Pollenin A (BioDeep_00000000055)

 

Secondary id: BioDeep_00000402950

human metabolite PANOMIX_OTCML-2023 Chemicals and Drugs Antitumor activity


代谢物信息卡片


4H-1-Benzopyran-4-one, 3,5,7,8-tetrahydroxy-2-(4-hydroxyphenyl)-

化学式: C15H10O7 (302.0427)
中文名称: 草质素
谱图信息: 最多检出来源 Viridiplantae(otcml) 96.43%

分子结构信息

SMILES: C1(O)=C(O)C2OC(C3C=CC(O)=CC=3)=C(O)C(=O)C=2C(O)=C1
InChI: InChI=1S/C15H10O7/c16-7-3-1-6(2-4-7)14-13(21)12(20)10-8(17)5-9(18)11(19)15(10)22-14/h1-5,16-19,21H

描述信息

Herbacetin is a pentahydroxyflavone that is kaempferol substituted by a hydroxy group at position 8. It is a natural flavonoid from flaxseed which exerts antioxidant, anti-inflammatory and anticancer activities. It has a role as an EC 4.1.1.17 (ornithine decarboxylase) inhibitor, an antineoplastic agent, an apoptosis inducer, an angiogenesis inhibitor, a plant metabolite, an antilipemic drug, an anti-inflammatory agent and an EC 3.4.22.69 (SARS coronavirus main proteinase) inhibitor. It is a pentahydroxyflavone and a 7-hydroxyflavonol. It is functionally related to a kaempferol.
Herbacetin is a natural product found in Sedum anglicum, Sedum apoleipon, and other organisms with data available.
See also: Larrea tridentata whole (part of).
Isolated from pollen of Camellia sinensis (tea). Pollenin A is found in tea.
Herbacetin is a natural flavonoid from flaxseed, exerts various pharmacological activities, including antioxidant, anti-inflammatory and anticancer effects[1]. Herbacetin is an Ornithine decarboxylase (ODC) allosteric inhibitor, directly binds to Asp44, Asp243, and Glu384 on ODC. Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the first step of polyamine biosynthesis[2].
Herbacetin is a natural flavonoid from flaxseed, exerts various pharmacological activities, including antioxidant, anti-inflammatory and anticancer effects[1]. Herbacetin is an Ornithine decarboxylase (ODC) allosteric inhibitor, directly binds to Asp44, Asp243, and Glu384 on ODC. Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the first step of polyamine biosynthesis[2].

同义名列表

15 个代谢物同义名

4H-1-Benzopyran-4-one, 3,5,7,8-tetrahydroxy-2-(4-hydroxyphenyl)-; 4H-1-Benzopyran-4-one,3,5,7,8-tetrahydroxy-2-(4-hydroxyphenyl)-; 3,5,7,8-tetrahydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one; 3,5,7,8-tetrahydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one; 3,5,7,8-tetrahydroxy-2-(4-hydroxyphenyl)chromen-4-one; Flavone, 3,4,5,7,8-pentahydroxy-; 3,5,7,8,4-Pentahydroxyflavone; 3,4,5,7,8-Pentahydroxyflavone; 4,5,7,8-Tetrahydroxyflavonol; ZDOTZEDNGNPOEW-UHFFFAOYSA-N; Herbacetin, >=98\\% (HPLC); 8-Hydroxykaempferol; Isoarticulatidin; Pollenin A; Herbacetin



