Morusin (BioDeep_00000270556)

Main id: BioDeep_00000007880

 

PANOMIX_OTCML-2023 natural product


代谢物信息卡片


2- (2,4-Dihydroxyphenyl) -5-hydroxy-8,8-dimethyl-3- (3-methyl-2-butenyl) -4H,8H-benzo [ 1,2-b:3,4-b ] dipyran-4-one

化学式: C25H24O6 (420.1573)
中文名称: 桑辛素
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: c12cc(c3c(c1C=CC(O2)(C)C)oc(c(c3=O)CC=C(C)C)c1c(cc(cc1)O)O)O
InChI: InChI=1S/C25H24O6/c1-13(2)5-7-17-22(29)21-19(28)12-20-16(9-10-25(3,4)31-20)24(21)30-23(17)15-8-6-14(26)11-18(15)27/h5-6,8-12,26-28H,7H2,1-4H3

描述信息

Morusin is a prenylated flavonoid isolated from Morus alba Linn. with various biological activities, such as antitumor, antioxidant, and anti-bacteria property. Morusin could inhibit NF-κB and STAT3 activity.
Morusin is a prenylated flavonoid isolated from Morus alba Linn. with various biological activities, such as antitumor, antioxidant, and anti-bacteria property. Morusin could inhibit NF-κB and STAT3 activity.

同义名列表

16 个代谢物同义名

4H,8H-Benzo(1,2-b:3,4-b)dipyran-4-one, 2-(2,4-dihydroxyphenyl)-5-hydroxy-8,8-dimethyl-3-(3-methyl-2-butenyl)-; 2-(2,4-dihydroxyphenyl)-5-hydroxy-8,8-dimethyl-3-(3-methylbut-2-enyl)-4-pyrano[6,5-h]chromenone; 2-(2,4-dihydroxyphenyl)-5-hydroxy-8,8-dimethyl-3-(3-methylbut-2-enyl)pyrano[6,5-h]chromen-4-one; MEGxp0_001039; ACon1_001205; AIDS-030379; NSC 649220; AIDS030379; 62596-29-6; NSC649220; Morusin; C10106; 2- (2,4-Dihydroxyphenyl) -5-hydroxy-8,8-dimethyl-3- (3-methyl-2-butenyl) -4H,8H-benzo [ 1,2-b:3,4-b ] dipyran-4-one; 2-(2,4-Dihydroxyphenyl)-5-hydroxy-8,8-dimethyl-3-(3-methyl-2-butenyl)-4H,8H-benzo[1,2-b:3,4-b]dipyran-4-one; Mulberrochromene; Morusin



