H-Gly-Leu-OH (BioDeep_00001868567)

Main id: BioDeep_00000001346

 

PANOMIX_OTCML-2023 Volatile Flavor Compounds


代谢物信息卡片


Glycyl-L-leucine

化学式: C8H16N2O3 (188.11608660000002)
中文名称: 甘氨酸-L-亮氨酸, 甘氨酰-L-亮氨酸
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC(C)CC(C(=O)O)NC(=O)CN
InChI: InChI=1S/C8H16N2O3/c1-5(2)3-6(8(12)13)10-7(11)4-9/h5-6H,3-4,9H2,1-2H3,(H,10,11)(H,12,13)/t6-/m0/s1

描述信息

Glycyl-l-leucine is a dipeptide that can be a common substrate for?glycyl-leucine?dipeptidase.

同义名列表

4 个代谢物同义名

Glycyl-L-leucine; H-Gly-Leu-OH; Glycyl-leucine; Glycyl-L-leucine



数据库引用编号

9 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Na-Ra Han, Hee-Yun Kim, Na-Rae Kim, Won-Kyung Lee, Hyein Jeong, Hyung-Min Kim, Hyun-Ja Jeong. Leucine and glycine dipeptides of porcine placenta ameliorate physical fatigue through enhancing dopaminergic systems. Molecular medicine reports. 2018 03; 17(3):4120-4130. doi: 10.3892/mmr.2017.8335. [PMID: 29286166]
  • Anthony J Lee, David W A Beno, Xiaolin Zhang, Robin Shapiro, Mark Mason, Tanita Mason-Bright, Bruce Surber, Neilé K Edens. A (14)C-leucine absorption, distribution, metabolism and excretion (ADME) study in adult Sprague-Dawley rat reveals β-hydroxy-β-methylbutyrate as a metabolite. Amino acids. 2015 May; 47(5):917-24. doi: 10.1007/s00726-015-1920-6. [PMID: 25618754]
  • N M Timofeeva, V V Egorova, A A Nikitina, Iu V Dmitrieva. [Digestive enzyme activities in rats kept on standard or surplus breast-feeding and on low-protein diet directly after weaning]. Zhurnal evoliutsionnoi biokhimii i fiziologii. 2009 May; 45(3):290-7. doi: . [PMID: 19569554]
  • Griet Van Zeebroeck, Beatriz Monge Bonini, Matthias Versele, Johan M Thevelein. Transport and signaling via the amino acid binding site of the yeast Gap1 amino acid transceptor. Nature chemical biology. 2009 Jan; 5(1):45-52. doi: 10.1038/nchembio.132. [PMID: 19060912]
  • N M Timofeeva, V V Egorova, A A Nikitina, J V Dmitrieva. Delayed effects of the terms of separation of rat pups from lactating females and low-protein diet on enzyme activity in digestive and non-digestive organs. Bulletin of experimental biology and medicine. 2008 Jun; 145(6):676-9. doi: 10.1007/s10517-008-0179-2. [PMID: 19110548]
  • N M Timofeeva, A A Nikitina, V V Egorova, L A Gordova. Relationship between protein deficiency in the ration of rats during early ontogeny and function of enzyme systems of digestive and non-digestive organs in adult life. Bulletin of experimental biology and medicine. 2004 Jul; 138(1):8-11. doi: 10.1023/b:bebm.0000046924.75052.f3. [PMID: 15514709]
  • T Terada, H Saito, M Mukai, K Inui. Characterization of stably transfected kidney epithelial cell line expressing rat H+/peptide cotransporter PEPT1: localization of PEPT1 and transport of beta-lactam antibiotics. The Journal of pharmacology and experimental therapeutics. 1997 Jun; 281(3):1415-21. doi: . [PMID: 9190878]
  • H Saito, M Okuda, T Terada, S Sasaki, K Inui. Cloning and characterization of a rat H+/peptide cotransporter mediating absorption of beta-lactam antibiotics in the intestine and kidney. The Journal of pharmacology and experimental therapeutics. 1995 Dec; 275(3):1631-7. doi: . [PMID: 8531138]
  • H Lochs, P E Williams, E L Morse, N N Abumrad, S A Adibi. Metabolism of dipeptides and their constituent amino acids by liver, gut, kidney, and muscle. The American journal of physiology. 1988 May; 254(5 Pt 1):E588-94. doi: 10.1152/ajpendo.1988.254.5.e588. [PMID: 3364562]
  • H Lochs, P E Williams, E L Morse, N N Abumrad, S A Adibi. Metabolism of glycylleucine and its constituent amino acids by liver, muscle, kidney and gut in conscious dogs. Beitrage zu Infusionstherapie und klinische Ernahrung. 1987; 17(?):167-70. doi: . [PMID: 3689302]
  • G A FLEISHER, M PANKOW, C WARMKA. LEUCINE AMINOPEPTIDASE IN HUMAN SERUM: COMPARISON OF HYDROLYSIS OF L-LEUCYLGLYCINE AND L-LEUCYL-BETA-NAPHTHYLAMIDE. Clinica chimica acta; international journal of clinical chemistry. 1964 Mar; 9(?):259-68. doi: 10.1016/0009-8981(64)90105-6. [PMID: 14152343]
  • G A FLEISHER, M PANKOW, C WARMKA. LEUCINE AMINOPEPTIDASE IN HUMAN SERUM: AN ULTRAMICROMETHOD FOR THE DETERMINATION OF THE RATES OF HYDROLYSIS OF L-LEUCYLGLYCINE. Clinica chimica acta; international journal of clinical chemistry. 1964 Mar; 9(?):254-8. doi: 10.1016/0009-8981(64)90104-4. [PMID: 14152342]
  • R J HASCHEN. [Determination and characterization of glycyl-L-leucine-dipeptidase in normal human serum]. Clinica chimica acta; international journal of clinical chemistry. 1961 Jul; 6(?):521-5. doi: 10.1016/0009-8981(61)90142-5. [PMID: 13905127]
  • G A FLEISHER, H R BUTT, K A HUIZENGA. Enzymatic hydrolysis of L-leucylglycine in serum in hepatic disease. Proceedings of the staff meetings. Mayo Clinic. 1957 Aug; 32(16):410-24. doi: NULL. [PMID: 13465820]
  • G A FLEISHER. Peptidases in human blood. I. The hydrolysis of glycylglycine and glycyl-L-leucine by normal serum. The Journal of biological chemistry. 1953 Dec; 205(2):925-34. doi: NULL. [PMID: 13129271]