1-Methylxanthine (BioDeep_00000408276)

Main id: BioDeep_00000001203

 

natural product PANOMIX_OTCML-2023


代谢物信息卡片


1-Methylxanthine

化学式: C6H6N4O2 (166.0491)
中文名称: 3,7-二氢-1-甲基-1H-嘌呤-2,6-二酮
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CN1C(=O)C2=C(NC1=O)N=CN2
InChI: InChI=1S/C6H6N4O2/c1-10-5(11)3-4(8-2-7-3)9-6(10)12/h2H,1H3,(H,7,8)(H,9,12)

描述信息

MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; MVOYJPOZRLFTCP-UHFFFAOYSA-N_STSL_0033_1-Methylxanthine_0500fmol_180410_S2_LC02_MS02_41; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I.
MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I.
1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2].
1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2].

同义名列表

2 个代谢物同义名

1-Methylxanthine; 1-Methylxanthine



数据库引用编号

31 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

8 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 13 ADH5, ALB, CCNB1, CDC25C, CHEK2, CYP1A1, CYP2A6, CYP2D6, CYP2E1, CYP3A4, EMP2, NAT2, XDH
Peripheral membrane protein 2 CYP1A1, CYP2E1
Endoplasmic reticulum membrane 6 CYP1A1, CYP1A2, CYP2A6, CYP2D6, CYP2E1, CYP3A4
Nucleus 6 ALB, CCNB1, CDC25C, CHEK2, EMP2, NAT2
cytosol 7 ADH5, ALB, CCNB1, CDC25C, GPT, NAT2, XDH
centrosome 2 ALB, CCNB1
nucleoplasm 3 CCNB1, CDC25C, CHEK2
Cell membrane 4 EMP2, GPR83, NAT2, TNF
Multi-pass membrane protein 4 EMP2, GPR83, NAT2, SLC22A6
Golgi apparatus membrane 1 EMP2
cell surface 2 EMP2, TNF
Golgi apparatus 3 ALB, CHEK2, EMP2
Golgi membrane 2 EMP2, INS
mitochondrial inner membrane 2 CYP1A1, CYP2E1
neuronal cell body 2 NAT2, TNF
plasma membrane 5 EMP2, GPR83, NAT2, SLC22A6, TNF
Membrane 7 CCNB1, CYP2A6, CYP2D6, CYP3A4, EMP2, NAT2, SLC22A6
apical plasma membrane 1 EMP2
axon 1 NAT2
basolateral plasma membrane 2 NAT2, SLC22A6
caveola 1 SLC22A6
extracellular exosome 5 ADH5, ALB, GPT, NAT2, SLC22A6
endoplasmic reticulum 2 ALB, CYP2D6
extracellular space 4 ALB, INS, TNF, XDH
perinuclear region of cytoplasm 2 CDC25C, EMP2
mitochondrion 3 ADH5, CYP1A1, CYP2D6
protein-containing complex 2 ALB, SLC22A6
intracellular membrane-bounded organelle 6 CYP1A1, CYP1A2, CYP2A6, CYP2D6, CYP2E1, CYP3A4
Microsome membrane 5 CYP1A1, CYP1A2, CYP2D6, CYP2E1, CYP3A4
Secreted 2 ALB, INS
extracellular region 3 ALB, INS, TNF
Single-pass membrane protein 1 CYP2D6
mitochondrial matrix 1 CCNB1
anchoring junction 1 ALB
transcription regulator complex 1 NAT2
external side of plasma membrane 1 TNF
cytoplasmic vesicle 1 EMP2
apical part of cell 1 EMP2
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Apical cell membrane 1 EMP2
Cytoplasm, perinuclear region 1 EMP2
Mitochondrion inner membrane 2 CYP1A1, CYP2E1
Membrane raft 2 EMP2, TNF
Peroxisome 1 XDH
sarcoplasmic reticulum 1 XDH
PML body 1 CHEK2
mitochondrial intermembrane space 1 CDC25C
ciliary basal body 1 ALB
cilium 1 GPR83
phagocytic cup 1 TNF
centriole 1 ALB
spindle pole 2 ALB, CCNB1
blood microparticle 1 ALB
non-motile cilium 1 GPR83
Basolateral cell membrane 1 SLC22A6
endosome lumen 1 INS
basal plasma membrane 1 SLC22A6
secretory granule lumen 1 INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 2 ALB, INS
platelet alpha granule lumen 1 ALB
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
outer kinetochore 1 CCNB1
cytoplasmic microtubule 1 CYP2A6
Basal cell membrane 1 SLC22A6
external side of apical plasma membrane 1 NAT2
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
cyclin B1-CDK1 complex 1 CCNB1
NatA complex 1 NAT2
ciliary transition fiber 1 ALB
