Orcinol (BioDeep_00000000761)
Secondary id: BioDeep_00000862903
natural product PANOMIX_OTCML-2023
代谢物信息卡片
化学式: C7H8O2 (124.05242679999999)
中文名称: 3,5-二羟基甲苯,无水, 地衣酚, 3,5-二羟基甲苯
谱图信息:
最多检出来源 Viridiplantae(plant) 0.11%
分子结构信息
SMILES: Cc(c1)cc(O)cc(O)1
InChI: InChI=1S/C7H8O2/c1-5-2-6(8)4-7(9)3-5/h2-4,8-9H,1H3
描述信息
Orcinol is a 5-alkylresorcinol in which the alkyl group is specified as methyl. It has a role as an Aspergillus metabolite. It is a 5-alkylresorcinol and a dihydroxytoluene.
Orcinol is a natural product found in Calluna vulgaris, Rumex patientia, and other organisms with data available.
A 5-alkylresorcinol in which the alkyl group is specified as methyl.
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.272
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.266
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.263
KEIO_ID O013
同义名列表
35 个代谢物同义名
InChI=1/C7H8O2/c1-5-2-6(8)4-7(9)3-5/h2-4,8-9H,1H; 4-06-00-05892 (Beilstein Handbook Reference); 5-methylbenzene-1,3-diol;Orcinol; 5-Methylresorcinol, anhydrous; 1,3-Dihydroxy-5-methylbenzene; 5-Methyl-1,3-dihydroxybenzene; 1,5-DIHYDROXY-3-METHYLBENZENE; 5-Methylresorcinol anhydrous; Orcinol, 5-methylresorcinol; 1,3-Benzenediol, 5-methyl-; 5-Methyl-benzene-1,3-diol; 5-Methyl-1,3-benzenediol; 5-methylbenzene-1,3-diol; 3-Hydroxy-5-methylphenol; orcinol, 14C-labeled cpd; 5-methylbenzen-1,3-diol; resorcinol monohydrate; 3,5-Dihydroxy-toluene; Resorcinol, 5-methyl-; 3,5-ToluenediolOrcin; 3,5-dihydroxytoluene; 5-methyl-resorcinol; 5-Methyl Resorcinol; 5-methylresorcinol; 5-Methylresorcin; 3,5-Toluenediol; Orcinol, 97\\%; WLN: QR CQ E1; ORCINOL [MI]; AI3-23954; Oricinol; Orcinol; Orcine; Orcin; orzin
数据库引用编号
30 个数据库交叉引用编号
- ChEBI: CHEBI:16536
- KEGG: C00727
- PubChem: 10436
- Metlin: METLIN44798
- ChEMBL: CHEMBL110059
- Wikipedia: Orcinol
- MeSH: orcinol
- ChemIDplus: 0000504154
- MetaCyc: ORCINOL-CPD
- CAS: 504-15-4
- MoNA: CCMSLIB00005721071
- MoNA: FiehnHILIC002896
- MoNA: BML81852
- MoNA: BML81851
- MoNA: BML81850
- MoNA: BML01272
- MoNA: KO001551
- MoNA: KO001548
- MoNA: KO001550
- MoNA: KO001549
- MoNA: KO001552
- medchemexpress: HY-D0168
- PMhub: MS000008671
- MetaboLights: MTBLC16536
- PubChem: 3992
- KNApSAcK: C00002661
- 3DMET: B00161
- NIKKAJI: J6.215D
- RefMet: Orcinol
- LOTUS: LTS0230426
分类词条
相关代谢途径
Reactome(0)
PlantCyc(0)
代谢反应
77 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(2)
- orcinol degradation:
2,3,5-trihydroxytoluene + O2 ⟶ 2,4,6-trioxoheptanoate + H+
- 3,5-dimethoxytoluene biosynthesis:
3-methoxy-5-hydroxytoluene + SAM ⟶ 3,5-dimethoxytoluene + H+ + SAH
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(75)
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
3-methoxy-5-hydroxytoluene + SAM ⟶ 3,5-dimethoxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
- 3,5-dimethoxytoluene biosynthesis:
SAM + orcinol ⟶ 3-methoxy-5-hydroxytoluene + H+ + SAH
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
99 个相关的物种来源信息
- 16727 - Aristolochiaceae: LTS0230426
- 6656 - Arthropoda: LTS0230426
- 16728 - Asarum: 10.1515/ZNC-1984-7-803
- 16728 - Asarum: LTS0230426
- 2606223 - Asarum curvistigma: 10.1515/ZNC-1984-7-803
- 2606223 - Asarum curvistigma: LTS0230426
- 1550270 - Asarum fauriei: LTS0230426
- 1550271 - Asarum fauriei var. takaoi: 10.1515/ZNC-1984-7-803
- 1550271 - Asarum fauriei var. takaoi: LTS0230426
- 1689652 - Asarum kiusianum: 10.1515/ZNC-1984-7-803
- 1689652 - Asarum kiusianum: LTS0230426
- 336664 - Asarum nipponicum: 10.1515/ZNC-1984-7-803
- 336664 - Asarum nipponicum: LTS0230426
- 76102 - Asarum savatieri: 10.1515/ZNC-1984-7-803
- 76102 - Asarum savatieri: LTS0230426
