afzelechin (BioDeep_00000269912)

Main id: BioDeep_00000000896

Secondary id: BioDeep_00000033803

natural product PANOMIX_OTCML-2023


代谢物信息卡片


[ 2R,3S, (+) ] -3,4-Dihydro-2- (4-hydroxyphenyl) -2H-1-benzopyran-3,5,7-triol

化学式: C15H14O5 (274.0841)
中文名称: 阿夫儿茶精
谱图信息: 最多检出来源 Viridiplantae(plant) 7.63%

分子结构信息

SMILES: C1C(C(OC2=CC(=CC(=C21)O)O)C3=CC=C(C=C3)O)O
InChI: InChI=1S/C15H14O5/c16-9-3-1-8(2-4-9)15-13(19)7-11-12(18)5-10(17)6-14(11)20-15/h1-6,13,15-19H,7H2

描述信息

Afzelechin is a flavan-3ol, a type of flavonoids. It can be found in Bergenia ligulata (aka Paashaanbhed in Ayurveda traditional Indian medicine).; Afzelechin-(4alpha?8)-afzelechin (molecular formula : C30H26O10, molar mass : 546.52 g/mol, exact mass : 546.152597, CAS number : 101339-37-1, Pubchem CID : 12395) is a B type proanthocyanidin. Ent-epiafzelechin-3-O-p-hydroxybenzoate-(4??8,2??O?7)-epiafzelechin) is an A-type proanthocyanidin found in apricots (Prunus armeniaca).

同义名列表

8 个代谢物同义名

(+)-Afzelechin; afzelechin; (2R,3S)-2-(4-hydroxyphenyl)chroman-3,5,7-triol; 3,5,7,4-Tetrahydroxyflavan; 2545-00-8; C09320; [ 2R,3S, (+) ] -3,4-Dihydro-2- (4-hydroxyphenyl) -2H-1-benzopyran-3,5,7-triol; Afzelechin



数据库引用编号

28 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(2)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