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Grace F Crotty, Romeo Maciuca, Eric A Macklin, Junhua Wang, Manuel Montalban, Sonnet S Davis, Jamal I Alkabsh, Rachit Bakshi, Xiqun Chen, Alberto Ascherio, Giuseppe Astarita, Sarah Huntwork-Rodriguez, Michael A Schwarzschild. Association of caffeine and related analytes with resistance to Parkinson disease among LRRK2 mutation carriers: A metabolomic study. Neurology. 2020 12; 95(24):e3428-e3437. doi: 10.1212/wnl.0000000000010863. [PMID: 32999056]
  • Tong Liu, Xiang Gu, Li-Xiang Li, Ming Li, Bing Li, Xiao Cui, Xiu-Li Zuo. Microbial and metabolomic profiles in correlation with depression and anxiety co-morbidities in diarrhoea-predominant IBS patients. BMC microbiology. 2020 06; 20(1):168. doi: 10.1186/s12866-020-01841-4. [PMID: 32552668]
  • Binxing Zhou, Cunqiang Ma, Xiaoying Ren, Tao Xia, Xiaohong Li. LC-MS/MS-based metabolomic analysis of caffeine-degrading fungus Aspergillus sydowii during tea fermentation. Journal of food science. 2020 Feb; 85(2):477-485. doi: 10.1111/1750-3841.15015. [PMID: 31905425]
  • Eleni Aklillu, Juan Antonio Carrillo, Eyasu Makonnen, Leif Bertilsson, Natasa Djordjevic. N-Acetyltransferase-2 (NAT2) phenotype is influenced by genotype-environment interaction in Ethiopians. European journal of clinical pharmacology. 2018 Jul; 74(7):903-911. doi: 10.1007/s00228-018-2448-y. [PMID: 29589062]
  • Norie Murayama, Makiko Shimizu, Kenta Kobayashi, Izumi Kishimoto, Hiroshi Yamazaki. Cytochrome P450 2A6 Phenotyping Using Dietary Caffeine Salivary Metabolite Ratios and Genotyping Using Blood on Storage Cards in Non-smoking Japanese Volunteers. Drug metabolism letters. 2017; 10(4):240-243. doi: 10.2174/1872312810666161114144008. [PMID: 27842485]
  • Ivan Senta, Emma Gracia-Lor, Andrea Borsotti, Ettore Zuccato, Sara Castiglioni. Wastewater analysis to monitor use of caffeine and nicotine and evaluation of their metabolites as biomarkers for population size assessment. Water research. 2015 May; 74(?):23-33. doi: 10.1016/j.watres.2015.02.002. [PMID: 25706221]
  • Michael E Rybak, Maya R Sternberg, Ching-I Pao, Namanjeet Ahluwalia, Christine M Pfeiffer. Urine excretion of caffeine and select caffeine metabolites is common in the U.S. population and associated with caffeine intake. The Journal of nutrition. 2015 Apr; 145(4):766-74. doi: 10.3945/jn.114.205476. [PMID: 25833779]
  • Xiang-Yang Li, Yong-Nian Liu, Yong-Ping Li, Jun-Bo Zhu, Xing-Chen Yao, Yong-Fang Li, Mei Yang, Ming Yuan, Xue-Ru Fan, Yue-Miao Yin. [Effect of Tibetan medicine zuotai on the activity, protein and mRNA expression of CYP1A2 and NAT2]. Yao xue xue bao = Acta pharmaceutica Sinica. 2014 Feb; 49(2):267-72. doi: . [PMID: 24761621]
  • Joseph A Rothwell, Yoann Fillâtre, Jean-François Martin, Bernard Lyan, Estelle Pujos-Guillot, Leopold Fezeu, Serge Hercberg, Blandine Comte, Pilar Galan, Mathilde Touvier, Claudine Manach. New biomarkers of coffee consumption identified by the non-targeted metabolomic profiling of cohort study subjects. PloS one. 2014; 9(4):e93474. doi: 10.1371/journal.pone.0093474. [PMID: 24713823]
  • John R Mercer, Kelly Gray, Nichola Figg, Sheetal Kumar, Martin R Bennett. The methyl xanthine caffeine inhibits DNA damage signaling and reactive species and reduces atherosclerosis in ApoE(-/-) mice. Arteriosclerosis, thrombosis, and vascular biology. 2012 Oct; 32(10):2461-7. doi: 10.1161/atvbaha.112.251322. [PMID: 22859494]
  • Natasa Djordjevic, Juan Antonio Carrillo, Hyung-Keun Roh, Sara Karlsson, Nobuhisa Ueda, Leif Bertilsson, Eleni Aklillu. Comparison of N-acetyltransferase-2 enzyme genotype-phenotype and xanthine oxidase enzyme activity between Swedes and Koreans. Journal of clinical pharmacology. 2012 Oct; 52(10):1527-34. doi: 10.1177/0091270011420261. [PMID: 22105431]
  • Miyuki Kimura, Makiko Shimizu, Kazuma Kiyotani, Kazuko Nakagawa, Tetsuya Kamataki, Hiroshi Yamazaki. Cytochrome P450 2A6 phenotyping based on dietary caffeine intake in a Japanese population of non-smokers. Drug metabolism letters. 2012 Jun; 6(2):67-72. doi: . [PMID: 22849705]
