3,4-Dihydroxyphenylacetaldehyde (BioDeep_00001868755)

Main id: BioDeep_00000005383

 


代谢物信息卡片


3,4-Dihydroxyphenylacetaldehyde

化学式: C8H8O3 (152.0473)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C1=CC(=C(C=C1CC=O)O)O
InChI: InChI=1S/C8H8O3/c9-4-3-6-1-2-7(10)8(11)5-6/h1-2,4-5,10-11H,3H2

描述信息

A phenylacetaldehyde in which the 3 and 4 positions of the phenyl group are substituted by hydroxy groups.
COVID info from COVID-19 Disease Map
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS

同义名列表

1 个代谢物同义名

3,4-Dihydroxyphenylacetaldehyde



数据库引用编号

9 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

2 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 15 ADH5, AKR1B1, ALDH1A1, ALDH1A2, AOC3, CASP3, CAT, DDC, GAPDH, HPGDS, HTT, PTGS2, SNCA, TH, TYR
Peripheral membrane protein 1 PTGS2
Endosome membrane 1 HTT
Endoplasmic reticulum membrane 1 PTGS2
Mitochondrion membrane 1 MAOA
Nucleus 5 CASP3, GAPDH, HTT, SNCA, TH
autophagosome 1 HTT
cytosol 15 ADH5, AKR1A1, AKR1B1, ALDH1A1, ALDH1A2, CASP3, CAT, DDC, GAPDH, HPGDS, HTT, MAOA, NGF, SNCA, TH
dendrite 4 HTT, NGF, SLC18A2, TH
centrosome 1 SLC18A2
nucleoplasm 4 AKR1B1, CASP3, HPGDS, HTT
Cell membrane 2 AOC3, HTT
Cytoplasmic side 1 MAOA
Cell projection, axon 4 ALDH1A1, SLC18A2, SNCA, TH
Multi-pass membrane protein 2 HTT, SLC18A2
Synapse 4 AKR1A1, ALDH1A1, HTT, SNCA
cell cortex 1 SNCA
cell surface 1 AOC3
glutamatergic synapse 1 CASP3
Golgi apparatus 2 AOC3, HTT
growth cone 1 SNCA
neuronal cell body 2 CASP3, SNCA
postsynapse 1 SNCA
presynaptic membrane 1 HTT
smooth endoplasmic reticulum 1 TH
synaptic vesicle 3 NGF, SLC18A2, TH
Cytoplasm, cytosol 3 AKR1A1, ALDH1A1, GAPDH
Lysosome 2 SNCA, TYR
plasma membrane 5 AOC3, GAPDH, HTT, SLC18A2, SNCA
synaptic vesicle membrane 2 SLC18A2, SNCA
terminal bouton 2 SLC18A2, TH
Membrane 6 AOC3, CAT, GAPDH, MAOA, SLC18A2, SNCA
apical plasma membrane 1 AKR1A1
axon 6 ALDH1A1, HTT, NGF, SLC18A2, SNCA, TH
caveola 1 PTGS2
extracellular exosome 8 ADH5, AKR1A1, AKR1B1, ALDH1A1, ALDH2, CAT, DDC, GAPDH
endoplasmic reticulum 3 AOC3, HTT, PTGS2
extracellular space 4 AKR1A1, AKR1B1, NGF, SNCA
perinuclear region of cytoplasm 6 ALDH1A2, GAPDH, HTT, SNCA, TH, TYR
mitochondrion 7 ADH5, AKR1B1, ALDH2, CAT, MAOA, SNCA, TH
protein-containing complex 4 CAT, HTT, PTGS2, SNCA
intracellular membrane-bounded organelle 5 CAT, GAPDH, HPGDS, SLC18A2, TYR
Microsome membrane 1 PTGS2
postsynaptic density 1 CASP3
Single-pass type I membrane protein 1 TYR
Secreted 2 NGF, SNCA
extracellular region 3 CAT, NGF, SNCA
cytoplasmic side of plasma membrane 1 TH
Mitochondrion outer membrane 1 MAOA
Single-pass membrane protein 1 MAOA
mitochondrial outer membrane 1 MAOA
Mitochondrion matrix 1 ALDH2
mitochondrial matrix 2 ALDH2, CAT
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 SLC18A2
nuclear membrane 1 GAPDH
actin cytoskeleton 1 SNCA
perikaryon 1 TH
cytoplasmic vesicle 1 TH
microtubule cytoskeleton 1 GAPDH
Melanosome membrane 2 TH, TYR
Early endosome 2 AOC3, HTT
Golgi-associated vesicle 1 TYR
Single-pass type II membrane protein 1 AOC3
vesicle 1 GAPDH
postsynaptic membrane 1 HTT
Apical cell membrane 1 AKR1A1
Cytoplasm, perinuclear region 2 GAPDH, TH
Membrane raft 1 HTT
Cell junction, focal adhesion 1 HTT
Cytoplasm, cytoskeleton 1 GAPDH
focal adhesion 2 CAT, HTT
Peroxisome 1 CAT
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Late endosome 1 HTT
Cell projection, neuron projection 1 HTT
neuron projection 3 HTT, PTGS2, TH
supramolecular fiber 1 SNCA
cytoskeleton 1 GAPDH
centriole 1 HTT
Endomembrane system 1 HTT
endosome lumen 1 NGF
microvillus 1 AOC3
Lipid droplet 1 GAPDH
Cytoplasmic vesicle membrane 1 HTT
Cell projection, dendrite 1 SLC18A2
Melanosome 1 TYR
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 1 CAT
secretory granule membrane 1 SLC18A2
Golgi lumen 1 NGF
endoplasmic reticulum lumen 1 PTGS2
axon terminus 1 SNCA
Single-pass type IV membrane protein 1 MAOA
ribonucleoprotein complex 1 GAPDH
death-inducing signaling complex 1 CASP3
dopaminergic synapse 1 SLC18A2
Cytoplasmic vesicle, secretory vesicle membrane 1 SLC18A2
postsynaptic cytosol 1 HTT
GAIT complex 1 GAPDH
presynaptic cytosol 1 HTT
catalase complex 1 CAT
inclusion body 2 HTT, SNCA
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle 1 TH
clathrin-sculpted monoamine transport vesicle membrane 1 SLC18A2
serotonergic synapse 1 HTT
[Huntingtin]: Cytoplasm 1 HTT
[Huntingtin, myristoylated N-terminal fragment]: Cytoplasmic vesicle, autophagosome 1 HTT


