Theobromine (BioDeep_00000000452)
Secondary id: BioDeep_00000398467, BioDeep_00000864972
human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: C7H8N4O2 (180.0647)
中文名称: 可可碱
谱图信息:
最多检出来源 Homo sapiens(plant) 14.01%
Last reviewed on 2024-06-29.
Cite this Page
Theobromine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/theobromine (retrieved
2024-12-22) (BioDeep RN: BioDeep_00000000452). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: CN1C=NC2=C1C(=O)NC(=O)N2C
InChI: InChI=1S/C7H8N4O2/c1-10-3-8-5-4(10)6(12)9-7(13)11(5)2/h3H,1-2H3,(H,9,12,13)
描述信息
Theobromine is an odorless white crystalline powder. Bitter taste. pH (saturated solution in water): 5.5-7. (NTP, 1992)
Theobromine, also known as xantheose, is the principal alkaloid of Theobroma cacao (cacao plant).[4] Theobromine is slightly water-soluble (330 mg/L) with a bitter taste.[5] In industry, theobromine is used as an additive and precursor to some cosmetics.[4] It is found in chocolate, as well as in a number of other foods, including tea (Camellia sinensis), some American hollies (yaupon and guayusa) and the kola nut. It is a white or colourless solid, but commercial samples can appear yellowish.[5]
Theobromine is a dimethylxanthine having the two methyl groups located at positions 3 and 7. A purine alkaloid derived from the cacao plant, it is found in chocolate, as well as in a number of other foods, and is a vasodilator, diuretic and heart stimulator. It has a role as an adenosine receptor antagonist, a food component, a plant metabolite, a human blood serum metabolite, a mouse metabolite, a vasodilator agent and a bronchodilator agent.
Theobromine (3,7-dimethylxanthine) is the principle alkaloid in Theobroma cacao (the cacao bean) and other plants. A xanthine alkaloid that is used as a bronchodilator and as a vasodilator. It has a weaker diuretic activity than theophylline and is also a less powerful stimulant of smooth muscle. It has practically no stimulant effect on the central nervous system. It was formerly used as a diuretic and in the treatment of angina pectoris and hypertension. (From Martindale, The Extra Pharmacopoeia, 30th ed, pp1318-9)
Theobromine is a natural product found in Theobroma grandiflorum, Theobroma mammosum, and other organisms with data available.
3,7-Dimethylxanthine. The principle alkaloid in Theobroma cacao (the cacao bean) and other plants. A xanthine alkaloid that is used as a bronchodilator and as a vasodilator. It has a weaker diuretic activity than THEOPHYLLINE and is also a less powerful stimulant of smooth muscle. It has practically no stimulant effect on the central nervous system. It was formerly used as a diuretic and in the treatment of angina pectoris and hypertension. (From Martindale, The Extra Pharmacopoeia, 30th ed, pp1318-9)
See also: Paullinia cupana seed (part of).
Theobromine, or 3,7-Dimethylxanthine, is the principle alkaloid in Theobroma cacao (the cacao bean) and other plants. A xanthine alkaloid that is used as a bronchodilator and as a vasodilator. It has a weaker diuretic activity than theophylline and is also a less powerful stimulant of smooth muscle. It has practically no stimulant effect on the central nervous system. It was formerly used as a diuretic and in the treatment of angina pectoris and hypertension. Theobromine is a bitter alkaloid of the methylxanthine family, which also includes the similar compounds theophylline and caffeine. Despite its name, the compound contains no bromine. Theobromine is derived from Theobroma, the genus of the cacao tree, which is composed of the Greek roots theo ("God") and broma ("food"), meaning "food of the gods". It is the primary alkaloid found in cocoa and chocolate, and is one of the causes for chocolates mood-elevating effects. The amount found in chocolate is small enough that chocolate can be safely consumed by humans in large quantities, but animals that metabolize theobromine more slowly, such as cats and dogs, can easily consume enough chocolate to cause chocolate poisoning. Theobromine is a stimulant frequently confused with caffeine. Theobromine has very different effects on the human body from caffeine; it is a mild, lasting stimulant with a mood improving effect, whereas caffeine has a strong, immediate effect and increases stress. In medicine, it is used as a diuretic, vasodilator, and myocardial stimulant. There is a possible association between prostate cancer and theobromine. Theobromine is a contributing factor in acid reflux because it relaxes the esophageal sphincter muscle, allowing stomach acid access to the esophagus.
A dimethylxanthine having the two methyl groups located at positions 3 and 7. A purine alkaloid derived from the cacao plant, it is found in chocolate, as well as in a number of other foods, and is a vasodilator, diuretic and heart stimulator.
Constituent of tea leaves (Camellia thea), cocoa Theobroma cacao, cola nut (Cola acuminata) and guarana (Paullinia cupana); flavouring ingredient with a bitter taste
Biosynthesis
Theobromine is a purine alkaloid derived from xanthosine, a nucleoside. Cleavage of the ribose and N-methylation yields 7-methylxanthosine. 7-Methylxanthosine in turn is the precursor to theobromine, which in turn is the precursor to caffeine.[24]
Even without dietary intake, theobromine may occur in the body as it is a product of the human metabolism of caffeine, which is metabolised in the liver into 12\% theobromine, 4\% theophylline, and 84\% paraxanthine.[25]
In the liver, theobromine is metabolized into xanthine and subsequently into methyluric acid.[26] Important enzymes include CYP1A2 and CYP2E1.[27] The elimination half life of theobromine is between 6 and 8 hours.[1][2]
Unlike caffeine, which is highly water-soluble, theobromine is only slightly water-soluble and is more fat soluble, and thus peaks more slowly in the blood. While caffeine peaks after only 30 minutes, theobromine requires 2–3 hours to peak.[28]
The primary mechanism of action for theobromine inside the body is inhibition of adenosine receptors.[5] Its effect as a phosphodiesterase inhibitor[29] is thought to be small.[5]
同义名列表
92 个代谢物同义名