  • Max Tsai, Jing-tao Wu, Lhanoo Gunawardhana, Himanshu Naik. The effects of xanthine oxidase inhibition by febuxostat on the pharmacokinetics of theophylline. International journal of clinical pharmacology and therapeutics. 2012 May; 50(5):331-7. doi: 10.5414/cp201648. [PMID: 22541837]
  • Jung-woo Chae, Dong-hyun Kim, Byung-yo Lee, Eun jung Kim, Kwang-il Kwon. Development and validation of a sensitive LC-MS/MS method for the simultaneous quantitation of theophylline and its metabolites in rat plasma. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2012 Mar; 889-890(?):44-9. doi: 10.1016/j.jchromb.2012.01.028. [PMID: 22365533]
  • Natasa Djordjevic, Juan Antonio Carrillo, Nobuhisa Ueda, Guillermo Gervasini, Takashi Fukasawa, Akira Suda, Slobodan Jankovic, Eleni Aklillu. N-Acetyltransferase-2 (NAT2) gene polymorphisms and enzyme activity in Serbs: unprecedented high prevalence of rapid acetylators in a White population. Journal of clinical pharmacology. 2011 Jul; 51(7):994-1003. doi: 10.1177/0091270010377630. [PMID: 20801937]
  • Lisbeth E Gómez-Martínez. Disposition kinetics of caffeine and paraxanthine in Nile tilapia (Oreochromis niloticus): characterization of the main metabolites. Archives of environmental contamination and toxicology. 2011 May; 60(4):654-64. doi: 10.1007/s00244-010-9571-9. [PMID: 20669017]
  • Yao Chen, Chang-Qiong Xiao, Yi-Jing He, Bi-Lian Chen, Guo Wang, Gan Zhou, Wei Zhang, Zhi-Rong Tan, Shan Cao, Li-Ping Wang, Hong-Hao Zhou. Genistein alters caffeine exposure in healthy female volunteers. European journal of clinical pharmacology. 2011 Apr; 67(4):347-353. doi: 10.1007/s00228-010-0964-5. [PMID: 21222115]
  • P St-Pierre, A J Genders, M A Keske, S M Richards, S Rattigan. Loss of insulin-mediated microvascular perfusion in skeletal muscle is associated with the development of insulin resistance. Diabetes, obesity & metabolism. 2010 Sep; 12(9):798-805. doi: 10.1111/j.1463-1326.2010.01235.x. [PMID: 20649632]
  • Yao Chen, Wen-Hui Liu, Bi-Lian Chen, Lan Fan, Yang Han, Guo Wang, Dong-Li Hu, Zhi-Rong Tan, Gan Zhou, Shan Cao, Hong-Hao Zhou. Plant polyphenol curcumin significantly affects CYP1A2 and CYP2A6 activity in healthy, male Chinese volunteers. The Annals of pharmacotherapy. 2010 Jun; 44(6):1038-45. doi: 10.1345/aph.1m533. [PMID: 20484172]
  • N R Srinivas. Is 1-methylxanthine an ideal model substrate for establishing the renal tubular transport of organic ions?. International journal of clinical pharmacology and therapeutics. 2010 Feb; 48(2):171-2. doi: 10.5414/cpp48171. [PMID: 20137769]
  • Yao Chen, Peng Xiao, Dong-Sheng Ou-Yang, Lan Fan, Dong Guo, Yi-Nan Wang, Yang Han, Jiang-Hua Tu, Gan Zhou, Yuan-Fei Huang, Hong-Hao Zhou. Simultaneous action of the flavonoid quercetin on cytochrome P450 (CYP) 1A2, CYP2A6, N-acetyltransferase and xanthine oxidase activity in healthy volunteers. Clinical and experimental pharmacology & physiology. 2009 Aug; 36(8):828-33. doi: 10.1111/j.1440-1681.2009.05158.x. [PMID: 19215233]
  • Nancy M Kh Hakooz. Caffeine metabolic ratios for the in vivo evaluation of CYP1A2, N-acetyltransferase 2, xanthine oxidase and CYP2A6 enzymatic activities. Current drug metabolism. 2009 May; 10(4):329-38. doi: 10.2174/138920009788499003. [PMID: 19519341]
  • Alexander Jetter, Martina Kinzig, Michael Rodamer, Dorota Tomalik-Scharte, Fritz Sörgel, Uwe Fuhr. Phenotyping of N-acetyltransferase type 2 and xanthine oxidase with caffeine: when should urine samples be collected?. European journal of clinical pharmacology. 2009 Apr; 65(4):411-7. doi: 10.1007/s00228-008-0597-0. [PMID: 19082994]
