Cinoxacin (BioDeep_00000006650)

 

Secondary id: BioDeep_00000398704

human metabolite blood metabolite Chemicals and Drugs


代谢物信息卡片


5-Ethyl-8-oxo-5,8-dihydro-1,3-dioxa-5,6-diaza-cyclopenta[b]naphthalene-7-carboxylic acid

化学式: C12H10N2O5 (262.059)
中文名称: 西诺沙星
谱图信息: 最多检出来源 Homo sapiens(plant) 9.96%

分子结构信息

SMILES: CCN1C2=CC3=C(C=C2C(=O)C(=N1)C(=O)O)OCO3
InChI: InChI=1S/C12H10N2O5/c1-2-14-7-4-9-8(18-5-19-9)3-6(7)11(15)10(13-14)12(16)17/h3-4H,2,5H2,1H3,(H,16,17)

描述信息

Cinoxacin is only found in individuals that have used or taken this drug. It is a synthetic antimicrobial related to oxolinic acid and nalidixic acid and used in urinary tract infections. [PubChem]Evidence exists that cinoxacin binds strongly, but reversibly, to DNA, interfering with synthesis of RNA and, consequently, with protein synthesis. It appears to also inhibit DNA gyrase. This enzyme is necessary for proper replicated DNA separation. By inhibiting this enzyme, DNA replication and cell division is inhibited.
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials
D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors
C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic
D000890 - Anti-Infective Agents
D004791 - Enzyme Inhibitors

同义名列表

17 个代谢物同义名

5-Ethyl-8-oxo-5,8-dihydro-1,3-dioxa-5,6-diaza-cyclopenta[b]naphthalene-7-carboxylic acid; 5-Ethyl-8-oxo-5,8-dihydro-1,3-dioxa-5,6-diaza-cyclopenta[b]naphthalene-7-carboxylate; 1-ethyl-4-oxo-1H,4H,7H-[1,3]dioxolo[4,5-g]cinnoline-3-carboxylic acid; 1-Ethyl-6,7-methylenedioxy-4(1H)-oxocinnoline-3-carboxylic acid; 1-Ethyl-6,7-methylenedioxy-4(1H)-oxocinnoline-3-carboxylate; 64716, Compound; Compound 64716; Acid, azolinic; Azolinic acid; Cinoxacinum; Cinoxacino; Clinoxacin; Cinoxacine; cinoxacin; Cinobac; CINX; Cinoxacin



