15(S)-HPETE (BioDeep_00000006021)
Secondary id: BioDeep_00000629620, BioDeep_00000873132
human metabolite Endogenous blood metabolite natural product
代谢物信息卡片
化学式: C20H32O4 (336.2300472)
中文名称: 15-羟基二十碳-5Z,8Z,11Z,13E-四烯酸
谱图信息:
最多检出来源 Homo sapiens(blood) 0.06%
分子结构信息
SMILES: C(CC/C=C\C/C=C\C/C=C\C=C\[C@H](CCCCC)OO)C(=O)O
InChI: InChI=1S/C20H32O4/c1-2-3-13-16-19(24-23)17-14-11-9-7-5-4-6-8-10-12-15-18-20(21)22/h4-5,8-11,14,17,19,23H,2-3,6-7,12-13,15-16,18H2,1H3,(H,21,22)/b5-4-,10-8-,11-9-,17-14+/t19-/m0/s1
描述信息
15(S)-hydroperoxyeicosatetraenoic acid (15(S)-HPETE) is the corresponding hydroperoxide of 15(S)-HETE and undergoes homolytic decomposition to the DNA-reactive bifunctional electrophile 4-oxo-2(E)-nonenal, a precursor of heptanone-etheno-2-deoxyguanosine. Reactive oxygen species convert the omega-6 polyunsaturated fatty acid arachidonic acid into (15-HPETE); vitamin C mediates 15(S)-HPETE decomposition. 15(S)-HPETE initiates apoptosis in vascular smooth muscle cells. 15(S)-HPETE is a lipoxygenase metabolite that affects the expression of cell adhesion molecules (CAMs) involved in the adhesion of leukocytes and/or the accumulation of leukocytes in the vascular endothelium, these being the initial events in endothelial cell injury. 15(S)-HPETE induces a loss of cardiomyocytes membrane integrity. 15-(S)HPETE is a hydroperoxide that enhances the activity of the enzymes lipoxygenase [EC 1.13.11.12] and Na+, K+-ATPase [EC 3.6.3.9] of brain microvessels. Lipoxygenase(s) and Na+-K+-ATPase of brain microvessels may play a significant role in the occurrence of ischemic brain edema. (PMID: 15964853, 15723435, 8655602, 8595608, 2662983).
D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents
D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors
D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides
同义名列表
25 个代谢物同义名
15-Hydroperoxy-5,8,11,13-eicosatetraenoic acid, (S)-(e,Z,Z,Z)-isomer; (5Z,8Z,11Z,13E)-(15S)-15-Hydroperoxyicosa-5,8,11,13-tetraenoic acid; (5Z,8Z,11Z,13E,15S)-15-Hydroperoxyicosa-5,8,11,13-tetraenoic acid; 15-Hydroperoxy-5,8,11,13-eicosatetraenoic acid, (Z,Z,Z,Z)-isomer; 15-Hydroperoxy-5,8,11,13-eicosatetraenoic acid, (e,Z,Z,Z)-isomer; (5Z,8Z,11Z,13E)-(15S)-15-Hydroperoxyicosa-5,8,11,13-tetraenoate; (5Z,8Z,11Z,13E,15S)-15-Hydroperoxyicosa-5,8,11,13-tetraenoate; 15S-hydroperoxy-5Z,8Z,11Z,13E-eicosatetraenoic acid; 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid; 15-Hydroperoxy-5,8,11,14-eicosatetraenoic acid; 15-hydroperoxyicosa-5,8,11,13-tetraenoic acid; 15S-Hydroperoxyeicosatetraenoic acid; 15-Hydroperoxyeicosatetraenoic acid; 15-Hydroperoxyicosatetraenoic acid; Arachidonic acid 15-hydroperoxide; 15S-Hydroperoxyeicosatetraenoate; 15-Hydroperoxyeicosatetraenoate; 15-Hydroperoxyicosatetraenoate; 15-Hydroperoxyarachidonic acid; 14,15-Epoxyarachidonic acid; 15(S)-HPETE; 15S-HpETE; 15-HpETE; 15-HPAA; 15-HPEA
数据库引用编号
19 个数据库交叉引用编号
- ChEBI: CHEBI:15628
- KEGG: C05966
- PubChem: 5280893
- PubChem: 1440
- HMDB: HMDB0004244
- Metlin: METLIN36283
- Metlin: METLIN3846
- ChEMBL: CHEMBL1606580
- KNApSAcK: C00000400
- chemspider: 4444416
- CAS: 126873-50-5
- CAS: 70981-96-3
- PMhub: MS000018946
- PubChem: 8250
- LipidMAPS: LMFA03060014
- 3DMET: B01940
- NIKKAJI: J461.011C
- RefMet: 15S-HpETE
- LOTUS: LTS0254536
分类词条
相关代谢途径
Reactome(5)
BioCyc(0)
PlantCyc(0)
代谢反应
138 个相关的代谢反应过程信息。
Reactome(89)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Fatty acid metabolism:
Ac-CoA + H2O ⟶ CH3COO- + CoA-SH
- Arachidonic acid metabolism:
H2O + leukotriene A4 ⟶ leukotriene B4
- Synthesis of 15-eicosatetraenoic acid derivatives:
AA + Oxygen ⟶ 15S-HpETE
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Fatty acid metabolism:
Ac-CoA + H2O ⟶ CH3COO- + CoA-SH
- Arachidonic acid metabolism:
H2O + leukotriene A4 ⟶ leukotriene B4
- Synthesis of 15-eicosatetraenoic acid derivatives:
AA + Oxygen ⟶ 15S-HpETE
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of 15-eicosatetraenoic acid derivatives:
AA + H+ + Oxygen + TPNH ⟶ 15R-HETE + H2O + TPN
- Synthesis of 15-eicosatetraenoic acid derivatives:
15S-HpETE + GSH ⟶ 15S-HETE + GSSG + H2O
- Synthesis of 15-eicosatetraenoic acid derivatives:
15S-HpETE + GSH ⟶ 15S-HETE + GSSG + H2O
- Synthesis of 15-eicosatetraenoic acid derivatives:
15S-HpETE + GSH ⟶ 15S-HETE + GSSG + H2O
- Biosynthesis of specialized proresolving mediators (SPMs):
13(S),14(S)-epoxy-DHA + GSH ⟶ (13R)-S-glutathionyl-(14S)-hydroxy-(4Z,7Z,9E,11E,16Z,19Z)-docosahexaenoic acid
- Synthesis of Lipoxins (LX):
NAD + lipoxin A4 ⟶ 15k-LXA4 + H+ + NADH
- Synthesis of 15-eicosatetraenoic acid derivatives:
15S-HpETE + GSH ⟶ 15S-HETE + GSSG + H2O
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of 15-eicosatetraenoic acid derivatives:
AA + Oxygen ⟶ 15S-HpETE
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of 15-eicosatetraenoic acid derivatives:
15S-HpETE + GSH ⟶ 15S-HETE + GSSG + H2O
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of 15-eicosatetraenoic acid derivatives:
15S-HpETE + GSH ⟶ 15S-HETE + GSSG + H2O
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of 15-eicosatetraenoic acid derivatives:
15S-HpETE + GSH ⟶ 15S-HETE + GSSG + H2O
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of 15-eicosatetraenoic acid derivatives:
15S-HpETE + GSH ⟶ 15S-HETE + GSSG + H2O
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of 15-eicosatetraenoic acid derivatives:
AA + Oxygen ⟶ 15S-HpETE
- Biosynthesis of specialized proresolving mediators (SPMs):
DHA + Oxygen ⟶ 17-HDHA
- Synthesis of Lipoxins (LX):
NAD + lipoxin A4 ⟶ 15k-LXA4 + H+ + NADH
- Biosynthesis of specialized proresolving mediators (SPMs):
DHA + Oxygen ⟶ 17-HDHA
- Synthesis of Lipoxins (LX):
NAD + lipoxin A4 ⟶ 15k-LXA4 + H+ + NADH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of 15-eicosatetraenoic acid derivatives:
15S-HpETE + GSH ⟶ 15S-HETE + GSSG + H2O
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Arachidonic acid metabolism:
H2O + leukotriene A4 ⟶ leukotriene B4
- Synthesis of 15-eicosatetraenoic acid derivatives:
AA + Oxygen ⟶ 15S-HpETE
- Biosynthesis of specialized proresolving mediators (SPMs):
18(R)-HEPE + Oxygen ⟶ 18(R)-RvE3
- Synthesis of Lipoxins (LX):
5S-HpETE ⟶ H2O + leukotriene A4
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
prostaglandin H2 ⟶ prostaglandin E2
- Synthesis of 15-eicosatetraenoic acid derivatives:
AA + Oxygen ⟶ 15S-HpETE
- Biosynthesis of specialized proresolving mediators (SPMs):
18(R)-HpEPE + GSH ⟶ 18(R)-HEPE + GSSG + H2O
- Synthesis of Lipoxins (LX):
NAD + lipoxin A4 ⟶ 15k-LXA4 + H+ + NADH
- Biosynthesis of specialized proresolving mediators (SPMs):
DHA + Oxygen ⟶ 17-HDHA
- Synthesis of Lipoxins (LX):
NAD + lipoxin A4 ⟶ 15k-LXA4 + H+ + NADH
- Biosynthesis of specialized proresolving mediators (SPMs):
DHA + Oxygen ⟶ 17-HDHA
- Synthesis of Lipoxins (LX):
NAD + lipoxin A4 ⟶ 15k-LXA4 + H+ + NADH
- Biosynthesis of specialized proresolving mediators (SPMs):
DHA + Oxygen ⟶ 17-HDHA
- Synthesis of Lipoxins (LX):
NAD + lipoxin A4 ⟶ 15k-LXA4 + H+ + NADH
- Biosynthesis of specialized proresolving mediators (SPMs):
DHA + Oxygen ⟶ 17-HDHA
- Synthesis of Lipoxins (LX):
NAD + lipoxin A4 ⟶ 15k-LXA4 + H+ + NADH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of 15-eicosatetraenoic acid derivatives:
AA + Oxygen ⟶ 15S-HpETE
- Biosynthesis of specialized proresolving mediators (SPMs):
DHA + Oxygen ⟶ 17-HDHA
- Synthesis of Lipoxins (LX):
NAD + lipoxin A4 ⟶ 15k-LXA4 + H+ + NADH
BioCyc(0)
WikiPathways(2)
- Eicosanoid metabolism via lipoxygenases (LOX):
Arachidonic acid ⟶ 12-HETE
- Eicosanoid synthesis:
PGD2 ⟶ PGJ2
Plant Reactome(0)
INOH(1)
- Prostaglandin and Leukotriene metabolism ( Prostaglandin and Leukotriene metabolism ):
Glutathione + Leucotriene A4 ⟶ Leucotriene C4
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(46)