  • Hideo Nakabayashi, Takashi Hashimoto, Hitoshi Ashida, Shin Nishiumi, Kazuki Kanazawa. Inhibitory effects of caffeine and its metabolites on intracellular lipid accumulation in murine 3T3-L1 adipocytes. BioFactors (Oxford, England). 2008; 34(4):293-302. doi: 10.3233/bio-2009-1083. [PMID: 19850984]
  • J Rengelshausen, C Göggelmann, J Burhenne, K D Riedel, G Mikus, I Walter-Sack, W E Haefeli. Reduction in non-glomerular renal clearance of the caffeine metabolite 1-methylxanthine by probenecid. International journal of clinical pharmacology and therapeutics. 2007 Aug; 45(8):431-7. doi: 10.5414/cpp45431. [PMID: 17725176]
  • Jung-Feng Hsieh, Shih-Hsiung Wu, Yu-Liang Yang, Kee-Fong Choong, Shui-Tein Chen. The screening and characterization of 6-aminopurine-based xanthine oxidase inhibitors. Bioorganic & medicinal chemistry. 2007 May; 15(10):3450-6. doi: 10.1016/j.bmc.2007.03.010. [PMID: 17379526]
  • Eloise A Bradley, Michael G Clark, Stephen Rattigan. Acute effects of wortmannin on insulin's hemodynamic and metabolic actions in vivo. American journal of physiology. Endocrinology and metabolism. 2007 Mar; 292(3):E779-87. doi: 10.1152/ajpendo.00407.2006. [PMID: 17106063]
  • Hans-Peter Rihs, Andrea John, Michael Scherenberg, Albrecht Seidel, Thomas Brüning. Concordance between the deduced acetylation status generated by high-speed: real-time PCR based NAT2 genotyping of seven single nucleotide polymorphisms and human NAT2 phenotypes determined by a caffeine assay. Clinica chimica acta; international journal of clinical chemistry. 2007 Feb; 376(1-2):240-3. doi: 10.1016/j.cca.2006.08.010. [PMID: 17011540]
  • Michael J Blake, Susan M Abdel-Rahman, Robin E Pearce, J Steven Leeder, Gregory L Kearns. Effect of diet on the development of drug metabolism by cytochrome P-450 enzymes in healthy infants. Pediatric research. 2006 Dec; 60(6):717-23. doi: 10.1203/01.pdr.0000245909.74166.00. [PMID: 17065585]
  • Yeomin Yoon, Hyung-Doo Park, Kyoung Un Park, Jin Q Kim, Yoon-Seok Chang, Junghan Song. Associations between CYP2E1 promoter polymorphisms and plasma 1,3-dimethyluric acid/theophylline ratios. European journal of clinical pharmacology. 2006 Aug; 62(8):627-31. doi: 10.1007/s00228-006-0165-4. [PMID: 16841220]
  • Jun Li, Xiang-qian Peng, Jian Zhang, Ji-ping Xu. [Determination of the activity of cytochrome P-450 CYP2A6 by HPLC method with caffeine as metabolizing probe]. Yao xue xue bao = Acta pharmaceutica Sinica. 2006 Mar; 41(3):282-4. doi: . [PMID: 16759004]
  • Allan Weimann, Mads Sabroe, Henrik E Poulsen. Measurement of caffeine and five of the major metabolites in urine by high-performance liquid chromatography/tandem mass spectrometry. Journal of mass spectrometry : JMS. 2005 Mar; 40(3):307-16. doi: 10.1002/jms.785. [PMID: 15685651]
  • Junghan Song, Kyoung Un Park, Hyung Doo Park, Yeomin Yoon, Jin Q Kim. High-throughput liquid chromatography-tandem mass spectrometry assay for plasma theophylline and its metabolites. Clinical chemistry. 2004 Nov; 50(11):2176-9. doi: 10.1373/clinchem.2004.035337. [PMID: 15502093]
  • Mirosława Zydroń, Jacek Baranowski, Irena Baranowska. Separation, pre-concentration, and HPLC analysis of methylxanthines in urine samples. Journal of separation science. 2004 Oct; 27(14):1166-72. doi: 10.1002/jssc.200401841. [PMID: 15537072]
  • Jens Rengelshausen, Heike Lindenmaier, Tomas Cihlar, Ingeborg Walter-Sack, Walter Emil Haefeli, Johanna Weiss. Inhibition of the human organic anion transporter 1 by the caffeine metabolite 1-methylxanthine. Biochemical and biophysical research communications. 2004 Jul; 320(1):90-4. doi: 10.1016/j.bbrc.2004.05.142. [PMID: 15207706]