数据库引用编号

16 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 4 ALB, BECN1, CA1, HPRT1
Golgi apparatus, trans-Golgi network membrane 1 BECN1
Peripheral membrane protein 2 BECN1, CTSB
Endosome membrane 2 BECN1, CLCN5
Endoplasmic reticulum membrane 2 BECN1, HMOX1
Mitochondrion membrane 1 BECN1
Cytoplasmic vesicle, autophagosome 1 BECN1
Nucleus 3 ALB, BECN1, HMOX1
autophagosome 1 BECN1
cytosol 8 ALB, BECN1, CA1, CLCN5, GCLM, GPT, HMOX1, HPRT1
dendrite 1 BECN1
mitochondrial membrane 1 BECN1
nuclear body 1 BECN1
phagocytic vesicle 1 BECN1
phosphatidylinositol 3-kinase complex, class III 1 BECN1
trans-Golgi network 1 BECN1
centrosome 1 ALB
nucleoplasm 2 CD2, HMOX1
Cell membrane 2 CD2, CLCN5
Cytoplasmic side 1 HMOX1
Multi-pass membrane protein 3 ABCC3, CLCN5, SLC22A6
Golgi apparatus membrane 1 CLCN5
cell surface 1 CD2
Golgi apparatus 3 ALB, CD2, CLCN5
Golgi membrane 1 CLCN5
lysosomal membrane 1 CLCN5
synaptic vesicle 1 CLCN5
Lysosome 1 CTSB
endosome 1 BECN1
plasma membrane 4 ABCC3, CD2, CLCN5, SLC22A6
Membrane 4 ABCC3, CLCN5, HMOX1, SLC22A6
apical plasma membrane 1 CTSB
basolateral plasma membrane 2 ABCC3, SLC22A6
caveola 1 SLC22A6
extracellular exosome 6 ALB, CA1, CTSB, GPT, HPRT1, SLC22A6
endoplasmic reticulum 3 ALB, BECN1, HMOX1
extracellular space 6 ALB, CTSB, CXCL2, CXCL5, CXCL8, HMOX1
perinuclear region of cytoplasm 2 CTSB, HMOX1
protein-containing complex 3 ALB, CD2, SLC22A6
Single-pass type I membrane protein 1 CD2
Secreted 3 ALB, CXCL5, CXCL8
extracellular region 6 ALB, CD2, CTSB, CXCL2, CXCL5, CXCL8
cytoplasmic side of plasma membrane 1 CD2
mitochondrial outer membrane 1 HMOX1
Extracellular side 1 CTSB
anchoring junction 1 ALB
external side of plasma membrane 2 CD2, CTSB
Early endosome 1 CLCN5
apical part of cell 1 CLCN5
cell-cell junction 1 CD2
Apical cell membrane 1 CTSB
collagen-containing extracellular matrix 1 CTSB
ciliary basal body 1 ALB
centriole 1 ALB
Secreted, extracellular space 1 CTSB
spindle pole 1 ALB
blood microparticle 1 ALB
Basolateral cell membrane 2 ABCC3, SLC22A6
phagophore assembly site 1 BECN1
phosphatidylinositol 3-kinase complex, class III, type I 1 BECN1
phosphatidylinositol 3-kinase complex, class III, type II 1 BECN1
Melanosome 1 CTSB
basal plasma membrane 2 ABCC3, SLC22A6
ficolin-1-rich granule lumen 1 CTSB
endoplasmic reticulum lumen 1 ALB
platelet alpha granule lumen 1 ALB
Single-pass type IV membrane protein 1 HMOX1
Basal cell membrane 2 ABCC3, SLC22A6
peptidase inhibitor complex 1 CTSB
endolysosome lumen 1 CTSB
cytoplasmic side of mitochondrial outer membrane 1 BECN1
glutamate-cysteine ligase complex 1 GCLM
ciliary transition fiber 1 ALB
[Beclin-1-C 35 kDa]: Mitochondrion 1 BECN1
[Beclin-1-C 37 kDa]: Mitochondrion 1 BECN1