Theobromine, Pharmaceutical Secondary Standard; Certified Reference Material; InChI=1/C7H8N4O2/c1-10-3-8-5-4(10)6(12)9-7(13)11(5)2/h3H,1-2H3,(H,9,12,13); Theobromine, European Pharmacopoeia (EP) Reference Standard; 1H-purine-2,6-dione,3,7-dihydro-3,7- dimethyl- (9CI); 3,7-dimethyl-2,3,6,7-tetrahydro-1H-purine-2,6-dione; 3,7-DIMETHYLXANTHINE; 3,7-DIMETHYLPURINE-2,6-DIONE; 1H-Purine-2,6-dione, 3,7-dihydro-3,7-dimethyl-; 3,7-Dimethyl-3,7-dihydro-1H-purine-2,6-dione #; CAFFEINE MONOHYDRATE IMPURITY D [EP IMPURITY]; 5-26-13-00553 (Beilstein Handbook Reference); 3,7-Dihydro-3,7-dimethyl-1H-purine-2,6-dione; 3,7-Dimethyl-3,7-dihydro-1H-purine-2,6-dione; 3,7-dimethyl-1,3,7-trihydropurine-2,6-dione; PENTOXIFYLLINE IMPURITY A [EP IMPURITY]; 3,7-Dimethyl-1H-purine-2,6(3H,7H)-dione; PENTOXIFYLLINE IMPURITY A (EP IMPURITY); 1H-Purine-2, 3,7-dihydro-3,7-dimethyl-; CEC63CCA-3B4B-4F4F-92C1-1789DF3C880A; Theobromine (3,7-Dimethylxanthine); Theobromine 0.1 mg/ml in Methanol; 2,6-Dihydroxy-3,7-dimethyl-purine; 3,7-dimethyl-1H-purine-2,6-dione; 2,6-Dihydroxy-3,7-dimethylpurine; Theobromine, analytical standard; Theobromine, >=98.0\\% (HPLC); 3,7-dimethylpurine-2,6-dione; WLN: T56 BN DN FNVMVJ B1 F1; YAPQBXQYLJRXSA-UHFFFAOYSA-; 5-26-13-00553 (Beilstein); THEOBROMINE (EP IMPURITY); THEOBROMINE [EP IMPURITY]; Theobromine [INN:BAN:NF]; Xanthine, 3,7-dimethyl-; Caffeine EP impurity D; 3,7-Dimethyl-xanthine; Theobromine, >=98.0\\%; 3, 7-Dimethylxanthine; Theobromine (natural); THEOBROMINE [WHO-DD]; 3,7-Dimethylxanthine; 3,7-dimethylxanthin; THEOBROMINE [MART.]; THEOBROMINE (MART.); THEOBROMINUM [HPUS]; THEOBROMINE [VANDF]; THEOBROMINE [HSDB]; THEOBROMINE [IARC]; 7-Dimethylxanthine; THEOBROMINE [FHFI]; THEOBROMINE (IARC); THEOBROMINE [INCI]; Prestwick0_000874; Prestwick2_000874; Prestwick1_000874; Theobromine(20\\%); Prestwick3_000874; Spectrum5_001387; Spectrum2_000985; Spectrum3_000279; THEOBROMINE [MI]; Spectrum4_000403; Tox21_110284_1; DivK1c_000611; Lopac0_001187; BPBio1_001043; Diurobromine; KBio1_000611; PDSP1_001017; Tox21_300016; Theobromine;; KBio2_000433; Tox21_501187; KBio2_003001; Tox21_110284; KBio2_005569; PDSP2_001001; Theobrominum; KBio3_001258; IDI1_000611; theobromine; Theosalvose; CAS-83-67-0; Theobromin; Thesodate; Theostene; Xantheose; Teobromin; Santheose; Thesal; 37T; Theobromine; Theobromine
数据库引用编号
47 个数据库交叉引用编号
- ChEBI: CHEBI:28946
- KEGG: C07480
- KEGGdrug: D71206
- PubChem: 5429
- HMDB: HMDB0002825
- Metlin: METLIN1456
- DrugBank: DB01412
- ChEMBL: CHEMBL1114
- Wikipedia: Theobromine
- MeSH: Theobromine
- ChemIDplus: 0000083670
- MetaCyc: 3-7-DIMETHYLXANTHINE
- KNApSAcK: C00001509
- foodb: FDB000455
- chemspider: 5236
- CAS: 83-67-0
- MoNA: RP012202
- MoNA: LU094151
- MoNA: LU094153
- MoNA: KO004126
- MoNA: LU094156
- MoNA: LU094104
- MoNA: LU094155
- MoNA: LU094154
- MoNA: KO004124
- MoNA: KO004123
- MoNA: RP012203
- MoNA: KO004122
- MoNA: KO004125
- MoNA: LU094103
- MoNA: LU094105
- MoNA: LU094102
- MoNA: LU094152
- MoNA: LU094101
- MoNA: LU094106
- MoNA: RP012201
- medchemexpress: HY-N0138
- PMhub: MS000000555
- MetaboLights: MTBLC28946
- PDB-CCD: 37T
- 3DMET: B02123
- NIKKAJI: J3.874A
- RefMet: Theobromine
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-920
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-336
- PubChem: 9683
- KNApSAcK: 28946
分类词条
相关代谢途径
Reactome(0)
BioCyc(3)
PlantCyc(0)
代谢反应
18 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(5)
- theobromine biosynthesis II (via xanthine):
3-methylxanthine + SAM ⟶ H+ + SAH + theobromine
- caffeine degradation IV (bacteria, via demethylation and oxidation):
H+ + NAD(P)H + O2 + caffeine ⟶ H2O + NAD(P)+ + formaldehyde + paraxanthine
- caffeine degradation III (bacteria, via demethylation):
H+ + NAD(P)H + O2 + caffeine ⟶ H2O + NAD(P)+ + formaldehyde + paraxanthine
- caffeine biosynthesis I:
SAM + theobromine ⟶ H+ + SAH + caffeine
- theobromine biosynthesis I:
7-methylxanthine + SAM ⟶ H+ + SAH + theobromine
Plant Reactome(0)
INOH(0)
PlantCyc(7)
- theobromine biosynthesis I:
7-methylxanthosine + H2O ⟶ 7-methylxanthine + D-ribofuranose + H+
- caffeine biosynthesis I:
7-methylxanthosine + H2O ⟶ 7-methylxanthine + D-ribofuranose + H+
- theobromine biosynthesis I:
7-methylxanthine + SAM ⟶ H+ + SAH + theobromine
- caffeine biosynthesis I:
SAM + theobromine ⟶ H+ + SAH + caffeine
- theobromine biosynthesis II (via xanthine):
3-methylxanthine + SAM ⟶ H+ + SAH + theobromine
- theobromine biosynthesis I:
7-methylxanthine + SAM ⟶ H+ + SAH + theobromine
- caffeine biosynthesis I:
7-methylxanthine + SAM ⟶ H+ + SAH + theobromine
COVID-19 Disease Map(0)
PathBank(5)
- Caffeine Metabolism:
Oxygen + Paraxanthine + Water ⟶ 1,7-Dimethyluric acid + Hydrogen peroxide
- Caffeine Metabolism:
Oxygen + Paraxanthine + Water ⟶ 1,7-Dimethyluric acid + Hydrogen peroxide
- Caffeine Metabolism:
Oxygen + Paraxanthine + Water ⟶ 1,7-Dimethyluric acid + Hydrogen peroxide
- Caffeine Metabolism:
Oxygen + Paraxanthine + Water ⟶ 1,7-Dimethyluric acid + Hydrogen peroxide
- Caffeine Metabolism:
Oxygen + Paraxanthine + Water ⟶ 1,7-Dimethyluric acid + Hydrogen peroxide
PharmGKB(0)
37 个相关的物种来源信息
- 82454 - Abroma augustum: 10.1007/BF01187339
- 4441 - Camellia: 10.1016/S0021-9673(01)88752-5
- 153142 - Camellia irrawadiensis:
- 4443 - Camellia japonica: 10.1016/S0031-9422(00)83024-1
- 385388 - Camellia oleifera: 10.1016/S0031-9422(00)83024-1
- 319931 - Camellia ptilophylla: 10.1007/BF02507798
- 182300 - Camellia sasanqua: 10.1016/S0031-9422(00)83024-1
- 4442 - Camellia sinensis:
- 261999 - Camellia sinensis var. assamica: 10.1016/S0031-9422(02)00086-9
- 182317 - Camellia taliensis:
- 37334 - Citrus maxima: 10.1016/S0031-9422(99)00119-3
- 13443 - Coffea arabica:
- 339902 - Coffea homollei: 10.1016/0031-9422(92)80275-J
- 339904 - Coffea kianjavatensis: 10.1016/0031-9422(92)80275-J
- 339910 - Coffea lancifolia: 10.1016/0031-9422(92)80275-J
- 93760 - Cola acuminata: 10.1016/J.AJEM.2011.06.032
- 82457 - Cola nitida: 10.1016/0091-3057(87)90619-8
- 98750 - Festuca ovina: 10.1016/S0021-9673(01)83714-6
- 4608 - Festuca pratensis: 10.1016/S0021-9673(01)83714-6
- 52153 - Festuca rubra: 10.1016/S0021-9673(01)83714-6
- 178609 - Herrania mariae: 10.1007/BF01187339
- 9606 - Homo sapiens: -
- 185491 - Ilex argentina: 10.1002/(SICI)1099-1573(199803)12:2<129::AID-PTR191>3.0.CO;2-1
- 53199 - Ilex brevicuspis: 10.1002/(SICI)1099-1573(199803)12:2<129::AID-PTR191>3.0.CO;2-1
- 53202 - Ilex dumosa: 10.1002/(SICI)1099-1573(199803)12:2<129::AID-PTR191>3.0.CO;2-1
- 185533 - Ilex microdonta: 10.1002/(SICI)1099-1573(199803)12:2<129::AID-PTR191>3.0.CO;2-1
- 185542 - Ilex paraguariensis:
- 53209 - Ilex perado: 10.1055/S-0028-1097873
- 53210 - Ilex pseudobuxus: 10.1002/(SICI)1099-1573(199803)12:2<129::AID-PTR191>3.0.CO;2-1
- 392747 - Paullinia cupana:
- 303 - Pseudomonas putida: 10.1007/BF00252543
- 1146880 - Scurrula atropurpurea: 10.1248/CPB.51.343
- 3641 - Theobroma cacao:
- 108881 - Theobroma grandiflorum:
- 108882 - Theobroma mammosum: 10.1016/S0031-9422(00)94827-1
- 108885 - Theobroma speciosum: 10.1007/BF01187339
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Qifang Jin, Zhong Wang, Devinder Sandhu, Lan Chen, Chenyu Shao, Siyi Xie, Fanghuizi Shang, Shuai Wen, Ting Wu, Huiying Jin, Feiyi Huang, Guizhi Liu, Jinyu Hu, Qin Su, Mengdi Huang, Qian Zhu, Biao Zhou, Lihua Zhu, Lvwen Peng, Zhonghua Liu, Jianan Huang, Na Tian, Shuoqian Liu. miR828a-CsMYB114 Module Negatively Regulates the Biosynthesis of Theobromine in Camellia sinensis.