- Arachidonic Acid Metabolism:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Leukotriene C4 Synthesis Deficiency:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Piroxicam Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Acetylsalicylic Acid Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Etodolac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Ketoprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Ibuprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Rofecoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Diclofenac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Sulindac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Celecoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Ketorolac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Suprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Bromfenac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Indomethacin Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Mefenamic Acid Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Oxaprozin Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Nabumetone Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Naproxen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Diflunisal Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Meloxicam Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Valdecoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Antipyrine Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Antrafenine Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Carprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Etoricoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Fenoprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Flurbiprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Magnesium Salicylate Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Lumiracoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Lornoxicam Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Phenylbutazone Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Nepafenac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Trisalicylate-Choline Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Tolmetin Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Tiaprofenic Acid Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Tenoxicam Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Salsalate Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Salicylate-Sodium Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Salicylic Acid Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Acetaminophen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Arachidonic Acid Metabolism:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Leukotriene C4 Synthesis Deficiency:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Arachidonic Acid Metabolism:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Arachidonic Acid Metabolism:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Leukotriene C4 Synthesis Deficiency:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
PharmGKB(0)
17 个相关的物种来源信息
- 7458 - Apidae: LTS0254536
- 7459 - Apis: LTS0254536
- 7461 - Apis cerana: 10.1371/JOURNAL.PONE.0175573
- 7461 - Apis cerana: LTS0254536
- 6656 - Arthropoda: LTS0254536
- 7711 - Chordata: LTS0254536
- 2759 - Eukaryota: LTS0254536
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 50557 - Insecta: LTS0254536
- 40674 - Mammalia: LTS0254536
- 33208 - Metazoa: LTS0254536
- 10066 - Muridae: LTS0254536
- 10088 - Mus: LTS0254536
- 10090 - Mus musculus: LTS0254536
- 10090 - Mus musculus: NA
- 101203 - Saprolegnia parasitica:
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Haider H Dar, Michael W Epperly, Vladimir A Tyurin, Andrew A Amoscato, Tamil S Anthonymuthu, Austin B Souryavong, Alexander A Kapralov, Galina V Shurin, Svetlana N Samovich, Claudette M St Croix, Simon C Watkins, Sally E Wenzel, Rama K Mallampalli, Joel S Greenberger, Hülya Bayır, Valerian E Kagan, Yulia Y Tyurina. P. aeruginosa augments irradiation injury via 15-lipoxygenase-catalyzed generation of 15-HpETE-PE and induction of theft-ferroptosis.
JCI insight.