文献列表

  • Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. Cell reports. 2021 04; 35(4):109040. doi: 10.1016/j.celrep.2021.109040. [PMID: 33910017]
  • Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein. Molecular pharmacology. 2019 11; 96(5):629-640. doi: 10.1124/mol.119.115964. [PMID: 31515284]
  • Huan Yu, Yanfei Tao, Dongmei Chen, Yuanhu Pan, Zhenli Liu, Yulian Wang, Lingli Huang, Menghong Dai, Dapeng Peng, Xu Wang, Zonghui Yuan. Simultaneous determination of fluoroquinolones in foods of animal origin by a high performance liquid chromatography and a liquid chromatography tandem mass spectrometry with accelerated solvent extraction. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2012 Feb; 885-886(?):150-9. doi: 10.1016/j.jchromb.2011.12.016. [PMID: 22230742]
  • Renaud Respaud, Solene Grayo, Eric Singlas, Sophie Dubouch, Alban Le Monnier, Marie-Catherine Lott. High-performance liquid chromatography assay for moxifloxacin in brain tissue and plasma: validation in a pharmacokinetic study in a murine model of cerebral listeriosis. Journal of analytical methods in chemistry. 2012; 2012(?):436349. doi: 10.1155/2012/436349. [PMID: 22567560]
  • V Talla, Pr Veerareddy. Oxidative stress induced by fluoroquinolones on treatment for complicated urinary tract infections in Indian patients. Journal of young pharmacists : JYP. 2011 Oct; 3(4):304-9. doi: 10.4103/0975-1483.90242. [PMID: 22224037]
  • Ruth E Curran, Christopher R J Claxton, Laura Hutchison, Paul J Harradine, Iain J Martin, Peter Littlewood. Control and measurement of plasma pH in equilibrium dialysis: influence on drug plasma protein binding. Drug metabolism and disposition: the biological fate of chemicals. 2011 Mar; 39(3):551-7. doi: 10.1124/dmd.110.036988. [PMID: 21098647]
  • Ashwini Kumar, Ashok Kumar Malik, Dhananjay Kumar Tewary, Baldev Singh. Gradient HPLC of antibiotics in urine, ground water, chicken muscle, hospital wastewater, and pharmaceutical samples using C-18 and RP-amide columns. Journal of separation science. 2008 Feb; 31(2):294-300. doi: 10.1002/jssc.200700373. [PMID: 18183552]
  • Velusamy Srinivasan, Lien T Nguyen, Susan I Headrick, Shelton E Murinda, Stephen P Oliver. Antimicrobial resistance patterns of Shiga toxin-producing Escherichia coli O157:H7 and O157:H7- from different origins. Microbial drug resistance (Larchmont, N.Y.). 2007; 13(1):44-51. doi: 10.1089/mdr.2006.9996. [PMID: 17536933]
  • Anne-Catherine Huet, Caroline Charlier, Sheryl A Tittlemier, Gurmit Singh, Samuel Benrejeb, Philippe Delahaut. Simultaneous determination of (fluoro)quinolone antibiotics in kidney, marine products, eggs, and muscle by enzyme-linked immunosorbent assay (ELISA). Journal of agricultural and food chemistry. 2006 Apr; 54(8):2822-7. doi: 10.1021/jf052445i. [PMID: 16608195]
  • Franklin Vargas, Carlos Rivas, Yrene Díaz, Andreina Fernández. Photo-induced interaction of antibacterial quinolones with human serum albumin. Toxicology mechanisms and methods. 2003; 13(3):221-6. doi: 10.1080/15376510309835. [PMID: 20021162]
  • B Toussaint, G Bordin, A Janosi, A R Rodriguez. Validation of a liquid chromatography-tandem mass spectrometry method for the simultaneous quantification of 11 (fluoro)quinolone antibiotics in swine kidney. Journal of chromatography. A. 2002 Nov; 976(1-2):195-206. doi: 10.1016/s0021-9673(02)00948-2. [PMID: 12462610]
  • Hairui Liang, Michael B Kays, Kevin M Sowinski. Separation of levofloxacin, ciprofloxacin, gatifloxacin, moxifloxacin, trovafloxacin and cinoxacin by high-performance liquid chromatography: application to levofloxacin determination in human plasma. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2002 May; 772(1):53-63. doi: 10.1016/s1570-0232(02)00046-6. [PMID: 12016015]
  • Géry van Vyncht, Amaya Jànosi, Guy Bordin, Brigitte Toussaint, Guy Maghuin-Rogister, Edwin De Pauw, Adela Rosa Rodriguez. Multiresidue determination of (fluoro)quinolone antibiotics in swine kidney using liquid chromatography-tandem mass spectrometry. Journal of chromatography. A. 2002 Apr; 952(1-2):121-9. doi: 10.1016/s0021-9673(02)00092-4. [PMID: 12064523]