数据库引用编号

12 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

80 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 16 ADIG, ANXA5, BCL2, BIRC5, CASP3, CCND1, CTNNB1, EGFR, MSMP, MTOR, MYC, PIK3CA, PPARG, PTGS2, SOX2, STAT3
Peripheral membrane protein 4 ANXA5, GORASP1, MTOR, PTGS2
Endosome membrane 1 EGFR
Endoplasmic reticulum membrane 4 BCL2, EGFR, MTOR, PTGS2
Nucleus 13 ADIG, BCL2, BIRC5, CASP3, CCND1, CTNNB1, EGFR, MTOR, MYC, PARP1, PPARG, SOX2, STAT3
cytosol 12 ANXA5, BCL2, BIRC5, CASP3, CCND1, CTNNB1, MTOR, PARP1, PIK3CA, PPARG, SOX2, STAT3
dendrite 1 MTOR
nuclear body 1 PARP1
phagocytic vesicle 1 MTOR
centrosome 2 CCND1, CTNNB1
nucleoplasm 10 BIRC5, CASP3, CCND1, CTNNB1, MTOR, MYC, PARP1, PPARG, SOX2, STAT3
RNA polymerase II transcription regulator complex 2 PPARG, STAT3
Cell membrane 2 CTNNB1, EGFR
Cytoplasmic side 2 GORASP1, MTOR
lamellipodium 2 CTNNB1, PIK3CA
ruffle membrane 1 EGFR
Early endosome membrane 1 EGFR
Golgi apparatus membrane 2 GORASP1, MTOR
Synapse 1 CTNNB1
cell cortex 1 CTNNB1
cell junction 2 CTNNB1, EGFR
cell surface 1 EGFR
glutamatergic synapse 3 CASP3, CTNNB1, EGFR
Golgi apparatus 1 GORASP1
Golgi membrane 4 EGFR, GORASP1, INS, MTOR
lysosomal membrane 2 GAA, MTOR
neuronal cell body 1 CASP3
presynaptic membrane 1 CTNNB1
sarcolemma 1 ANXA5
Cytoplasm, cytosol 1 PARP1
Lysosome 2 GAA, MTOR
endosome 1 EGFR
plasma membrane 5 CTNNB1, EGFR, GAA, PIK3CA, STAT3
Membrane 9 ADIG, ANXA5, BCL2, CTNNB1, EGFR, GAA, MTOR, MYC, PARP1
apical plasma membrane 1 EGFR
basolateral plasma membrane 2 CTNNB1, EGFR
caveola 1 PTGS2
extracellular exosome 3 ANXA5, CTNNB1, GAA
Lysosome membrane 2 GAA, MTOR
endoplasmic reticulum 2 BCL2, PTGS2
extracellular space 3 EGFR, INS, MSMP
lysosomal lumen 1 GAA
perinuclear region of cytoplasm 4 CTNNB1, EGFR, PIK3CA, PPARG
Schaffer collateral - CA1 synapse 1 CTNNB1
adherens junction 1 CTNNB1
apicolateral plasma membrane 1 CTNNB1
bicellular tight junction 2 CCND1, CTNNB1
intercalated disc 1 PIK3CA
mitochondrion 2 BCL2, PARP1
protein-containing complex 7 BCL2, BIRC5, CTNNB1, EGFR, MYC, PARP1, PTGS2
intracellular membrane-bounded organelle 2 GAA, PPARG
Microsome membrane 2 MTOR, PTGS2
postsynaptic density 1 CASP3
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 1 EGFR
Secreted 4 ADIG, GAA, INS, MSMP
extracellular region 4 ADIG, ANXA5, GAA, INS
Mitochondrion outer membrane 2 BCL2, MTOR
Single-pass membrane protein 2 ADIG, BCL2
mitochondrial outer membrane 2 BCL2, MTOR
transcription regulator complex 4 CTNNB1, PARP1, SOX2, STAT3
Nucleus membrane 2 BCL2, CCND1
Bcl-2 family protein complex 1 BCL2
nuclear membrane 3 BCL2, CCND1, EGFR
external side of plasma membrane 1 ANXA5
Z disc 1 CTNNB1
beta-catenin destruction complex 1 CTNNB1
microtubule cytoskeleton 1 BIRC5
nucleolus 2 MYC, PARP1
Wnt signalosome 1 CTNNB1
midbody 1 BIRC5
apical part of cell 1 CTNNB1
cell-cell junction 1 CTNNB1
postsynaptic membrane 1 CTNNB1
Membrane raft 1 EGFR
pore complex 1 BCL2
Cytoplasm, cytoskeleton 1 CTNNB1
Cytoplasm, cytoskeleton, spindle 1 BIRC5