Journal of agricultural and food chemistry.
2024 Feb; 72(8):4464-4475. doi:
10.1021/acs.jafc.3c07736
. [PMID: 38376143] - Elham Sharifi-Zahabi, Nayebali Rezvani, Fatemeh Hajizadeh-Sharafabad, Fatemeh Sadat Hosseini-Baharanchi, Farzad Shidfar, Mehrali Rahimi. Theobromine supplementation in combination with a low-calorie diet improves cardiovascular risk factors in overweight and obese subjects with metabolic syndrome: a randomized controlled trial.
Food & function.
2023 Aug; ?(?):. doi:
10.1039/d3fo00555k
. [PMID: 37615657] - Elham Sharifi-Zahabi, Fatemeh Hajizadeh-Sharafabad, Seyed Mostafa Nachvak, Soheila Mirzaian, Sahar Darbandi, Farzad Shidfar. A comprehensive insight into the molecular effect of theobromine on cardiovascular-related risk factors: A systematic review of in vitro and in vivo studies.
Phytotherapy research : PTR.
2023 Jun; ?(?):. doi:
10.1002/ptr.7916
. [PMID: 37309834] - Xu Wang, Xiuli Zeng, Chunyin Qin, Xiaomei Yan, Xuanqin Chen, Liang Zhang, Yu Zhou. Herbaspirillum sp. ZXN111 Colonization Characters to Different Tea Cultivars and the Effects on Tea Metabolites Profiling on Zijuan (Camellia sinensis var. assamica).
Journal of agricultural and food chemistry.
2023 Apr; 71(13):5283-5292. doi:
10.1021/acs.jafc.3c00050
. [PMID: 36946772] - Kiran Bharat Lokhande, Sarika Vishnu Pawar, Smriti Madkaiker, Ashish Shrivastava, Swamy K Venkateswara, Neelu Nawani, Minal Wani, Payel Ghosh, Ashutosh Singh. Screening of potential phytomolecules against MurG as drug target in nosocomial pathogen Pseudomonas aeruginosa: perceptions from computational campaign.
Journal of biomolecular structure & dynamics.
2023 Mar; ?(?):1-14. doi:
10.1080/07391102.2023.2194005
. [PMID: 36974974] - Zhen-Hong Wang, Guo-Qiang Zhang, Zi-Wei Zhang, Zheng-Hong Li. Target Metabolome and Transcriptome Analysis Reveal Molecular Mechanism Associated with Changes of Tea Quality at Different Development Stages.
Molecular biotechnology.
2023 Jan; 65(1):52-60. doi:
10.1007/s12033-022-00525-w
. [PMID: 35780278] - Dongqin Xu, Wenhao Zhao, Yiting Feng, Xiao Wen, Hanxiao Liu, Jie Ping. Pentoxifylline attenuates nonalcoholic fatty liver by inhibiting hepatic macrophage polarization to the M1 phenotype.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2022 Nov; 106(?):154368. doi:
10.1016/j.phymed.2022.154368
. [PMID: 35994850] - Xiong Gao, Xiaorong Lin, Chi-Tang Ho, Yuanyuan Zhang, Bin Li, Zhongzheng Chen. Chemical composition and anti-inflammatory activity of water extract from black cocoa tea (Camellia ptilophylla).
Food research international (Ottawa, Ont.).
2022 11; 161(?):111831. doi:
10.1016/j.foodres.2022.111831
. [PMID: 36192963] - Francesca Julià, Antonia Costa-Bauza, Francisco Berga, Felix Grases. Effect of theobromine on dissolution of uric acid kidney stones.
World journal of urology.
2022 Aug; 40(8):2105-2111. doi:
10.1007/s00345-022-04059-3
. [PMID: 35689678] - Shoji Tanaka, Naotoshi Sugimoto, Takako Ohno-Shosaku, Sachiko Madokoro, Pleiades Tiharu Inaoka, Toshiaki Yamazaki. Effects of long-term treatment with dietary theobromine on rat skeletal muscles.
Molecular biology reports.
2022 May; 49(5):3965-3973. doi:
10.1007/s11033-022-07248-w
. [PMID: 35226259] - Alexandra C Purdue-Smithe, Keewan Kim, Karen C Schliep, Elizabeth A DeVilbiss, Stefanie N Hinkle, Aijun Ye, Neil J Perkins, Lindsey A Sjaarda, Robert M Silver, Enrique F Schisterman, Sunni L Mumford. Preconception caffeine metabolites, caffeinated beverage intake, and fecundability.
The American journal of clinical nutrition.
2022 04; 115(4):1227-1236. doi:
10.1093/ajcn/nqab435
. [PMID: 35030239] - Daniel Janitschke, Anna Andrea Lauer, Cornel Manuel Bachmann, Jakob Winkler, Lea Victoria Griebsch, Sabrina Melanie Pilz, Elena Leoni Theiss, Heike Sabine Grimm, Tobias Hartmann, Marcus Otto Walter Grimm. Methylxanthines Induce a Change in the AD/Neurodegeneration-Linked Lipid Profile in Neuroblastoma Cells.
International journal of molecular sciences.
2022 Feb; 23(4):. doi:
10.3390/ijms23042295
. [PMID: 35216410] - Kristen J Polinski, Alexandra Purdue-Smithe, Sonia L Robinson, Sifang Kathy Zhao, Karen C Schliep, Robert M Silver, Weihua Guan, Enrique F Schisterman, Sunni L Mumford, Edwina H Yeung. Maternal caffeine intake and DNA methylation in newborn cord blood.
