2,3-Butanedione monoxime (BioDeep_00000173494)

   

human metabolite blood metabolite


代谢物信息卡片


Potassium 2,3-butanedione monoximate

化学式: C4H7NO2 (101.0477)
中文名称:
谱图信息: 最多检出来源 Homo sapiens(blood) 96.08%

分子结构信息

SMILES: C/C(=N\O)/C(=O)C
InChI: InChI=1S/C4H7NO2/c1-3(5-7)4(2)6/h7H,1-2H3



数据库引用编号

5 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 15 CDH5, EDN1, GLUL, MEFV, MYLK, MYO5A, NOS3, NPPB, PIK3C3, PTK2, RAC1, SPN, TTN, TUBB4B, VCL
Peripheral membrane protein 2 PTK2, VCL
Endoplasmic reticulum membrane 1 RAC1
Cytoplasmic vesicle, autophagosome 2 MEFV, PIK3C3
Nucleus 8 GLUL, MEFV, NOS3, PTK2, RAC1, SPN, TTN, TUBB4B
autophagosome 2 MEFV, PIK3C3
cytosol 11 GLUL, MEFV, MYLK, MYO5A, NOS3, PIK3C3, PTK2, RAC1, TTN, TUBB4B, VCL
dendrite 1 RAC1
phosphatidylinositol 3-kinase complex, class III 1 PIK3C3
trans-Golgi network 1 RAC1
centrosome 1 PTK2
nucleoplasm 6 ATP2B1, CD2, CDH5, MEFV, NOS3, SPN
Cell membrane 9 ATP2B1, CD2, CDH5, GLUL, ITGAM, PTK2, RAC1, SLC12A2, VCL
Lipid-anchor 2 GLUL, RAC1
Cytoplasmic side 3 PTK2, RAC1, VCL
Cleavage furrow 1 MYLK
lamellipodium 3 MEFV, MYLK, RAC1
ruffle membrane 1 RAC1
Multi-pass membrane protein 2 ATP2B1, SLC12A2
Synapse 3 ATP2B1, MYLK, RAC1
cell cortex 2 PTK2, RAC1
cell junction 1 CDH5
cell surface 5 CD2, CDH5, ICAM1, ITGAM, SPN
glutamatergic synapse 3 ATP2B1, PIK3C3, RAC1
Golgi apparatus 2 CD2, NOS3
Golgi membrane 1 NOS3
growth cone 1 MYO5A
neuronal cell body 1 SLC12A2
postsynapse 1 RAC1
presynaptic membrane 1 ATP2B1
sarcolemma 1 VCL
Cytoplasm, cytosol 1 GLUL
endosome 1 PIK3C3
plasma membrane 13 ATP2B1, CD2, CDH5, GLUL, ICAM1, ITGAM, MYLK, NOS3, PTK2, RAC1, SLC12A2, SPN, VCL
synaptic vesicle membrane 1 ATP2B1
Membrane 9 ATP2B1, CDH5, ICAM1, ITGAM, MYO5A, PIK3C3, RAC1, SLC12A2, SPN
apical plasma membrane 1 SLC12A2
basolateral plasma membrane 2 ATP2B1, SLC12A2
brush border 1 VCL
caveola 1 NOS3
extracellular exosome 11 ATP2B1, GLUL, ICAM1, ITGAM, MYO5A, RAC1, SLC12A2, SPN, TTN, TUBB4B, VCL
endoplasmic reticulum 1 GLUL
extracellular space 5 EDN1, ICAM1, ITGAM, NPPB, SPN
perinuclear region of cytoplasm 2 NOS3, PTK2
adherens junction 2 CDH5, VCL
bicellular tight junction 1 CDH5
mitochondrion 1 GLUL
protein-containing complex 3 CD2, NPPB, VCL
intracellular membrane-bounded organelle 2 ATP2B1, PTK2
Single-pass type I membrane protein 5 CD2, CDH5, ICAM1, ITGAM, SPN
Secreted 2 EDN1, RAC1
extracellular region 8 CD2, EDN1, NPPB, RAC1, SPN, TTN, TUBB4B, VCL
cytoplasmic side of plasma membrane 1 CD2
basal part of cell 1 EDN1
anchoring junction 1 PTK2
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 PTK2
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 ATP2B1
nuclear membrane 1 CDH5
external side of plasma membrane 5 CD2, CDH5, ICAM1, ITGAM, SPN
Extracellular vesicle 3 SLC12A2, TUBB4B, VCL
actin cytoskeleton 2 MYLK, MYO5A
dendritic spine 2 PTK2, RAC1
Z disc 1 TTN
cytoplasmic vesicle 2 MEFV, RAC1
microtubule cytoskeleton 1 TUBB4B