  • Basem M William, Ahmed M Abdel-tawab, Essam A Hassan, Omar Fathy Mohamed. Acetylator phenotyping in patients with malignant lymphomas, using caffeine as the metabolic probe. Polish journal of pharmacology. 2004 Jul; 56(4):445-9. doi: . [PMID: 15520499]
  • Alexander Jetter, Martina Kinzig-Schippers, Michael Illauer, Robert Hermann, Katharina Erb, Jürgen Borlak, Helga Wolf, Gillian Smith, Ingolf Cascorbi, Fritz Sörgel, Uwe Fuhr. Phenotyping of N-acetyltransferase type 2 by caffeine from uncontrolled dietary exposure. European journal of clinical pharmacology. 2004 Mar; 60(1):17-21. doi: 10.1007/s00228-003-0718-8. [PMID: 14747882]
  • Chi-Chen Hong, Bing-Kou Tang, Geoffrey L Hammond, David Tritchler, Martin Yaffe, Norman F Boyd. Cytochrome P450 1A2 (CYP1A2) activity and risk factors for breast cancer: a cross-sectional study. Breast cancer research : BCR. 2004; 6(4):R352-65. doi: 10.1186/bcr798. [PMID: 15217502]
  • Chi-Chen Hong, Bing-Kou Tang, Venketeshwer Rao, Sanjiv Agarwal, Lisa Martin, David Tritchler, Martin Yaffe, Norman F Boyd. Cytochrome P450 1A2 (CYP1A2) activity, mammographic density, and oxidative stress: a cross-sectional study. Breast cancer research : BCR. 2004; 6(4):R338-51. doi: 10.1186/bcr797. [PMID: 15217501]
  • Lei Zhang, Catherine M Wheatley, Stephen M Richards, Eugene J Barrett, Michael G Clark, Stephen Rattigan. TNF-alpha acutely inhibits vascular effects of physiological but not high insulin or contraction. American journal of physiology. Endocrinology and metabolism. 2003 Sep; 285(3):E654-60. doi: 10.1152/ajpendo.00119.2003. [PMID: 12759220]
  • L H Clerk, M E Smith, S Rattigan, M G Clark. Nonnutritive flow impairs uptake of fatty acid by white muscles of the perfused rat hindlimb. American journal of physiology. Endocrinology and metabolism. 2003 Mar; 284(3):E611-7. doi: 10.1152/ajpendo.00153.2002. [PMID: 12453824]
  • Fatima Vrtic, Walter E Haefeli, Jürgen Drewe, Stephan Krähenbühl, Markus Wenk. Interaction of ibuprofen and probenecid with drug metabolizing enzyme phenotyping procedures using caffeine as the probe drug. British journal of clinical pharmacology. 2003 Feb; 55(2):191-8. doi: 10.1046/j.1365-2125.2003.01725.x. [PMID: 12580991]
  • Eun Jung Kim, Ok Kyung Suh, Myung Gull Lee. Pharmacokinetics of intravenous theophylline in mutant Nagase analbuminemic rats. Life sciences. 2003 Jan; 72(11):1231-45. doi: 10.1016/s0024-3205(02)02373-1. [PMID: 12570924]
  • Su Yeon Yu, Hye Chin Chung, Eun Jung Kim, So Hee Kim, Inchull Lee, Sang Geon Kim, Myung Gull Lee. Effects of acute renal failure induced by uranyl nitrate on the pharmacokinetics of intravenous theophylline in rats: the role of CYP2E1 induction in 1,3-dimethyluric acid formation. The Journal of pharmacy and pharmacology. 2002 Dec; 54(12):1687-92. doi: 10.1211/002235702333. [PMID: 12542900]
  • Klaus Abraham, Alexandra Geusau, Yalcin Tosun, Hans Helge, Steffen Bauer, Jürgen Brockmöller. Severe 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) intoxication: insights into the measurement of hepatic cytochrome P450 1A2 induction. Clinical pharmacology and therapeutics. 2002 Aug; 72(2):163-74. doi: 10.1067/mcp.2002.126408. [PMID: 12189363]
  • Andreas Labedzki, Jeroen Buters, Wafaâ Jabrane, Uwe Fuhr. Differences in caffeine and paraxanthine metabolism between human and murine CYP1A2. Biochemical pharmacology. 2002 Jun; 63(12):2159-67. doi: 10.1016/s0006-2952(02)01019-5. [PMID: 12110375]
  • Lucy H Clerk, Stephen Rattigan, Michael G Clark. Lipid infusion impairs physiologic insulin-mediated capillary recruitment and muscle glucose uptake in vivo. Diabetes. 2002 Apr; 51(4):1138-45. doi: 10.2337/diabetes.51.4.1138. [PMID: 11916937]
