartner, Aline Cano, María Concepción García Jiménez, Carlo Dionisi-Vici, Pavel Ješina, Henk J Blom, Maria Luz Couce, Silvia Meavilla Olivas, Karine Mention, Fanny Mochel, Andrew A M Morris, Helen Mundy, Isabelle Redonnet-Vernhet, Saikat Santra, Manuel Schiff, Aude Servais, Isidro Vitoria, Martina Huemer, Viktor Kožich, Stefan Kölker. Postauthorization safety study of betaine anhydrous.
Journal of inherited metabolic disease.
2022 07; 45(4):719-733. doi:
10.1002/jimd.12499
. [PMID: 35358327] - Eman M Fouda, Nancy S Wahba, Asmaa I M Elsharawy, Sally R Ishak. Serum homocysteine level in pediatric patients with COVID-19 and its correlation with the disease severity.
Pediatric pulmonology.
2022 07; 57(7):1701-1708. doi:
10.1002/ppul.25920
. [PMID: 35420248] - Özen Taş, Tugba Kontbay, Ozlem Dogan, Engin Kose, Merih Berberoglu, Zeynep Siklar, Leyla Tumer, Fatma Tuba Eminoglu. Does Metformin Treatment in Pediatric Population Cause Vitamin B12 Deficiency?.
Klinische Padiatrie.
2022 Jul; 234(4):221-227. doi:
10.1055/a-1702-2614
. [PMID: 35114702] - Merve Çebi, Barış Metin, Nevzat Tarhan. The association between vitamin B12 and plasma homocysteine levels with episodic memory and the volume of memory related brain structures in middle-aged individuals: a retrospective correlational study.
Brain structure & function.
2022 Jul; 227(6):2103-2109. doi:
10.1007/s00429-022-02499-6
. [PMID: 35499579] - Yi-Tong Xiong, Man-Hua Liu, Han-Ying Gu, Kai Li, Jin-Ru Zhang, Xiao-Yu Cheng, Hong Jin, Jing Chen, Cheng-Jie Mao, Chun-Feng Liu. Fiber selectivity of peripheral neuropathy in patients with Parkinson's disease.
Acta neurologica Scandinavica.
2022 Jul; 146(1):75-81. doi:
10.1111/ane.13624
. [PMID: 35466436] - Xiaosi Chen, Xinyuan Zhang, Yao Nie, Zhizhong Gong, Sobha Sivaprasad, Adrian T Fung, Qiyun Wang, Bingjie Qiu, Rui Xie, Yanhong Wang. Circulating level of homocysteine contributes to diabetic retinopathy associated with dysregulated lipid profile and impaired kidney function in patients with type 2 diabetes mellitus.
Eye (London, England).
2022 Jun; ?(?):. doi:
10.1038/s41433-022-02144-w
. [PMID: 35739242] - Z H Liu, W Yan, F X Li, S X Li, J T Liu. [The relationship between homocysteine, coagulation dysfunction and breast cancer risk].
Zhonghua zhong liu za zhi [Chinese journal of oncology].
2022 Jun; 44(6):562-569. doi:
10.3760/cma.j.cn112152-20200709-00633
. [PMID: 35754231] - Noha M El-Khodary, Hossam Dabees, Rehab H Werida. Folic acid effect on homocysteine, sortilin levels and glycemic control in type 2 diabetes mellitus patients.
Nutrition & diabetes.
2022 06; 12(1):33. doi:
10.1038/s41387-022-00210-6
. [PMID: 35732620] - Juan Wu, Dengke Liu, Liu Yang, Jianping Liu. Association Between Serum Homocysteine Levels and Severity of Diabetic Kidney Disease in 489 Patients with Type 2 Diabetes Mellitus: A Single-Center Study.
Medical science monitor : international medical journal of experimental and clinical research.
2022 Jun; 28(?):e936323. doi:
10.12659/msm.936323
. [PMID: 35684937] - Matthieu Wargny, Mikaël Croyal, Stéphanie Ragot, Elise Gand, David Jacobi, Jean-Noël Trochu, Xavier Prieur, Cédric Le May, Thomas Goronflot, Bertrand Cariou, Pierre-Jean Saulnier, Samy Hadjadj. Nutritional biomarkers and heart failure requiring hospitalization in patients with type 2 diabetes: the SURDIAGENE cohort.
Cardiovascular diabetology.
2022 06; 21(1):101. doi:
10.1186/s12933-022-01505-9
. [PMID: 35681209] - Mengru Li, Xiaotian Chen, Yi Zhang, Hongyan Chen, Dingmei Wang, Chao Cao, Yuan Jiang, Xiangyuan Huang, Yalan Dou, Yin Wang, Xiaojing Ma, Wei Sheng, Weili Yan, Guoying Huang. RBC Folate and Serum Folate, Vitamin B-12, and Homocysteine in Chinese Couples Prepregnancy in the Shanghai Preconception Cohort.