midbody 1 PIK3C3
Cytoplasm, P-body 1 NOS3
P-body 1 NOS3
cell-cell junction 3 CD2, CDH5, VCL
Cell membrane, sarcolemma 1 VCL
Cell projection, lamellipodium 3 MEFV, MYLK, RAC1
Cytoplasm, perinuclear region 1 PTK2
filopodium tip 1 MYO5A
Membrane raft 3 ICAM1, ITGAM, VCL
Cell junction, focal adhesion 2 PTK2, VCL
Cytoplasm, cytoskeleton 3 PTK2, TUBB4B, VCL
focal adhesion 4 ICAM1, PTK2, RAC1, VCL
microtubule 2 MEFV, TUBB4B
GABA-ergic synapse 1 PIK3C3
Cell junction, adherens junction 2 CDH5, VCL
zonula adherens 1 VCL
Peroxisome 1 PIK3C3
basement membrane 1 SPN
Nucleus, PML body 1 SPN
PML body 1 SPN
collagen-containing extracellular matrix 1 ICAM1
fascia adherens 1 VCL
lateral plasma membrane 2 ATP2B1, SLC12A2
axoneme 1 PIK3C3
Cell projection, ruffle 1 MEFV
Late endosome 1 PIK3C3
ruffle 2 MEFV, MYO5A
neuron projection 2 MYO5A, SLC12A2
ciliary basal body 1 PTK2
chromatin 1 SPN
microtubule associated complex 1 MEFV
cell projection 4 ATP2B1, PTK2, SLC12A2, VCL
phagocytic vesicle membrane 1 PIK3C3
cell periphery 1 SLC12A2
mitotic spindle 1 TUBB4B
cytoskeleton 5 NOS3, PTK2, RAC1, TUBB4B, VCL
Cell projection, podosome 1 VCL
podosome 1 VCL
Cytoplasm, cytoskeleton, cilium basal body 1 PTK2
cytoplasmic ribonucleoprotein granule 1 RAC1
Cytoplasm, cell cortex 1 PTK2
Basolateral cell membrane 2 ATP2B1, SLC12A2
intercellular bridge 1 TUBB4B
Cytoplasm, cytoskeleton, flagellum axoneme 1 TUBB4B
sperm flagellum 1 TUBB4B
fibrillar center 1 SPN
Recycling endosome membrane 1 RAC1
microvillus 1 SPN
axonemal microtubule 1 TUBB4B
I band 1 TTN
M band 1 TTN
phagophore assembly site 1 PIK3C3
phosphatidylinositol 3-kinase complex, class III, type I 1 PIK3C3
phosphatidylinositol 3-kinase complex, class III, type II 1 PIK3C3
Cell projection, microvillus 1 SPN
myosin complex 1 MYO5A
Cytoplasmic vesicle membrane 1 SLC12A2
Cell projection, dendrite 1 RAC1
specific granule membrane 1 ITGAM
tertiary granule membrane 1 ITGAM
Melanosome 2 MYO5A, RAC1
Cytoplasm, Stress granule 1 NOS3
cytoplasmic stress granule 1 NOS3
Presynaptic cell membrane 1 ATP2B1
cell body 2 GLUL, SLC12A2
stress fiber 2 MYLK, PTK2
basal plasma membrane 1 SLC12A2
Microsome 1 GLUL
plasma membrane raft 1 ITGAM
ficolin-1-rich granule lumen 1 VCL
secretory granule lumen 1 VCL
secretory granule membrane 1 RAC1
specific granule lumen 1 VCL
endocytic vesicle membrane 1 NOS3
transport vesicle 1 EDN1
azurophil granule lumen 1 TUBB4B
immunological synapse 2 ATP2B1, ICAM1
presynaptic endosome 1 PIK3C3
condensed nuclear chromosome 1 TTN
Cytoplasm, cytoskeleton, stress fiber 1 MYLK
uropod 1 SPN
[Isoform 2]: Nucleus 1 MEFV
costamere 1 VCL
ficolin-1-rich granule membrane 1 RAC1
[Isoform 1]: Cytoplasm, cytoskeleton 1 MEFV
canonical inflammasome complex 1 MEFV
Cell projection, uropodium 1 SPN
cell-substrate junction 1 VCL
catenin complex 1 CDH5
terminal web 1 VCL
integrin complex 1 ITGAM
cell-cell contact zone 1 VCL
postsynaptic endosome 1 PIK3C3
