Epicatechin-(2beta->7,4beta->8)-epicatechin-(4beta->8)-epicatechin (BioDeep_00000000702)
human metabolite PANOMIX_OTCML-2023
代谢物信息卡片
化学式: C45H36O18 (864.1902)
中文名称: 肉桂单宁B-1
谱图信息:
最多检出来源 Chinese Herbal Medicine(otcml) 84.21%
分子结构信息
SMILES: C1C(C(OC2=C1C(=CC(=C2C3C(C(OC4=C3C(=CC5=C4C6C(C(O5)(OC7=CC(=CC(=C67)O)O)C8=CC(=C(C=C8)O)O)O)O)C9=CC(=C(C=C9)O)O)O)O)O)C1=CC(=C(C=C1)O)O)O
InChI: InChI=1S/C45H36O18/c46-18-10-27(54)33-31(11-18)62-45(17-3-6-22(49)26(53)9-17)44(59)38(33)36-32(63-45)14-29(56)35-37(39(58)41(61-43(35)36)16-2-5-21(48)25(52)8-16)34-28(55)13-23(50)19-12-30(57)40(60-42(19)34)15-1-4-20(47)24(51)7-15/h1-11,13-14,30,37-41,44,46-59H,12H2
描述信息
Cinnamtannin B-1 is a proanthocyanidin found in Cinnamomum cassia and Cinnamomum zeylanicum. It has a role as a cyclooxygenase 2 inhibitor and a plant metabolite.
Cinnamtannin B1 is a natural product found in Cinnamomum aromaticum, Cinnamomum burmanni, and other organisms with data available.
See also: Cinnamon (part of).
Isolated from cinnamon bark (Cinnamomum zeylanicum) and from cowberry (Vaccinium vitis-idaea). Epicatechin-(2beta->7,4beta->8)-epicatechin-(4beta->8)-epicatechin is found in many foods, some of which are fruits, herbs and spices, ceylon cinnamon, and lingonberry.
Epicatechin-(2beta->7,4beta->8)-epicatechin-(4beta->8)-epicatechin is found in ceylan cinnamon. Epicatechin-(2beta->7,4beta->8)-epicatechin-(4beta->8)-epicatechin is isolated from cinnamon bark (Cinnamomum zeylanicum) and from cowberry (Vaccinium vitis-idaea).
A proanthocyanidin found in Cinnamomum cassia and Cinnamomum zeylanicum.
Cinnamtannin B-1 is a proanthocyanidin with multiple biological functions, including antioxidant effects and inhibiting the production of reactive oxygen species (ROS). Cinnamtannin B-1 inhibits RANKL-induced osteoclastogenesis and prevents ovariectomy-induced osteoporosis in vivo. Cinnamtannin B-1 can be used for the research osteoporosis and colon cancers[1][2].
同义名列表
26 个代谢物同义名
InChI=1/C45H36O18/c46-18-10-27(54)33-31(11-18)62-45(17-3-6-22(49)26(53)9-17)44(59)38(33)36-32(63-45)14-29(56)35-37(39(58)41(61-43(35)36)16-2-5-21(48)25(52)8-16)34-28(55)13-23(50)19-12-30(57)40(60-42(19)34)15-1-4-20(47)24(51)7-15/h1-11,13-14,30,37-41,44,46; (1R,5R,6R,7S,13S,21R)-5,13-bis(3,4-dihydroxyphenyl)-7-[(2R,3R)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2H-1-benzopyran-8-yl]-4,12,14-trioxapentacyclo[11.7.1.0^{2,11}.0^{3,8}.0^{15,20}]henicosa-2,8,10,15,17,19-hexaene-6,9,17,19,21-pentol; (2R,3R,4S,8S,14R,15R)-2,8-bis(3,4-dihydroxyphenyl)-4-[(2R,3R)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2H-1-benzopyran-8-yl]-3,4-dihydro-2H,8H,14H-8,14-methano-1,7,9-trioxabenzo[6,7]cycloocta[1,2-a]naphthalene-3,5,11,13,15-pentol; (1R,5R,6R,7S,13S,21R)-5,13-bis(3,4-dihydroxyphenyl)-7-[(2R,3R)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2H-chromen-8-yl]-4,12,14-trioxapentacyclo[11.7.1.02,11.03,8.015,20]henicosa-2(11),3(8),9,15,17,19-hexaene-6,9,17,19,21-pentol; (1R,5R,6R,7S,13S,21R)-5,13-bis(3,4-dihydroxyphenyl)-7-[(2R,3R)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2H-1-benzopyran-8-yl]-4,12,14-trioxapentacyclo[11.7.1.0²,¹¹.0³,⁸.0¹⁵,²⁰]henicosa-2,8,10,15,17,19-hexaene-6,9,17,19,21-pentol; 