focal adhesion 3 ANXA5, CTNNB1, EGFR
microtubule 1 BIRC5
spindle 1 BIRC5
cis-Golgi network 1 GORASP1
Cell junction, adherens junction 1 CTNNB1
flotillin complex 1 CTNNB1
intracellular vesicle 1 EGFR
Nucleus, PML body 1 MTOR
PML body 1 MTOR
collagen-containing extracellular matrix 1 ANXA5
fascia adherens 1 CTNNB1
lateral plasma membrane 1 CTNNB1
nuclear speck 1 SOX2
interphase microtubule organizing center 1 BIRC5
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
receptor complex 2 EGFR, PPARG
Zymogen granule membrane 1 ANXA5
neuron projection 1 PTGS2
chromatin 5 MYC, PARP1, PPARG, SOX2, STAT3
cell periphery 1 CTNNB1
Chromosome 2 BIRC5, PARP1
Cytoplasm, cytoskeleton, cilium basal body 1 CTNNB1
centriole 1 BIRC5
Nucleus, nucleolus 2 MYC, PARP1
spindle pole 1 CTNNB1
nuclear replication fork 1 PARP1
chromosome, telomeric region 1 PARP1
nuclear chromosome 1 BIRC5
postsynaptic density, intracellular component 1 CTNNB1
microvillus membrane 1 CTNNB1
site of double-strand break 1 PARP1
nuclear envelope 3 MTOR, MYC, PARP1
Endomembrane system 2 CTNNB1, MTOR
endosome lumen 1 INS
Lipid droplet 1 ADIG
Chromosome, centromere 1 BIRC5
Chromosome, centromere, kinetochore 1 BIRC5
Nucleus, nucleoplasm 1 MYC
tertiary granule membrane 1 GAA
Nucleus speckle 1 SOX2
euchromatin 1 CTNNB1
myelin sheath 1 BCL2
basal plasma membrane 1 EGFR
synaptic membrane 1 EGFR
secretory granule lumen 1 INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 2 INS, PTGS2
transcription repressor complex 1 CCND1
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
kinetochore 1 BIRC5
transport vesicle 1 INS
azurophil granule membrane 1 GAA
RNA polymerase II transcription repressor complex 1 MYC
beta-catenin-TCF complex 1 CTNNB1
Endoplasmic reticulum-Golgi intermediate compartment membrane 2 GORASP1, INS
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
chromosome, centromeric region 1 BIRC5
presynaptic active zone cytoplasmic component 1 CTNNB1
vesicle membrane 1 ANXA5
clathrin-coated endocytic vesicle membrane 1 EGFR
chromosome passenger complex 1 BIRC5
cytoplasmic microtubule 1 BIRC5
protein-DNA complex 2 CTNNB1, PARP1
ficolin-1-rich granule membrane 1 GAA
spindle microtubule 1 BIRC5
survivin complex 1 BIRC5
death-inducing signaling complex 1 CASP3
Rough endoplasmic reticulum 1 MYC
Cytoplasmic vesicle, phagosome 1 MTOR
catenin complex 1 CTNNB1
site of DNA damage 1 PARP1
cyclin-dependent protein kinase holoenzyme complex 1 CCND1
multivesicular body, internal vesicle lumen 1 EGFR
Shc-EGFR complex 1 EGFR
Myc-Max complex 1 MYC
endothelial microparticle 1 ANXA5
[Poly [ADP-ribose] polymerase 1, processed N-terminus]: Chromosome 1 PARP1
[Poly [ADP-ribose] polymerase 1, processed C-terminus]: Cytoplasm 1 PARP1
autolysosome lumen 1 GAA
BAD-BCL-2 complex 1 BCL2
cyclin D1-CDK4 complex 1 CCND1
beta-catenin-TCF7L2 complex 1 CTNNB1
cyclin D1-CDK6 complex 1 CCND1
beta-catenin-ICAT complex 1 CTNNB1
Scrib-APC-beta-catenin complex 1 CTNNB1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
nucleoplasmic reticulum 1 MYC