文献列表

  • David S Goldstein. The catecholaldehyde hypothesis: where MAO fits in. Journal of neural transmission (Vienna, Austria : 1996). 2020 02; 127(2):169-177. doi: 10.1007/s00702-019-02106-9. [PMID: 31807952]
  • Vanderlei de Araújo Lima, Lucas Alex do Nascimento, David Eliezer, Cristian Follmer. Role of Parkinson's Disease-Linked Mutations and N-Terminal Acetylation on the Oligomerization of α-Synuclein Induced by 3,4-Dihydroxyphenylacetaldehyde. ACS chemical neuroscience. 2019 01; 10(1):690-703. doi: 10.1021/acschemneuro.8b00498. [PMID: 30352158]
  • Margaret-Ann M Nelson, Zachariah J Builta, T Blake Monroe, Jonathan A Doorn, Ethan J Anderson. Biochemical characterization of the catecholaldehyde reactivity of L-carnosine and its therapeutic potential in human myocardium. Amino acids. 2019 Jan; 51(1):97-102. doi: 10.1007/s00726-018-2647-y. [PMID: 30191330]
  • Jon W Werner-Allen, Rodney L Levine, Ad Bax. Superoxide is the critical driver of DOPAL autoxidation, lysyl adduct formation, and crosslinking of α-synuclein. Biochemical and biophysical research communications. 2017 May; 487(2):281-286. doi: 10.1016/j.bbrc.2017.04.050. [PMID: 28412346]
  • N Plotegher, G Berti, E Ferrari, I Tessari, M Zanetti, L Lunelli, E Greggio, M Bisaglia, M Veronesi, S Girotto, M Dalla Serra, C Perego, L Casella, L Bubacco. DOPAL derived alpha-synuclein oligomers impair synaptic vesicles physiological function. Scientific reports. 2017 01; 7(?):40699. doi: 10.1038/srep40699. [PMID: 28084443]
  • David G Anderson, Virginia R Florang, Josephine H Schamp, Garry R Buettner, Jonathan A Doorn. Antioxidant-Mediated Modulation of Protein Reactivity for 3,4-Dihydroxyphenylacetaldehyde, a Toxic Dopamine Metabolite. Chemical research in toxicology. 2016 07; 29(7):1098-107. doi: 10.1021/acs.chemrestox.5b00528. [PMID: 27268734]
  • Jon W Werner-Allen, Jenna F DuMond, Rodney L Levine, Ad Bax. Toxic Dopamine Metabolite DOPAL Forms an Unexpected Dicatechol Pyrrole Adduct with Lysines of α-Synuclein. Angewandte Chemie (International ed. in English). 2016 06; 55(26):7374-8. doi: 10.1002/anie.201600277. [PMID: 27158766]
  • Nicoletta Plotegher, Luigi Bubacco. Lysines, Achilles' heel in alpha-synuclein conversion to a deadly neuronal endotoxin. Ageing research reviews. 2016 Mar; 26(?):62-71. doi: 10.1016/j.arr.2015.12.002. [PMID: 26690800]
  • Cristian Follmer, Eduardo Coelho-Cerqueira, Danilo Y Yatabe-Franco, Gabriel D T Araujo, Anderson S Pinheiro, Gilberto B Domont, David Eliezer. Oligomerization and Membrane-binding Properties of Covalent Adducts Formed by the Interaction of α-Synuclein with the Toxic Dopamine Metabolite 3,4-Dihydroxyphenylacetaldehyde (DOPAL). The Journal of biological chemistry. 2015 Nov; 290(46):27660-79. doi: 10.1074/jbc.m115.686584. [PMID: 26381411]