8,14-Methano-2H,14H-1-benzopyrano(7,8-d)(1,3)benzodioxocin-3,5,11,13,15-pentol, 2,8-bis(3,4-dihydroxyphenyl)-4-((2R,3R)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-3,5,7-trihydroxy-2H-1-benzopyran-8-yl)-3,4-dihydro-, (2R,3R,4S,8S,14R,15R)-; 8,14-Methano-2H,14H-1-benzopyrano[7,8-d][1,3]benzodioxocin-3,5,11,13,15-pentol, 2,8-bis(3,4-dihydroxyphenyl)-4-[(2R,3R)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-3,5,7-trihydroxy-2H-1-benzopyran-8-yl]-3,4-dihydro-, (2R,3R,4S,8S,14R,15R)-; (2R,3R,4S,8S,14R,15R)-2,8-bis(3,4-dihydroxyphenyl)-4-((2R,3R)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxychroman-8-yl)-3,4-dihydro-2H,14H-8,14-methanobenzo[7,8][1,3]dioxocino[4,5-h]chromene-3,5,11,13,15-pentaol; bis(3,4-dihydroxyphenyl)-[(2R,3R)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-chroman-8-yl][?]pentol; (-)-EPICATECHIN-(4BETA-8, 2BETA-OMICRON-7)-EPICATECHIN-(4BETA-8)-EPICATECHIN); (-)-EPICATECHIN-(4beta->8, 2beta-O->7)-EPICATECHIN-(4beta->8)-EPICATECHIN); Epicatechin-(4beta->8,2beta->O->7)-epicatechin-(4alpha->8)-epicatechin; Epicatechin-(2beta->7,4beta->8)-epicatechin-(4beta->8)-epicatechin; Epicatechin-(2b->7,4b->8)-epicatechin-(4b->8)-epicatechin; Epicatechin-(2β->7,4β->8)-epicatechin-(4β->8)-epicatechin; Cinnamtannin B1 (constituent of cinnamomum cassia bark); Cinnamtannin B1 (constituent of cinnamomum verum bark); Epicatechin(2b->7,4b->8)epicatechin(4b->8)epicatechin; BYSRPHRKESMCPO-LQNPQWRQSA-; cinnamtannin D-1; Cinnamtannin B-1; CinnamtanninB-1; Cinnamtannin B1; UFK; UFN; Pavetannin B6
数据库引用编号
23 个数据库交叉引用编号
- ChEBI: CHEBI:69304
- KEGG: C17631
- PubChem: 475277
- PubChem: 13990885
- HMDB: HMDB0037672
- Metlin: METLIN71828
- ChEMBL: CHEMBL540956
- Wikipedia: Cinnamtannin_B1
- MeSH: cinnamtannin B-1
- KNApSAcK: C00009291
- KNApSAcK: C00009289
- foodb: FDB016799
- chemspider: 417255
- CAS: 88082-60-4
- CAS: 86631-43-8
- medchemexpress: HY-130237
- PMhub: MS000025954
- MetaboLights: MTBLC69304
- PubChem: 96023975
- PDB-CCD: UFK
- NIKKAJI: J1.348.198I
- LOTUS: LTS0273087
- wikidata: Q5121058
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
21 个相关的物种来源信息
- 43364 - Aesculus hippocastanum: 10.1248/CPB.35.4717
- 119260 - Cinnamomum aromaticum: 10.1021/NP1007944
- 119261 - Cinnamomum burmanni: 10.1248/CPB.33.4338
- 1155220 - Cinnamomum iners: 10.1021/NP1007944
- 337469 - Cinnamomum philippinense: 10.1021/NP1002274
- 119266 - Cinnamomum sieboldii: 10.1248/CPB.33.4338