88 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 12 BCL2, BECN1, MAPK8, MTOR, MYD88, PIK3CA, PRKAA2, PTGS1, PTGS2, PTPN1, TLR4, TYR
Golgi apparatus, trans-Golgi network membrane 1 BECN1
Peripheral membrane protein 5 BECN1, MTOR, PTGS1, PTGS2, PTPN1
Endosome membrane 3 BECN1, MYD88, TLR4
Endoplasmic reticulum membrane 6 BCL2, BECN1, MTOR, PTGS1, PTGS2, PTPN1
Mitochondrion membrane 1 BECN1
Cytoplasmic vesicle, autophagosome 1 BECN1
Nucleus 7 BCL2, BECN1, MAPK8, MTOR, MYD88, PARP1, PRKAA2
autophagosome 2 BECN1, MAP1LC3A
cytosol 11 BCL2, BECN1, LIPE, MAP1LC3A, MAPK8, MTOR, MYD88, PARP1, PIK3CA, PRKAA2, PTPN1
dendrite 3 BECN1, MTOR, PRKAA2
mitochondrial membrane 1 BECN1
nuclear body 2 BECN1, PARP1
phagocytic vesicle 2 BECN1, MTOR
phosphatidylinositol 3-kinase complex, class III 1 BECN1
trans-Golgi network 1 BECN1
nucleoplasm 4 MAPK8, MTOR, PARP1, PRKAA2
Cell membrane 3 LIPE, TLR4, TNF
Lipid-anchor 1 MAP1LC3A
Cytoplasmic side 2 MTOR, PTPN1
lamellipodium 1 PIK3CA
Golgi apparatus membrane 1 MTOR
Synapse 1 MAPK8
cell surface 3 MYD88, TLR4, TNF
glutamatergic synapse 2 MAP1LC3A, PTPN1
Golgi apparatus 2 PRKAA2, PTGS1
Golgi membrane 2 INS, MTOR
lysosomal membrane 2 GAA, MTOR
neuronal cell body 2 PRKAA2, TNF
postsynapse 1 PTPN1
Cytoplasm, cytosol 2 LIPE, PARP1
Lysosome 3 GAA, MTOR, TYR
endosome 1 BECN1
plasma membrane 5 GAA, MYD88, PIK3CA, TLR4, TNF
Membrane 8 BCL2, GAA, LIPE, MTOR, PARP1, PRKAA2, PTPN1, TLR4
axon 2 MAPK8, PRKAA2
caveola 2 LIPE, PTGS2
extracellular exosome 2 GAA, PTGS1
Lysosome membrane 2 GAA, MTOR
endoplasmic reticulum 4 BCL2, BECN1, PTGS2, PTPN1
extracellular space 2 INS, TNF
lysosomal lumen 1 GAA
perinuclear region of cytoplasm 3 PIK3CA, TLR4, TYR
intercalated disc 1 PIK3CA
mitochondrion 2 BCL2, PARP1
protein-containing complex 5 BCL2, MYD88, PARP1, PTGS2, PTPN1
intracellular membrane-bounded organelle 4 GAA, MAP1LC3A, PTGS1, TYR
Microsome membrane 3 MTOR, PTGS1, PTGS2
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 2 TLR4, TYR
Secreted 3 GAA, INS, NPB
extracellular region 4 GAA, INS, NPB, TNF
Mitochondrion outer membrane 2 BCL2, MTOR
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 2 BCL2, MTOR
mitochondrial matrix 1 PTPN1
transcription regulator complex 1 PARP1
photoreceptor outer segment 1 PTGS1
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 2 TLR4, TNF
nucleolus 1 PARP1
Melanosome membrane 1 TYR
Early endosome 2 PTPN1, TLR4
Golgi-associated vesicle 1 TYR
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Membrane raft 1 TNF
pore complex 1 BCL2
Cytoplasm, cytoskeleton 1 MAP1LC3A
microtubule 1 MAP1LC3A
cis-Golgi network 1 GOLGA6A
Nucleus, PML body 1 MTOR
PML body 1 MTOR
nuclear speck 1 PRKAA2
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Cell projection, ruffle 1 TLR4
Late endosome 1 MAP1LC3A
ruffle 1 TLR4
receptor complex 1 TLR4
neuron projection 2 PTGS1, PTGS2
chromatin 1 PARP1
Cytoplasmic vesicle, autophagosome membrane 1 MAP1LC3A
autophagosome membrane 1 MAP1LC3A
phagocytic cup 2 TLR4, TNF
Chromosome 1 PARP1
mitochondrial crista 1 PTPN1
Nucleus, nucleolus 1 PARP1
nuclear replication fork 1 PARP1
chromosome, telomeric region 1 PARP1
organelle membrane 1 MAP1LC3A
site of double-strand break 1 PARP1
nuclear envelope 2 MTOR, PARP1
Endomembrane system 4 MAP1LC3A, MTOR, PTGS1, PTPN1
endosome lumen 2 INS, PTPN1
sorting endosome 1 PTPN1
Lipid droplet 1 LIPE
Membrane, caveola 1 LIPE
phagophore assembly site 1 BECN1