- 4890 - Ascomycota: LTS0230426
- 1131492 - Aspergillaceae: LTS0230426
- 5052 - Aspergillus: LTS0230426
- 75750 - Aspergillus sydowii:
- 75750 - Aspergillus sydowii: LTS0230426
- 43722 - Brucea: LTS0230426
- 210348 - Brucea javanica:
- 210348 - Brucea javanica: 10.1002/JCCS.200500117
- 210348 - Brucea javanica: 10.1002/JCCS.200800033
- 210348 - Brucea javanica: LTS0230426
- 13384 - Calluna: LTS0230426
- 13385 - Calluna vulgaris: 10.1016/0031-9422(82)80150-7
- 13385 - Calluna vulgaris: LTS0230426
- 21019 - Castanea: LTS0230426
- 21020 - Castanea sativa: 10.1016/S0031-9422(00)86043-4
- 21020 - Castanea sativa: LTS0230426
- 35718 - Chaetomiaceae: LTS0230426
- 5149 - Chaetomium: LTS0230426
- 38033 - Chaetomium globosum: 10.1021/NP058014B
- 38033 - Chaetomium globosum: LTS0230426
- 182332 - Cleyera: LTS0230426
- 182333 - Cleyera japonica: 10.1248/CPB.49.1498
- 182333 - Cleyera japonica: LTS0230426
- 474922 - Colletotrichum gloeosporioides: 10.1080/14786419.2017.1385020
- 695564 - Erebidae: LTS0230426
- 4345 - Ericaceae: LTS0230426
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 2759 - Eukaryota: LTS0230426
- 147545 - Eurotiomycetes: LTS0230426
- 3503 - Fagaceae: LTS0230426
- 4751 - Fungi: LTS0230426
- 4674 - Hypoxidaceae: LTS0230426
- 50557 - Insecta: LTS0230426
- 147547 - Lecanoromycetes: LTS0230426
- 96312 - Leptographium: 10.1016/S0031-9422(00)80159-4
- 96312 - Leptographium: LTS0230426
- 4677 - Liliaceae: LTS0230426
- 4447 - Liliopsida: LTS0230426
- 4688 - Lilium: LTS0230426
- 79003 - Lilium leichtlinii: LTS0230426
- 85369 - Lilium leichtlinii var. maximowiczii: 10.1021/NP980062R
- 85369 - Lilium leichtlinii var. maximowiczii: LTS0230426
- 3398 - Magnoliopsida: LTS0230426
- 33208 - Metazoa: LTS0230426
- 49503 - Molineria: LTS0230426
- 4676 - Molineria latifolia: LTS0230426
- 5152 - Ophiostomataceae: LTS0230426
- 78060 - Parmeliaceae: LTS0230426
- 172634 - Parmotrema: LTS0230426
- 235862 - Parmotrema tinctorum: 10.1021/NP0001326
- 235862 - Parmotrema tinctorum: LTS0230426
- 5073 - Penicillium: 10.1515/ZNC-2009-11-1212
- 5073 - Penicillium: LTS0230426
- 5077 - Penicillium citrinum: 10.1021/NP0704708
- 5077 - Penicillium citrinum: LTS0230426
- 125045 - Pentaphylacaceae: LTS0230426
- 1033978 - Plectosphaerellaceae: LTS0230426
- 3615 - Polygonaceae: LTS0230426
- 119083 - Psydrax: LTS0230426
- 2708958 - Psydrax subcordata: 10.1351/PAC198658050653
- 2708958 - Psydrax subcordata: LTS0230426
- 172638 - Punctelia: LTS0230426
- 286365 - Punctelia subrudecta: 10.1080/10826068.2010.525432
- 286365 - Punctelia subrudecta: LTS0230426
- 4346 - Rhododendron: LTS0230426
- 880079 - Rhododendron dauricum: 10.1021/NP0303916
- 880079 - Rhododendron dauricum: LTS0230426
- 24966 - Rubiaceae: LTS0230426
- 3618 - Rumex: LTS0230426
- 137229 - Rumex patientia: 10.1016/S0031-9422(01)00337-5
- 137229 - Rumex patientia: LTS0230426
- 23808 - Simaroubaceae: LTS0230426
- 147550 - Sordariomycetes: LTS0230426
- 35493 - Streptophyta: LTS0230426
- 58023 - Tracheophyta: LTS0230426
- 28568 - Trichocomaceae: LTS0230426
- 1036719 - Verticillium: LTS0230426
- 27335 - Verticillium albo-atrum: 10.1246/CL.1988.27
- 27335 - Verticillium albo-atrum: LTS0230426
- 33090 - Viridiplantae: LTS0230426
- 3602 - Vitaceae: LTS0230426
- 3603 - Vitis: LTS0230426
- 29760 - Vitis vinifera: 10.3389/FMICB.2017.00457
- 29760 - Vitis vinifera: LTS0230426
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Chenxia Lian, Wan Gong, Xuan Zhao, Peng Sun, Sijing Hu, Guifen Zhou, Qiaoyan Zhang, Luping Qin. Orcinol gentiobioside inhibits RANKL-induced osteoclastogenesis by promoting apoptosis and suppressing autophagy via the JNK1 signaling.
