5,7-Dimethoxyflavone (BioDeep_00000396706)

 

Secondary id: BioDeep_00000003834, BioDeep_00000270022, BioDeep_00000614365

human metabolite PANOMIX_OTCML-2023


代谢物信息卡片


METHYL5-OXO-6-TRIFLUOROMETHANESULFONYLOXY-1,2,3,5-TETRAHYDROINDOLIZINE-8-CARBOXYLATE

化学式: C17H14O4 (282.0892044)
中文名称: 柯因二甲醚, 柯因二甲醚
谱图信息: 最多检出来源 Homo sapiens(lipidomics) 0.69%

分子结构信息

SMILES: c1(cc(c2c(c1)oc(cc2=O)c1ccccc1)OC)OC
InChI: InChI=1S/C17H14O4/c1-19-12-8-15(20-2)17-13(18)10-14(21-16(17)9-12)11-6-4-3-5-7-11/h3-10H,1-2H3

描述信息

Chrysin 5,7-dimethyl ether is a dimethoxyflavone that is the 5,7-dimethyl ether derivative of chrysin. It has a role as a plant metabolite. It is functionally related to a chrysin.
5,7-Dimethoxyflavone is a natural product found in Anaphalis busua, Helichrysum herbaceum, and other organisms with data available.
5,7-Dimethoxyflavone is found in tea. 5,7-Dimethoxyflavone is a constituent of Leptospermum scoparium (red tea).
Constituent of Leptospermum scoparium (red tea). 5,7-Dimethylchrysin is found in tea.
A dimethoxyflavone that is the 5,7-dimethyl ether derivative of chrysin.
5,7-Dimethoxyflavone is one of the major components of Kaempferia parviflora, has anti-obesity, anti-inflammatory, and antineoplastic effects. 5,7-Dimethoxyflavone inhibits cytochrome P450 (CYP) 3As. 5,7-Dimethoxyflavone is also a potent Breast Cancer Resistance Protein (BCRP) inhibitor[1][2].
5,7-Dimethoxyflavone is one of the major components of Kaempferia parviflora, has anti-obesity, anti-inflammatory, and antineoplastic effects. 5,7-Dimethoxyflavone inhibits cytochrome P450 (CYP) 3As. 5,7-Dimethoxyflavone is also a potent Breast Cancer Resistance Protein (BCRP) inhibitor[1][2].

同义名列表

39 个代谢物同义名

METHYL5-OXO-6-TRIFLUOROMETHANESULFONYLOXY-1,2,3,5-TETRAHYDROINDOLIZINE-8-CARBOXYLATE; 4H-1-Benzopyran-4-one, 5,7-dimethoxy-2-phenyl-; 4H-1-Benzopyran-4-one,5,7-dimethoxy-2-phenyl-; 5,7-dimethoxy-2-phenyl-4H-1-benzopyran-4-one; 5,7-Dimethoxy-2-phenyl-4H-chromen-4-one #; 5,7-Dimethoxy-2-phenyl-4H-chromen-4-one; 5,7-Dimethoxy-2-phenyl-chromen-4-one; 5,7-dimethoxy-2-phenylchromen-4-one; 5,7-dimethoxyflavone, AldrichCPR; Chrysin 5,7-dimethyl ether; Chrysin - dimethyl ether; Flavone, 5,7-dimethoxy-; Chrysin dimethyl ether; 5,7-Di Methoxy Flavone; Dimethoxyflavone, 5,7-; Chrysin dimethylether; 5,7-Dimethoxy-Flavone; ?5,7-DIMETHOXYFLAVONE; Chrysin-Dimethylether; 5,7 dimethoxyflavone; 5,7-Dimethoxyflavone; 5,7-Dimethylchrysin; Spectrum5_001712; Spectrum2_001359; Spectrum3_001034; Spectrum4_001169; Dimethylchrysin; UNII-J8HQQ4R4F2; DivK1c_007009; Oprea1_482940; MEGxp0_001682; KBio2_000844; KBio2_003412; KBio1_001953; KBio3_002067; KBio2_005980; Chrysin DME; J8HQQ4R4F2; A1-05745