phosphatidylinositol 3-kinase complex, class III, type I 1 BECN1
phosphatidylinositol 3-kinase complex, class III, type II 1 BECN1
tertiary granule membrane 1 GAA
Melanosome 1 TYR
Golgi cisterna membrane 1 GOLGA6A
cytoplasmic stress granule 1 PRKAA2
myelin sheath 1 BCL2
lipopolysaccharide receptor complex 1 TLR4
secretory granule lumen 1 INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 2 INS, PTGS2
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
transport vesicle 1 INS
azurophil granule membrane 1 GAA
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
extrinsic component of cytoplasmic side of plasma membrane 1 MYD88
protein-DNA complex 1 PARP1
ficolin-1-rich granule membrane 1 GAA
basal dendrite 1 MAPK8
nucleotide-activated protein kinase complex 1 PRKAA2
Cytoplasmic vesicle, phagosome 1 MTOR
extrinsic component of plasma membrane 1 MYD88
site of DNA damage 1 PARP1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
Autolysosome 1 MAP1LC3A
[Poly [ADP-ribose] polymerase 1, processed N-terminus]: Chromosome 1 PARP1
[Poly [ADP-ribose] polymerase 1, processed C-terminus]: Cytoplasm 1 PARP1
autolysosome lumen 1 GAA
BAD-BCL-2 complex 1 BCL2
cytoplasmic side of endoplasmic reticulum membrane 1 PTPN1
cytoplasmic side of mitochondrial outer membrane 1 BECN1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
Golgi cis cisterna 1 GOLGA6A
[Beclin-1-C 35 kDa]: Mitochondrion 1 BECN1
[Beclin-1-C 37 kDa]: Mitochondrion 1 BECN1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Michał Gleńsk, Marta K Dudek, Maciej Ciach, Maciej Włodarczyk. Isolation and structural determination of flavan-3-ol derivatives from the Polypodium vulgare L. rhizomes water extract. Natural product research. 2021 May; 35(9):1474-1483. doi: 10.1080/14786419.2019.1655302. [PMID: 31538499]
  • Yang Zeng, Yu-Xia Sun, Xiu-Hua Meng, Tao Yu, Hong-Tao Zhu, Ying-Jun Zhang. A new methylene bisflavan-3-ol from the branches and leaves of Potentilla fruticosa. Natural product research. 2020 May; 34(9):1238-1245. doi: 10.1080/14786419.2018.1557169. [PMID: 30663382]
  • Xuemei Guo, Piaopiao Long, Qilu Meng, Chi-Tang Ho, Liang Zhang. An emerging strategy for evaluating the grades of Keemun black tea by combinatory liquid chromatography-Orbitrap mass spectrometry-based untargeted metabolomics and inhibition effects on α-glucosidase and α-amylase. Food chemistry. 2018 Apr; 246(?):74-81. doi: 10.1016/j.foodchem.2017.10.148. [PMID: 29291881]
  • Kengo Hori, Mikiyo Wada, Shoji Yahara, Takashi Watanabe, Hari Prasad Devkota. Antioxidant phenolic compounds from the rhizomes of Astilbe rivularis. Natural product research. 2018 Feb; 32(4):453-456. doi: 10.1080/14786419.2017.1309536. [PMID: 28361551]
  • Rui Fang, Sally P Redfern, Don Kirkup, Elaine A Porter, Geoffrey C Kite, Leon A Terry, Mark J Berry, Monique S J Simmonds. Variation of theanine, phenolic, and methylxanthine compounds in 21 cultivars of Camellia sinensis harvested in different seasons. Food chemistry. 2017 Apr; 220(?):517-526. doi: 10.1016/j.foodchem.2016.09.047. [PMID: 27855934]
  • Batsukh Odonbayar, Toshihiro Murata, Javzan Batkhuu, Kosho Yasunaga, Rina Goto, Kenroh Sasaki. Antioxidant Flavonols and Phenolic Compounds from Atraphaxis frutescens and Their Inhibitory Activities against Insect Phenoloxidase and Mushroom Tyrosinase. Journal of natural products. 2016 Dec; 79(12):3065-3071. doi: 10.1021/acs.jnatprod.6b00720. [PMID: 28006914]