  • M A Vincent, D Dawson, A D H Clark, J R Lindner, S Rattigan, M G Clark, E J Barrett. Skeletal muscle microvascular recruitment by physiological hyperinsulinemia precedes increases in total blood flow. Diabetes. 2002 Jan; 51(1):42-8. doi: 10.2337/diabetes.51.1.42. [PMID: 11756321]
  • M Coggins, J Lindner, S Rattigan, L Jahn, E Fasy, S Kaul, E Barrett. Physiologic hyperinsulinemia enhances human skeletal muscle perfusion by capillary recruitment. Diabetes. 2001 Dec; 50(12):2682-90. doi: 10.2337/diabetes.50.12.2682. [PMID: 11723050]
  • H M Crews, L Olivier, L A Wilson. Urinary biomarkers for assessing dietary exposure to caffeine. Food additives and contaminants. 2001 Dec; 18(12):1075-87. doi: 10.1080/02652030110056630. [PMID: 11761118]
  • K A Georgia, V F Samanidou, I N Papadoyannis. Use of novel solid-phase extraction sorbent materials for high-performance liquid chromatography quantitation of caffeine metabolism products methylxanthines and methyluric acids in samples of biological origin. Journal of chromatography. B, Biomedical sciences and applications. 2001 Aug; 759(2):209-18. doi: 10.1016/s0378-4347(01)00251-1. [PMID: 11499474]
  • K Tsutsumi, T Kotegawa, S Matsuki, Y Tanaka, Y Ishii, Y Kodama, M Kuranari, I Miyakawa, S Nakano. The effect of pregnancy on cytochrome P4501A2, xanthine oxidase, and N-acetyltransferase activities in humans. Clinical pharmacology and therapeutics. 2001 Aug; 70(2):121-5. doi: 10.1067/mcp.2001.116495. [PMID: 11503005]
  • Y C Bechtel, P R Bechtel, H Lelouët, H Choisy, N R Dy. [The acetylator polymorphism in a Khmer population: clinical consequences]. Therapie. 2001 Jul; 56(4):409-13. doi: NULL. [PMID: 11677864]
  • P Wong, K Banerjee, J Massengill, S Nowell, N Lang, B Leyland-Jones. Validity of an ELISA for N-acetyltransferase-2 (NAT2) phenotyping. Journal of immunological methods. 2001 May; 251(1-2):1-9. doi: 10.1016/s0022-1759(01)00310-6. [PMID: 11292476]
  • S Murray, A O Odupitan, B P Murray, A R Boobis, R J Edwards. Inhibition of human CYP1A2 activity in vitro by methylxanthines: potent competitive inhibition by 8-phenyltheophylline. Xenobiotica; the fate of foreign compounds in biological systems. 2001 Mar; 31(3):135-51. doi: 10.1080/00498250110043292. [PMID: 11465391]
  • M C Di Pietro, D Vannoni, R Leoncini, G Liso, R Guerranti, E Marinello. Determination of urinary methylated purine pattern by high-performance liquid chromatography. Journal of chromatography. B, Biomedical sciences and applications. 2001 Feb; 751(1):87-92. doi: 10.1016/s0378-4347(00)00471-0. [PMID: 11232859]
  • Y C Bechtel, H Lelouët, S Hrusovsky, M P Brientini, G Mantion, G Paintaud, J P Miguet, P R Bechtel. Caffeine metabolism before and after liver transplantation. International journal of clinical pharmacology and therapeutics. 2001 Feb; 39(2):53-60. doi: 10.5414/cpp39053. [PMID: 11270802]
  • I Németh, D Boda. Xanthine oxidase activity and blood glutathione redox ratio in infants and children with septic shock syndrome. Intensive care medicine. 2001 Jan; 27(1):216-21. doi: 10.1007/s001340000791. [PMID: 11280638]
  • X Cui, R Guo, Z Xu, B Wang, C Li. Relationship between metabolic phenotype of N-acetylation and bladder cancer. Chinese medical journal. 2000 Apr; 113(4):303-5. doi: NULL. [PMID: 11775223]
  • B Sinués, M A Sáenz, J Lanuza, M L Bernal, A Fanlo, J L Juste, E Mayayo. Five caffeine metabolite ratios to measure tobacco-induced CYP1A2 activity and their relationships with urinary mutagenicity and urine flow. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 1999 Feb; 8(2):159-66. doi: . [PMID: 10067814]
  • E K Asprodini, E Zifa, I Papageorgiou, A Benakis. Determination of N-acetylation phenotyping in a Greek population using caffeine as a metabolic probe. European journal of drug metabolism and pharmacokinetics. 1998 Oct; 23(4):501-6. doi: 10.1007/bf03190002. [PMID: 10323334]