The Journal of nutrition.
2022 06; 152(6):1496-1506. doi:
10.1093/jn/nxac050
. [PMID: 35259272] - D X Li, Z H Chen, Y Jin, J Q Song, M Q Li, Y P Liu, X Y Li, Y X Chen, Y N Zhang, G Y Lyu, L Y Sun, Z J Zhu, Y Zhang, Y L Yang. [Clinical characteristics and CBS gene analysis of 13 cases with classic homocystinuria].
Zhonghua er ke za zhi = Chinese journal of pediatrics.
2022 Jun; 60(6):533-538. doi:
10.3760/cma.j.cn112140-20220305-00180
. [PMID: 35658358] - Xuecong Li, Prerna Yadav, Bernhard Spingler, Felix Zelder. A CuII -Salicylidene Glycinato Complex for the Selective Fluorometric Detection of Homocysteine over 20 Proteinogenic Amino Acids.
ChemistryOpen.
2022 Jun; 11(6):e202200106. doi:
10.1002/open.202200106
. [PMID: 35723424] - William D Wood, Ayah Elmaghrabi, Garrett Gotway, Matthias T F Wolf. The roles of homocysteinemia and methylmalonic acidemia in kidney injury in atypical hemolytic uremic syndrome caused by cobalamin C deficiency.
Pediatric nephrology (Berlin, Germany).
2022 06; 37(6):1415-1418. doi:
10.1007/s00467-021-05372-6
. [PMID: 34854955] - Cristiane Gonçalves de Oliveira Fialho, Ana Paula Boroni Moreira, Josefina Bressan, Rita de Cássia Gonçalves Alfenas, Richard Mattes, Neuza Maria Brunoro Costa. Effects of whole peanut within an energy-restricted diet on inflammatory and oxidative processes in obese women: a randomized controlled trial.
Journal of the science of food and agriculture.
2022 Jun; 102(8):3446-3455. doi:
10.1002/jsfa.11692
. [PMID: 34837651] - Wenyan Zhao, Legao Chen, Yan Lin, Huibo He, Honglei Ma, Qian Hu, Wei Yang, Faliang Gao, Xi Chen. Association of Homocysteine and Insulin Resistance with Increased Risk of Mortality in a Nondiabetic Population: Third National Health and Nutrition Examination Survey.
Metabolic syndrome and related disorders.
2022 06; 20(5):255-263. doi:
10.1089/met.2021.0119
. [PMID: 35467972] - Halima Abobaker, Nagmeldin A Omer, Yun Hu, Abdulrahman A Idriss, Ruqian Zhao. In ovo injection of betaine promotes adrenal steroidogenesis in pre-hatched chicken fetuses.
Poultry science.
2022 Jun; 101(6):101871. doi:
10.1016/j.psj.2022.101871
. [PMID: 35487119] - Eman R Youness, Sherien M El-Daly, Hanaa Reyad Abdallah, Hala T El-Bassyouni, Hisham Megahed, Azzah A Khedr, Marwa Elhady, Walaa Alsharany Abuelhamd. Serum homocysteine, lipid profile and BMI as atherosclerotic risk factors in children with numerical chromosomal aberrations.
World journal of pediatrics : WJP.
2022 06; 18(6):443-448. doi:
10.1007/s12519-022-00534-4
. [PMID: 35430675] - Zile Zhou, Peijuan Li, Zhihui Liu, Cuiyan Wu, Youyu Zhang, Haitao Li. Construction of a unique fluorescent probe for rapid and highly sensitive detection of glutathione in living cells and zebrafish.
Talanta.
2022 Jun; 243(?):123364. doi:
10.1016/j.talanta.2022.123364
. [PMID: 35287018] - Zhenguo Li, Mingli Liu, Chunwu Chen, Yongqiang Pan, Xueting Cui, Jian Sun, Furong Zhao, Yunfeng Cao. Simultaneous determination of serum homocysteine, cysteine, and methionine in patients with schizophrenia by liquid chromatography-tandem mass spectrometry.
Biomedical chromatography : BMC.
2022 Jun; 36(6):e5366. doi:
10.1002/bmc.5366
. [PMID: 35274340] - Ulf Wike Ljungblad, Henriette Astrup, Lars Mørkrid, Helle Borgstrøm Hager, Morten Lindberg, Erik A Eklund, Anne-Lise Bjørke-Monsen, Terje Rootwelt, Trine Tangeraas. Breastfed Infants With Spells, Tremor, or Irritability: Rule Out Vitamin B12 Deficiency.
Pediatric neurology.