Journal of ethnopharmacology.
2024 Jun; 328(?):118060. doi:
10.1016/j.jep.2024.118060
. [PMID: 38521429] - Xia Liu, Mingchun Huang, Lijuan Wang, Jie Li, Weihui Wu, Qin Wang. Network pharmacology and experimental validation methods to reveal the active compounds and hub targets of Curculigo orchioides Gaertn in rheumatoid arthritis.
Journal of orthopaedic surgery and research.
2023 Nov; 18(1):861. doi:
10.1186/s13018-023-04352-w
. [PMID: 37957674] - Bihuan Chen, Xiaonan Liu, Yina Wang, Jie Bai, Xiangyu Liu, Guisheng Xiang, Wei Liu, Xiaoxi Zhu, Jian Cheng, Lina Lu, Guanghui Zhang, Ge Zhang, Zongjie Dai, Shuhui Zi, Shengchao Yang, Huifeng Jiang. Production of the antidepressant orcinol glucoside in Yarrowia lipolytica with yields over 6,400-fold higher than plant extraction.
PLoS biology.
2023 06; 21(6):e3002131. doi:
10.1371/journal.pbio.3002131
. [PMID: 37279234] - Wan Gong, Mengqin Liu, Qi Zhang, Quanlong Zhang, Yang Wang, Qiming Zhao, Lu Xiang, Chengjian Zheng, Qiaoyan Zhang, Luping Qin. Orcinol Glucoside Improves Senile Osteoporosis through Attenuating Oxidative Stress and Autophagy of Osteoclast via Activating Nrf2/Keap1 and mTOR Signaling Pathway.
Oxidative medicine and cellular longevity.
2022; 2022(?):5410377. doi:
10.1155/2022/5410377
. [PMID: 35585885] - Junlong Li, Pingya He, Jian Zhang, Ning Li. Orcinol glucoside improves the depressive-like behaviors of perimenopausal depression mice through modulating activity of hypothalamic-pituitary-adrenal/ovary axis and activating BDNF- TrkB-CREB signaling pathway.
Phytotherapy research : PTR.
2021 Oct; 35(10):5795-5807. doi:
10.1002/ptr.7237
. [PMID: 34382261] - Cristina Avonto, Amar G Chittiboyina, Shabana I Khan, Olivia R Dale, Jon F Parcher, Mei Wang, Ikhlas A Khan. Are atranols the only skin sensitizers in oakmoss? A systematic investigation using non-animal methods.
Toxicology in vitro : an international journal published in association with BIBRA.
2021 Feb; 70(?):105053. doi:
10.1016/j.tiv.2020.105053
. [PMID: 33212168] - Gordana Stojanović, Ivana Zrnzević, Ivana Zlatanović, Miroslava Stanković, Vesna Stankov Jovanović, Violeta Mitić, Aleksandra Đorđević. Chemical profile and biological activities of Peltigera horizontalis (Hudson) Baumg. thallus and apothecia extracts.
Natural product research.
2020 Feb; 34(4):549-552. doi:
10.1080/14786419.2018.1489386
. [PMID: 30445826] - Xinying Zhou, Zezheng Liu, Bin Huang, Huibo Yan, Changsheng Yang, Qingchu Li, Dadi Jin. Orcinol glucoside facilitates the shift of MSC fate to osteoblast and prevents adipogenesis via Wnt/β-catenin signaling pathway.
Drug design, development and therapy.
2019; 13(?):2703-2713. doi:
10.2147/dddt.s208458
. [PMID: 31496649] - Prasant Nahak, Rahul L Gajbhiye, Gourab Karmakar, Pritam Guha, Biplab Roy, Shila Elizabeth Besra, Alexey G Bikov, Alexander V Akentiev, Boris A Noskov, Kaushik Nag, Parasuraman Jaisankar, Amiya Kumar Panda. Orcinol Glucoside Loaded Polymer - Lipid Hybrid Nanostructured Lipid Carriers: Potential Cytotoxic Agents against Gastric, Colon and Hepatoma Carcinoma Cell Lines.