- 128608 - Cinnamomum verum: 10.1021/NP1007944
- 29743 - Cryptocarya obovata: 10.1021/NP030510H
- 397678 - Dicranopteris pedata: 10.1248/CPB.38.856
- 32170 - Doryopteris concolor: 10.1248/CPB.38.856
- 2853777 - Doryopteris decipiens: 10.1248/CPB.38.856
- 40556 - Doryopteris pedata: 10.1248/CPB.38.856
- 9606 - Homo sapiens: -
- 43503 - Ixora coccinea: 10.1016/J.PHYTOCHEM.2010.08.018
- 61147 - Kandelia candel: 10.1248/CPB.33.3142
- 128640 - Lindera umbellata: 10.1055/S-2007-969386
- 2708928 - Pavetta owariensis:
- 33090 - Plants: -
- 429299 - Urceola micrantha: 10.1021/NP010414L
- 180772 - Vaccinium vitis-idaea:
- 180772 - Vaccinium vitis-idaea: 10.1211/0022357011775389
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Joo-Won Nam, Rasika S Phansalkar, David C Lankin, James B McAlpine, Ariene A Leme-Kraus, Ana K Bedran-Russo, Shao-Nong Chen, Guido F Pauli. Targeting Trimeric and Tetrameric Proanthocyanidins of Cinnamomum verum Bark as Bioactives for Dental Therapies.
Journal of natural products.
2020 11; 83(11):3287-3297. doi:
10.1021/acs.jnatprod.0c00570
. [PMID: 33151073] - Xin-Yi Wang, Bo-Rong Zhu, Qi Jia, Yi-Ming Li, Ting Wang, He-Yao Wang. Cinnamtannin D1 Protects Pancreatic β-Cells from Glucolipotoxicity-Induced Apoptosis by Enhancement of Autophagy In Vitro and In Vivo.
Journal of agricultural and food chemistry.
2020 Nov; 68(45):12617-12630. doi:
10.1021/acs.jafc.0c04898
. [PMID: 33125846] - Meng Li, Li Hao, Lei Li, Lei Liu, Guang Chen, Wei Jiang, Wei Xu, Chen Zhu, Gang Yao, Shiyuan Fang. Cinnamtannin B-1 Prevents Ovariectomy-Induced Osteoporosis via Attenuating Osteoclastogenesis and ROS Generation.
Frontiers in pharmacology.
2020; 11(?):1023. doi:
10.3389/fphar.2020.01023
. [PMID: 32754032] - Chenchen Shi, Haoyue Zhang, Xiaoyu Wang, Bingliang Jin, Qi Jia, Yiming Li, Yifu Yang. Cinnamtannin D1 attenuates autoimmune arthritis by regulating the balance of Th17 and treg cells through inhibition of aryl hydrocarbon receptor expression.
Pharmacological research.
2020 01; 151(?):104513. doi:
10.1016/j.phrs.2019.104513
. [PMID: 31706010] - F Sánchez-Rubio, M R Fernández-Santos, L Castro-Vázquez, O García-Álvarez, A Maroto-Morales, A J Soler, F Martínez-Pastor, J J Garde. Cinnamtannin B-1, a novel antioxidant for sperm in red deer.
Animal reproduction science.
2018 Aug; 195(?):44-52. doi:
10.1016/j.anireprosci.2018.05.004
. [PMID: 29776697] - Xiao-li Guan, Yong-lin Huang, Ya-feng Wang, Dian-peng Li. [Study on the Chemical Constituents of Litchi chinensis Pericarp( Ⅱ)].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2016 Jun; 39(6):1291-5. doi:
. [PMID: 30156800]
- Kiran S Panickar, Bolin Qin, Richard A Anderson. Ischemia-induced endothelial cell swelling and mitochondrial dysfunction are attenuated by cinnamtannin D1, green tea extract, and resveratrol in vitro.
Nutritional neuroscience.