  • W Cao, H T Zhuo, G Chen, S S Ling. Pharmacokinetics of theophylline metabolites in 8 Chinese patients. Zhongguo yao li xue bao = Acta pharmacologica Sinica. 1998 Sep; 19(5):437-9. doi: . [PMID: 10375804]
  • J F Lu, T Yi, X M Cao, H T Zhuo, S S Ling. [Determination of caffeine metabolite for the evaluation of N-acetyltransferase, CYP1A2 and xanthine oxidase activities]. Yao xue xue bao = Acta pharmaceutica Sinica. 1997 Nov; 32(11):813-8. doi: NULL. [PMID: 11596199]
  • J F Lu, T Yi, X M Cao, H T Zhuo, S S Lin. [HPLC determination of five caffeine metabolites]. Yao xue xue bao = Acta pharmaceutica Sinica. 1997 Aug; 32(8):607-11. doi: . [PMID: 11596311]
  • N Rodopoulos, A Norman. Elimination of theophylline metabolites in healthy adults. Scandinavian journal of clinical and laboratory investigation. 1997 May; 57(3):233-40. doi: 10.3109/00365519709060032. [PMID: 9238759]
  • D J Birkett, J O Miners, L Valente, K J Lillywhite, R O Day. 1-Methylxanthine derived from caffeine as a pharmacodynamic probe of oxypurinol effect. British journal of clinical pharmacology. 1997 Feb; 43(2):197-200. doi: 10.1046/j.1365-2125.1997.53711.x. [PMID: 9131954]
  • P Wong, B Leyland-Jones, I W Wainer. A competitive enzyme linked immunosorbent assay for the determination of N-acetyltransferase (NAT2) phenotypes. Journal of pharmaceutical and biomedical analysis. 1995 Aug; 13(9):1079-86. doi: 10.1016/0731-7085(95)01550-5. [PMID: 8573631]
  • S H McQuilkin, D W Nierenberg, E Bresnick. Analysis of within-subject variation of caffeine metabolism when used to determine cytochrome P4501A2 and N-acetyltransferase-2 activities. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 1995 Mar; 4(2):139-46. doi: NULL. [PMID: 7742721]
  • M T Kloth, R L Gee, E M Messing, S Swaminathan. Expression of N-acetyltransferase (NAT) in cultured human uroepithelial cells. Carcinogenesis. 1994 Dec; 15(12):2781-7. doi: 10.1093/carcin/15.12.2781. [PMID: 8001235]
  • A E Cribb, R Isbrucker, T Levatte, B Tsui, C T Gillespie, K W Renton. Acetylator phenotyping: the urinary caffeine metabolite ratio in slow acetylators correlates with a marker of systemic NAT1 activity. Pharmacogenetics. 1994 Jun; 4(3):166-70. doi: . [PMID: 7920698]
  • S M Frederickson, E M Messing, C A Reznikoff, S Swaminathan. Relationship between in vivo acetylator phenotypes and cytosolic N-acetyltransferase and O-acetyltransferase activities in human uroepithelial cells. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 1994 Jan; 3(1):25-32. doi: . [PMID: 8118381]
  • V E Whitehurst, X Joseph, F R Alleva, J A Vick, P Whittaker, J Zhang, B E Fry, T Balazs. Enhancement of acute myocardial lesions by asthma drugs in rats. Toxicologic pathology. 1994 Jan; 22(1):72-6. doi: 10.1177/019262339402200110. [PMID: 7915431]
  • M Vincent-Viry, Z B Pontes, R Gueguen, M M Galteau, G Siest. Segregation analyses of four urinary caffeine metabolite ratios implicated in the determination of human acetylation phenotypes. Genetic epidemiology. 1994; 11(2):115-29. doi: 10.1002/gepi.1370110203. [PMID: 8013893]
  • I Klebovich, P Arvela, O Pelkonen. HPLC method for rapid determination of acetylator phenotype by measuring urinary caffeine metabolites. Journal of pharmaceutical and biomedical analysis. 1993 Oct; 11(10):1017-21. doi: 10.1016/0731-7085(93)80063-7. [PMID: 8305582]
  • D A Bell, J A Taylor, M A Butler, E A Stephens, J Wiest, L H Brubaker, F F Kadlubar, G W Lucier. Genotype/phenotype discordance for human arylamine N-acetyltransferase (NAT2) reveals a new slow-acetylator allele common in African-Americans. Carcinogenesis. 1993 Aug; 14(8):1689-92. doi: 10.1093/carcin/14.8.1689. [PMID: 8102597]