文献列表

  • Yan-Yan Zhu, Zhao-Jie Wang, Meng Zhu, Zhong-Shun Zhou, Bin-Yuan Hu, Mei-Zhen Wei, Yun-Li Zhao, Zhi Dai, Xiao-Dong Luo. A dual mechanism with H2S inhibition and membrane damage of morusin from Morus alba Linn. against MDR-MRSA. Bioorganic & medicinal chemistry. 2024 01; 97(?):117544. doi: 10.1016/j.bmc.2023.117544. [PMID: 38071943]
  • Hongbo Dong, Min Wu, Shengwei Xiang, Tao Song, Ying Li, Bin Long, Chuanling Feng, Zheng Shi. Total Syntheses and Antibacterial Evaluations of Neocyclomorusin and Related Flavones. Journal of natural products. 2022 09; 85(9):2217-2225. doi: 10.1021/acs.jnatprod.2c00658. [PMID: 36062892]
  • Bruna de Almeida Martins, Denise Sande, Maykelis Díaz Solares, Jacqueline Aparecida Takahashi. Antioxidant role of morusin and mulberrofuran B in ethanol extract of Morus alba roots. Natural product research. 2021 Dec; 35(24):5993-5996. doi: 10.1080/14786419.2020.1810036. [PMID: 32840147]
  • Ah-Reum Cho, Woon-Yi Park, Hyo-Jung Lee, Deok-Yong Sim, Eunji Im, Ji-Eon Park, Chi-Hoon Ahn, Bum-Sang Shim, Sung-Hoon Kim. Antitumor Effect of Morusin via G1 Arrest and Antiglycolysis by AMPK Activation in Hepatocellular Cancer. International journal of molecular sciences. 2021 Sep; 22(19):. doi: 10.3390/ijms221910619. [PMID: 34638959]
  • Anita Panek-Krzyśko, Monika Stompor-Gorący. The Pro-Health Benefits of Morusin Administration-An Update Review. Nutrients. 2021 Aug; 13(9):. doi: 10.3390/nu13093043. [PMID: 34578920]
  • Yuqi Zhou, Xiangyong Li, Min Ye. Morusin inhibits the growth of human colorectal cancer HCT116‑derived sphere‑forming cells via the inactivation of Akt pathway. International journal of molecular medicine. 2021 04; 47(4):1. doi: 10.3892/ijmm.2021.4884. [PMID: 33576447]
  • Fatma M Abdel Bar, Ghada M Abbas, Ahmed A Gohar, Mohamed-Farid I Lahloub. Antiproliferative activity of stilbene derivatives and other constituents from the stem bark of Morus nigra L. Natural product research. 2020 Dec; 34(24):3506-3513. doi: 10.1080/14786419.2019.1573236. [PMID: 30822142]
  • Dong Wook Choi, Sang Woo Cho, Seok-Geun Lee, Cheol Yong Choi. The Beneficial Effects of Morusin, an Isoprene Flavonoid Isolated from the Root Bark of Morus. International journal of molecular sciences. 2020 Sep; 21(18):. doi: 10.3390/ijms21186541. [PMID: 32906784]
  • Daorui Pang, Sentai Liao, Weifei Wang, Lixia Mu, Erna Li, Weizhi Shen, Fan Liu, Yuxiao Zou. Destruction of the cell membrane and inhibition of cell phosphatidic acid biosynthesis in Staphylococcus aureus: an explanation for the antibacterial mechanism of morusin. Food & function. 2019 Oct; 10(10):6438-6446. doi: 10.1039/c9fo01233h. [PMID: 31524213]
  • Sohyeon You, Gun-Hee Kim. Protective effect of Mori Cortex radicis extract against high glucose-induced oxidative stress in PC12 cells. Bioscience, biotechnology, and biochemistry. 2019 Oct; 83(10):1893-1900. doi: 10.1080/09168451.2019.1621154. [PMID: 31130105]
  • Jia Liu, Yanling Mu, Shan Xiong, Peilu Sun, Zhipeng Deng. A UPLC-MS/MS method for comparative pharmacokinetics study of morusin and morin in normal and diabetic rats. Biomedical chromatography : BMC. 2019 Jul; 33(7):e4516. doi: 10.1002/bmc.4516. [PMID: 30811609]
  • Kasmika Borah, Sanchita Sharma, Yumnam Silla. Structural bioinformatics-based identification of putative plant based lead compounds for Alzheimer Disease Therapy. Computational biology and chemistry. 2019 Feb; 78(?):359-366. doi: 10.1016/j.compbiolchem.2018.12.012. [PMID: 30677568]