2015 Oct; 18(7):297-306. doi:
10.1179/1476830514y.0000000127
. [PMID: 24773045] - Lingrong Wen, Lijun You, Xiaoman Yang, Jiali Yang, Feng Chen, Yueming Jiang, Bao Yang. Identification of phenolics in litchi and evaluation of anticancer cell proliferation activity and intracellular antioxidant activity.
Free radical biology & medicine.
2015 Jul; 84(?):171-184. doi:
10.1016/j.freeradbiomed.2015.03.023
. [PMID: 25857215] - Silvia C Heredia-Vieira, Ana M Simonet, Wagner Vilegas, Francisco A Macías. Unusual C,O-Fused Glycosylapigenins from Serjania marginata Leaves.
Journal of natural products.
2015 Jan; 78(1):77-84. doi:
10.1021/np500715x
. [PMID: 25517504] - Ting Wang, Peng Sun, Liang Chen, Qi Huang, Kaixian Chen, Qi Jia, Yiming Li, Heyao Wang. Cinnamtannin D-1 protects pancreatic β-cells from palmitic acid-induced apoptosis by attenuating oxidative stress.
Journal of agricultural and food chemistry.
2014 Jun; 62(22):5038-45. doi:
10.1021/jf500387d
. [PMID: 24815044] - Tadashi Furumoto, Noriyasu Ozawa, Yuta Inami, Misaki Toyoshima, Kosuke Fujita, Kaori Zaiki, Shunya Sahara, Mariko Akita, Keiko Kitamura, Koichi Nakaoji, Kazuhiko Hamada, Katsuto Tamai, Yasufumi Kaneda, Akito Maeda. Mallotus philippinensis bark extracts promote preferential migration of mesenchymal stem cells and improve wound healing in mice.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2014 Feb; 21(3):247-53. doi:
10.1016/j.phymed.2013.09.003
. [PMID: 24182990] - Zhiyong Chi, Xueling Ma, Guofeng Cui, Mingchao Li, Fuchun Li. Cinnamtannin B-1 regulates cell proliferation of spinal cord astrocytes and protects the cell from oxygen-glucose-serum deprivation/reoxygenation-induced apoptosis.
International journal of molecular sciences.
2013 Jul; 14(8):15827-37. doi:
10.3390/ijms140815827
. [PMID: 23903044] - K Brian Killday, Matthew H Davey, Jan A Glinski, Penggao Duan, Ravikanth Veluri, Gloria Proni, F Joseph Daugherty, Michael S Tempesta. Bioactive A-type proanthocyanidins from Cinnamomum cassia.
Journal of natural products.
2011 Sep; 74(9):1833-41. doi:
10.1021/np1007944
. [PMID: 21875098] - Ramon Rivera-Barreno, Angel del Castillo-Vaquero, Gines M Salido, Antonio Gonzalez. Effect of cinnamtannin B-1 on cholecystokinin-8-evoked responses in mouse pancreatic acinar cells.
Clinical and experimental pharmacology & physiology.
2010 Oct; 37(10):980-8. doi:
10.1111/j.1440-1681.2010.05424.x
. [PMID: 20626416] - Hsiao-Ching Lin, Shoei-Sheng Lee. Proanthocyanidins from the leaves of Machilus philippinensis.
Journal of natural products.
2010 Aug; 73(8):1375-80. doi:
10.1021/np1002274
. [PMID: 20568785] - A Bouaziz, C Romera-Castillo, S Salido, P J Linares-Palomino, J Altarejos, A Bartegi, J A Rosado, G M Salido. Cinnamtannin B-1 from bay wood exhibits antiapoptotic effects in human platelets.
Apoptosis : an international journal on programmed cell death.
2007 Mar; 12(3):489-98. doi:
10.1007/s10495-006-0014-z
. [PMID: 17195094] - A Bouaziz, S Salido, P J Linares-Palomino, A Sanchez, J Altarejos, A Bartegi, Ginés M Salido, Juan A Rosado. Cinnamtannin B-1 from bay wood reduces abnormal intracellular Ca2+ homeostasis and platelet hyperaggregability in type 2 diabetes mellitus patients.
Archives of biochemistry and biophysics.
2007 Jan; 457(2):235-42. doi:
10.1016/j.abb.2006.10.020
. [PMID: 17118329]