2022 02; 7(4):. doi:
10.1172/jci.insight.156013
. [PMID: 35041620] - Wan-Yang Sun, Vladimir A Tyurin, Karolina Mikulska-Ruminska, Indira H Shrivastava, Tamil S Anthonymuthu, Yu-Jia Zhai, Ming-Hai Pan, Hai-Biao Gong, Dan-Hua Lu, Jie Sun, Wen-Jun Duan, Sergey Korolev, Andrey Y Abramov, Plamena R Angelova, Ian Miller, Ofer Beharier, Gao-Wei Mao, Haider H Dar, Alexandr A Kapralov, Andrew A Amoscato, Teresa G Hastings, Timothy J Greenamyre, Charleen T Chu, Yoel Sadovsky, Ivet Bahar, Hülya Bayır, Yulia Y Tyurina, Rong-Rong He, Valerian E Kagan. Phospholipase iPLA2β averts ferroptosis by eliminating a redox lipid death signal.
Nature chemical biology.
2021 04; 17(4):465-476. doi:
10.1038/s41589-020-00734-x
. [PMID: 33542532] - Alexandr A Kapralov, Qin Yang, Haider H Dar, Yulia Y Tyurina, Tamil S Anthonymuthu, Rina Kim, Claudette M St Croix, Karolina Mikulska-Ruminska, Bing Liu, Indira H Shrivastava, Vladimir A Tyurin, Hsiu-Chi Ting, Yijen L Wu, Yuan Gao, Galina V Shurin, Margarita A Artyukhova, Liubov A Ponomareva, Peter S Timashev, Rosario M Domingues, Detcho A Stoyanovsky, Joel S Greenberger, Rama K Mallampalli, Ivet Bahar, Dmitry I Gabrilovich, Hülya Bayır, Valerian E Kagan. Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death.
Nature chemical biology.
2020 03; 16(3):278-290. doi:
10.1038/s41589-019-0462-8
. [PMID: 32080625] - Christopher Wolff, Christian Zoschke, Suresh Kumar Kalangi, Pallu Reddanna, Monika Schäfer-Korting. Tumor microenvironment determines drug efficacy in vitro - apoptotic and anti-inflammatory effects of 15-lipoxygenase metabolite, 13-HpOTrE.
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.
2019 Sep; 142(?):1-7. doi:
10.1016/j.ejpb.2019.06.003
. [PMID: 31176725] - Ying Zhang, Jiyoung Park, Seong-Jeong Han, Yongwoon Lim, Iha Park, Jong-Suk Kim, Hyun Ae Woo, Seung-Rock Lee. Peroxiredoxin III Protects Tumor Suppressor PTEN from Oxidation by 15-Hydroperoxy-eicosatetraenoic Acid.
Oxidative medicine and cellular longevity.
2019; 2019(?):2828493. doi:
10.1155/2019/2828493
. [PMID: 31636803] - Kristin D Droege, Mary E Keithly, Charles R Sanders, Richard N Armstrong, Matthew K Thompson. Structural Dynamics of 15-Lipoxygenase-2 via Hydrogen-Deuterium Exchange.
Biochemistry.
2017 09; 56(38):5065-5074. doi:
10.1021/acs.biochem.7b00559
. [PMID: 28809482] - Josefin Zschaler, Juergen Arnhold. The hydroperoxide moiety of aliphatic lipid hydroperoxides is not affected by hypochlorous acid.
Chemistry and physics of lipids.
2014 Dec; 184(?):42-51. doi:
10.1016/j.chemphyslip.2014.09.005
. [PMID: 25260666] - Carolina Vijil, Cecilia Hermansson, Anders Jeppsson, Göran Bergström, Lillemor Mattsson Hultén. Arachidonate 15-lipoxygenase enzyme products increase platelet aggregation and thrombin generation.
PloS one.
2014; 9(2):e88546. doi:
10.1371/journal.pone.0088546
. [PMID: 24533104] - Sasikumar J Soumya, Sheela Binu, A Helen, K Anil Kumar, P Reddanna, Perumana R Sudhakaran. Effect of 15-lipoxygenase metabolites on angiogenesis: 15(S)-HPETE is angiostatic and 15(S)-HETE is angiogenic.
Inflammation research : official journal of the European Histamine Research Society ... [et al.].
2012 Jul; 61(7):707-18. doi:
10.1007/s00011-012-0463-5
. [PMID: 22450700] - Jonathan Bertin, Corinne Barat, Sylvie Méthot, Michel J Tremblay. Interactions between prostaglandins, leukotrienes and HIV-1: possible implications for the central nervous system.
Retrovirology.