  • Xu-Dong Hou, Guang-Bo Ge, Zi-Miao Weng, Zi-Ru Dai, Yue-Hong Leng, Le-Le Ding, Ling-Ling Jin, Yang Yu, Yun-Feng Cao, Jie Hou. Natural constituents from Cortex Mori Radicis as new pancreatic lipase inhibitors. Bioorganic chemistry. 2018 10; 80(?):577-584. doi: 10.1016/j.bioorg.2018.07.011. [PMID: 30032067]
  • Mi Rim Lee, Ji Eun Kim, Jun Young Choi, Jin Ju Park, Hye Ryeong Kim, Bo Ram Song, Ji Won Park, Mi Ju Kang, Young Whan Choi, Kyung Mi Kim, Dae Youn Hwang. Morusin Functions as a Lipogenesis Inhibitor as Well as a Lipolysis Stimulator in Differentiated 3T3-L1 and Primary Adipocytes. Molecules (Basel, Switzerland). 2018 Aug; 23(8):. doi: 10.3390/molecules23082004. [PMID: 30103469]
  • Chuqi Hou, Wenqin Liu, Zhi Liang, Weichao Han, Jinqing Li, Ling Ye, Menghua Liu, Zheng Cai, Jie Zhao, Yi Chen, Shuwen Liu, Lan Tang. UGT-mediated metabolism plays a dominant role in the pharmacokinetic behavior and the disposition of morusin in vivo and in vitro. Journal of pharmaceutical and biomedical analysis. 2018 May; 154(?):339-353. doi: 10.1016/j.jpba.2018.02.062. [PMID: 29571132]
  • Li Gao, Yuan-Dong Li, Bao-Kun Zhu, Zhi-Yu Li, Li-Bin Huang, Xian-Yi Li, Fei Wang, Fu-Cai Ren, Tou-Gen Liao. Two new prenylflavonoids from Morus alba. Journal of Asian natural products research. 2018 Feb; 20(2):117-121. doi: 10.1080/10286020.2017.1343303. [PMID: 28644689]
  • Yan-Qiong Guo, Gui-Hua Tang, Lan-Lan Lou, Wei Li, Bei Zhang, Bo Liu, Sheng Yin. Prenylated flavonoids as potent phosphodiesterase-4 inhibitors from Morus alba: Isolation, modification, and structure-activity relationship study. European journal of medicinal chemistry. 2018 Jan; 144(?):758-766. doi: 10.1016/j.ejmech.2017.12.057. [PMID: 29291443]
  • Guo-Ying Zuo, Cui-Xian Yang, Jun Han, Yu-Qing Li, Gen-Chun Wang. Synergism of prenylflavonoids from Morus alba root bark against clinical MRSA isolates. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2018 Jan; 39(?):93-99. doi: 10.1016/j.phymed.2017.12.023. [PMID: 29433688]
  • Ming Li, Xuewei Wu, Xiaoning Wang, Tao Shen, Dongmei Ren. Two novel compounds from the root bark of Morus alba L. Natural product research. 2018 Jan; 32(1):36-42. doi: 10.1080/14786419.2017.1327862. [PMID: 28521570]
  • Tsui-Hwa Tseng, Wea-Lung Lin, Che-Kai Chang, Ko-Chao Lee, Shui-Yi Tung, Hsing-Chun Kuo. Protective Effects of Morus Root Extract (MRE) Against Lipopolysaccharide-Activated RAW264.7 Cells and CCl4-Induced Mouse Hepatic Damage. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 2018; 51(3):1376-1388. doi: 10.1159/000495555. [PMID: 30481781]
  • Zhipeng Deng, Xiaohui Sun, Shenbao Yang, Lei Zhang, Peilu Sun, Xuepeng Teng, Hao Zhong. Quantification of morusin using LC-MS in rat plasma: Application to a pharmacokinetic study. Biomedical chromatography : BMC. 2017 Dec; 31(12):. doi: 10.1002/bmc.4021. [PMID: 28558153]
  • Bing Lin, Jun-Fei Huang, Xiong-Wei Liu, Xi-Tao Ma, Xiong-Li Liu, Yi Lu, Ying Zhou, Feng-Min Guo, Ting-Ting Feng. Rapid, microwave-accelerated synthesis and anti-osteoporosis activities evaluation of Morusin scaffolds and Morusignin L scaffolds. Bioorganic & medicinal chemistry letters. 2017 06; 27(11):2389-2396. doi: 10.1016/j.bmcl.2017.04.018. [PMID: 28427808]
  • Yu-Ren Liao, Ping-Chung Kuo, Wei-Jern Tsai, Guan-Jhong Huang, Kuo-Hsiung Lee, Tian-Shung Wu. Bioactive chemical constituents from the root bark of Morus australis. Bioorganic & medicinal chemistry letters. 2017 01; 27(2):309-313. doi: 10.1016/j.bmcl.2016.11.046. [PMID: 27908762]
  • Qian Sun, Di Wang, Fei-Fei Li, Guo-Dong Yao, Xue Li, Ling-Zhi Li, Xiao-Xiao Huang, Shao-Jiang Song. Cytotoxic prenylated flavones from the stem and root bark of Daphne giraldii. Bioorganic & medicinal chemistry letters. 2016 08; 26(16):3968-72. doi: 10.1016/j.bmcl.2016.07.002. [PMID: 27400887]