glial cell projection 1 GLUL
Autolysosome 1 PIK3C3
rough endoplasmic reticulum lumen 1 EDN1
Weibel-Palade body 1 EDN1
NADPH oxidase complex 1 RAC1
integrin alphaM-beta2 complex 1 ITGAM
photoreceptor ribbon synapse 1 ATP2B1
cell body membrane 1 SLC12A2
cell projection membrane 1 SLC12A2
insulin-responsive compartment 1 MYO5A
[CD43 cytoplasmic tail]: Nucleus 1 SPN
[NT-proBNP]: Secreted 1 NPPB
[proBNP(3-108)]: Secreted 1 NPPB
[Brain natriuretic peptide 32]: Secreted 1 NPPB
[BNP(3-32)]: Secreted 1 NPPB
inner dense plaque of desmosome 1 VCL
outer dense plaque of desmosome 1 VCL
podosome ring 1 VCL
striated muscle thin filament 1 TTN
organelle 1 TTN


文献列表

  • Roberto Alers-Velazquez, Sarah Jacques, Clare Muller, Jennifer Boldt, James Schoelz, Scott Leisner. Cauliflower mosaic virus P6 inclusion body formation: A dynamic and intricate process. Virology. 2021 01; 553(?):9-22. doi: 10.1016/j.virol.2020.10.003. [PMID: 33197754]
  • Noah James Langenfeld, Lauren Elizabeth Payne, Bruce Bugbee. Colorimetric determination of urea using diacetyl monoxime with strong acids. PloS one. 2021; 16(11):e0259760. doi: 10.1371/journal.pone.0259760. [PMID: 34748601]
  • Somaye Shahraki, Ali Heydari, Hojat Samareh Delarami, Alireza Oveisi Keikha, Zahra Azizi, Abolfazl Fathollahi Zonouz. Preparation, characterization and comparison of biological potency in two new Zn(II) and Pd(II) complexes of butanedione monoxime derivatives. Journal of biomolecular structure & dynamics. 2020 03; 38(4):997-1011. doi: 10.1080/07391102.2019.1591305. [PMID: 30938659]
  • E P Filipin, D T Pereira, L C Ouriques, Z L Bouzon, C Simioni. Participation of actin filaments, myosin and phosphatidylinositol 3-kinase in the formation and polarisation of tetraspore germ tube of Gelidium floridanum (Rhodophyta, Florideophyceae). Plant biology (Stuttgart, Germany). 2019 Mar; 21(2):352-360. doi: 10.1111/plb.12946. [PMID: 30472775]
  • Taher Alizadeh, Mohammad Reza Ganjali, Faride Rafiei. Trace level and highly selective determination of urea in various real samples based upon voltammetric analysis of diacetylmonoxime-urea reaction product on the carbon nanotube/carbon paste electrode. Analytica chimica acta. 2017 Jun; 974(?):54-62. doi: 10.1016/j.aca.2017.04.039. [PMID: 28535881]
  • Nozomi Yamaoka, Yasutaka Suetomo, Tohru Yoshihisa, Seiji Sonobe. Motion analysis and ultrastructural study of a colonial diatom, Bacillaria paxillifer. Microscopy (Oxford, England). 2016 06; 65(3):211-21. doi: 10.1093/jmicro/dfv375. [PMID: 26754563]
  • Sam-Geun Kong, Yoshiyuki Arai, Noriyuki Suetsugu, Toshio Yanagida, Masamitsu Wada. Rapid severing and motility of chloroplast-actin filaments are required for the chloroplast avoidance response in Arabidopsis. The Plant cell. 2013 Feb; 25(2):572-90. doi: 10.1105/tpc.113.109694. [PMID: 23404888]