Pharmaceutical research.
2018 Aug; 35(10):198. doi:
10.1007/s11095-018-2469-3
. [PMID: 30151753] - Yayue Liu, Qin Yang, Guoping Xia, Hongbo Huang, Hanxiang Li, Lin Ma, Yongjun Lu, Lei He, Xuekui Xia, Zhigang She. Polyketides with α-Glucosidase Inhibitory Activity from a Mangrove Endophytic Fungus, Penicillium sp. HN29-3B1.
Journal of natural products.
2015 Aug; 78(8):1816-22. doi:
10.1021/np500885f
. [PMID: 26230970] - Francisco J Hidalgo, Rosario Zamora. 2-Alkenal-scavenging ability of m-diphenols.
Food chemistry.
2014 Oct; 160(?):118-26. doi:
10.1016/j.foodchem.2014.03.071
. [PMID: 24799217] - Simon Hartung Jørgensen, Rasmus John Norman Frandsen, Kristian Fog Nielsen, Erik Lysøe, Teis Esben Sondergaard, Reinhard Wimmer, Henriette Giese, Jens Laurids Sørensen. Fusarium graminearum PKS14 is involved in orsellinic acid and orcinol synthesis.
Fungal genetics and biology : FG & B.
2014 Sep; 70(?):24-31. doi:
10.1016/j.fgb.2014.06.008
. [PMID: 25011010] - Jin-Fang Ge, Wen-Chao Gao, Wen-Ming Cheng, Wei-Li Lu, Jie Tang, Lei Peng, Ning Li, Fei-Hu Chen. Orcinol glucoside produces antidepressant effects by blocking the behavioural and neuronal deficits caused by chronic stress.
European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology.
2014 Jan; 24(1):172-80. doi:
10.1016/j.euroneuro.2013.05.007
. [PMID: 23838013] - Brigida D'Abrosca, Elisabetta Buommino, Grazia D'Angelo, Lorena Coretti, Monica Scognamiglio, Valeria Severino, Severina Pacifico, Giovanna Donnarumma, Antonio Fiorentino. Spectroscopic identification and anti-biofilm properties of polar metabolites from the medicinal plant Helichrysum italicum against Pseudomonas aeruginosa.
Bioorganic & medicinal chemistry.
2013 Nov; 21(22):7038-46. doi:
10.1016/j.bmc.2013.09.019
. [PMID: 24094434] - Chun-Miao Xue, Bing Zhang, Zhi-Jian Lin. [Study on effect of Curculiginis Rhizoma and its active ingredient on PXR-CYP3A of L02 cells in different states].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2013 Oct; 38(19):3348-52. doi:
"
. [PMID: 24422406] - Myeong Hwan Oh, Kwan Hee Park, Manh Heun Kim, Han Hyuk Kim, So Ra Kim, Min Won Lee. Three new orcinol-conjugated hydrolysable tannins from the leaves of Cleyera japonica.
Chemical & pharmaceutical bulletin.
2013; 61(3):340-3. doi:
10.1248/cpb.c12-00572
. [PMID: 23449204] - Martha-Estrella García-Pérez, Mariana Royer, Gaëtan Herbette, Yves Desjardins, Roxane Pouliot, Tatjana Stevanovic. Picea mariana bark: a new source of trans-resveratrol and other bioactive polyphenols.
Food chemistry.
2012 Dec; 135(3):1173-82. doi:
10.1016/j.foodchem.2012.05.050
. [PMID: 22953840] - Salim Salih Al-Rejaie, Hatem Mustafa Abuohashish, Osama Abdelrahman Alkhamees, Abdulaziz Mohammed Aleisa, Abdulaziz S Alroujayee. Gender difference following high cholesterol diet induced renal injury and the protective role of rutin and ascorbic acid combination in Wistar albino rats.
Lipids in health and disease.
2012 Mar; 11(?):41. doi:
10.1186/1476-511x-11-41
. [PMID: 22423898] - Selva Kumar Sivagnanam, Mudiganti Ram Krishna Rao, Maruthaiveeran Periyasamy Balasubramanian. Chemotherapeutic Efficacy of Indigofera aspalathoides on 20-Methylcholanthrene-Induced Fibrosarcoma in Rats.
ISRN pharmacology.
2012; 2012(?):134356. doi:
10.5402/2012/134356
. [PMID: 22530134] - Dominic Sophia, Paramasivam Ragavendran, Chinthamony Arul Raj, Velliyur Kanniappan Gopalakrishnan. Protective effect of Emilia sonchifolia (L.) against high protein diet induced oxidative stress in pancreas of Wistar rats.
