Sciadopitysin (BioDeep_00000007928)

   

PANOMIX_OTCML-2023 natural product


代谢物信息卡片


4H-1-Benzopyran-4-one, 5,7-dihydroxy-8-[5-(5-hydroxy-7-methoxy-4-oxo-4H-1-benzopyran-2-yl)-2-methoxyphenyl]-2-(4-methoxyphenyl)-

化学式: C33H24O10 (580.1369)
中文名称: 金松双黄酮
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 53.85%

分子结构信息

SMILES: C1(OC)=CC2OC(C3C=CC(OC)=C(C4=C(O)C=C(O)C5C(=O)C=C(C6=CC=C(OC)C=C6)OC4=5)C=3)=CC(=O)C=2C(O)=C1
InChI: InChI=1S/C33H24O10/c1-39-18-7-4-16(5-8-18)27-15-25(38)32-23(36)13-22(35)30(33(32)43-27)20-10-17(6-9-26(20)41-3)28-14-24(37)31-21(34)11-19(40-2)12-29(31)42-28/h4-15,34-36H,1-3H3

描述信息

Sciadopitysin is a biflavonoid that is a 7, 4, 4-trimethyl ether derivative of amentoflavone. It has a role as a bone density conservation agent and a platelet aggregation inhibitor. It is a biflavonoid, a hydroxyflavone, a methoxyflavone and a ring assembly. It is functionally related to an amentoflavone.
Sciadopitysin is a natural product found in Podocarpus elongatus, Podocarpus urbanii, and other organisms with data available.
A biflavonoid that is a 7, 4, 4-trimethyl ether derivative of amentoflavone.
Sciadopitysin is a type of biflavonoids in leaves from ginkgo biloba[1]. Sciadopitysi inhibits RANKL-induced osteoclastogenesis and bone loss by inhibiting NF-κB activation and reducing the expression of c-Fos and NFATc1[2].
Sciadopitysin is a type of biflavonoids in leaves from ginkgo biloba[1]. Sciadopitysi inhibits RANKL-induced osteoclastogenesis and bone loss by inhibiting NF-κB activation and reducing the expression of c-Fos and NFATc1[2].

同义名列表

27 个代谢物同义名

4H-1-Benzopyran-4-one, 5,7-dihydroxy-8-[5-(5-hydroxy-7-methoxy-4-oxo-4H-1-benzopyran-2-yl)-2-methoxyphenyl]-2-(4-methoxyphenyl)-; 4H-1-Benzopyran-4-one,5,7-dihydroxy-8-[5-(5-hydroxy-7-methoxy-4-oxo-4H-1-benzopyran-2-yl)-2-methoxyphenyl]-2-(4-methoxyphenyl)-; 5,7-dihydroxy-8-(5-(5-hydroxy-7-methoxy-4-oxo-4H-1- benzopyran-2-yl)-2-methoxyphenyl)-2-(4-methoxyphenyl)-4- benzopyrone; 5,7-Dihydroxy-8-(5-(5-hydroxy-7-methoxy-4-oxo-4H-1-benzopyran-2-yl)-2-methoxyphenyl)-2-(4-methoxyphenyl)-4-benzopyrone; 5,7-Dihydroxy-8-[5-(5-hydroxy-7-methoxy-4-oxo-4H-chromen-2-yl)-2-methoxyphenyl]-2-(4-methoxyphenyl)-4H-chromen-4-one; 5,7-dihydroxy-8-(5-(5-hydroxy-7-methoxy-4-oxo-4H-chromen-2-yl)-2-methoxyphenyl)-2-(4-methoxyphenyl)-4H-chromen-4-one; 5,7-dihydroxy-8-[5-(5-hydroxy-7-methoxy-4-oxo-chromen-2-yl)-2-methoxy-phenyl]-2-(4-methoxyphenyl)chromen-4-one; 5,7-dihydroxy-8-[5-(5-hydroxy-7-methoxy-4-oxochromen-2-yl)-2-methoxyphenyl]-2-(4-methoxyphenyl)chromen-4-one; Amentoflavone-4,4",7-trimethyl Ether; Amentoflavone-7,4,4-trimethyl ether; 7,4,4-Trimethylamentoflavone; jm5b01461, Compound 88; UNII-WL44VY201L; Sciadopitysin; WL44VY201L; 5,7-dihydroxy-8-[5-(5-hydroxy-7-methoxy-4-oxo-2-chromenyl)-2-methoxyphenyl]-2-(4-methoxyphenyl)-4-chromenone; 5,7-dihydroxy-8-[5-(5-hydroxy-4-keto-7-methoxy-chromen-2-yl)-2-methoxy-phenyl]-2-(4-methoxyphenyl)chromone; EINECS 208-311-5; NCGC00163619-01; AIDS-012075; AIDS012075; ST5331558; NSC 45108; 521-34-6; NSC45108; C10182; Sciadopitysin