2012 Jan; 9(?):4. doi:
10.1186/1742-4690-9-4
. [PMID: 22236409] - Colleen Rock, Philip J Moos. Selenoprotein P protects cells from lipid hydroperoxides generated by 15-LOX-1.
Prostaglandins, leukotrienes, and essential fatty acids.
2010 Oct; 83(4-6):203-10. doi:
10.1016/j.plefa.2010.08.006
. [PMID: 20826080] - Nguyen Dang Hung, Mee Ree Kim, Dai-Eun Sok. Anti-inflammatory action of arachidonoyl lysophosphatidylcholine or 15-hydroperoxy derivative in zymosan A-induced peritonitis.
Prostaglandins & other lipid mediators.
2009 Dec; 90(3-4):105-11. doi:
10.1016/j.prostaglandins.2009.10.001
. [PMID: 19819343] - Aaron T Wecksler, Cyril Jacquot, Wilfred A van der Donk, Theodore R Holman. Mechanistic investigations of human reticulocyte 15- and platelet 12-lipoxygenases with arachidonic acid.
Biochemistry.
2009 Jul; 48(26):6259-67. doi:
10.1021/bi802332j
. [PMID: 19469483] - Kotha Anil Kumar, Kalle M Arunasree, Karnati R Roy, Nishanth P Reddy, Ankireddy Aparna, Gorla Venkateswara Reddy, Pallu Reddanna. Effects of (15S)-hydroperoxyeicosatetraenoic acid and (15S)-hydroxyeicosatetraenoic acid on the acute- lymphoblastic-leukaemia cell line Jurkat: activation of the Fas-mediated death pathway.
Biotechnology and applied biochemistry.
2009 Feb; 52(Pt 2):121-33. doi:
10.1042/ba20070264
. [PMID: 18494609] - Lorraine M Sordillo, Katie L Streicher, Isis K Mullarky, Jeffery C Gandy, Wendy Trigona, Chris M Corl. Selenium inhibits 15-hydroperoxyoctadecadienoic acid-induced intracellular adhesion molecule expression in aortic endothelial cells.
Free radical biology & medicine.
2008 Jan; 44(1):34-43. doi:
10.1016/j.freeradbiomed.2007.09.002
. [PMID: 18045545] - Oscar A Bizzozero, Savanna Reyes, Jennifer Ziegler, Suzanne Smerjac. Lipid peroxidation scavengers prevent the carbonylation of cytoskeletal brain proteins induced by glutathione depletion.
Neurochemical research.
2007 Dec; 32(12):2114-22. doi:
10.1007/s11064-007-9377-y
. [PMID: 17551832] - Suraneni V K Mahipal, Jagu Subhashini, Madhava C Reddy, Metukuri M Reddy, Kotha Anilkumar, Karnati R Roy, Gorla V Reddy, Pallu Reddanna. Effect of 15-lipoxygenase metabolites, 15-(S)-HPETE and 15-(S)-HETE on chronic myelogenous leukemia cell line K-562: reactive oxygen species (ROS) mediate caspase-dependent apoptosis.
Biochemical pharmacology.
2007 Jul; 74(2):202-14. doi:
10.1016/j.bcp.2007.04.005
. [PMID: 17517376] - Hui-Chun Yeh, Ah-Lim Tsai, Lee-Ho Wang. Reaction mechanisms of 15-hydroperoxyeicosatetraenoic acid catalyzed by human prostacyclin and thromboxane synthases.
Archives of biochemistry and biophysics.
2007 May; 461(2):159-68. doi:
10.1016/j.abb.2007.03.012
. [PMID: 17459323] - Gang Wu, Corina E Rogge, Jinn-Shyan Wang, Richard J Kulmacz, Graham Palmer, Ah-Lim Tsai. Oxyferryl heme and not tyrosyl radical is the likely culprit in prostaglandin H synthase-1 peroxidase inactivation.
Biochemistry.
2007 Jan; 46(2):534-42. doi:
10.1021/bi061859h
. [PMID: 17209563] - Wendy L Trigona, Isis K Mullarky, Yuzhang Cao, Lorraine M Sordillo. Thioredoxin reductase regulates the induction of haem oxygenase-1 expression in aortic endothelial cells.
The Biochemical journal.
2006 Feb; 394(Pt 1):207-16. doi:
10.1042/bj20050712
. [PMID: 16209660] - Gianguido Coffa, Ann N Imber, Brendan C Maguire, Gurunathan Laxmikanthan, Claus Schneider, Betty J Gaffney, Alan R Brash. On the relationships of substrate orientation, hydrogen abstraction, and product stereochemistry in single and double dioxygenations by soybean lipoxygenase-1 and its Ala542Gly mutant.