  • J Andrew Jones, Shannon M Collins, Victoria R Vernacchio, Daniel M Lachance, Mattheos A G Koffas. Optimization of naringenin and p-coumaric acid hydroxylation using the native E. coli hydroxylase complex, HpaBC. Biotechnology progress. 2016 Jan; 32(1):21-5. doi: 10.1002/btpr.2185. [PMID: 26488898]
  • María Luisa Mateos-Martín, Elisabet Fuguet, Allan Jiménez-Ardón, Libia Herrero-Uribe, Giselle Tamayo-Castillo, Josep Lluís Torres. Identification of polyphenols from antiviral Chamaecrista nictitans extract using high-resolution LC-ESI-MS/MS. Analytical and bioanalytical chemistry. 2014 Sep; 406(22):5501-6. doi: 10.1007/s00216-014-7982-6. [PMID: 24969467]
  • Mohamed A Farag, Mohamed S Abdelfattah, Sherif E A Badr, Ludger A Wessjohann. Profiling the chemical content of Ficus lyrata extracts via UPLC-PDA-qTOF-MS and chemometrics. Natural product research. 2014; 28(19):1549-56. doi: 10.1080/14786419.2014.926353. [PMID: 24934244]
  • Ik-Soo Lee, Song Yi Yu, Seung-Hyun Jung, Yu-Ri Lee, Yun Mi Lee, Joo-Hwan Kim, Hang Sun, Jin Sook Kim. Proanthocyanidins from Spenceria ramalana and their effects on AGE formation in vitro and hyaloid-retinal vessel dilation in larval zebrafish in vivo. Journal of natural products. 2013 Oct; 76(10):1881-8. doi: 10.1021/np400442b. [PMID: 24131240]
  • Mingzhe Gao, Hongbin Xiao. Activity-guided isolation of antioxidant compounds from Rhizophora apiculata. Molecules (Basel, Switzerland). 2012 Sep; 17(9):10675-82. doi: 10.3390/molecules170910675. [PMID: 22955456]
  • Xingcui Li, Hongqing Wang, Chao Liu, Ruoyun Chen. [Chemical constituents of Acacia catechu]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2010 Jun; 35(11):1425-7. doi: . [PMID: 20822013]
  • Andrea Seccon, Daniela W Rosa, Rilton A Freitas, Maique W Biavatti, Tania B Creczynski-Pasa. Antioxidant activity and low cytotoxicity of extracts and isolated compounds from Araucaria angustifolia dead bark. Redox report : communications in free radical research. 2010; 15(6):234-42. doi: 10.1179/135100010x12826446921789. [PMID: 21208522]
  • Soumaya Kilani-Jaziri, Aicha Neffati, Ilef Limem, Jihed Boubaker, Ines Skandrani, Mohamed Ben Sghair, Ines Bouhlel, Wissem Bhouri, Anne Marie Mariotte, Kamel Ghedira, Marie-Genviève Dijoux Franca, Leila Chekir-Ghedira. Relationship correlation of antioxidant and antiproliferative capacity of Cyperus rotundus products towards K562 erythroleukemia cells. Chemico-biological interactions. 2009 Sep; 181(1):85-94. doi: 10.1016/j.cbi.2009.04.014. [PMID: 19446539]
  • Lauro M de Souza, Thales R Cipriani, Marcello Iacomini, Philip A J Gorin, Guilherme L Sassaki. HPLC/ESI-MS and NMR analysis of flavonoids and tannins in bioactive extract from leaves of Maytenus ilicifolia. Journal of pharmaceutical and biomedical analysis. 2008 May; 47(1):59-67. doi: 10.1016/j.jpba.2007.12.008. [PMID: 18215490]
  • Helena Correia, Ana González-Paramás, Maria Teresa Amaral, Celestino Santos-Buelga, Maria Teresa Batista. Characterisation of polyphenols by HPLC-PAD-ESI/MS and antioxidant activity in Equisetum telmateia. Phytochemical analysis : PCA. 2005 Sep; 16(5):380-7. doi: 10.1002/pca.864. [PMID: 16223097]
  • Gao Li, Byung-Sun Min, Changji Zheng, Joongku Lee, Sei-Ryang Oh, Kyung-Seop Ahn, Hyeong-Kyu Lee. Neuroprotective and free radical scavenging activities of phenolic compounds from Hovenia dulcis. Archives of pharmacal research. 2005 Jul; 28(7):804-9. doi: 10.1007/bf02977346. [PMID: 16114495]
  • . . . . doi: . [PMID: 12788945]