The American journal of clinical nutrition.
2022 02; 115(2):482-491. doi:
10.1093/ajcn/nqab348
. [PMID: 34669932] - Emi Tanaka, Takakazu Mitani, Momona Nakashima, Eito Yonemoto, Hiroshi Fujii, Hitoshi Ashida. Theobromine enhances the conversion of white adipocytes into beige adipocytes in a PPARγ activation-dependent manner.
The Journal of nutritional biochemistry.
2022 02; 100(?):108898. doi:
10.1016/j.jnutbio.2021.108898
. [PMID: 34748921] - Martin Kertys, Nela Žideková, Kristián Pršo, Katarína Maráková, Katarína Kmeťová, Juraj Mokrý. Simultaneous determination of caffeine and its metabolites in rat plasma by UHPLC-MS/MS.
Journal of separation science.
2021 Dec; 44(23):4274-4283. doi:
10.1002/jssc.202100604
. [PMID: 34626085] - Dusan Petrovic, Menno Pruijm, Belén Ponte, Nasser A Dhayat, Daniel Ackermann, Georg Ehret, Nicolas Ansermot, Bruno Vogt, Pierre-Yves Martin, Silvia Stringhini, Sandrine Estoppey-Younès, Lutgarde Thijs, Zhenyu Zhang, Jesus D Melgarejo, Chin B Eap, Jan A Staessen, Murielle Bochud, Idris Guessous. Investigating the Relations Between Caffeine-Derived Metabolites and Plasma Lipids in 2 Population-Based Studies.
Mayo Clinic proceedings.
2021 12; 96(12):3071-3085. doi:
10.1016/j.mayocp.2021.05.030
. [PMID: 34579945] - Julia Brunmair, Mathias Gotsmy, Laura Niederstaetter, Benjamin Neuditschko, Andrea Bileck, Astrid Slany, Max Lennart Feuerstein, Clemens Langbauer, Lukas Janker, Jürgen Zanghellini, Samuel M Meier-Menches, Christopher Gerner. Finger sweat analysis enables short interval metabolic biomonitoring in humans.
Nature communications.
2021 10; 12(1):5993. doi:
10.1038/s41467-021-26245-4
. [PMID: 34645808] - Javeed Ahmad Bhat, Sushma Gupta, Manish Kumar. Neuroprotective effects of theobromine in transient global cerebral ischemia-reperfusion rat model.
Biochemical and biophysical research communications.
2021 09; 571(?):74-80. doi:
10.1016/j.bbrc.2021.07.051
. [PMID: 34303966] - Kamilla Nunes Machado, Antony de Paula Barbosa, Aline Alves de Freitas, Luana Farah Alvarenga, Rodrigo Maia de Pádua, André Augusto Gomes Faraco, Fernão Castro Braga, Cristina Duarte Vianna-Soares, Rachel Oliveira Castilho. TNF-α inhibition, antioxidant effects and chemical analysis of extracts and fraction from Brazilian guaraná seed powder.
Food chemistry.
2021 Sep; 355(?):129563. doi:
10.1016/j.foodchem.2021.129563
. [PMID: 33799249] - Jader B Ruchel, Viviane M Bernardes, Josiane B S Braun, Alessandra G Manzoni, Daniela F Passos, Lívia G Castilhos, Fátima H Abdalla, Juliana S de Oliveira, Cinthia M de Andrade, Emerson A Casali, Ivana B M da Cruz, Daniela B R Leal. Lipotoxicity-associated inflammation is prevented by guarana (Paullinia cupana) in a model of hyperlipidemia.
Drug and chemical toxicology.
2021 Sep; 44(5):524-532. doi:
10.1080/01480545.2019.1624767
. [PMID: 31195840] - Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
Cell reports.
2021 04; 35(4):109040. doi:
10.1016/j.celrep.2021.109040
. [PMID: 33910017] - Nathalie Raharimalala, Stephane Rombauts, Andrew McCarthy, Andréa Garavito, Simon Orozco-Arias, Laurence Bellanger, Alexa Yadira Morales-Correa, Solène Froger, Stéphane Michaux, Victoria Berry, Sylviane Metairon, Coralie Fournier, Maud Lepelley, Lukas Mueller, Emmanuel Couturon, Perla Hamon, Jean-Jacques Rakotomalala, Patrick Descombes, Romain Guyot, Dominique Crouzillat. The absence of the caffeine synthase gene is involved in the naturally decaffeinated status of Coffea humblotiana, a wild species from Comoro archipelago.
Scientific reports.
2021 04; 11(1):8119. doi:
10.1038/s41598-021-87419-0
. [PMID: 33854089] - Carlotta Ciaramelli, Alessandro Palmioli, Ada De Luigi, Laura Colombo, Gessica Sala, Mario Salmona, Cristina Airoldi. NMR-based Lavado cocoa chemical characterization and comparison with fermented cocoa varieties: Insights on cocoa's anti-amyloidogenic activity.
Food chemistry.
2021 Mar; 341(Pt 2):128249. doi:
10.1016/j.foodchem.2020.128249
. [PMID: 33038804] - Daniel Janitschke, Anna A Lauer, Cornel M Bachmann, Heike S Grimm, Tobias Hartmann, Marcus O W Grimm. Methylxanthines and Neurodegenerative Diseases: An Update.
Nutrients.
2021 Feb; 13(3):. doi:
10.3390/nu13030803
. [PMID: 33671099] - Caroline Belló, Ana Paula Prestes, Josiane Aparecida Schemberger, Ana Carolina Mendes Hacke, Romaiana Picada Pereira, Francine Alessandra Manente, Iracilda Zeppone Carlos, Cleverton Roberto de Andrade, Daniel Fernandes, Ivana Beatrice Manica da Cruz, Taís Cristina Unfer, José Carlos Rebuglio Vellosa. Aqueous extract of Paullinia cupana attenuates renal and hematological effects associated with ketoprofen.
Journal of food biochemistry.
2021 01; 45(1):e13560. doi:
10.1111/jfbc.13560
. [PMID: 33270240] - Myeong Hwan Jang, Sulagna Mukherjee, Min Ji Choi, Nam Hyeon Kang, Huong Giang Pham, Jong Won Yun. Theobromine alleviates diet-induced obesity in mice via phosphodiesterase-4 inhibition.
European journal of nutrition.
2020 Dec; 59(8):3503-3516. doi:
10.1007/s00394-020-02184-6
. [PMID: 31965293] - Daniel Janitschke, Anna A Lauer, Cornel M Bachmann, Martin Seyfried, Heike S Grimm, Tobias Hartmann, Marcus O W Grimm. Unique Role of Caffeine Compared to Other Methylxanthines (Theobromine, Theophylline, Pentoxifylline, Propentofylline) in Regulation of AD Relevant Genes in Neuroblastoma SH-SY5Y Wild Type Cells.
International journal of molecular sciences.
2020 Nov; 21(23):. doi:
10.3390/ijms21239015
. [PMID: 33260941] - Agnieszka Viapiana, Filippo Maggi, Mateusz Kaszuba, Pawel Konieczynski, Marek Wesolowski. Quality assessment of Coffea arabica commercial samples.
Natural product research.
2020 Nov; 34(21):3154-3157. doi:
10.1080/14786419.2019.1610750
. [PMID: 31088303] - Shou En Wu, Wei-Liang Chen. Exploring the Association between Urine Caffeine Metabolites and Urine Flow Rate: A Cross-Sectional Study.