数据库引用编号

18 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

31 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Wannita Klinngam, Phetploy Rungkamoltip, Saowarose Thongin, Jaruwan Joothamongkhon, Phattharachanok Khumkhrong, Mattaka Khongkow, Katawut Namdee, Surapun Tepaamorndech, Puxvadee Chaikul, Mayuree Kanlayavattanakul, Nattaya Lourith, Kitiya Piboonprai, Uracha Ruktanonchai, Udom Asawapirom, Tawin Iempridee. Polymethoxyflavones from Kaempferia parviflora ameliorate skin aging in primary human dermal fibroblasts and ex vivo human skin. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2022 Jan; 145(?):112461. doi: 10.1016/j.biopha.2021.112461. [PMID: 34839253]
  • Noriyuki Natsume, Aki Yamano, Akio Watanabe, Takayuki Yonezawa, Je-Tae Woo, Tohru Yamakuni, Toshiaki Teruya. Effect of methoxyflavones contained in Kaempferia parviflora on CRE-mediated transcription in PC12D cells. Bioorganic & medicinal chemistry letters. 2020 12; 30(23):127606. doi: 10.1016/j.bmcl.2020.127606. [PMID: 33038547]
  • A Palko-Łabuz, E Kostrzewa-Susłow, T Janeczko, K Środa-Pomianek, A Poła, A Uryga, K Michalak. Cyclization of flavokawain B reduces its activity against human colon cancer cells. Human & experimental toxicology. 2020 Mar; 39(3):262-275. doi: 10.1177/0960327119882986. [PMID: 31640425]
  • Yongli Xie, Yawei Zhang, Xiaoqing Su. Antidiabetic and Hypolipidemic Effects of 5,7-Dimethoxyflavone in Streptozotocin-Induced Diabetic Rats. Medical science monitor : international medical journal of experimental and clinical research. 2019 Dec; 25(?):9893-9901. doi: 10.12659/msm.918794. [PMID: 31869828]
  • Solee Jin, Mi-Young Lee. Kaempferia parviflora Extract as a Potential Anti-Acne Agent with Anti-Inflammatory, Sebostatic and Anti-Propionibacterium acnes Activity. International journal of molecular sciences. 2018 Nov; 19(11):. doi: 10.3390/ijms19113457. [PMID: 30400322]
  • SoHyun Bae, Ronilda D'Cunha, Jie Shao, Guohua An. Effect of 5,7-dimethoxyflavone on Bcrp1-mediated transport of sorafenib in vitro and in vivo in mice. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 2018 May; 117(?):27-34. doi: 10.1016/j.ejps.2018.02.004. [PMID: 29425861]
  • Satoru Horigome, Izumi Yoshida, Shihomi Ito, Shuichi Inohana, Kei Fushimi, Takeshi Nagai, Akihiro Yamaguchi, Kazuhiro Fujita, Toshiya Satoyama, Shin-Ichi Katsuda, Shinobu Suzuki, Masatoshi Watai, Naoto Hirose, Takahiro Mitsue, Hitoshi Shirakawa, Michio Komai. Inhibitory effects of Kaempferia parviflora extract on monocyte adhesion and cellular reactive oxygen species production in human umbilical vein endothelial cells. European journal of nutrition. 2017 Apr; 56(3):949-964. doi: 10.1007/s00394-015-1141-5. [PMID: 26704713]
  • Yelin Kang, Bong-Gyu Kim, Sunghoon Kim, Youngshim Lee, Youngdae Yoon. Inhibitory potential of flavonoids on PtdIns(3,4,5)P3 binding with the phosphoinositide-dependent kinase 1 pleckstrin homology domain. Bioorganic & medicinal chemistry letters. 2017 02; 27(3):420-426. doi: 10.1016/j.bmcl.2016.12.051. [PMID: 28049590]
  • Youngwoo Song, Mi-Bo Kim, Changhee Kim, Jongwook Kim, Jae-Kwan Hwang. 5,7-Dimethoxyflavone Attenuates Obesity by Inhibiting Adipogenesis in 3T3-L1 Adipocytes and High-Fat Diet-Induced Obese C57BL/6J Mice. Journal of medicinal food. 2016 Dec; 19(12):1111-1119. doi: 10.1089/jmf.2016.3800. [PMID: 27828718]
  • Kazuya Toda, Shogo Takeda, Shoketsu Hitoe, Seikou Nakamura, Hisashi Matsuda, Hiroshi Shimoda. Enhancement of energy production by black ginger extract containing polymethoxy flavonoids in myocytes through improving glucose, lactic acid and lipid metabolism. Journal of natural medicines. 2016 Apr; 70(2):163-72. doi: 10.1007/s11418-015-0948-y. [PMID: 26581843]
  • Di Bei, Guohua An. Pharmacokinetics and tissue distribution of 5,7-dimethoxyflavone in mice following single dose oral administration. Journal of pharmaceutical and biomedical analysis. 2016 Feb; 119(?):65-70. doi: 10.1016/j.jpba.2015.11.025. [PMID: 26657177]