  • Noboru Yamada, Noriyuki Suetsugu, Masamitsu Wada, Akeo Kadota. Phototropin-dependent biased relocalization of cp-actin filaments can be induced even when chloroplast movement is inhibited. Plant signaling & behavior. 2011 Nov; 6(11):1651-3. doi: 10.4161/psb.6.11.17767. [PMID: 22057335]
  • Zhaoqi Zhang, Haya Friedman, Shimon Meir, Eduard Belausov, Sonia Philosoph-Hadas. Actomyosin mediates gravisensing and early transduction events in reoriented cut snapdragon spikes. Journal of plant physiology. 2011 Jul; 168(11):1176-83. doi: 10.1016/j.jplph.2011.01.019. [PMID: 21388706]
  • L Taysse, F Dorandeu, S Daulon, A Foquin, N Perrier, G Lallement, P Breton. Cutaneous challenge with chemical warfare agents in the SKH-1 hairless mouse (II): effects of some currently used skin decontaminants (RSDL and Fuller's earth) against liquid sulphur mustard and VX exposure. Human & experimental toxicology. 2011 Jun; 30(6):491-8. doi: 10.1177/0960327110373616. [PMID: 20534641]
  • Kohsuke Hashimoto, Etsuo Yokota, Teruo Shimmen, Makoto Yoshida. The myosin ATPase inhibitor, 2,3-butanedione 2-monoxime, prevents protein secretion by the basidiomycete Coprinopsis cinerea. Biotechnology letters. 2011 Apr; 33(4):769-75. doi: 10.1007/s10529-010-0497-0. [PMID: 21165671]
  • Janine E Radford, Rosemary G White. Inhibitors of myosin, but not actin, alter transport through Tradescantia plasmodesmata. Protoplasma. 2011 Jan; 248(1):205-16. doi: 10.1007/s00709-010-0244-3. [PMID: 21113638]
  • Maozhong Zheng, Qinli Wang, Yan Teng, Xiaohua Wang, Feng Wang, Tong Chen, Jozef Samaj, Jinxing Lin, David C Logan. The speed of mitochondrial movement is regulated by the cytoskeleton and myosin in Picea wilsonii pollen tubes. Planta. 2010 Mar; 231(4):779-91. doi: 10.1007/s00425-009-1086-0. [PMID: 20033230]
  • Thomas P Flagg, Olivier Cazorla, Maria S Remedi, Todd E Haim, Michael A Tones, Anthony Bahinski, Randal E Numann, Attila Kovacs, Jean E Schaffer, Colin G Nichols, Jeanne M Nerbonne. Ca2+-independent alterations in diastolic sarcomere length and relaxation kinetics in a mouse model of lipotoxic diabetic cardiomyopathy. Circulation research. 2009 Jan; 104(1):95-103. doi: 10.1161/circresaha.108.186809. [PMID: 19023131]
  • Frank Sainsbury, David A Collings, Ken Mackun, John Gardiner, John D I Harper, Jan Marc. Developmental reorientation of transverse cortical microtubules to longitudinal directions: a role for actomyosin-based streaming and partial microtubule-membrane detachment. The Plant journal : for cell and molecular biology. 2008 Oct; 56(1):116-31. doi: 10.1111/j.1365-313x.2008.03574.x. [PMID: 18557839]
  • A Esseling-Ozdoba, D Houtman, A A M VAN Lammeren, E Eiser, A M C Emons. Hydrodynamic flow in the cytoplasm of plant cells. Journal of microscopy. 2008 Aug; 231(2):274-83. doi: 10.1111/j.1365-2818.2008.02033.x. [PMID: 18778425]
  • Keisuke Ina, Hirokazu Kitamura, Shuji Tatsukawa, Takashi Miyazaki, Hirokazu Abe, Yoshihisa Fujikura. Contraction of tubulointerstitial fibrosis tissue in diabetic nephropathy, as demonstrated in an in vitro fibrosis model. Virchows Archiv : an international journal of pathology. 2007 Nov; 451(5):911-21. doi: 10.1007/s00428-007-0511-7. [PMID: 17899181]