Nutrients.
2020 Sep; 12(9):. doi:
10.3390/nu12092803
. [PMID: 32933151] - Binxing Zhou, Cunqiang Ma, Chengqin Zheng, Tao Xia, Bingsong Ma, Xiaohui Liu. 3-Methylxanthine production through biodegradation of theobromine by Aspergillus sydowii PT-2.
BMC microbiology.
2020 08; 20(1):269. doi:
10.1186/s12866-020-01951-z
. [PMID: 32854634] - Daniel Oduro-Mensah, Augustine Ocloo, Thomas Nortey, Stephen Antwi, Laud K Okine, Naa A Adamafio. Nutritional value and safety of animal feed supplemented with Talaromyces verruculosus-treated cocoa pod husks.
Scientific reports.
2020 08; 10(1):13163. doi:
10.1038/s41598-020-69763-9
. [PMID: 32753579] - Yumaira Hernandez, Antonia Costa-Bauza, Paula Calvó, Joan Benejam, Pilar Sanchis, Felix Grases. Comparison of Two Dietary Supplements for Treatment of Uric Acid Renal Lithiasis: Citrate vs. Citrate + Theobromine.
Nutrients.
2020 Jul; 12(7):. doi:
10.3390/nu12072012
. [PMID: 32645831] - Jie Teng, Changyu Yan, Wen Zeng, Yuqian Zhang, Zhen Zeng, Yahui Huang. Purification and characterization of theobromine synthase in a Theobromine-Enriched wild tea plant (Camellia gymnogyna Chang) from Dayao Mountain, China.
Food chemistry.
2020 May; 311(?):125875. doi:
10.1016/j.foodchem.2019.125875
. [PMID: 31753680] - Ana Clara da Costa Pinaffi, Geni Rodrigues Sampaio, Maiara Jurema Soares, Fereidoon Shahidi, Adriano Costa de Camargo, Elizabeth A F S Torres. Insoluble-Bound Polyphenols Released from Guarana Powder: Inhibition of Alpha-Glucosidase and Proanthocyanidin Profile.
Molecules (Basel, Switzerland).
2020 Feb; 25(3):. doi:
10.3390/molecules25030679
. [PMID: 32033416] - Patrick B Kyle, Jaswinder Kaur. Evaluating Novel Markers for Specimen Validity Testing.
Archives of pathology & laboratory medicine.
2020 02; 144(2):168-171. doi:
10.5858/arpa.2019-0197-oa
. [PMID: 31755779] - H D Ponce-Rodríguez, A A García-Robles, P Sáenz-González, J Verdú-Andrés, P Campíns-Falcó. On-line in-tube solid phase microextraction coupled to capillary liquid chromatography-diode array detection for the analysis of caffeine and its metabolites in small amounts of biological samples.
Journal of pharmaceutical and biomedical analysis.
2020 Jan; 178(?):112914. doi:
10.1016/j.jpba.2019.112914
. [PMID: 31610396] - Krishna Gopal Chattaraj, Sandip Paul. Inclusion of Theobromine Modifies Uric Acid Aggregation with Possible Changes in Melamine-Uric Acid Clusters Responsible for Kidney Stones.
The journal of physical chemistry. B.
2019 12; 123(49):10483-10504. doi:
10.1021/acs.jpcb.9b08487
. [PMID: 31715106] - Eri Sumiyoshi, Kentaro Matsuzaki, Naotoshi Sugimoto, Yoko Tanabe, Toshiko Hara, Masanori Katakura, Mayumi Miyamoto, Seiji Mishima, Osamu Shido. Sub-Chronic Consumption of Dark Chocolate Enhances Cognitive Function and Releases Nerve Growth Factors: A Parallel-Group Randomized Trial.
Nutrients.
2019 Nov; 11(11):. doi:
10.3390/nu11112800
. [PMID: 31744119] - Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Molecular pharmacology.
2019 11; 96(5):629-640. doi:
10.1124/mol.119.115964
. [PMID: 31515284] - Marluci P Silva, Marcelo Thomazini, Augusto T Holkem, Lorena S Pinho, Maria I Genovese, Carmen S Fávaro-Trindade. Production and characterization of solid lipid microparticles loaded with guaraná (Paullinia cupana) seed extract.
Food research international (Ottawa, Ont.).
2019 09; 123(?):144-152. doi:
10.1016/j.foodres.2019.04.055
. [PMID: 31284962] - Vera M Mendes, Margarida Coelho, Angelo R Tomé, Rodrigo A Cunha, Bruno Manadas. Validation of an LC-MS/MS Method for the Quantification of Caffeine and Theobromine Using Non-Matched Matrix Calibration Curve.
Molecules (Basel, Switzerland).
2019 Aug; 24(16):. doi:
10.3390/molecules24162863
. [PMID: 31394755] - Ádina L Santana, Gabriela A Macedo. Effects of hydroalcoholic and enzyme-assisted extraction processes on the recovery of catechins and methylxanthines from crude and waste seeds of guarana (Paullinia cupana).
Food chemistry.
2019 May; 281(?):222-230. doi:
10.1016/j.foodchem.2018.12.091
. [PMID: 30658751] - Naotoshi Sugimoto, Masanori Katakura, Kentaro Matsuzaki, Eri Sumiyoshi, Akihiro Yachie, Osamu Shido. Chronic administration of theobromine inhibits mTOR signal in rats.
Basic & clinical pharmacology & toxicology.
2019 May; 124(5):575-581. doi:
10.1111/bcpt.13175
. [PMID: 30451374] - María Ángeles Ávila-Gálvez, Rocío García-Villalba, Francisco Martínez-Díaz, Beatriz Ocaña-Castillo, Tamara Monedero-Saiz, Adela Torrecillas-Sánchez, Beatriz Abellán, Antonio González-Sarrías, Juan Carlos Espín. Metabolic Profiling of Dietary Polyphenols and Methylxanthines in Normal and Malignant Mammary Tissues from Breast Cancer Patients.
Molecular nutrition & food research.
2019 05; 63(9):e1801239. doi:
10.1002/mnfr.201801239
. [PMID: 30690879] - Rafiad Islam, Kentaro Matsuzaki, Eri Sumiyoshi, Md Emon Hossain, Michio Hashimoto, Masanori Katakura, Naotoshi Sugimoto, Osamu Shido. Theobromine Improves Working Memory by Activating the CaMKII/CREB/BDNF Pathway in Rats.
Nutrients.
2019 Apr; 11(4):. doi:
10.3390/nu11040888
. [PMID: 31010016] - Mariona Camps-Bossacoma, Mar Garcia-Aloy, Sandra Saldaña-Ruiz, Trinitat Cambras, Raúl González-Domínguez, Àngels Franch, Francisco J Pérez-Cano, Cristina Andres-Lacueva, Margarida Castell. Role of Theobromine in Cocoa's Metabolic Properties in Healthy Rats.
Journal of agricultural and food chemistry.
2019 Apr; 67(13):3605-3614. doi:
10.1021/acs.jafc.8b07248
. [PMID: 30855143] - María de la Luz Cádiz-Gurrea, Vicente Micol, Jorge Joven, Antonio Segura-Carretero, Salvador Fernández-Arroyo. Different behavior of polyphenols in energy metabolism of lipopolysaccharide-stimulated cells.
Food research international (Ottawa, Ont.).
2019 04; 118(?):96-100. doi:
10.1016/j.foodres.2018.02.027
. [PMID: 30898358] - Lotte Smolders, Ronald P Mensink, Jose J van den Driessche, Peter J Joris, Jogchum Plat. Theobromine consumption does not improve fasting and postprandial vascular function in overweight and obese subjects.