The Journal of biological chemistry.
2005 Nov; 280(46):38756-66. doi:
10.1074/jbc.m504870200
. [PMID: 16157595] - Lorraine M Sordillo, James A Weaver, Yu-Zhang Cao, Chris Corl, Matt J Sylte, Isis K Mullarky. Enhanced 15-HPETE production during oxidant stress induces apoptosis of endothelial cells.
Prostaglandins & other lipid mediators.
2005 May; 76(1-4):19-34. doi:
10.1016/j.prostaglandins.2004.10.007
. [PMID: 15967159] - Judith V Ferrante, Antonio Ferrante. Novel role of lipoxygenases in the inflammatory response: promotion of TNF mRNA decay by 15-hydroperoxyeicosatetraenoic acid in a monocytic cell line.
Journal of immunology (Baltimore, Md. : 1950).
2005 Mar; 174(6):3169-72. doi:
10.4049/jimmunol.174.6.3169
. [PMID: 15749845] - Stephen R Clark, Peter B Anning, Marcus J Coffey, Andrew G Roberts, Lawrence J Marnett, Valerie B O'Donnell. Depletion of iNOS-derived nitric oxide by prostaglandin H synthase-2 in inflammation-activated J774.2 macrophages through lipohydroperoxidase turnover.
The Biochemical journal.
2005 Feb; 385(Pt 3):815-21. doi:
10.1042/bj20041353
. [PMID: 15461587] - Huiyong Yin, Ned A Porter. New insights regarding the autoxidation of polyunsaturated fatty acids.
Antioxidants & redox signaling.
2005 Jan; 7(1-2):170-84. doi:
10.1089/ars.2005.7.170
. [PMID: 15650406] - Michelle V Williams, Seon Hwa Lee, Ian A Blair. Liquid chromatography/mass spectrometry analysis of bifunctional electrophiles and DNA adducts from vitamin C mediated decomposition of 15-hydroperoxyeicosatetraenoic acid.
Rapid communications in mass spectrometry : RCM.
2005; 19(6):849-58. doi:
10.1002/rcm.1854
. [PMID: 15723435] - Viola C Ruddat, Rakesh Mogul, Ilya Chorny, Cameron Chen, Noah Perrin, Stephanie Whitman, Victor Kenyon, Matthew P Jacobson, Claude F Bernasconi, Theodore R Holman. Tryptophan 500 and arginine 707 define product and substrate active site binding in soybean lipoxygenase-1.
Biochemistry.
2004 Oct; 43(41):13063-71. doi:
10.1021/bi0489098
. [PMID: 15476400] - Margaret K Yu, Philip J Moos, Pamela Cassidy, Mark Wade, F A Fitzpatrick. Conditional expression of 15-lipoxygenase-1 inhibits the selenoenzyme thioredoxin reductase: modulation of selenoproteins by lipoxygenase enzymes.
The Journal of biological chemistry.
2004 Jul; 279(27):28028-35. doi:
10.1074/jbc.m313939200
. [PMID: 15123685] - Tuan Trang, Benjamin McNaull, Remi Quirion, Khem Jhamandas. Involvement of spinal lipoxygenase metabolites in hyperalgesia and opioid tolerance.
European journal of pharmacology.
2004 Apr; 491(1):21-30. doi:
10.1016/j.ejphar.2004.03.022
. [PMID: 15102529] - Masahiro Yoshinaga, F Gregory Buchanan, Raymond N DuBois. 15-LOX-1 inhibits p21 (Cip/WAF 1) expression by enhancing MEK-ERK 1/2 signaling in colon carcinoma cells.
Prostaglandins & other lipid mediators.
2004 Jan; 73(1-2):111-22. doi:
10.1016/j.prostaglandins.2004.01.001
. [PMID: 15165036] - Sandra L Pfister, Nancy Spitzbarth, Darryl C Zeldin, Pierre Lafite, Daniel Mansuy, William B Campbell. Rabbit aorta converts 15-HPETE to trihydroxyeicosatrienoic acids: potential role of cytochrome P450.
Archives of biochemistry and biophysics.
2003 Dec; 420(1):142-52. doi:
10.1016/j.abb.2003.09.026
. [PMID: 14622984] - Barbara Cavalieri, Maria-Giulia Perrelli, Manuela Aragno, Pierluigi Ramadori, Giuseppe Poli, Juan C Cutrìn. Ischaemic preconditioning modulates the activity of Kupffer cells during in vivo reperfusion injury of rat liver.
Cell biochemistry and function.