  • Xianbao Shi, Shuman Yang, Gang Zhang, Yonggui Song, Dan Su, Yali Liu, Feng Guo, Lina Shan, Jiqun Cai. The different metabolism of morusin in various species and its potent inhibition against UDP-glucuronosyltransferase (UGT) and cytochrome p450 (CYP450) enzymes. Xenobiotica; the fate of foreign compounds in biological systems. 2016; 46(5):467-76. doi: 10.3109/00498254.2015.1086839. [PMID: 26372370]
  • Pan Zhen, Gang Ni, Xiao-guang Chen, Ruo-yun Chen, Han-ze Yang, De-quan Yu. [Chemical constituents from Morus notabilis and their cytotoxic effect]. Yao xue xue bao = Acta pharmaceutica Sinica. 2015 May; 50(5):579-82. doi: . [PMID: 26234140]
  • Wea-Lung Lin, Deng-Yu Lai, Yean-Jang Lee, Nai-Fang Chen, Tsui-Hwa Tseng. Antitumor progression potential of morusin suppressing STAT3 and NFκB in human hepatoma SK-Hep1 cells. Toxicology letters. 2015 Jan; 232(2):490-8. doi: 10.1016/j.toxlet.2014.11.031. [PMID: 25476160]
  • Liang-Ze Wan, Bin Ma, Yu-Qing Zhang. Preparation of morusin from Ramulus mori and its effects on mice with transplanted H22 hepatocarcinoma. BioFactors (Oxford, England). 2014 Nov; 40(6):636-45. doi: 10.1002/biof.1191. [PMID: 25422054]
  • Ghada M Abbas, Fatma M Abdel Bar, Hany N Baraka, Ahmed A Gohar, Mohammed-Farid Lahloub. A new antioxidant stilbene and other constituents from the stem bark of Morus nigra L. Natural product research. 2014; 28(13):952-9. doi: 10.1080/14786419.2014.900770. [PMID: 24673367]
  • Hak Ju Lee, Da Hyun Lyu, Uk Koo, Kung-Woo Nam, Seong Su Hong, Kem Ok Kim, Kyeong Ho Kim, Dongho Lee, Woongchon Mar. Protection of prenylated flavonoids from Mori Cortex Radicis (Moraceae) against nitric oxide-induced cell death in neuroblastoma SH-SY5Y cells. Archives of pharmacal research. 2012 Jan; 35(1):163-70. doi: 10.1007/s12272-012-0118-7. [PMID: 22297755]
  • Zhi-Gang Yang, Keiichi Matsuzaki, Satoshi Takamatsu, Susumu Kitanaka. Inhibitory effects of constituents from Morus alba var. multicaulis on differentiation of 3T3-L1 cells and nitric oxide production in RAW264.7 cells. Molecules (Basel, Switzerland). 2011 Jul; 16(7):6010-22. doi: 10.3390/molecules16076010. [PMID: 21772233]
  • Jung Keun Cho, Young Bae Ryu, Marcus J Curtis-Long, Ji Young Kim, Doman Kim, Sun Lee, Woo Song Lee, Ki Hun Park. Inhibition and structural reliability of prenylated flavones from the stem bark of Morus lhou on β-secretase (BACE-1). Bioorganic & medicinal chemistry letters. 2011 May; 21(10):2945-8. doi: 10.1016/j.bmcl.2011.03.060. [PMID: 21511472]
  • Ji Young Kim, Woo Song Lee, Young Soo Kim, Marcus J Curtis-Long, Byong Won Lee, Young Bae Ryu, Ki Hun Park. Isolation of cholinesterase-inhibiting flavonoids from Morus lhou. Journal of agricultural and food chemistry. 2011 May; 59(9):4589-96. doi: 10.1021/jf200423g. [PMID: 21434689]
  • Jan Hošek, Milan Bartos, Stanislav Chudík, Stefano Dall'Acqua, Gabbriella Innocenti, Murat Kartal, Ladislav Kokoška, Peter Kollár, Zsófia Kutil, Přemysl Landa, Radek Marek, Veronika Závalová, Milan Žemlička, Karel Šmejkal. Natural compound cudraflavone B shows promising anti-inflammatory properties in vitro. Journal of natural products. 2011 Apr; 74(4):614-9. doi: 10.1021/np100638h. [PMID: 21319773]
  • Elizabeth A Mazzio, Fran Close, Karam F A Soliman. The biochemical and cellular basis for nutraceutical strategies to attenuate neurodegeneration in Parkinson's disease. International journal of molecular sciences. 2011 Jan; 12(1):506-69. doi: 10.3390/ijms12010506. [PMID: 21340000]