2022 06; 131(?):4-12. doi:
10.1016/j.pediatrneurol.2022.03.003
. [PMID: 35439713] - Céline Cruciani-Guglielmacci, Kelly Meneyrol, Jessica Denom, Nadim Kassis, Latif Rachdi, Fatna Makaci, Stéphanie Migrenne-Li, Fabrice Daubigney, Eleni Georgiadou, Raphaël G Denis, Ana Rodriguez Sanchez-Archidona, Jean-Louis Paul, Bernard Thorens, Guy A Rutter, Christophe Magnan, Hervé Le Stunff, Nathalie Janel. Homocysteine Metabolism Pathway Is Involved in the Control of Glucose Homeostasis: A Cystathionine Beta Synthase Deficiency Study in Mouse.
Cells.
2022 05; 11(11):. doi:
10.3390/cells11111737
. [PMID: 35681432] - Elena Gerasimova, Olga Yakovleva, Daniel Enikeev, Ksenia Bogatova, Anton Hermann, Rashid Giniatullin, Guzel Sitdikova. Hyperhomocysteinemia Increases Cortical Excitability and Aggravates Mechanical Hyperalgesia and Anxiety in a Nitroglycerine-Induced Migraine Model in Rats.
Biomolecules.
2022 05; 12(5):. doi:
10.3390/biom12050735
. [PMID: 35625662] - Yu Cheng, Shuai Liu, Duo Chen, Yiman Yang, Qiongyue Liang, Ya Huo, Ziyi Zhou, Nan Zhang, Zhuo Wang, Lishun Liu, Yun Song, Xiangyi Liu, Yong Duan, Xiuwen Liang, Bingjie Hou, Binyan Wang, Genfu Tang, Xianhui Qin, Fangrong Yan. Association between serum 5-methyltetrahydrofolate and homocysteine in Chinese hypertensive participants with different MTHFR C677T polymorphisms: a cross-sectional study.
Nutrition journal.
2022 05; 21(1):29. doi:
10.1186/s12937-022-00786-w
. [PMID: 35562805] - Zhixin Zhang, Lin Wang, Yu Zhan, Cui Xie, Yang Xiang, Dan Chen, You Wu. Clinical value and expression of Homer 1, homocysteine, S-adenosyl-l-homocysteine, fibroblast growth factors 23 in coronary heart disease.
BMC cardiovascular disorders.
2022 05; 22(1):215. doi:
10.1186/s12872-022-02554-4
. [PMID: 35546659] - Islam M Mostafa, Hongzhan Liu, Saima Hanif, Muhammad Rehan Hasan Shah Gilani, Yiran Guan, Guobao Xu. Synthesis of a Novel Electrochemical Probe for the Sensitive and Selective Detection of Biothiols and Its Clinical Applications.
Analytical chemistry.
2022 05; 94(18):6853-6859. doi:
10.1021/acs.analchem.2c00813
. [PMID: 35476395] - Ki-Woong Nam, Chi Kyung Kim, Sungwook Yu, Kyungmi Oh, Jong-Won Chung, Oh Young Bang, Gyeong-Moon Kim, Jin-Man Jung, Tae-Jin Song, Yong-Jae Kim, Bum Joon Kim, Sung Hyuk Heo, Kwang-Yeol Park, Jeong-Min Kim, Jong-Ho Park, Jay Chol Choi, Man-Seok Park, Joon-Tae Kim, Kang-Ho Choi, Yang Ha Hwang, Woo-Keun Seo. Plasma Total Homocysteine Level Is Related to Unfavorable Outcomes in Ischemic Stroke With Atrial Fibrillation.
Journal of the American Heart Association.
2022 May; 11(9):e022138. doi:
10.1161/jaha.121.022138
. [PMID: 35470699] - Xiaona Wang, Tian Qiao, Min Liu, Xiang Wang. Homocysteine Associated With Low Cognitive Function Independent of Asymptomatic Intracranial and Carotid Arteries Stenoses in Chinese Elderly Patients: An Outpatient-Based Cross-Sectional Study.
Journal of geriatric psychiatry and neurology.
2022 05; 35(3):302-308. doi:
10.1177/0891988720988914
. [PMID: 33504251] - Tetiana Kovalchuk, Oksana Boyarchuk. Serum pyridoxine, folate, cobalamin, and homocysteine levels in children presenting with vasovagal syncope.
Cardiology in the young.
2022 May; 32(5):762-768. doi:
10.1017/s1047951121003036
. [PMID: 34321136] - Hui Zhang, Hangqi Shen, Wei Gong, Xuehui Sun, Xiaoyan Jiang, Jiucun Wang, Li Jin, Xun Xu, Dawei Luo, Xiaofeng Wang. Plasma homocysteine and macular thickness in older adults-the Rugao Longevity and Aging Study.
Eye (London, England).