  • Carola L Holweg. Living markers for actin block myosin-dependent motility of plant organelles and auxin. Cell motility and the cytoskeleton. 2007 Feb; 64(2):69-81. doi: 10.1002/cm.20164. [PMID: 17009330]
  • H Paves, E Truve. Myosin inhibitors block accumulation movement of chloroplasts in Arabidopsis thaliana leaf cells. Protoplasma. 2007; 230(3-4):165-9. doi: 10.1007/s00709-006-0230-y. [PMID: 17458631]
  • Pablo Artigas, Subhi J Al'aref, E Ashley Hobart, Laín F Díaz, Masayuki Sakaguchi, Samuel Straw, Olaf S Andersen. 2,3-butanedione monoxime affects cystic fibrosis transmembrane conductance regulator channel function through phosphorylation-dependent and phosphorylation-independent mechanisms: the role of bilayer material properties. Molecular pharmacology. 2006 Dec; 70(6):2015-26. doi: 10.1124/mol.106.026070. [PMID: 16966478]
  • Anja Hoffmann, Andreas Nebenführ. Dynamic rearrangements of transvacuolar strands in BY-2 cells imply a role of myosin in remodeling the plant actin cytoskeleton. Protoplasma. 2004 Dec; 224(3-4):201-10. doi: 10.1007/s00709-004-0068-0. [PMID: 15614481]
  • Cheolwha Jung, Teresa M Chylinski, Aurea Pimenta, Daniela Ortiz, Thomas B Shea. Neurofilament transport is dependent on actin and myosin. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2004 Oct; 24(43):9486-96. doi: 10.1523/jneurosci.1665-04.2004. [PMID: 15509735]
  • Keisuke Funaki, Ayumi Nagata, Youka Akimoto, Kiyo Shimada, Kohji Ito, Keiichi Yamamoto. The motility of Chara corallina myosin was inhibited reversibly by 2,3-butanedione monoxime (BDM). Plant & cell physiology. 2004 Sep; 45(9):1342-5. doi: 10.1093/pcp/pch154. [PMID: 15509860]
  • Rebeca Manning-Cela, Claudia Marquez, Elizabeth Franco, Patricia Talamas-Rohana, Isaura Meza. BFA-sensitive and insensitive exocytic pathways in Entamoeba histolytica trophozoites: their relationship to pathogenesis. Cellular microbiology. 2003 Dec; 5(12):921-32. doi: 10.1046/j.1462-5822.2003.00332.x. [PMID: 14641177]
  • David A Collings, John D I Harper, Kevin C Vaughn. The association of peroxisomes with the developing cell plate in dividing onion root cells depends on actin microfilaments and myosin. Planta. 2003 Dec; 218(2):204-16. doi: 10.1007/s00425-003-1096-2. [PMID: 12937986]
  • Rihong Zhou, Charles Watson, Chuanhai Fu, Xuebiao Yao, John G Forte. Myosin II is present in gastric parietal cells and required for lamellipodial dynamics associated with cell activation. American journal of physiology. Cell physiology. 2003 Sep; 285(3):C662-73. doi: 10.1152/ajpcell.00085.2003. [PMID: 12724136]
  • Justin C Yarrow, Terry Lechler, Rong Li, Timothy J Mitchison. Rapid de-localization of actin leading edge components with BDM treatment. BMC cell biology. 2003 Jun; 4(?):5. doi: 10.1186/1471-2121-4-5. [PMID: 12783627]