数据库引用编号

21 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

27 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 12 AKT1, BCL2, CASP3, CAT, CYP2B6, CYP2C9, CYP2D6, CYP2E1, CYP3A4, EGFR, MAPK8, TNK1
Peripheral membrane protein 3 CYP2B6, CYP2E1, TNK1
Endosome membrane 1 EGFR
Endoplasmic reticulum membrane 8 BCL2, CYP2B6, CYP2C9, CYP2D6, CYP2E1, CYP3A4, EGFR, PTGIS
Nucleus 8 AKT1, BCL2, CASP3, DNMT3B, EGFR, MAPK8, MET, PTGIS
cytosol 6 AKT1, BCL2, CASP3, CAT, IL1B, MAPK8
nuclear body 1 MET
nucleoplasm 5 AKT1, CASP3, DNMT3B, MAPK8, MET
Cell membrane 4 AKT1, EGFR, OPRD1, TNF
lamellipodium 1 AKT1
ruffle membrane 1 EGFR
Early endosome membrane 1 EGFR
Multi-pass membrane protein 1 OPRD1
Synapse 1 MAPK8
cell cortex 1 AKT1
cell junction 1 EGFR
cell surface 3 EGFR, MET, TNF
glutamatergic synapse 3 AKT1, CASP3, EGFR
Golgi membrane 1 EGFR
mitochondrial inner membrane 1 CYP2E1
neuronal cell body 2 CASP3, TNF
postsynapse 2 AKT1, MET
presynaptic membrane 1 OPRD1
Cytoplasm, cytosol 1 IL1B
Lysosome 1 IL1B
endosome 1 EGFR
plasma membrane 8 AKT1, CYP2C9, EGFR, IFNLR1, MET, OPRD1, TNF, TNK1
synaptic vesicle membrane 1 OPRD1
Membrane 11 AKT1, BCL2, CAT, CYP2D6, CYP3A4, EGFR, HGF, IFNLR1, MET, OPRD1, TNK1
apical plasma membrane 1 EGFR
axon 1 MAPK8
basolateral plasma membrane 1 EGFR
caveola 1 PTGIS
extracellular exosome 1 CAT
endoplasmic reticulum 3 BCL2, CYP2D6, PTGIS
extracellular space 5 EGFR, HGF, IL1B, PTGIS, TNF
perinuclear region of cytoplasm 1 EGFR
mitochondrion 3 BCL2, CAT, CYP2D6
protein-containing complex 4 AKT1, BCL2, CAT, EGFR
intracellular membrane-bounded organelle 6 CAT, CYP2B6, CYP2C9, CYP2D6, CYP2E1, CYP3A4
Microsome membrane 5 CYP2B6, CYP2C9, CYP2D6, CYP2E1, CYP3A4
postsynaptic density 1 CASP3
Single-pass type I membrane protein 2 EGFR, IFNLR1
Secreted 1 IL1B
extracellular region 5 CAT, HGF, IL1B, MET, TNF
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 4 BCL2, CYP2D6, MET, PTGIS
mitochondrial outer membrane 1 BCL2
mitochondrial matrix 1 CAT
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 2 BCL2, EGFR
external side of plasma membrane 1 TNF
microtubule cytoskeleton 1 AKT1
cell-cell junction 1 AKT1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 AKT1
Mitochondrion inner membrane 1 CYP2E1
Membrane raft 2 EGFR, TNF
pore complex 1 BCL2
focal adhesion 2 CAT, EGFR
spindle 1 AKT1
Peroxisome 1 CAT
intracellular vesicle 1 EGFR
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
secretory granule 1 IL1B
receptor complex 2 EGFR, MET
neuron projection 1 OPRD1
ciliary basal body 1 AKT1
phagocytic cup 1 TNF
myelin sheath 1 BCL2
basal plasma membrane 2 EGFR, MET
synaptic membrane 1 EGFR
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 1 CAT
platelet alpha granule lumen 1 HGF
axon terminus 1 OPRD1
Secreted, extracellular exosome 1 IL1B
postsynaptic density membrane 1 OPRD1
neuronal dense core vesicle 1 OPRD1
clathrin-coated endocytic vesicle membrane 1 EGFR
basal dendrite 1 MAPK8
death-inducing signaling complex 1 CASP3
dendrite membrane 1 OPRD1
multivesicular body, internal vesicle lumen 1 EGFR
Shc-EGFR complex 1 EGFR
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
catalytic complex 1 DNMT3B
BAD-BCL-2 complex 1 BCL2
spine apparatus 1 OPRD1
interleukin-28 receptor complex 1 IFNLR1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • M Oqal, E Qnais, A Alqudah, O Gammoh. Analgesic effect of the flavonoid herbacetin in nociception animal models. European review for medical and pharmacological sciences. 2023 Dec; 27(23):11236-11248. doi: 10.26355/eurrev_202312_34563. [PMID: 38095373]
  • Shujing Zhang, Yingchao Wang, Min Yu, Ye Shang, Yanxu Chang, Hong Zhao, Yu Kang, Lu Zhao, Lei Xu, Xiaoping Zhao, Dario Difrancesco, Mirko Baruscotti, Yi Wang. Discovery of Herbacetin as a Novel SGK1 Inhibitor to Alleviate Myocardial Hypertrophy. Advanced science (Weinheim, Baden-Wurttemberg, Germany). 2022 01; 9(2):e2101485. doi: 10.1002/advs.202101485. [PMID: 34761560]