  • Catheleeya Mekjaruskul, Bungorn Sripanidkulchai. Pharmacokinetic interaction between Kaempferia parviflora extract and sildenafil in rats. Journal of natural medicines. 2015 Apr; 69(2):224-31. doi: 10.1007/s11418-014-0882-4. [PMID: 25567192]
  • Di Bei, Guohua An. Quantification of 5,7-dimethoxyflavone in mouse plasma using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and its application to a pharmacokinetic study. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2015 Jan; 978-979(?):11-7. doi: 10.1016/j.jchromb.2014.11.018. [PMID: 25531865]
  • Catheleeya Mekjaruskul, Michael Jay, Bungorn Sripanidkulchai. Pharmacokinetics, bioavailability, tissue distribution, excretion, and metabolite identification of methoxyflavones in Kaempferia parviflora extract in rats. Drug metabolism and disposition: the biological fate of chemicals. 2012 Dec; 40(12):2342-53. doi: 10.1124/dmd.112.047142. [PMID: 22961680]
  • Jae Kyung Kim, Sukyeong Mun, Myung-Suk Kim, Mi-Bo Kim, Bo-Kyung Sa, Jae-Kwan Hwang. 5,7-Dimethoxyflavone, an activator of PPARα/γ, inhibits UVB-induced MMP expression in human skin fibroblast cells. Experimental dermatology. 2012 Mar; 21(3):211-6. doi: 10.1111/j.1600-0625.2011.01435.x. [PMID: 22379967]
  • Prapapan Temkitthawon, Thomas R Hinds, Joseph A Beavo, Jarupa Viyoch, Khanit Suwanborirux, Wittaya Pongamornkul, Pattara Sawasdee, Kornkanok Ingkaninan. Kaempferia parviflora, a plant used in traditional medicine to enhance sexual performance contains large amounts of low affinity PDE5 inhibitors. Journal of ethnopharmacology. 2011 Oct; 137(3):1437-41. doi: 10.1016/j.jep.2011.08.025. [PMID: 21884777]
  • Chutha Sae-Wong, Hisashi Matsuda, Supinya Tewtrakul, Pimpimon Tansakul, Seikou Nakamura, Yukiko Nomura, Masayuki Yoshikawa. Suppressive effects of methoxyflavonoids isolated from Kaempferia parviflora on inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells. Journal of ethnopharmacology. 2011 Jul; 136(3):488-95. doi: 10.1016/j.jep.2011.01.013. [PMID: 21251970]
  • Patcharin Tep-Areenan, Pattara Sawasdee, Michael Randall. Possible mechanisms of vasorelaxation for 5,7-dimethoxyflavone from Kaempferia parviflora in the rat aorta. Phytotherapy research : PTR. 2010 Oct; 24(10):1520-5. doi: 10.1002/ptr.3164. [PMID: 20878704]
  • Pattara Sawasdee, Chalisa Sabphon, Duangporn Sitthiwongwanit, Udom Kokpol. Anticholinesterase activity of 7-methoxyflavones isolated from Kaempferia parviflora. Phytotherapy research : PTR. 2009 Dec; 23(12):1792-4. doi: 10.1002/ptr.2858. [PMID: 19548291]
  • Petra A Tsuji, Thomas Walle. Benzo[a]pyrene-induced cytochrome P450 1A and DNA binding in cultured trout hepatocytes - inhibition by plant polyphenols. Chemico-biological interactions. 2007 Aug; 169(1):25-31. doi: 10.1016/j.cbi.2007.05.001. [PMID: 17583686]
  • Denpong Patanasethanont, Junya Nagai, Chie Matsuura, Kyoko Fukui, Khaetthareeya Sutthanut, Bung-orn Sripanidkulchai, Ryoko Yumoto, Mikihisa Takano. Modulation of function of multidrug resistance associated-proteins by Kaempferia parviflora extracts and their components. European journal of pharmacology. 2007 Jul; 566(1-3):67-74. doi: 10.1016/j.ejphar.2007.04.001. [PMID: 17481606]
  • Denpong Patanasethanont, Junya Nagai, Ryoko Yumoto, Teruo Murakami, Khaetthareeya Sutthanut, Bung-Orn Sripanidkulchai, Chavi Yenjai, Mikihisa Takano. Effects of Kaempferia parviflora extracts and their flavone constituents on P-glycoprotein function. Journal of pharmaceutical sciences. 2007 Jan; 96(1):223-33. doi: 10.1002/jps.20769. [PMID: 17031860]
  • K Sookkongwaree, M Geitmann, S Roengsumran, A Petsom, U H Danielson. Inhibition of viral proteases by Zingiberaceae extracts and flavones isolated from Kaempferia parviflora. Die Pharmazie. 2006 Aug; 61(8):717-21. doi: . [PMID: 16964717]
  • Di Wu, Muraleedharan G Nair, David L DeWitt. Novel compounds from Piper methysticum Forst (Kava Kava) roots and their effect on cyclooxygenase enzyme. Journal of agricultural and food chemistry. 2002 Feb; 50(4):701-5. doi: 10.1021/jf010963x. [PMID: 11829631]