  • Y C Bechtel, C Bonaiti-Pellie, N Poisson, J Magnette, P R Bechtel. A population and family study of N-acetyltransferase using caffeine urinary metabolites. Clinical pharmacology and therapeutics. 1993 Aug; 54(2):134-41. doi: 10.1038/clpt.1993.124. [PMID: 8354022]
  • L M Vaughan, A Gottehrer. Effect of xanthine-related compounds on a theophylline assay using theophylline oxidase. The Annals of pharmacotherapy. 1992 Dec; 26(12):1576-9. doi: 10.1177/106002809202601217. [PMID: 1482815]
  • M Hashiguchi, A Ebihara. Acetylation polymorphism of caffeine in a Japanese population. Clinical pharmacology and therapeutics. 1992 Sep; 52(3):274-6. doi: 10.1038/clpt.1992.141. [PMID: 1526084]
  • D J Birkett, J O Miners, R O Day. 1-Methylxanthine derived from theophylline as an in vivo biochemical probe of allopurinol effect. British journal of clinical pharmacology. 1991 Aug; 32(2):238-41. doi: 10.1111/j.1365-2125.1991.tb03888.x. [PMID: 1931474]
  • B K Tang, D Kadar, L Qian, J Iriah, J Yip, W Kalow. Caffeine as a metabolic probe: validation of its use for acetylator phenotyping. Clinical pharmacology and therapeutics. 1991 Jun; 49(6):648-57. doi: 10.1038/clpt.1991.82. [PMID: 2060254]
  • W Kalow, B K Tang. Caffeine as a metabolic probe: exploration of the enzyme-inducing effect of cigarette smoking. Clinical pharmacology and therapeutics. 1991 Jan; 49(1):44-8. doi: 10.1038/clpt.1991.8. [PMID: 1988240]
  • A J Kilbane, L K Silbart, M Manis, I Z Beitins, W W Weber. Human N-acetylation genotype determination with urinary caffeine metabolites. Clinical pharmacology and therapeutics. 1990 Apr; 47(4):470-7. doi: 10.1038/clpt.1990.59. [PMID: 2328555]
  • M Sarkar, R E Polk, P S Guzelian, C Hunt, H T Karnes. In vitro effect of fluoroquinolones on theophylline metabolism in human liver microsomes. Antimicrobial agents and chemotherapy. 1990 Apr; 34(4):594-9. doi: 10.1128/aac.34.4.594. [PMID: 2344166]
  • D M Grant, K Mörike, M Eichelbaum, U A Meyer. Acetylation pharmacogenetics. The slow acetylator phenotype is caused by decreased or absent arylamine N-acetyltransferase in human liver. The Journal of clinical investigation. 1990 Mar; 85(3):968-72. doi: 10.1172/jci114527. [PMID: 2312737]
  • F F Kadlubar, G Talaska, M A Butler, C H Teitel, J P Massengill, N P Lang. Determination of carcinogenic arylamine N-oxidation phenotype in humans by analysis of caffeine urinary metabolites. Progress in clinical and biological research. 1990; 340B(?):107-14. doi: NULL. [PMID: 2392442]
  • M E Morris, J C Griener, M E Msall. N-acetylator variability in Down's syndrome: characterization with caffeine. Clinical pharmacology and therapeutics. 1989 Sep; 46(3):359-66. doi: 10.1038/clpt.1989.151. [PMID: 2528436]
  • A el-Yazigi, K Chaleby, C R Martin. Acetylator phenotypes of Saudi Arabians by a simplified caffeine metabolites test. Journal of clinical pharmacology. 1989 Mar; 29(3):246-50. doi: 10.1002/j.1552-4604.1989.tb03321.x. [PMID: 2723111]
  • M Hildebrand, W Seifert. Determination of acetylator phenotype in Caucasians with caffeine. European journal of clinical pharmacology. 1989; 37(5):525-6. doi: 10.1007/bf00558136. [PMID: 2598993]
  • M E Campbell, S P Spielberg, W Kalow. A urinary metabolite ratio that reflects systemic caffeine clearance. Clinical pharmacology and therapeutics. 1987 Aug; 42(2):157-65. doi: 10.1038/clpt.1987.126. [PMID: 3608349]
  • R B Rankin, S A Hudson, A F Fell. Caffeine as a potential indicator for acetylator status. Journal of clinical pharmacy and therapeutics. 1987 Feb; 12(1):47-51. doi: . [PMID: 3449563]
  • . . . . doi: . [PMID: 17221922]
  • . . . . doi: . [PMID: 14977550]