数据库引用编号

19 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

98 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 AIMP2, AKT1, BCL2, CASP3, CASP7, CYP1A1, MAPK8, NFATC1, NOX4, PIK3C3
Peripheral membrane protein 1 CYP1A1
Endoplasmic reticulum membrane 5 BCL2, CYP1A1, NOX4, NRF1, UGT1A1
Cytoplasmic vesicle, autophagosome 1 PIK3C3
Nucleus 12 AIMP2, AKT1, BCL2, CASP3, CASP7, FOS, GABPA, MAPK8, MPO, NFATC1, NOX4, NRF1
autophagosome 1 PIK3C3
cytosol 11 ACP5, AIMP2, AKT1, BCL2, CASP3, CASP7, FOS, MAPK8, NFATC1, NRF1, PIK3C3
nuclear body 1 NFATC1
phosphatidylinositol 3-kinase complex, class III 1 PIK3C3
nucleoplasm 9 AKT1, CASP3, CASP7, FOS, GABPA, MAPK8, MPO, NFATC1, NRF1
RNA polymerase II transcription regulator complex 1 FOS
Cell membrane 2 AKT1, NOX4
lamellipodium 1 AKT1
Multi-pass membrane protein 1 NOX4
Synapse 1 MAPK8
cell cortex 1 AKT1
glutamatergic synapse 3 AKT1, CASP3, PIK3C3
Golgi membrane 1 INS
mitochondrial inner membrane 1 CYP1A1
neuronal cell body 1 CASP3
postsynapse 1 AKT1
Cytoplasm, cytosol 2 AIMP2, CASP7
Lysosome 2 ACP5, MPO
endosome 1 PIK3C3
plasma membrane 3 AKT1, NOX4, UGT1A1
Membrane 7 ACP5, AIMP2, AKT1, BCL2, NOX4, PIK3C3, UGT1A1
axon 1 MAPK8
extracellular exosome 2 MPO, NRF1
endoplasmic reticulum 4 BCL2, FOS, NOX4, UGT1A1
extracellular space 6 CASP7, CTRL, IL6, INS, MPO, PNLIP
perinuclear region of cytoplasm 3 NFATC1, NOX4, UGT1A1
mitochondrion 3 BCL2, CYP1A1, NOX4
protein-containing complex 2 AKT1, BCL2
intracellular membrane-bounded organelle 2 CYP1A1, MPO
Microsome membrane 1 CYP1A1
postsynaptic density 1 CASP3
Secreted 3 IL6, INS, PNLIP
extracellular region 4 IL6, INS, MPO, PNLIP
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 2 BCL2, UGT1A1
mitochondrial outer membrane 1 BCL2
transcription regulator complex 1 NFATC1
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
microtubule cytoskeleton 1 AKT1
nucleolus 1 NOX4
midbody 1 PIK3C3
sarcoplasm 1 NFATC1
cell-cell junction 1 AKT1
Single-pass type II membrane protein 1 NRF1
vesicle 1 AKT1
Cytoplasm, perinuclear region 2 NOX4, UGT1A1
Mitochondrion inner membrane 1 CYP1A1
pore complex 1 BCL2
Cell junction, focal adhesion 1 NOX4
focal adhesion 1 NOX4
spindle 1 AKT1
GABA-ergic synapse 1 PIK3C3
Peroxisome 1 PIK3C3
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
secretory granule 1 MPO
axoneme 1 PIK3C3
Late endosome 1 PIK3C3
ciliary basal body 1 AKT1
chromatin 4 FOS, GABPA, NFATC1, NRF1
phagocytic vesicle membrane 1 PIK3C3
[Isoform 5]: Cytoplasm 1 NOX4
Secreted, extracellular space 1 CASP7
Nucleus, nucleolus 1 NOX4
endosome lumen 1 INS
phagophore assembly site 1 PIK3C3
phosphatidylinositol 3-kinase complex, class III, type I 1 PIK3C3
phosphatidylinositol 3-kinase complex, class III, type II 1 PIK3C3
myelin sheath 1 BCL2
azurophil granule 1 MPO
[Isoform 3]: Cytoplasm 1 NOX4
secretory granule lumen 1 INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 2 IL6, INS
nuclear matrix 1 FOS
transport vesicle 1 INS
Single-pass type III membrane protein 1 NRF1
azurophil granule lumen 1 MPO
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
presynaptic endosome 1 PIK3C3
perinuclear endoplasmic reticulum 1 NOX4
phagocytic vesicle lumen 1 MPO
protein-DNA complex 1 FOS
basal dendrite 1 MAPK8
death-inducing signaling complex 1 CASP3
aminoacyl-tRNA synthetase multienzyme complex 1 AIMP2
[Isoform 4]: Nucleus 1 NOX4
postsynaptic endosome 1 PIK3C3
transcription factor AP-1 complex 1 FOS
Autolysosome 1 PIK3C3
NADPH oxidase complex 1 NOX4
interleukin-6 receptor complex 1 IL6
endoplasmic reticulum chaperone complex 1 UGT1A1
BAD-BCL-2 complex 1 BCL2
[Isoform 6]: Cytoplasm 1 NOX4
cytochrome complex 1 UGT1A1
[Endoplasmic reticulum membrane sensor NFE2L1]: Endoplasmic reticulum membrane 1 NRF1
[Transcription factor NRF1]: Nucleus 1 NRF1