Journal of pharmacy & bioallied sciences.
2012 Jan; 4(1):60-5. doi:
10.4103/0975-7406.92735
. [PMID: 22368400] - Eric C Martens, Elisabeth C Lowe, Herbert Chiang, Nicholas A Pudlo, Meng Wu, Nathan P McNulty, D Wade Abbott, Bernard Henrissat, Harry J Gilbert, David N Bolam, Jeffrey I Gordon. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts.
PLoS biology.
2011 Dec; 9(12):e1001221. doi:
10.1371/journal.pbio.1001221
. [PMID: 22205877] - Andreas Wittgens, Till Tiso, Torsten T Arndt, Pamela Wenk, Johannes Hemmerich, Carsten Müller, Rolf Wichmann, Benjamin Küpper, Michaela Zwick, Susanne Wilhelm, Rudolf Hausmann, Christoph Syldatk, Frank Rosenau, Lars M Blank. Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440.
Microbial cell factories.
2011 Oct; 10(?):80. doi:
10.1186/1475-2859-10-80
. [PMID: 21999513] - Daniel W Bergner, Theresa B Kuhlenschmidt, William P Hanafin, Lawrence D Firkins, Mark S Kuhlenschmidt. Inhibition of rotavirus infectivity by a neoglycolipid receptor mimetic.
Nutrients.
2011 02; 3(2):228-44. doi:
10.3390/nu3020228
. [PMID: 22254094] - Julia V Bugrysheva, Henry P Godfrey, Ira Schwartz, Felipe C Cabello. Patterns and regulation of ribosomal RNA transcription in Borrelia burgdorferi.
BMC microbiology.
2011 Jan; 11(?):17. doi:
10.1186/1471-2180-11-17
. [PMID: 21251259] - Takashi Kodama, Tadayasu Togawa, Takahiro Tsukimura, Ikuo Kawashima, Kazuhiko Matsuoka, Keisuke Kitakaze, Daisuke Tsuji, Kohji Itoh, Yo-Ichi Ishida, Minoru Suzuki, Toshihiro Suzuki, Hitoshi Sakuraba. Lyso-GM2 ganglioside: a possible biomarker of Tay-Sachs disease and Sandhoff disease.
PloS one.
2011; 6(12):e29074. doi:
10.1371/journal.pone.0029074
. [PMID: 22205997] - Elena I Sinauridze, Alexey N Romanov, Irina V Gribkova, Olga A Kondakova, Stepan S Surov, Aleksander S Gorbatenko, Andrey A Butylin, Mikhail Yu Monakov, Alexey A Bogolyubov, Yuryi V Kuznetsov, Vladimir B Sulimov, Fazoyl I Ataullakhanov. New synthetic thrombin inhibitors: molecular design and experimental verification.
PloS one.
2011; 6(5):e19969. doi:
10.1371/journal.pone.0019969
. [PMID: 21603576] - Leonardo Nimrichter, Marcio L Rodrigues. Fungal glucosylceramides: from structural components to biologically active targets of new antimicrobials.
Frontiers in microbiology.
2011; 2(?):212. doi:
10.3389/fmicb.2011.00212
. [PMID: 22025918] - Tatjana Mitrović, Slaviša Stamenković, Vladimir Cvetković, Svetlana Tošić, Milan Stanković, Ivana Radojević, Olgica Stefanović, Ljiljana Comić, Dragana Dačić, Milena Curčić, Snežana Marković. Antioxidant, antimicrobial and antiproliferative activities of five lichen species.
International journal of molecular sciences.
2011; 12(8):5428-48. doi:
10.3390/ijms12085428
. [PMID: 21954369] - Aufaugh Emam, William G Carter, Clifford Lingwood. Glycolipid-Dependent, Protease Sensitive Internalization of Pseudomonas aeruginosa Into Cultured Human Respiratory Epithelial Cells.
The open microbiology journal.
2010 Dec; 4(?):106-15. doi:
10.2174/1874285801004010106
. [PMID: 21270937] - Satish V Patil, Rahul B Salunkhe, Chandrashekhar D Patil, Deepak M Patil, Bipinchandra K Salunke. Bioflocculant exopolysaccharide production by Azotobacter indicus using flower extract of Madhuca latifolia L.
Applied biochemistry and biotechnology.
2010 Oct; 162(4):1095-108. doi:
10.1007/s12010-009-8820-8
. [PMID: 19921493] - Melanie J Edwards, Ian R Wallis, William J Foley. Acid loads induced by the detoxification of plant secondary metabolites do not limit feeding by common brushtail possums (Trichosurus vulpecula).
Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology.