2003 Dec; 21(4):299-305. doi:
10.1002/cbf.1028
. [PMID: 14624466] - Nahid Moghaddami, Maurizio Costabile, Phulwinder K Grover, Hubertus P A Jersmann, Zhi H Huang, Charles S T Hii, Antonio Ferrante. Unique effect of arachidonic acid on human neutrophil TNF receptor expression: up-regulation involving protein kinase C, extracellular signal-regulated kinase, and phospholipase A2.
Journal of immunology (Baltimore, Md. : 1950).
2003 Sep; 171(5):2616-24. doi:
10.4049/jimmunol.171.5.2616
. [PMID: 12928414] - María A Balboa, Rebeca Pérez, Jesús Balsinde. Amplification mechanisms of inflammation: paracrine stimulation of arachidonic acid mobilization by secreted phospholipase A2 is regulated by cytosolic phospholipase A2-derived hydroperoxyeicosatetraenoic acid.
Journal of immunology (Baltimore, Md. : 1950).
2003 Jul; 171(2):989-94. doi:
10.4049/jimmunol.171.2.989
. [PMID: 12847271] - Paola Manini, Alessandra Napolitano, Emanuela Camera, Teresa Caserta, Mauro Picardo, Anna Palumbo, Marco d'Ischia. Ni2+ enhances Fe2+/peroxide-induced oxidation of arachidonic acid and formation of geno/cytotoxic 4-hydroxynonenal: a possible contributory mechanism in nickel toxicity and allergenicity.
Biochimica et biophysica acta.
2003 Apr; 1621(1):9-16. doi:
10.1016/s0304-4165(03)00010-2
. [PMID: 12667605] - Laura M S Baker, Leslie B Poole. Catalytic mechanism of thiol peroxidase from Escherichia coli. Sulfenic acid formation and overoxidation of essential CYS61.
The Journal of biological chemistry.
2003 Mar; 278(11):9203-11. doi:
10.1074/jbc.m209888200
. [PMID: 12514184] - Rainer Wiesner, Hiroshi Suzuki, Matthias Walther, Shozo Yamamoto, Hartmut Kuhn. Suicidal inactivation of the rabbit 15-lipoxygenase by 15S-HpETE is paralleled by covalent modification of active site peptides.
Free radical biology & medicine.
2003 Feb; 34(3):304-15. doi:
10.1016/s0891-5849(02)01244-3
. [PMID: 12543246] - Shailaja Kalyankrishna, Jean-Hugues Parmentier, Kafait U Malik. Arachidonic acid-derived oxidation products initiate apoptosis in vascular smooth muscle cells.
Prostaglandins & other lipid mediators.
2002 Sep; 70(1-2):13-29. doi:
10.1016/s0090-6980(02)00010-2
. [PMID: 12428675] - Huiyong Yin, Christine M Havrilla, Jason D Morrow, Ned A Porter. Formation of isoprostane bicyclic endoperoxides from the autoxidation of cholesteryl arachidonate.
Journal of the American Chemical Society.
2002 Jul; 124(26):7745-54. doi:
10.1021/ja0201092
. [PMID: 12083928] - J A Weaver, J F Maddox, Y Z Cao, I K Mullarky, L M Sordillo. Increased 15-HPETE production decreases prostacyclin synthase activity during oxidant stress in aortic endothelial cells.
Free radical biology & medicine.
2001 Feb; 30(3):299-308. doi:
10.1016/s0891-5849(00)00466-4
. [PMID: 11165876] - D Piomelli. The ligand that came from within.
Trends in pharmacological sciences.
2001 Jan; 22(1):17-9. doi:
10.1016/s0165-6147(00)01602-3
. [PMID: 11165666] - V B O'Donnell, B Coles, M J Lewis, B C Crews, L J Marnett, B A Freeman. Catalytic consumption of nitric oxide by prostaglandin H synthase-1 regulates platelet function.
The Journal of biological chemistry.
2000 Dec; 275(49):38239-44. doi:
10.1074/jbc.m001802200
. [PMID: 10993875] - M Navab, S Y Hama, C J Cooke, G M Anantharamaiah, M Chaddha, L Jin, G Subbanagounder, K F Faull, S T Reddy, N E Miller, A M Fogelman. Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: step 1.
Journal of lipid research.
2000 Sep; 41(9):1481-94. doi:
NULL
. [PMID: 10974056] - M Navab, S Y Hama, G M Anantharamaiah, K Hassan, G P Hough, A D Watson, S T Reddy, A Sevanian, G C Fonarow, A M Fogelman. Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: steps 2 and 3.