  • David S Goldstein, Irwin J Kopin, Yehonatan Sharabi. Catecholamine autotoxicity. Implications for pharmacology and therapeutics of Parkinson disease and related disorders. Pharmacology & therapeutics. 2014 Dec; 144(3):268-82. doi: 10.1016/j.pharmthera.2014.06.006. [PMID: 24945828]
  • John E Casida, Breanna Ford, Yunden Jinsmaa, Patti Sullivan, Adele Cooney, David S Goldstein. Benomyl, aldehyde dehydrogenase, DOPAL, and the catecholaldehyde hypothesis for the pathogenesis of Parkinson's disease. Chemical research in toxicology. 2014 Aug; 27(8):1359-61. doi: 10.1021/tx5002223. [PMID: 25045800]
  • Marija Bošković, Tomaž Vovk, Blanka Kores Plesničar, Iztok Grabnar. Oxidative stress in schizophrenia. Current neuropharmacology. 2011 Jun; 9(2):301-12. doi: 10.2174/157015911795596595. [PMID: 22131939]
  • Elizabeth A Mazzio, Fran Close, Karam F A Soliman. The biochemical and cellular basis for nutraceutical strategies to attenuate neurodegeneration in Parkinson's disease. International journal of molecular sciences. 2011 Jan; 12(1):506-69. doi: 10.3390/ijms12010506. [PMID: 21340000]
  • Kristen A Horner, Yamiece E Gilbert, Susan D Cline. Widespread increases in malondialdehyde immunoreactivity in dopamine-rich and dopamine-poor regions of rat brain following multiple, high doses of methamphetamine. Frontiers in systems neuroscience. 2011; 5(?):27. doi: 10.3389/fnsys.2011.00027. [PMID: 21602916]
  • Courtney Holmes, Noel Whittaker, Jorge Heredia-Moya, David S Goldstein. Contamination of the norepinephrine prodrug droxidopa by dihydroxyphenylacetaldehyde. Clinical chemistry. 2010 May; 56(5):832-8. doi: 10.1373/clinchem.2009.139709. [PMID: 20207766]
  • Mariarita Bertoldi, Carla Borri Voltattorni. Multiple roles of the active site lysine of Dopa decarboxylase. Archives of biochemistry and biophysics. 2009 Aug; 488(2):130-9. doi: 10.1016/j.abb.2009.06.019. [PMID: 19580779]
  • Jennifer N Rees, Virginia R Florang, Laurie L Eckert, Jonathan A Doorn. Protein reactivity of 3,4-dihydroxyphenylacetaldehyde, a toxic dopamine metabolite, is dependent on both the aldehyde and the catechol. Chemical research in toxicology. 2009 Jul; 22(7):1256-63. doi: 10.1021/tx9000557. [PMID: 19537779]
  • Yunden Jinsmaa, Virginia R Florang, Jennifer N Rees, David G Anderson, Stefan Strack, Jonathan A Doorn. Products of oxidative stress inhibit aldehyde oxidation and reduction pathways in dopamine catabolism yielding elevated levels of a reactive intermediate. Chemical research in toxicology. 2009 May; 22(5):835-41. doi: 10.1021/tx800405v. [PMID: 19388687]
  • Jennifer N Rees, Virginia R Florang, David G Anderson, Jonathan A Doorn. Lipid peroxidation products inhibit dopamine catabolism yielding aberrant levels of a reactive intermediate. Chemical research in toxicology. 2007 Oct; 20(10):1536-42. doi: 10.1021/tx700248y. [PMID: 17887726]