  • Anke Oertel, Andreas Holzinger, Ursula Lütz-Meindl. Involvement of myosin in intracellular motility and cytomorphogenesis in Micrasterias. Cell biology international. 2003; 27(12):977-86. doi: 10.1016/j.cellbi.2003.07.004. [PMID: 14642529]
  • Patricia Neco, Anabel Gil, María Del Mar Francés, Salvador Viniegra, Luis M Gutiérrez. The role of myosin in vesicle transport during bovine chromaffin cell secretion. The Biochemical journal. 2002 Dec; 368(Pt 2):405-13. doi: 10.1042/bj20021090. [PMID: 12225290]
  • Gregory Jedd, Nam-Hai Chua. Visualization of peroxisomes in living plant cells reveals acto-myosin-dependent cytoplasmic streaming and peroxisome budding. Plant & cell physiology. 2002 Apr; 43(4):384-92. doi: 10.1093/pcp/pcf045. [PMID: 11978866]
  • Tasha M Molchan, Aline H Valster, Peter K Hepler. Actomyosin promotes cell plate alignment and late lateral expansion in Tradescantia stamen hair cells. Planta. 2002 Mar; 214(5):683-93. doi: 10.1007/s004250100672. [PMID: 11882936]
  • V N Zholkevich, M M Puzakov, O F Monakhova. The involvement of actin in the formation of root pressure. Doklady. Biochemistry and biophysics. 2001 Sep; 380(?):332-5. doi: 10.1023/a:1012392126118. [PMID: 11727558]
  • A K Srivastava, J K Malik. Therapeutic efficacy of oxime reactivators in fenitrothion toxicity in buffalo calves (Bubalus bubalis). Acta veterinaria Hungarica. 2001; 49(2):229-35. doi: 10.1556/004.49.2001.2.13. [PMID: 11402652]
  • A K Srivastava, J K Malik. Effect of diacetylmonoxime on blood enzymes in fenitrothion-dosed buffalo calves. Veterinary and human toxicology. 2000 Aug; 42(4):212-5. doi: . [PMID: 10928684]
  • R Sullivan, M Burnham, K Török, A Koffer. Calmodulin regulates the disassembly of cortical F-actin in mast cells but is not required for secretion. Cell calcium. 2000 Jul; 28(1):33-46. doi: 10.1054/ceca.2000.0127. [PMID: 10942702]
  • J Samaj, M Peters, D Volkmann, F Baluska. Effects of myosin ATPase inhibitor 2,3-butanedione 2-monoxime on distributions of myosins, F-actin, microtubules, and cortical endoplasmic reticulum in maize root apices. Plant & cell physiology. 2000 May; 41(5):571-82. doi: 10.1093/pcp/41.5.571. [PMID: 10929940]
  • V N Zholkevich, M T Makhmud, O F Monakhova. Participation of myosin in root pumping activity. Doklady biological sciences : proceedings of the Academy of Sciences of the USSR, Biological sciences sections. 2000 Mar; 371(?):226-9. doi: ". [PMID: 10833667]
  • Y C Wu, A J Ricci, R Fettiplace. Two components of transducer adaptation in auditory hair cells. Journal of neurophysiology. 1999 Nov; 82(5):2171-81. doi: 10.1152/jn.1999.82.5.2171. [PMID: 10561397]
  • Y Sato, A Kadota, M Wada. Mechanically induced avoidance response of chloroplasts in fern protonemal cells. Plant physiology. 1999 Sep; 121(1):37-44. doi: 10.1104/pp.121.1.37. [PMID: 10482658]