2010 Feb; 180(2):247-57. doi:
10.1007/s00360-009-0404-y
. [PMID: 19727760] - Cecil Stushnoff, Laurence J M Ducreux, Robert D Hancock, Pete E Hedley, David G Holm, Gordon J McDougall, James W McNicol, Jenny Morris, Wayne L Morris, Julie A Sungurtas, Susan R Verrall, Tatiana Zuber, Mark A Taylor. Flavonoid profiling and transcriptome analysis reveals new gene-metabolite correlations in tubers of Solanum tuberosum L.
Journal of experimental botany.
2010 Feb; 61(4):1225-38. doi:
10.1093/jxb/erp394
. [PMID: 20110266] - Bianca R Dias, Elaine G Rodrigues, Leonardo Nimrichter, Ernesto S Nakayasu, Igor C Almeida, Luiz R Travassos. Identification of iGb3 and iGb4 in melanoma B16F10-Nex2 cells and the iNKT cell-mediated antitumor effect of dendritic cells primed with iGb3.
Molecular cancer.
2009 Dec; 8(?):116. doi:
10.1186/1476-4598-8-116
. [PMID: 19968878] - Josep M Lluis, Laura Llacuna, Claudia von Montfort, Cristina Bárcena, Carlos Enrich, Albert Morales, José C Fernandez-Checa. GD3 synthase overexpression sensitizes hepatocarcinoma cells to hypoxia and reduces tumor growth by suppressing the cSrc/NF-kappaB survival pathway.
PloS one.
2009 Nov; 4(11):e8059. doi:
10.1371/journal.pone.0008059
. [PMID: 19956670] - Ute Distler, Jamal Souady, Marcel Hülsewig, Irena Drmić-Hofman, Jörg Haier, Alexander W Friedrich, Helge Karch, Norbert Senninger, Klaus Dreisewerd, Stefan Berkenkamp, M Alexander Schmidt, Jasna Peter-Katalinić, Johannes Müthing. Shiga toxin receptor Gb3Cer/CD77: tumor-association and promising therapeutic target in pancreas and colon cancer.
PloS one.
2009 Aug; 4(8):e6813. doi:
10.1371/journal.pone.0006813
. [PMID: 19714252] - Susanna Roeder, Katharina Dreschler, Markus Wirtz, Simona M Cristescu, Frans J M van Harren, Rüdiger Hell, Birgit Piechulla. SAM levels, gene expression of SAM synthetase, methionine synthase and ACC oxidase, and ethylene emission from N. suaveolens flowers.
Plant molecular biology.
2009 Jul; 70(5):535-46. doi:
10.1007/s11103-009-9490-1
. [PMID: 19396585] - Bhardwaj Payal, Harkiran Preet Kaur, Durg Vijay Rai. New insight into the effects of lead modulation on antioxidant defense mechanism and trace element concentration in rat bone.
Interdisciplinary toxicology.
2009 Mar; 2(1):18-23. doi:
10.2478/v10102-009-0003-5
. [PMID: 21217840] - Jian-chen Li, Li Feng, Toshihiro Nohara. [Chemical constituents from herb of Pholidota cantonensis].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2008 Jul; 33(14):1691-3. doi:
. [PMID: 18841767]
- Rui-Rui Wang, Qiong Gu, Yun-Hua Wang, Xue-Mei Zhang, Liu-Meng Yang, Jun Zhou, Ji-Jun Chen, Yong-Tang Zheng. Anti-HIV-1 activities of compounds isolated from the medicinal plant Rhus chinensis.
Journal of ethnopharmacology.
2008 May; 117(2):249-56. doi:
10.1016/j.jep.2008.01.037
. [PMID: 18343612] - Akiko Kumagai, Shin-ichi Chisada, Yuto Kamei, Makoto Ito, Seiichi Hayashi. Ganglioside from eel serum high density lipoprotein (HDL) and its role as a ligand for HDL binding protein.
Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.
2007 Aug; 147(4):635-44. doi:
10.1016/j.cbpb.2007.04.007
. [PMID: 17499534] - Susana Castro-Sowinski, Ofra Matan, Paula Bonafede, Yaacov Okon. A thioredoxin of Sinorhizobium meliloti CE52G is required for melanin production and symbiotic nitrogen fixation.
Molecular plant-microbe interactions : MPMI.
2007 Aug; 20(8):986-93. doi:
10.1094/mpmi-20-8-0986
. [PMID: 17724847] - Roberto Colangeli, Danica Helb, Catherine Vilchèze, Manzour Hernando Hazbón, Chee-Gun Lee, Hassan Safi, Brendan Sayers, Irene Sardone, Marcus B Jones, Robert D Fleischmann, Scott N Peterson, William R Jacobs, David Alland. Transcriptional regulation of multi-drug tolerance and antibiotic-induced responses by the histone-like protein Lsr2 in M. tuberculosis.