  • Yeo Jin Park, Hyoung Ja Kim, Sook Ja Lee, Ho-Young Choi, Changbae Jin, Yong Sup Lee. A new chromone, 11-hydroxy-sec-O-glucosylhamaudol from Ostericum koreanum. Chemical & pharmaceutical bulletin. 2007 Jul; 55(7):1065-6. doi: 10.1248/cpb.55.1065. [PMID: 17603202]
  • Hiromichi Minami, Emilyn Dubouzet, Kinuko Iwasa, Fumihiko Sato. Functional analysis of norcoclaurine synthase in Coptis japonica. The Journal of biological chemistry. 2007 Mar; 282(9):6274-82. doi: 10.1074/jbc.m608933200. [PMID: 17204481]
  • V R Florang, J N Rees, N K Brogden, D G Anderson, T D Hurley, J A Doorn. Inhibition of the oxidative metabolism of 3,4-dihydroxyphenylacetaldehyde, a reactive intermediate of dopamine metabolism, by 4-hydroxy-2-nonenal. Neurotoxicology. 2007 Jan; 28(1):76-82. doi: 10.1016/j.neuro.2006.07.018. [PMID: 16956664]
  • Jayan Narayanan, Yoshio Hayakawa, Junfa Fan, Kenneth L Kirk. Convenient syntheses of biogenic aldehydes, 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde. Bioorganic chemistry. 2003 Apr; 31(2):191-7. doi: 10.1016/s0045-2068(03)00019-1. [PMID: 12729575]
  • W J Burke, H D Chung, S W Li. Quantitation of 3,4-dihydroxyphenylacetaldehyde and 3, 4-dihydroxyphenylglycolaldehyde, the monoamine oxidase metabolites of dopamine and noradrenaline, in human tissues by microcolumn high-performance liquid chromatography. Analytical biochemistry. 1999 Aug; 273(1):111-6. doi: 10.1006/abio.1999.4196. [PMID: 10452806]
  • A C Fylling, P Westlund, A Helander. Kinetic and structural evidence for the identification of 11-hydroxythromboxane B2 dehydrogenase as cytosolic aldehyde dehydrogenase. Prostaglandins. 1995 Nov; 50(5-6):287-99. doi: 10.1016/0090-6980(95)00130-1. [PMID: 8838239]
  • P H Yu. Three types of stereospecificity and the kinetic deuterium isotope effect in the oxidative deamination of dopamine as catalyzed by different amine oxidases. Biochemistry and cell biology = Biochimie et biologie cellulaire. 1988 Aug; 66(8):853-61. doi: 10.1139/o88-097. [PMID: 3143375]
  • A Helander, O Tottmar. Metabolism of biogenic aldehydes in isolated human blood cells, platelets and in plasma. Biochemical pharmacology. 1987 Apr; 36(7):1077-82. doi: 10.1016/0006-2952(87)90417-5. [PMID: 2436624]
  • D F Sharman. The metabolism of dopamine in the blood of ruminant animals: formation of 3,4-dihydroxyphenylacetaldehyde. Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology. 1987; 86(1):151-5. doi: 10.1016/0742-8413(87)90158-7. [PMID: 2435453]
  • A Helander, O Tottmar. Metabolism of biogenic aldehydes in human blood: effects of ethanol, acetaldehyde and disulfiram. Alcohol and alcoholism (Oxford, Oxfordshire). Supplement. 1987; 1(?):193-7. doi: . [PMID: 2447900]
  • S Harada, D P Agarwal, H W Goedde. Human aldehyde dehydrogenase: 3,4-dihydroxyphenylaldehyde metabolizing isozymes. Progress in clinical and biological research. 1982; 114(?):147-53. doi: NULL. [PMID: 7163328]