  • Shireen Shaharina Shamaun, Mawardi Rahmani, Najihah Mohd Hashim, Hazar Bebe Mohd Ismail, Mohd Aspollah Sukari, Gwendoline Ee Cheng Lian, Rusea Go. Prenylated flavones from Artocarpus altilis. Journal of natural medicines. 2010 Oct; 64(4):478-81. doi: 10.1007/s11418-010-0427-4. [PMID: 20526745]
  • Jian-Ping Ma, Xin Qiao, Shu Pan, Hong Shen, Guo-Fu Zhu, Ai-Jun Hou. New isoprenylated flavonoids and cytotoxic constituents from Artocarpus tonkinensis. Journal of Asian natural products research. 2010 Jul; 12(7):586-92. doi: 10.1080/10286020.2010.485932. [PMID: 20628938]
  • Chang'an Geng, Shuying Yao, Duoqing Xue, Aixue Zuo, Xuemei Zhang, Zhiyong Jiang, Yunbao Ma, Jijun Chen. New isoprenylated flavonoid from Morus alba. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2010 Jun; 35(12):1560-5. doi: . [PMID: 20815207]
  • Y B Ryu, T J Ha, M J Curtis-Long, H W Ryu, S W Gal, K H Park. Inhibitory effects on mushroom tyrosinase by flavones from the stem barks of Morus lhou (S.) Koidz. Journal of enzyme inhibition and medicinal chemistry. 2008 Dec; 23(6):922-30. doi: 10.1080/14756360701810207. [PMID: 18608767]
  • Yan-Lan Xu, Xu-E Li, Yu-Xiao Zou, Ji-Jun Chen. [Studies on chemical constituents from twigs of Morus atropurpurea]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2008 Nov; 33(21):2499-502. doi: . [PMID: 19149258]
  • Ferlinahayati, Yana M Syah, Lia D Juliawaty, Sjamsul A Achmad, Euis H Hakim, Hiromitsu Takayama, Ikram M Said, Jalifah Latip. Phenolic constituents from the wood of Morus australis with cytotoxic activity. Zeitschrift fur Naturforschung. C, Journal of biosciences. 2008 Jan; 63(1-2):35-9. doi: 10.1515/znc-2008-1-207. [PMID: 18386485]
  • Lei Wang, Hong-Qing Wang, Ruo-Yun Chen. [Studies on chemical constituents from bark of Morus nigra]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2007 Dec; 32(23):2497-9. doi: . [PMID: 18330242]
  • Yu-ying Zong, Siu-po Ip, Ting-xia Dong, Chun-tao Che. [Determination of morusin in cortex mori]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2007 Jun; 32(11):1038-40. doi: ". [PMID: 17672337]
  • Abdel Nasser B Singab, Hesham A El-Beshbishy, Makiko Yonekawa, Taro Nomura, Toshio Fukai. Hypoglycemic effect of Egyptian Morus alba root bark extract: effect on diabetes and lipid peroxidation of streptozotocin-induced diabetic rats. Journal of ethnopharmacology. 2005 Sep; 100(3):333-8. doi: 10.1016/j.jep.2005.03.013. [PMID: 15885940]
  • Toshio Fukai, Kazue Satoh, Taro Nomura, Hiroshi Sakagami. Antinephritis and radical scavenging activity of prenylflavonoids. Fitoterapia. 2003 Dec; 74(7-8):720-4. doi: 10.1016/j.fitote.2003.07.004. [PMID: 14630182]
  • Mary Beth Leigh, John S Fletcher, Xiong Fu, Frances J Schmitz. Root turnover: an important source of microbial substrates in rhizosphere remediation of recalcitrant contaminants. Environmental science & technology. 2002 Apr; 36(7):1579-83. doi: 10.1021/es015702i. [PMID: 11999069]
  • M M de Souza, M Bittar, V Cechinel-Filho, R A Yunes, I Messana, F Delle Monache, F Ferrari. Antinociceptive properties of morusin, a prenylflavonoid isolated from Morus nigra root bark. Zeitschrift fur Naturforschung. C, Journal of biosciences. 2000 Mar; 55(3-4):256-60. doi: 10.1515/znc-2000-3-418. [PMID: 10817216]
  • H H Ko, J J Wang, H C Lin, J P Wang, C N Lin. Chemistry and biological activities of constituents from Morus australis. Biochimica et biophysica acta. 1999 Aug; 1428(2-3):293-9. doi: 10.1016/s0304-4165(99)00084-7. [PMID: 10434047]
  • H H Ko, S M Yu, F N Ko, C M Teng, C N Lin. Bioactive constituents of Morus australis and Broussonetia papyrifera. Journal of natural products. 1997 Oct; 60(10):1008-11. doi: 10.1021/np970186o. [PMID: 9358644]