  • A Tripathy, L Xu, D A Pasek, G Meissner. Effects of 2,3-butanedione 2-monoxime on Ca2+ release channels (ryanodine receptors) of cardiac and skeletal muscle. The Journal of membrane biology. 1999 Jun; 169(3):189-98. doi: 10.1007/s002329900530. [PMID: 10354465]
  • L C Sanders, F Matsumura, G M Bokoch, P de Lanerolle. Inhibition of myosin light chain kinase by p21-activated kinase. Science (New York, N.Y.). 1999 Mar; 283(5410):2083-5. doi: 10.1126/science.283.5410.2083. [PMID: 10092231]
  • J C Pinder, R E Fowler, A R Dluzewski, L H Bannister, F M Lavin, G H Mitchell, R J Wilson, W B Gratzer. Actomyosin motor in the merozoite of the malaria parasite, Plasmodium falciparum: implications for red cell invasion. Journal of cell science. 1998 Jul; 111 ( Pt 13)(?):1831-9. doi: 10.1242/jcs.111.13.1831. [PMID: 9625746]
  • R J Pelham, Y L Wang. Cell locomotion and focal adhesions are regulated by the mechanical properties of the substrate. The Biological bulletin. 1998 Jun; 194(3):348-9; discussion 349. doi: 10.2307/1543109. [PMID: 11536880]
  • A M Castillo, R Lagunes, M Urban, E Frixione, I Meza. Myosin II-actin interaction in MDCK cells: role in cell shape changes in response to Ca2+ variations. Journal of muscle research and cell motility. 1998 Jun; 19(5):557-74. doi: 10.1023/a:1005316711538. [PMID: 9682142]
  • C Zhong, M Chrzanowska-Wodnicka, J Brown, A Shaub, A M Belkin, K Burridge. Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly. The Journal of cell biology. 1998 Apr; 141(2):539-51. doi: 10.1083/jcb.141.2.539. [PMID: 9548730]
  • N A Gloushankova, M F Krendel, N O Alieva, E M Bonder, H H Feder, J M Vasiliev, I M Gelfand. Dynamics of contacts between lamellae of fibroblasts: essential role of the actin cytoskeleton. Proceedings of the National Academy of Sciences of the United States of America. 1998 Apr; 95(8):4362-7. doi: 10.1073/pnas.95.8.4362. [PMID: 9539742]
  • G M Iarmol'chuk. [Possibility of stabilizing urea in preparation of control specimens]. Klinicheskaia laboratornaia diagnostika. 1998 Jan; ?(1):23-4. doi: NULL. [PMID: 9532895]
  • J M Dobrowolski, V B Carruthers, L D Sibley. Participation of myosin in gliding motility and host cell invasion by Toxoplasma gondii. Molecular microbiology. 1997 Oct; 26(1):163-73. doi: 10.1046/j.1365-2958.1997.5671913.x. [PMID: 9383198]
  • M A Norden, V K Rao, J H Southard. Improved preservation of rat hindlimbs with the University of Wisconsin solution and butanedione monoxime. Plastic and reconstructive surgery. 1997 Sep; 100(4):957-65. doi: 10.1097/00006534-199709001-00019. [PMID: 9290664]
  • L P Cramer, T J Mitchison. Investigation of the mechanism of retraction of the cell margin and rearward flow of nodules during mitotic cell rounding. Molecular biology of the cell. 1997 Jan; 8(1):109-19. doi: 10.1091/mbc.8.1.109. [PMID: 9017599]
  • L P Cramer, T J Mitchison. Myosin is involved in postmitotic cell spreading. The Journal of cell biology. 1995 Oct; 131(1):179-89. doi: 10.1083/jcb.131.1.179. [PMID: 7559774]