  • I Durán Merás, A Muñoz de la Peña, F Salinas López, M I Rodríguez Cáceres. Complexation of antibacterial quinolonic acid and cinolonic derivatives with Zn(II) and Al(III): application to their determination in human urine. The Analyst. 2000 Aug; 125(8):1471-6. doi: 10.1039/b002512g. [PMID: 11002930]
  • A Trichilis, C Tesserommatis, D Varonos. Changes in serum levels of quinolones in rats under the influence of experimental trauma. European journal of drug metabolism and pharmacokinetics. 2000 Apr; 25(2):73-8. doi: 10.1007/bf03190070. [PMID: 11112085]
  • S Jariyawat, T Sekine, M Takeda, N Apiwattanakul, Y Kanai, S Sophasan, H Endou. The interaction and transport of beta-lactam antibiotics with the cloned rat renal organic anion transporter 1. The Journal of pharmacology and experimental therapeutics. 1999 Aug; 290(2):672-7. doi: . [PMID: 10411577]
  • I Durán Merás, T Galeano Díaz, M I Rodriguez Cáceres, F Salinas López. Determination of the chemotherapeutic quinolonic and cinolonic derivatives in urine by high-performance liquid chromatography with ultraviolet and fluorescence detection in series. Journal of chromatography. A. 1997 Nov; 787(1-2):119-27. doi: 10.1016/s0021-9673(97)00630-4. [PMID: 9445649]
  • A De Sarro, D Ammendola, G De Sarro. Effects of some quinolones on imipenem-induced seizures in DBA/2 mice. General pharmacology. 1994 Mar; 25(2):369-79. doi: 10.1016/0306-3623(94)90068-x. [PMID: 8026738]
  • H S Brand, G P van Kampen, J K van der Korst. Effect of nalidixic acid, pipemidic acid and cinoxacin on chondrocyte metabolism in explants of articular cartilage. Clinical and experimental rheumatology. 1990 Jul; 8(4):393-5. doi: . [PMID: 2397627]
  • T Izumi, T Kitagawa. Protein binding of quinolonecarboxylic acids. I. Cinoxacin, nalidixic acid and pipemidic acid. Chemical & pharmaceutical bulletin. 1989 Mar; 37(3):742-5. doi: 10.1248/cpb.37.742. [PMID: 2752487]
  • T Izumi, T Nagayama, T Kitagawa. Protein binding of quinolonecarboxylic acids. II. Spectral changes on the interaction of cinoxacin, nalidixic acid and pipemidic acid with human and rat albumins. Chemical & pharmaceutical bulletin. 1989 Mar; 37(3):746-52. doi: 10.1248/cpb.37.746. [PMID: 2752488]
  • A Pino, A Maura, P Grillo. Absence of cinoxacin-induced DNA fragmentation and mutations in the rat granuloma pouch. Environmental and molecular mutagenesis. 1989; 13(2):112-5. doi: 10.1002/em.2850130205. [PMID: 2917551]
  • B H Stricker, G Slagboom, R Demaeseneer, V Slootmaekers, I Thijs, S Olsson. Anaphylactic reactions to cinoxacin. BMJ (Clinical research ed.). 1988 Dec; 297(6661):1434-5. doi: 10.1136/bmj.297.6661.1434. [PMID: 3147004]
  • P C Braga, F Fraschini, F Scaglione, G Scarpazza, M Schiavi, P Ventura. Pharmacokinetics of cinoxacin in elderly patients following repeated oral administration. Chemotherapy. 1987; 33(5):309-15. doi: 10.1159/000238514. [PMID: 3665628]
  • J T Smith. Frequency and expression of mutational resistance to the 4-quinolone antibacterials. Scandinavian journal of infectious diseases. Supplementum. 1986; 49(?):115-23. doi: . [PMID: 3547618]
  • D Galante, C Pennucci, S Esposito, D Barba. Comparative in vitro activity of ciprofloxacin and five other quinoline derivatives against gram-negative isolates. Drugs under experimental and clinical research. 1985; 11(5):331-4. doi: . [PMID: 2941260]
  • M Koike, R Norikura, K Mizojiri, K Sugeno. Time-dependent elimination of cinoxacin in rats. Journal of pharmaceutical sciences. 1984 Dec; 73(12):1697-700. doi: 10.1002/jps.2600731208. [PMID: 6527237]
  • P M Shah, M Ottnad-Walz, W Stille. In vitro activity of norfloxacin in synthetic media and human urine compared to that of cinnoxacin, nalidixic acid and pipemidic acid. Methods and findings in experimental and clinical pharmacology. 1983 Dec; 5(10):731-4. doi: . [PMID: 6231438]