European journal of nutrition.
2019 Apr; 58(3):981-987. doi:
10.1007/s00394-018-1612-6
. [PMID: 29330660] - Emma R Collings, M Carmen Alamar, Sally Redfern, Katherine Cools, Leon A Terry. Spatial changes in leaf biochemical profile of two tea cultivars following cold storage under two different vapour pressure deficit (VPD) conditions.
Food chemistry.
2019 Mar; 277(?):179-185. doi:
10.1016/j.foodchem.2018.10.095
. [PMID: 30502133] - Biying Zhu, Lin-Bo Chen, Mengqian Lu, Jing Zhang, Jieyun Han, Wei-Wei Deng, Zheng-Zhu Zhang. Caffeine Content and Related Gene Expression: Novel Insight into Caffeine Metabolism in Camellia Plants Containing Low, Normal, and High Caffeine Concentrations.
Journal of agricultural and food chemistry.
2019 Mar; 67(12):3400-3411. doi:
10.1021/acs.jafc.9b00240
. [PMID: 30830771] - Yen K T Dang, Ha V H Nguyen. Effects of Maturity at Harvest and Fermentation Conditions on Bioactive Compounds of Cocoa Beans.
Plant foods for human nutrition (Dordrecht, Netherlands).
2019 Mar; 74(1):54-60. doi:
10.1007/s11130-018-0700-3
. [PMID: 30368643] - Elie Dolgin. Genomic focus brings tea research to the boil.
Nature.
2019 02; 566(7742):S12-S13. doi:
10.1038/d41586-019-00400-w
. [PMID: 30728517] - Carolina Hernández-Hernández, Ana Morales-Sillero, Juan Fernández-Bolaños, Alejandra Bermúdez-Oria, Alfonso Azpeitia Morales, Guillermo Rodríguez-Gutiérrez. Cocoa bean husk: industrial source of antioxidant phenolic extract.
Journal of the science of food and agriculture.
2019 Jan; 99(1):325-333. doi:
10.1002/jsfa.9191
. [PMID: 29876932] - Giorgio Grillo, Luisa Boffa, Arianna Binello, Stefano Mantegna, Giancarlo Cravotto, Farid Chemat, Tatiana Dizhbite, Liga Lauberte, Galina Telysheva. Cocoa bean shell waste valorisation; extraction from lab to pilot-scale cavitational reactors.
Food research international (Ottawa, Ont.).
2019 01; 115(?):200-208. doi:
10.1016/j.foodres.2018.08.057
. [PMID: 30599932] - Jian-Qiang Ma, Ji-Qiang Jin, Ming-Zhe Yao, Chun-Lei Ma, Yan-Xia Xu, Wan-Jun Hao, Liang Chen. Quantitative Trait Loci Mapping for Theobromine and Caffeine Contents in Tea Plant ( Camellia sinensis).
Journal of agricultural and food chemistry.
2018 Dec; 66(50):13321-13327. doi:
10.1021/acs.jafc.8b05355
. [PMID: 30486648] - Alexandre Kleber Silveira, Karla Suzana Moresco, Henrique Mautone Gomes, Maurílio da Silva Morrone, Lucas Kich Grun, Daniel Pens Gelain, Leandro de Mattos Pereira, Adriana Giongo, Rafael Rodrigues De Oliveira, José Cláudio Fonseca Moreira. Guarana (Paullinia cupana Mart.) alters gut microbiota and modulates redox status, partially via caffeine in Wistar rats.
Phytotherapy research : PTR.
2018 Dec; 32(12):2466-2474. doi:
10.1002/ptr.6185
. [PMID: 30277282] - Ji-Qiang Jin, Yun-Feng Chai, Yu-Fei Liu, Jing Zhang, Ming-Zhe Yao, Liang Chen. Hongyacha, a Naturally Caffeine-Free Tea Plant from Fujian, China.
Journal of agricultural and food chemistry.
2018 Oct; 66(43):11311-11319. doi:
10.1021/acs.jafc.8b03433
. [PMID: 30303011] - Antonia Costa-Bauza, Felix Grases, Paula Calvó, Adrian Rodriguez, Rafael M Prieto. Effect of Consumption of Cocoa-Derived Products on Uric Acid Crystallization in Urine of Healthy Volunteers.
Nutrients.
2018 Oct; 10(10):. doi:
10.3390/nu10101516
. [PMID: 30332783] - Dorottya Nagy-Szakal, Dinesh K Barupal, Bohyun Lee, Xiaoyu Che, Brent L Williams, Ellie J R Kahn, Joy E Ukaigwe, Lucinda Bateman, Nancy G Klimas, Anthony L Komaroff, Susan Levine, Jose G Montoya, Daniel L Peterson, Bruce Levin, Mady Hornig, Oliver Fiehn, W Ian Lipkin. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics.
Scientific reports.
2018 07; 8(1):10056. doi:
10.1038/s41598-018-28477-9
. [PMID: 29968805] - Charlotte P J Talbot, Ronald P Mensink, Lotte Smolders, Virginie Bakeroot, Jogchum Plat. Theobromine Does Not Affect Fasting and Postprandial HDL Cholesterol Efflux Capacity, While It Decreases Fasting miR-92a Levels in Humans.
Molecular nutrition & food research.
2018 07; 62(13):e1800027. doi:
10.1002/mnfr.201800027
. [PMID: 29797695] - Silu Feng, Changtian Chen, Wei Wang, Long Que. An aptamer nanopore-enabled microsensor for detection of theophylline.
Biosensors & bioelectronics.
2018 May; 105(?):36-41. doi:
10.1016/j.bios.2018.01.016
. [PMID: 29351868] - Asma Babar, Emmanuel Bujold, Vicky Leblanc, Élise Lavoie-Lebel, Joalee Paquette, Laurent Bazinet, Simone Lemieux, Isabelle Marc, Belkacem Abdous, Sylvie Dodin. Changes in endothelial function, arterial stiffness and blood pressure in pregnant women after consumption of high-flavanol and high-theobromine chocolate: a double blind randomized clinical trial.
Hypertension in pregnancy.
2018 May; 37(2):68-80. doi:
10.1080/10641955.2018.1446977
. [PMID: 29658370] - Deisy Dos Santos Freitas, Wilian da Silva Nunes, Rafael do Prado Apparecido, Thiago Inácio Barros Lopes, Glaucia Braz Alcantara. NMR-based approach reveals seasonal metabolic changes in mate (Ilex paraguariensis A. St.-Hil.).
Magnetic resonance in chemistry : MRC.
2018 05; 56(5):311-320. doi:
10.1002/mrc.4710
. [PMID: 29315783] - Roberto Pech-Kú, J Armando Muñoz-Sánchez, Miriam Monforte-González, Felipe Vázquez-Flota, Beatriz A Rodas-Junco, Víctor M González-Mendoza, S M Teresa Hernández-Sotomayor. Relationship between aluminum stress and caffeine biosynthesis in suspension cells of Coffea arabica L.
Journal of inorganic biochemistry.
2018 04; 181(?):177-182. doi:
10.1016/j.jinorgbio.2017.07.032
. [PMID: 28867596] - Lotte Smolders, Ronald P Mensink, Mark V Boekschoten, Rogier J J de Ridder, Jogchum Plat. Theobromine does not affect postprandial lipid metabolism and duodenal gene expression, but has unfavorable effects on postprandial glucose and insulin responses in humans.
Clinical nutrition (Edinburgh, Scotland).