2022 05; 36(5):1050-1060. doi:
10.1038/s41433-021-01549-3
. [PMID: 33976397] - Agata Muzsik-Kazimierska, Artur Szwengiel, Grzegorz Nikrandt, Agata Chmurzynska. Lower plasma glutathione, choline, and betaine concentrations are associated with fatty liver in postmenopausal women.
Nutrition research (New York, N.Y.).
2022 05; 101(?):23-30. doi:
10.1016/j.nutres.2022.02.004
. [PMID: 35364359] - Jie Jiang, Chuling Wen, Yi Li, Guohui Liu, Zijun Chen, Dongwen Zheng. IFC-305 attenuates renal ischemia-reperfusion injury by promoting the production of hydrogen sulfide (H2S) via suppressing the promoter methylation of cystathionine γ-lyase (CSE).
Bioengineered.
2022 05; 13(5):12045-12054. doi:
10.1080/21655979.2022.2062105
. [PMID: 35549822] - Xueting Cui, Jieshi Xu, Mingli Liu, Guocheng Ren, Yunfeng Cao. Establishment of reference intervals of homocysteine, cysteine, and methionine in apparently healthy Chinese adults.
Scandinavian journal of clinical and laboratory investigation.
2022 05; 82(3):232-237. doi:
10.1080/00365513.2022.2056855
. [PMID: 35350940] - Gianmaria Salvio, Alessandro Ciarloni, Simone Cordoni, Melissa Cutini, Nicola Delli Muti, Federica Finocchi, Francesca Firmani, Lara Giovannini, Michele Perrone, Giancarlo Balercia. Homocysteine levels correlate with velocimetric parameters in patients with erectile dysfunction undergoing penile duplex ultrasound.
Andrology.
2022 05; 10(4):733-739. doi:
10.1111/andr.13169
. [PMID: 35224883] - Adem Keskin, Goksenin U Ustun, Recai Aci, Utku Duran. Homocysteine as a marker for predicting disease severity in patients with COVID-19.
Biomarkers in medicine.
2022 05; 16(7):559-568. doi:
10.2217/bmm-2021-0688
. [PMID: 35343243] - Zhihui Xie, Youquan Shen, Shian Huang, Weimin Shen, Jinlai Liu. Abnormal ADAMTS2 and VSIG4 in Serum of HF Patients and their Relationship with CRP, UA, and HCY.
Clinical laboratory.
2022 May; 68(5):. doi:
10.7754/clin.lab.2021.210811
. [PMID: 35536083] - Thomas Müller, Eugen Schlegel, Stephanie Zingler, Hans Michael Thiede. Effects of One-Day Application of Levodopa/Carbidopa/Entacapone versus Levodopa/Carbidopa/Opicapone in Parkinson's Disease Patients.
Cells.
2022 04; 11(9):. doi:
10.3390/cells11091511
. [PMID: 35563817] - Jasem Yousef Al-Hashel, Raed Alroughani, Khaled Gad, Lamiaa Al-Sarraf, Samar Farouk Ahmed. Risk factors of white matter hyperintensities in migraine patients.
BMC neurology.
2022 Apr; 22(1):159. doi:
10.1186/s12883-022-02680-8
. [PMID: 35488255] - Muhammad Shabir Khan, Anum Saeedullah, Simon C Andrews, Khalid Iqbal, Syed Abdul Qadir, Babar Shahzad, Zahoor Ahmed, Muhammad Shahzad. Adolescent Afghan Refugees Display a High Prevalence of Hyperhomocysteinemia and Associated Micronutrients Deficiencies Indicating an Enhanced Risk of Cardiovascular Disease in Later Life.
Nutrients.
2022 Apr; 14(9):. doi:
10.3390/nu14091751
. [PMID: 35565715] - Gokul G, Jogender Singh. Dithiothreitol causes toxicity in C. elegans by modulating the methionine-homocysteine cycle.
eLife.
2022 04; 11(?):. doi:
10.7554/elife.76021
. [PMID: 35438636] - Youngwoong Kim, Jong Min An, Jaehoon Kim, Tamrin Chowdhury, Hyeon Jong Yu, Kyung-Min Kim, Ho Kang, Chul-Kee Park, Joonyoung F Joung, Sungnam Park, Dokyoung Kim. Pyridine-NBD: A homocysteine-selective fluorescent probe for glioblastoma (GBM) diagnosis based on a blood test.
Analytica chimica acta.
2022 Apr; 1202(?):339678. doi:
10.1016/j.aca.2022.339678
. [PMID: 35341522] - Hui Zhang, Yi Li, Meng Hao, Xiaoyan Jiang, Jiucun Wang, Li Jin, Zhijun Bao, Xiaofeng Wang. Kidney function decline is associated with an accelerated increase in plasma homocysteine in older adults: a longitudinal study.
The British journal of nutrition.
2022 04; 127(7):993-999. doi:
10.1017/s0007114521001690
. [PMID: 34024293]