  • D M Maxwell, C N Lieske, K M Brecht. Oxime-induced reactivation of carboxylesterase inhibited by organophosphorus compounds. Chemical research in toxicology. 1994 May; 7(3):428-33. doi: 10.1021/tx00039a022. [PMID: 8075376]
  • T Funatsu, T Anazawa, S Ishiwata. Structural and functional reconstitution of thin filaments in skeletal muscle. Journal of muscle research and cell motility. 1994 Apr; 15(2):158-71. doi: 10.1007/bf00130426. [PMID: 8051289]
  • G J Castro, A Bhatnagar. Effect of extracellular ions and modulators of calcium transport on survival of tert-butyl hydroperoxide exposed cardiac myocytes. Cardiovascular research. 1993 Oct; 27(10):1873-81. doi: 10.1093/cvr/27.10.1873. [PMID: 8275538]
  • R M Dawson. The diacetylmonoxime assay of urea, its application to the assay of diacetylmonoxime and a comparison with other methods for the analysis of diacetylmonoxime. Journal of applied toxicology : JAT. 1993 Jul; 13(4):277-82. doi: 10.1002/jat.2550130410. [PMID: 8376728]
  • H M Barbour, C Welch. Development and evaluation of a kinetic diacetyl monoxime method for urine urea. Annals of clinical biochemistry. 1992 Jan; 29 ( Pt 1)(?):101-4. doi: 10.1177/000456329202900116. [PMID: 1536515]
  • R Raina, J K Malik. The therapeutic effects of 2,3-butanedione monoxime and atropine in severe dichlorvos intoxication in buffalo calves. Veterinary research communications. 1991; 15(4):319-25. doi: 10.1007/bf00430038. [PMID: 1949606]
  • J P McIntosh, J R Evans. Two methods for urinary urea compared. Clinical chemistry. 1988 Oct; 34(10):2166. doi: NULL. [PMID: 3168254]
  • S H Sterri, F Fonnum. Carboxylesterases in guinea-pig plasma and liver. Tissue specific reactivation by diacetylmonoxime after soman inhibition in vitro. Biochemical pharmacology. 1987 Nov; 36(22):3937-42. doi: 10.1016/0006-2952(87)90461-8. [PMID: 3689430]
  • W K Paik, S Kim. Determination of N-methylurea: comparison of two colorimetric methods using diacetyl monoxime or alpha-isonitropropiophenone. Analytical biochemistry. 1982 May; 122(1):194-8. doi: 10.1016/0003-2697(82)90270-6. [PMID: 7103082]
  • M Rahmatullah, T R Boyde. Improvements in the determination of urea using diacetyl monoxime; methods with and without deproteinisation. Clinica chimica acta; international journal of clinical chemistry. 1980 Oct; 107(1-2):3-9. doi: 10.1016/0009-8981(80)90407-6. [PMID: 7428175]
  • T MOMOSE, Y OHKURA, J TOMITA. DETERMINATION OF UREA IN BLOOD AND URINE WITH DIACETYL MONOXIME-GLUCURONOLACTONE REAGENT. Clinical chemistry. 1965 Feb; 11(?):113-21. doi: 10.1093/clinchem/11.2.113. [PMID: 14262211]
  • M KITAMURA, I IUCHI. An improved diacetylmonoxime method for the determination of urea in blood and urine. Clinica chimica acta; international journal of clinical chemistry. 1959 Sep; 4(?):701-6. doi: 10.1016/0009-8981(59)90013-0. [PMID: 14409493]