文献列表

  • Yuan Xiong, Guang-Hao Zhu, Hao-Nan Wang, Qing Hu, Li-Li Chen, Xiao-Qing Guan, Hui-Liang Li, Hong-Zhuan Chen, Hui Tang, Guang-Bo Ge. Discovery of naturally occurring inhibitors against SARS-CoV-2 3CLpro from Ginkgo biloba leaves via large-scale screening. Fitoterapia. 2021 Jul; 152(?):104909. doi: 10.1016/j.fitote.2021.104909. [PMID: 33894315]
  • Jie Bai, Shengyu Zhao, Xiaoqing Fan, Yonghui Chen, Xiaowen Zou, Minwan Hu, Baolian Wang, Jing Jin, Xiaojian Wang, Jinping Hu, Dan Zhang, Yan Li. Inhibitory effects of flavonoids on P-glycoprotein in vitro and in vivo: Food/herb-drug interactions and structure-activity relationships. Toxicology and applied pharmacology. 2019 04; 369(?):49-59. doi: 10.1016/j.taap.2019.02.010. [PMID: 30790579]
  • Kwang Sik Suh, Suk Chon, Eun Mi Choi. The protective effects of sciadopitysin against methylglyoxal-induced cytotoxicity in cultured pancreatic β-cells. Journal of applied toxicology : JAT. 2018 08; 38(8):1104-1111. doi: 10.1002/jat.3620. [PMID: 29603293]
  • Shenbao Yang, Ruiying Qu, Zhe Zhu, Wei Li, Chengliang Zhao, Liantai Li. Validated LC-MS/MS method for the quantification of sciadopitysin in rat plasma and its application to pharmacokinetic and bioavailability studies in vivo. Biomedical chromatography : BMC. 2018 Aug; 32(8):e4241. doi: 10.1002/bmc.4241. [PMID: 29575000]
  • Bin Wu, Hui-Peng Song, Xu Zhou, Xin-Guang Liu, Wen Gao, Xin Dong, Hui-Jun Li, Ping Li, Hua Yang. Screening of minor bioactive compounds from herbal medicines by in silico docking and the trace peak exposure methods. Journal of chromatography. A. 2016 Mar; 1436(?):91-9. doi: 10.1016/j.chroma.2016.01.062. [PMID: 26852619]
  • Young Bae Ryu, Hyung Jae Jeong, Jang Hoon Kim, Young Min Kim, Ji-Young Park, Doman Kim, Thi Thanh Hanh Nguyen, Su-Jin Park, Jong Sun Chang, Ki Hun Park, Mun-Chual Rho, Woo Song Lee. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition. Bioorganic & medicinal chemistry. 2010 Nov; 18(22):7940-7. doi: 10.1016/j.bmc.2010.09.035. [PMID: 20934345]
  • Xiang-Qian Liu, Xiao-Dan Zhang, Yu-Lin Zhu, Bum-Young Shin, Shi-Xu Wu. [Structrue identification of biflavones and determination of Taxol from Taxus Madia]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2008 Oct; 31(10):1498-501. doi: . [PMID: 19230397]
  • Man-li Zhang, Chang-hong Huo, Mei Dong, Chun-hui Liang, Yu-cheng Gu, Qing-wen Shi. [Non-taxoid chemical constituents from leaves of Taxus mairei]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2007 Jul; 32(14):1421-5. doi: . [PMID: 17966356]
  • Mi Kyeong Lee, Song Won Lim, Hyekyung Yang, Sang Hyun Sung, Heum-Sook Lee, Mi Jung Park, Young Choong Kim. Osteoblast differentiation stimulating activity of biflavonoids from Cephalotaxus koreana. Bioorganic & medicinal chemistry letters. 2006 Jun; 16(11):2850-4. doi: 10.1016/j.bmcl.2006.03.018. [PMID: 16574412]
  • Mario Dell'Agli, Enrica Bosisio. Biflavones of Ginkgo biloba stimulate lipolysis in 3T3-L1 adipocytes. Planta medica. 2002 Jan; 68(1):76-9. doi: 10.1055/s-2002-19876. [PMID: 11842336]
  • J L Lin, Y S Ho. Flavonoid-induced acute nephropathy. American journal of kidney diseases : the official journal of the National Kidney Foundation. 1994 Mar; 23(3):433-40. doi: 10.1016/s0272-6386(12)81008-0. [PMID: 8128947]