  • J M Brogard, F Comte, J Lavillaureix. Comparative pharmacokinetic profiles of cinoxacin and pipemidic acid in humans. European journal of drug metabolism and pharmacokinetics. 1983 Jul; 8(3):251-9. doi: 10.1007/bf03188755. [PMID: 6653617]
  • P M Shah, M Ottrad, W Stille. In vitro activity of norfloxacin in urine compared to that of cinnoxacin, nalidixic acid and pipemidic acid. European journal of clinical microbiology. 1983 Jun; 2(3):272-4. doi: 10.1007/bf02029533. [PMID: 6224688]
  • M Gemba, T Komamura, Y Matsushima, T Itoh, K Miyata, M Nakamura. Cinoxacin: competitive inhibitory effect on p-aminohippurate transport and its uptake in renal cortical slices. Archives internationales de pharmacodynamie et de therapie. 1983 Feb; 261(2):308-15. doi: NULL. [PMID: 6838288]
  • A U Gerber, C Feller-Segessenmann, W A Craig. [What does the minimal inhibitory concentration of an antibiotic hide from the clinician? Experimental examples]. Schweizerische medizinische Wochenschrift. 1983 Jan; 113(2):34-7. doi: NULL. [PMID: 6402813]
  • M Gemba, T Komamura, Y Matsushima, T Itoh, K Miyata, M Nakamura. Effect of cinoxacin on cellular metabolism and p-aminohippurate transport in kidney cortical slices in terms of its nephrotoxic action. Toxicology letters. 1983 Jan; 15(1):49-56. doi: 10.1016/0378-4274(83)90168-6. [PMID: 6836589]
  • J M Scavone, R A Gleckman, D G Fraser. Cinoxacin: mechanism of action, spectrum of activity, pharmacokinetics, adverse reactions, and therapeutic indications. Pharmacotherapy. 1982 Sep; 2(5):266-72. doi: 10.1002/j.1875-9114.1982.tb03195.x. [PMID: 6763208]
  • A J Schaeffer, J M Jones, S S Flynn. Prophylactic efficacy of cinoxacin in recurrent urinary tract infection: biologic effects on the vaginal and fecal flora. The Journal of urology. 1982 Jun; 127(6):1128-31. doi: 10.1016/s0022-5347(17)54264-0. [PMID: 7087019]
  • R H Barbhaiya, A U Gerber, W A Craig, P G Welling. Influence of urinary pH on the pharmacokinetics of cinoxacin in humans and on antibacterial activity in vitro. Antimicrobial agents and chemotherapy. 1982 Mar; 21(3):472-80. doi: 10.1128/aac.21.3.472. [PMID: 7103450]
  • M Ohkawa, T Sugata, M Sawaki, A Okasho, K Kuroda, H Yamada. Pharmacokinetics of cinoxacin in normal volunteers and patients with impaired renal function. The Journal of antimicrobial chemotherapy. 1981 Dec; 8(6):447-51. doi: 10.1093/jac/8.6.447. [PMID: 7333988]
  • A J Schaeffer, S Flynn, J Jones. Comparison of cinoxacin and trimethoprim-sulfamethoxazole in the treatment of urinary tract infections. The Journal of urology. 1981 Jun; 125(6):825-7. doi: 10.1016/s0022-5347(17)55220-9. [PMID: 7241682]
  • P O Madsen, N Frimodt-Møller, S Maigaard, O S Nielsen, N Rodriguez, P G Welling. Cinoxacin in urinary tract infections. Theoretical and practical considerations. Urology. 1981 May; 17(5):496-9. doi: 10.1016/0090-4295(81)90204-1. [PMID: 7233671]
  • S Maigaard, N Frimodt-Möller, P G Welling, P O Madsen. Cinoxacin: pharmacokinetics and tolerance in patients with normal and impaired renal function. Antimicrobial agents and chemotherapy. 1979 Sep; 16(3):411-6. doi: 10.1128/aac.16.3.411. [PMID: 507797]
  • J J Szwed, L R Redlich, R A Elliott, P Kesler, H R Black, P L Yu. Partition of cinoxacin and nalidixic acid in canine vascular and extravascular compartments. The Journal of pharmacy and pharmacology. 1979 Aug; 31(8):567-8. doi: 10.1111/j.2042-7158.1979.tb13590.x. [PMID: 40006]
  • M Barnham, H Gaya. In vitro susceptibility of urinary isolates of Escherichia coli to cinoxacin. The Journal of antimicrobial chemotherapy. 1979 Jul; 5(4):413-8. doi: 10.1093/jac/5.4.413. [PMID: 385579]
  • D H Holmes, P W Ensminger, R S Gordee. Cinoxacin: effectiveness against experimental pyelonephritis in rats. Antimicrobial agents and chemotherapy. 1974 Oct; 6(4):432-6. doi: 10.1128/aac.6.4.432. [PMID: 4157340]