2018 04; 37(2):719-727. doi:
10.1016/j.clnu.2017.06.007
. [PMID: 28645636] - Mariona Camps-Bossacoma, Francisco J Pérez-Cano, Àngels Franch, Margarida Castell. Theobromine Is Responsible for the Effects of Cocoa on the Antibody Immune Status of Rats.
The Journal of nutrition.
2018 03; 148(3):464-471. doi:
10.1093/jn/nxx056
. [PMID: 29546302] - Benhua Wang, Jinsong Han, Markus Bender, Sebastian Hahn, Kai Seehafer, Uwe H F Bunz. Poly(para-phenyleneethynylene)-Sensor Arrays Discriminate 22 Different Teas.
ACS sensors.
2018 02; 3(2):504-511. doi:
10.1021/acssensors.7b00943
. [PMID: 29301398] - Lotte Smolders, Ronald P Mensink, Mark V Boekschoten, Rogier J J de Ridder, Jogchum Plat. The acute effects on duodenal gene expression in healthy men following consumption of a low-fat meal enriched with theobromine or fat.
Scientific reports.
2018 01; 8(1):1700. doi:
10.1038/s41598-018-20068-y
. [PMID: 29374228] - Sandra Martín-Peláez, Mariona Camps-Bossacoma, Malen Massot-Cladera, Mar Rigo-Adrover, Àngels Franch, Francisco J Pérez-Cano, Margarida Castell. Effect of cocoa's theobromine on intestinal microbiota of rats.
Molecular nutrition & food research.
2017 10; 61(10):. doi:
10.1002/mnfr.201700238
. [PMID: 28605130] - Marc Machnik, Simone Kaiser, Sophie Koppe, Manfred Kietzmann, Ina Schenk, Michael Düe, Mario Thevis, Wilhelm Schänzer, Pierre-Louis Toutain. Control of methylxanthines in the competition horse: pharmacokinetic/pharmacodynamic studies on caffeine, theobromine and theophylline for the assessment of irrelevant concentrations.
Drug testing and analysis.
2017 Sep; 9(9):1372-1384. doi:
10.1002/dta.2097
. [PMID: 27662634] - Ainhoa Oñatibia-Astibia, Rafael Franco, Eva Martínez-Pinilla. Health benefits of methylxanthines in neurodegenerative diseases.
Molecular nutrition & food research.
2017 06; 61(6):. doi:
10.1002/mnfr.201600670
. [PMID: 28074613] - Lotte Smolders, Ronald P Mensink, Jogchum Plat. An acute intake of theobromine does not change postprandial lipid metabolism, whereas a high-fat meal lowers chylomicron particle number.
Nutrition research (New York, N.Y.).
2017 Apr; 40(?):85-94. doi:
10.1016/j.nutres.2017.03.007
. [PMID: 28438412] - Bret H Clough, Joni Ylostalo, Elizabeth Browder, Eoin P McNeill, Thomas J Bartosh, H Ralph Rawls, Tetsuo Nakamoto, Carl A Gregory. Theobromine Upregulates Osteogenesis by Human Mesenchymal Stem Cells In Vitro and Accelerates Bone Development in Rats.
Calcified tissue international.
2017 03; 100(3):298-310. doi:
10.1007/s00223-016-0215-6
. [PMID: 27913821] - Roberto Sansone, Javier I Ottaviani, Ana Rodriguez-Mateos, Yvonne Heinen, Dorina Noske, Jeremy P Spencer, Alan Crozier, Marc W Merx, Malte Kelm, Hagen Schroeter, Christian Heiss. Methylxanthines enhance the effects of cocoa flavanols on cardiovascular function: randomized, double-masked controlled studies.
The American journal of clinical nutrition.
2017 02; 105(2):352-360. doi:
10.3945/ajcn.116.140046
. [PMID: 28003203] - Jesus Mendiola-Precoma, Karla Padilla, Alfredo Rodríguez-Cruz, Laura C Berumen, Ricardo Miledi, Guadalupe García-Alcocer. Theobromine-Induced Changes in A1 Purinergic Receptor Gene Expression and Distribution in a Rat Brain Alzheimer's Disease Model.
Journal of Alzheimer's disease : JAD.
2017; 55(3):1273-1283. doi:
10.3233/jad-160569
. [PMID: 27792010] - Jader B Ruchel, Josiane B S Braun, Stephen A Adefegha, Alessandra Guedes Manzoni, Fátima H Abdalla, Juliana S de Oliveira, Kelly Trelles, Cristiane Signor, Sônia T A Lopes, Cássia B da Silva, Lívia G Castilhos, Maribel A Rubin, Daniela B R Leal. Guarana (Paullinia cupana) ameliorates memory impairment and modulates acetylcholinesterase activity in Poloxamer-407-induced hyperlipidemia in rat brain.
Physiology & behavior.
2017 01; 168(?):11-19. doi:
10.1016/j.physbeh.2016.10.003
. [PMID: 27720901] - Mitsugu Yoneda, Naotoshi Sugimoto, Masanori Katakura, Kentaro Matsuzaki, Hayate Tanigami, Akihiro Yachie, Takako Ohno-Shosaku, Osamu Shido. Theobromine up-regulates cerebral brain-derived neurotrophic factor and facilitates motor learning in mice.
The Journal of nutritional biochemistry.
2017 01; 39(?):110-116. doi:
10.1016/j.jnutbio.2016.10.002
. [PMID: 27833051] - Barbara J Bałan, Andrzej K Siwicki, Krzysztof Pastewka, Urszula Demkow, Piotr Skopiński, Ewa Skopińska-Różewska, Sławomir Lewicki, Robert Zdanowski. Synergistic Activity for Natural and Synthetic Inhibitors of Angiogenesis Induced by Murine Sarcoma L-1 and Human Kidney Cancer Cells.
Advances in experimental medicine and biology.
2017 ; 1020(?):91-104. doi:
10.1007/5584_2017_17
. [PMID: 28456932] - Marilyn C Cornelis, Tim Kacprowski, Cristina Menni, Stefan Gustafsson, Edward Pivin, Jerzy Adamski, Anna Artati, Chin B Eap, Georg Ehret, Nele Friedrich, Andrea Ganna, Idris Guessous, Georg Homuth, Lars Lind, Patrik K Magnusson, Massimo Mangino, Nancy L Pedersen, Maik Pietzner, Karsten Suhre, Henry Völzke, Murielle Bochud, Tim D Spector, Hans J Grabe, Erik Ingelsson. Genome-wide association study of caffeine metabolites provides new insights to caffeine metabolism and dietary caffeine-consumption behavior.
Human molecular genetics.
2016 12; 25(24):5472-5482. doi:
10.1093/hmg/ddw334
. [PMID: 27702941] - K K Aswini, A M Vinu Mohan, V M Biju. Molecularly imprinted poly(4-amino-5-hydroxy-2,7-naphthalenedisulfonic acid) modified glassy carbon electrode as an electrochemical theophylline sensor.
Materials science & engineering. C, Materials for biological applications.
2016 Aug; 65(?):116-25. doi:
10.1016/j.msec.2016.03.098
. [PMID: 27157734] - João P Monteiro, Marco G Alves, Pedro F Oliveira, Branca M Silva. Structure-Bioactivity Relationships of Methylxanthines: Trying to Make Sense of All the Promises and the Drawbacks.
Molecules (Basel, Switzerland).