PLoS pathogens.
2007 Jun; 3(6):e87. doi:
10.1371/journal.ppat.0030087
. [PMID: 17590082] - Siddanakoppalu N Pramod, Yeldur P Venkatesh. Utility of pentose colorimetric assay for the purification of potato lectin, an arabinose-rich glycoprotein.
Glycoconjugate journal.
2006 Nov; 23(7-8):481-8. doi:
10.1007/s10719-006-6217-2
. [PMID: 17006640] - Karen J Marsh, Ian R Wallis, Stuart McLean, Jennifer S Sorensen, William J Foley. Conflicting demands on detoxification pathways influence how common brushtail possums choose their diets.
Ecology.
2006 Aug; 87(8):2103-12. doi:
10.1890/0012-9658(2006)87[2103:cdodpi]2.0.co;2
. [PMID: 16937649] - Yu-Yun Hsiao, Wen-Chieh Tsai, Chang-Sheng Kuoh, Tian-Hsiang Huang, Hei-Chia Wang, Tian-Shung Wu, Yann-Lii Leu, Wen-Huei Chen, Hong-Hwa Chen. Comparison of transcripts in Phalaenopsis bellina and Phalaenopsis equestris (Orchidaceae) flowers to deduce monoterpene biosynthesis pathway.
BMC plant biology.
2006 Jul; 6(?):14. doi:
10.1186/1471-2229-6-14
. [PMID: 16836766] - Laura Botto, Egidio Beretta, Rossella Daffara, Giuseppe Miserocchi, Paola Palestini. Biochemical and morphological changes in endothelial cells in response to hypoxic interstitial edema.
Respiratory research.
2006 Jan; 7(?):7. doi:
10.1186/1465-9921-7-7
. [PMID: 16412226] - Gabriel Scalliet, Claire Lionnet, Mickaël Le Bechec, Laurence Dutron, Jean-Louis Magnard, Sylvie Baudino, Véronique Bergougnoux, Frédéric Jullien, Pierre Chambrier, Philippe Vergne, Christian Dumas, J Mark Cock, Philippe Hugueney. Role of petal-specific orcinol O-methyltransferases in the evolution of rose scent.
Plant physiology.
2006 Jan; 140(1):18-29. doi:
10.1104/pp.105.070961
. [PMID: 16361520] - Zhifeng Zheng, Rodney K Tweten, Kojo Mensa-Wilmot. Intracellular glycosylphosphatidylinositols accumulate on endosomes: toxicity of alpha-toxin to Leishmania major.
Eukaryotic cell.
2005 Mar; 4(3):556-66. doi:
10.1128/ec.4.3.556-566.2005
. [PMID: 15755918] - L Durì, C F Morelli, S Crippa, G Speranza. 6-Phenylpyrones and 5-methylchromones from Kenya aloe.
Fitoterapia.
2004 Jul; 75(5):520-2. doi:
10.1016/j.fitote.2004.04.001
. [PMID: 15261393] - Naoki Iwata, Naili Wang, Xinsheng Yao, Susumu Kitanaka. Structures and histamine release inhibitory effects of prenylated orcinol derivatives from Rhododendron dauricum.
Journal of natural products.
2004 Jul; 67(7):1106-9. doi:
10.1021/np0303916
. [PMID: 15270561] - Stuart McLean, Sue Brandon, Noel W Davies, Rebecca Boyle, William J Foley, Ben Moore, Georgia J Pass. Glucuronuria in the koala.
Journal of chemical ecology.
2003 Jun; 29(6):1465-77. doi:
10.1023/a:1024273722192
. [PMID: 12918928] - Noa Lavid, Jihong Wang, Moshe Shalit, Inna Guterman, Einat Bar, Till Beuerle, Naama Menda, Sharoni Shafir, Dani Zamir, Zach Adam, Alexander Vainstein, David Weiss, Eran Pichersky, Efraim Lewinsohn. O-methyltransferases involved in the biosynthesis of volatile phenolic derivatives in rose petals.
Plant physiology.
2002 Aug; 129(4):1899-907. doi:
10.1104/pp.005330
. [PMID: 12177504] - W Weerachatyanukul, M Rattanachaiyanont, E Carmona, A Furimsky, A Mai, A Shoushtarian, S Sirichotiyakul, H Ballakier, A Leader, N Tanphaichitr. Sulfogalactosylglycerolipid is involved in human gamete interaction.
Molecular reproduction and development.
2001 Dec; 60(4):569-78. doi:
10.1002/mrd.1122
. [PMID: 11746968] - S V Gembeh, R L Brown, C Grimm, T E Cleveland. Identification of chemical components of corn kernel pericarp wax associated with resistance to Aspergillus flavus infection and aflatoxin production.