  • Xiaohan Wei, Zhejun Zhao, Rongheng Zhong, Xiaomei Tan. A comprehensive review of herbacetin: From chemistry to pharmacological activities. Journal of ethnopharmacology. 2021 Oct; 279(?):114356. doi: 10.1016/j.jep.2021.114356. [PMID: 34166735]
  • Seri Jo, Suwon Kim, Dae Yong Kim, Mi-Sun Kim, Dong Hae Shin. Flavonoids with inhibitory activity against SARS-CoV-2 3CLpro. Journal of enzyme inhibition and medicinal chemistry. 2020 Dec; 35(1):1539-1544. doi: 10.1080/14756366.2020.1801672. [PMID: 32746637]
  • Namrta Choudhry, Xin Zhao, Dan Xu, Mark Zanin, Weisan Chen, Zifeng Yang, Jianxin Chen. Chinese Therapeutic Strategy for Fighting COVID-19 and Potential Small-Molecule Inhibitors against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Journal of medicinal chemistry. 2020 11; 63(22):13205-13227. doi: 10.1021/acs.jmedchem.0c00626. [PMID: 32845145]
  • Xuechun Chen, Dejin Xun, Ruzhang Zheng, Lu Zhao, Yuqing Lu, Jun Huang, Rui Wang, Yi Wang. Deep-Learning-Assisted Assessment of DNA Damage Based on Foci Images and Its Application in High-Content Screening of Lead Compounds. Analytical chemistry. 2020 10; 92(20):14267-14277. doi: 10.1021/acs.analchem.0c03741. [PMID: 32986405]
  • Zoltán Péter Zomborszki, Norbert Kúsz, Dezső Csupor, Wieland Peschel. Rhodiosin and herbacetin in Rhodiola rosea preparations: additional markers for quality control?. Pharmaceutical biology. 2019 Dec; 57(1):295-305. doi: 10.1080/13880209.2019.1577460. [PMID: 31356124]
  • Chinnadurai Veeramani, Mohammed A Alsaif, Khalid S Al-Numair. Herbacetin, a flaxseed flavonoid, ameliorates high percent dietary fat induced insulin resistance and lipid accumulation through the regulation of hepatic lipid metabolizing and lipid-regulating enzymes. Chemico-biological interactions. 2018 May; 288(?):49-56. doi: 10.1016/j.cbi.2018.04.009. [PMID: 29653099]
  • Naohiro Oshima. Efficient Preparation of Ephedrine Alkaloids-free Ephedra Herb Extract and Its Antitumor Effect and Putative Marker Compound. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan. 2017; 137(2):173-177. doi: 10.1248/yakushi.16-00233-3. [PMID: 28154328]
  • Sumiko Hyuga. The Pharmacological Actions of Ephedrine Alkaloids-free Ephreda Herb Extract and Preparation for Clinical Application. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan. 2017; 137(2):179-186. doi: 10.1248/yakushi.16-00233-4. [PMID: 28154329]
  • Yoshiaki Amakura. Characterization of Phenolic Constituents from Ephedra Herb Extract. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan. 2017; 137(2):167-171. doi: 10.1248/yakushi.16-00233-2. [PMID: 28154327]
  • Jamal R Qasem. Ephedra alte (joint pine): an invasive, problematic weedy species in forestry and fruit tree orchards in Jordan. TheScientificWorldJournal. 2012; 2012(?):971903. doi: 10.1100/2012/971903. [PMID: 22645486]
  • Krasimira Tasheva, Georgina Kosturkova. The role of biotechnology for conservation and biologically active substances production of Rhodiola rosea: endangered medicinal species. TheScientificWorldJournal. 2012; 2012(?):274942. doi: 10.1100/2012/274942. [PMID: 22666097]
  • Hyung Jae Jeong, Young Bae Ryu, Su-Jin Park, Jang Hoon Kim, Hyung-Jun Kwon, Jin Hyo Kim, Ki Hun Park, Mun-Chual Rho, Woo Song Lee. Neuraminidase inhibitory activities of flavonols isolated from Rhodiola rosea roots and their in vitro anti-influenza viral activities. Bioorganic & medicinal chemistry. 2009 Oct; 17(19):6816-23. doi: 10.1016/j.bmc.2009.08.036. [PMID: 19729316]
  • Choong Je Ma, Won Joo Jung, Ki Yong Lee, Young Choong Kim, Sang Hyun Sung. Calpain inhibitory flavonoids isolated from Orostachys japonicus. Journal of enzyme inhibition and medicinal chemistry. 2009 Jun; 24(3):676-9. doi: 10.1080/14756360802328075. [PMID: 18825531]
  • Amany Ibrahim, Sherief Ibrahim Khalifa, Ishrak Khafagi, Diaa Tohamy Youssef, Shabana Khan, Mostafa Mesbah, Ikhlas Khan. Microbial metabolism of biologically active secondary metabolites from Nerium oleander L. Chemical & pharmaceutical bulletin. 2008 Sep; 56(9):1253-8. doi: 10.1248/cpb.56.1253. [PMID: 18758096]