2016 Jul; 21(8):. doi:
10.3390/molecules21080974
. [PMID: 27472311] - Giovanni Caprioli, Dennis Fiorini, Filippo Maggi, Marcello Nicoletti, Massimo Ricciutelli, Chiara Toniolo, Biapa Prosper, Sauro Vittori, Gianni Sagratini. Nutritional composition, bioactive compounds and volatile profile of cocoa beans from different regions of Cameroon.
International journal of food sciences and nutrition.
2016 Jun; 67(4):422-30. doi:
10.3109/09637486.2016.1170769
. [PMID: 27055484] - Tian Yu, Sarah C Campbell, Chris Stockmann, Casey Tak, Katherine Schoen, Erin A S Clark, Michael W Varner, Michael G Spigarelli, Catherine M T Sherwin. Pregnancy-induced changes in the pharmacokinetics of caffeine and its metabolites.
Journal of clinical pharmacology.
2016 May; 56(5):590-6. doi:
10.1002/jcph.632
. [PMID: 26358647] - Erika C Pierattini, Alessandra Francini, Andrea Raffaelli, Luca Sebastiani. Degradation of exogenous caffeine by Populus alba and its effects on endogenous caffeine metabolism.
Environmental science and pollution research international.
2016 Apr; 23(8):7298-307. doi:
10.1007/s11356-015-5935-z
. [PMID: 26681326] - NULL. Correction.
Hypertension (Dallas, Tex. : 1979).
2016 Feb; 67(2):e2. doi:
10.1161/hyp.0000000000000039
. [PMID: 26763012] - J B Ruchel, J F P Rezer, M L Thorstenberg, C B Dos Santos, F L Cabral, S T A Lopes, C B da Silva, A K Machado, I B M da Cruz, M R C Schetinger, J F Gonçalves, D B R Leal. Hypercholesterolemia and Ecto-enzymes of Purinergic System: Effects of Paullinia cupana.
Phytotherapy research : PTR.
2016 Jan; 30(1):49-57. doi:
10.1002/ptr.5499
. [PMID: 26514663] - M M Li, J Y Xue, Y L Wen, H S Guo, X Q Sun, Y M Zhang, Y Y Hang. Transcriptomic analysis of Camellia ptilophylla and identification of genes associated with flavonoid and caffeine biosynthesis.
Genetics and molecular research : GMR.
2015 Dec; 14(4):18731-42. doi:
10.4238/2015.december.28.22
. [PMID: 26782523] - W Zidek. [Coffee lowers in a study blood pressure].
MMW Fortschritte der Medizin.
2015 Nov; 157(20):40. doi:
10.1007/s15006-015-7538-5
. [PMID: 26977512] - Mei-Liang Wang, Gang Yu, Shou-Pu Yi, Feng-Ying Zhang, Zhi-Tong Wang, Bin Huang, Rui-Bin Su, Yan-Xing Jia, Ze-Hui Gong. Antinociceptive effects of incarvillateine, a monoterpene alkaloid from Incarvillea sinensis, and possible involvement of the adenosine system.
Scientific reports.
2015 Nov; 5(?):16107. doi:
10.1038/srep16107
. [PMID: 26527075] - Adrian Rodriguez, Antonia Costa-Bauza, Concepcion Saez-Torres, Dolores Rodrigo, Felix Grases. HPLC method for urinary theobromine determination: Effect of consumption of cocoa products on theobromine urinary excretion in children.
Clinical biochemistry.
2015 Nov; 48(16-17):1138-43. doi:
10.1016/j.clinbiochem.2015.06.022
. [PMID: 26141736] - Daniel J Lamport, Deepa Pal, Christina Moutsiana, David T Field, Claire M Williams, Jeremy P E Spencer, Laurie T Butler. The effect of flavanol-rich cocoa on cerebral perfusion in healthy older adults during conscious resting state: a placebo controlled, crossover, acute trial.
Psychopharmacology.
2015 Sep; 232(17):3227-34. doi:
10.1007/s00213-015-3972-4
. [PMID: 26047963] - Asimina Kerimi, Gary Williamson. The cardiovascular benefits of dark chocolate.
Vascular pharmacology.
2015 Aug; 71(?):11-5. doi:
10.1016/j.vph.2015.05.011
. [PMID: 26026398] - Yeon Jeong Jang, Hyun Jung Koo, Eun-Hwa Sohn, Se Chan Kang, Dong-Kwon Rhee, Suhkneung Pyo. Theobromine inhibits differentiation of 3T3-L1 cells during the early stage of adipogenesis via AMPK and MAPK signaling pathways.
Food & function.
2015 Jul; 6(7):2365-74. doi:
10.1039/c5fo00397k
. [PMID: 26085110] - A Ali, J M O'Donnell, C Starck, K J Rutherfurd-Markwick. The Effect of Caffeine Ingestion during Evening Exercise on Subsequent Sleep Quality in Females.
International journal of sports medicine.
2015 Jun; 36(6):433-9. doi:
10.1055/s-0034-1398580
. [PMID: 25700100] - Shan-Bing Li, Yi-Fang Li, Zhong-Fu Mao, Hui-Hua Hu, Shu-Hua Ouyang, Yan-Ping Wu, Bun Tsoi, Pin Gong, Hiroshi Kurihara, Rong-Rong He. Differing chemical compositions of three teas may explain their different effects on acute blood pressure in spontaneously hypertensive rats.
Journal of the science of food and agriculture.
2015 Apr; 95(6):1236-42. doi:
10.1002/jsfa.6811
. [PMID: 25043720] - Idris Guessous, Menno Pruijm, Belén Ponte, Daniel Ackermann, Georg Ehret, Nicolas Ansermot, Philippe Vuistiner, Jan Staessen, Yumei Gu, Fred Paccaud, Markus Mohaupt, Bruno Vogt, Antoinette Pechère-Bertschi, Antoinette Pechère-Berstchi, Pierre-Yves Martin, Michel Burnier, Chin B Eap, Murielle Bochud. Associations of ambulatory blood pressure with urinary caffeine and caffeine metabolite excretions.
Hypertension (Dallas, Tex. : 1979).
2015 Mar; 65(3):691-6. doi:
10.1161/hypertensionaha.114.04512
. [PMID: 25489060] - Mar Garcia-Aloy, Rafael Llorach, Mireia Urpi-Sarda, Olga Jáuregui, Dolores Corella, Miguel Ruiz-Canela, Jordi Salas-Salvadó, Montserrat Fitó, Emilio Ros, Ramon Estruch, Cristina Andres-Lacueva. A metabolomics-driven approach to predict cocoa product consumption by designing a multimetabolite biomarker model in free-living subjects from the PREDIMED study.
Molecular nutrition & food research.
2015 Feb; 59(2):212-20. doi:
10.1002/mnfr.201400434
. [PMID: 25298021] - Alexandros Papadimitriou, Kamila C Silva, Elisa B M I Peixoto, Cynthia M Borges, Jacqueline M Lopes de Faria, José B Lopes de Faria. Theobromine increases NAD⁺/Sirt-1 activity and protects the kidney under diabetic conditions.
American journal of physiology. Renal physiology.
2015 Feb; 308(3):F209-25. doi:
10.1152/ajprenal.00252.2014
. [PMID: 25411384] - Charlène Perrois, Susan R Strickler, Guillaume Mathieu, Maud Lepelley, Lucie Bedon, Stéphane Michaux, Jwanro Husson, Lukas Mueller, Isabelle Privat. Differential regulation of caffeine metabolism in Coffea arabica (Arabica) and Coffea canephora (Robusta).
Planta.
2015 Jan; 241(1):179-91. doi:
10.1007/s00425-014-2170-7
. [PMID: 25249475]