Journal of agricultural and food chemistry.
2001 Oct; 49(10):4635-41. doi:
10.1021/jf010450q
. [PMID: 11600000] - C Qiu, Y Ding. [Studies on chemical constituents of Umbilicaria esculenta (Miyoshi) minks].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2001 Sep; 26(9):608-10. doi:
. [PMID: 12776427]
- J S Lee, Y S Cho, E J Park, J Kim, W K Oh, H S Lee, J S Ahn. Phospholipase Cgamma1 inhibitory principles from the sarcotestas of Ginkgo biloba.
Journal of natural products.
1998 Jul; 61(7):867-71. doi:
10.1021/np970367q
. [PMID: 9677265] - K Monde, H Satoh, M Nakamura, M Tamura, M Takasugi. Organochlorine compounds from a terrestrial higher plant: structures and origin of chlorinated orcinol derivatives from diseased bulbs of Lilium maximowiczii.
Journal of natural products.
1998 Jul; 61(7):913-21. doi:
10.1021/np980062r
. [PMID: 9677274] - J Hładyszowski, L Zubik, A Kozubek. Quantum mechanical and experimental oxidation studies of pentadecylresorcinol, olivetol, orcinol and resorcinol.
Free radical research.
1998 Apr; 28(4):359-68. doi:
10.3109/10715769809070804
. [PMID: 9684980] - S K Mastronicolis, J B German, G M Smith. Diversity of the polar lipids of the food-borne pathogen Listeria monocytogenes.
Lipids.
1996 Jun; 31(6):635-40. doi:
10.1007/bf02523834
. [PMID: 8784744] - S Guarnaccia, J N Baraniuk, J Bellanti, M Duina. Calcitonin gene-related peptide nasal provocation in humans.
Annals of allergy.
1994 Jun; 72(6):515-9. doi:
. [PMID: 7515605]
- S A Kliatskiĭ, R I Lifshits. [Analysis of glycosaminoglycans in the blood of patients by the orcinol method].
Laboratornoe delo.
1989; ?(10):51-3. doi:
NULL
. [PMID: 2481075] - A C Sewell. Urinary oligosaccharide screening detects type VI glycogen storage disease.
Clinical chemistry.
1986 Feb; 32(2):392. doi:
NULL
. [PMID: 3455896] - A M Merritt, P Duelly. Phloroglucinol microassay for plasma xylose in dogs and horses.
American journal of veterinary research.
1983 Nov; 44(11):2184-5. doi:
NULL
. [PMID: 6650963] - A K Martin. The origin of urinary aromatic compounds excreted by ruminants. 3. The metabolism of phenolic compounds to simple phenols.
The British journal of nutrition.
1982 Nov; 48(3):497-507. doi:
10.1079/bjn19820135
. [PMID: 7171537] - M C Roberts, P Norman. A re-evaluation of the D (+) xylose absorption test in the horse.
Equine veterinary journal.
1979 Oct; 11(4):239-43. doi:
10.1111/j.2042-3306.1979.tb01355.x
. [PMID: 540633] - W Voelter, H Bauer. Separation of synthetic mixtures of sugars and of sugars in body fluids with a high-resolution carbohydrate analyzer.
Clinical chemistry.
1975 Dec; 21(13):1882-6. doi:
10.1093/clinchem/21.13.1882
. [PMID: 1192580] - E MCKAY. PENTOSE ESTIMATION BY THE ORCINOL METHOD, WITH PARTICULAR REFERENCE TO PLASMA PENTOSE.
Clinica chimica acta; international journal of clinical chemistry.
1964 Oct; 10(?):320-9. doi:
10.1016/0009-8981(64)90062-2
. [PMID: 14219576] - M SCHONENBERGER, H KELLNER, H SUDHOF, H HAUPT. [Method of hexose determination in serum proteins with orcinol].
Hoppe-Seyler's Zeitschrift fur physiologische Chemie.
1957; 309(4-6):145-57. doi:
NULL
. [PMID: 13513002] - P PORTMANN, E SCHONENBERGER, W SCHULER. [Relationship between the glycoprotein content of serum as determined by anthrone and orcinol, and the glycoprotein stainings received in paper electrophoresis].
Helvetica physiologica et pharmacologica acta.
1956; 14(2):C38-C40. doi:
NULL
. [PMID: 13345239] - R VAN DEN DRIESSCHE. [Modern interpretation of the clinical use of the orcinol reaction].
Bruxelles medical.
1954 Jan; 34(1):18-20. doi:
NULL
. [PMID: 13126670] - . .
.
. doi:
. [PMID: 21343428]
- . .
.
. doi:
. [PMID: 21801362]