Journal of lipid research.
2000 Sep; 41(9):1495-508. doi:
. [PMID: 10974057]
- S W Hwang, H Cho, J Kwak, S Y Lee, C J Kang, J Jung, S Cho, K H Min, Y G Suh, D Kim, U Oh. Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances.
Proceedings of the National Academy of Sciences of the United States of America.
2000 May; 97(11):6155-60. doi:
10.1073/pnas.97.11.6155
. [PMID: 10823958] - M Liminga, E Oliw. Qualitative and quantitative analysis of lipoxygenase products in bovine corneal epithelium by liquid chromatography-mass spectrometry with an ion trap.
Lipids.
2000 Feb; 35(2):225-32. doi:
10.1007/bf02664773
. [PMID: 10757554] - Y Z Cao, C C Reddy, L M Sordillo. Altered eicosanoid biosynthesis in selenium-deficient endothelial cells.
Free radical biology & medicine.
2000 Feb; 28(3):381-9. doi:
10.1016/s0891-5849(99)00251-8
. [PMID: 10699749] - M d'Ischia, A Palumbo, F Buzzo. Interactions of nitric oxide with lipid peroxidation products under aerobic conditions: inhibitory effects on the formation of malondialdehyde and related thiobarbituric acid-reactive substances.
Nitric oxide : biology and chemistry.
2000 Feb; 4(1):4-14. doi:
10.1006/niox.1999.0268
. [PMID: 10733868] - S Huang, M Konieczkowski, J R Schelling, J R Sedor. Interleukin-1 stimulates Jun N-terminal/stress-activated protein kinase by an arachidonate-dependent mechanism in mesangial cells.
Kidney international.
1999 May; 55(5):1740-9. doi:
10.1046/j.1523-1755.1999.00440.x
. [PMID: 10231436] - G Wu, C Wei, R J Kulmacz, Y Osawa, A L Tsai. A mechanistic study of self-inactivation of the peroxidase activity in prostaglandin H synthase-1.
The Journal of biological chemistry.
1999 Apr; 274(14):9231-7. doi:
10.1074/jbc.274.14.9231
. [PMID: 10092596] - M M Whalen, R N Doshi, B W Bader, A D Bankhurst. Lysophosphatidylcholine and arachidonic acid are required in the cytotoxic response of human natural killer cells to tumor target cells.
Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology.
1999; 9(6):297-309. doi:
10.1159/000016324
. [PMID: 10749996] - S L Pfister, N Spitzbarth, K Nithipatikom, W S Edgemond, J R Falck, W B Campbell. Identification of the 11,14,15- and 11,12, 15-trihydroxyeicosatrienoic acids as endothelium-derived relaxing factors of rabbit aorta.
The Journal of biological chemistry.
1998 Nov; 273(47):30879-87. doi:
10.1074/jbc.273.47.30879
. [PMID: 9812980] - Y Kato, T Osawa. Detection of oxidized phospholipid-protein adducts using anti-15-hydroperoxyeicosatetraenoic acid-modified protein antibody: contribution of esterified fatty acid-protein adduct to oxidative modification of LDL.
Archives of biochemistry and biophysics.
1998 Mar; 351(1):106-14. doi:
10.1006/abbi.1997.0519
. [PMID: 9500842] - A l Tsai, G Palmer, G Xiao, D C Swinney, R J Kulmacz. Structural characterization of arachidonyl radicals formed by prostaglandin H synthase-2 and prostaglandin H synthase-1 reconstituted with mangano protoporphyrin IX.
The Journal of biological chemistry.
1998 Feb; 273(7):3888-94. doi:
10.1074/jbc.273.7.3888
. [PMID: 9461572] - M Maccarrone, N Rosato, A Finazzi Agrò. Lipoxygenase products induce ultraweak light emission from human erythroleukemia cells.
Journal of bioluminescence and chemiluminescence.
1997 Nov; 12(6):285-93. doi:
10.1002/(sici)1099-1271(199711/12)12:6<285::aid-bio456>3.0.co;2-d
. [PMID: 9509336] - M M Riccio, T Matsumoto, J J Adcock, G J Douglas, D Spina, C P Page. The effect of 15-HPETE on airway responsiveness and pulmonary cell recruitment in rabbits.
British journal of pharmacology.
1997 Sep; 122(2):249-56. doi:
10.1038/sj.bjp.0701379
. [PMID: 9313932] - L M Landino, B C Crews, J K Gierse, S D Hauser, L J Marnett. Mutational analysis of the role of the distal histidine and glutamine residues of prostaglandin-endoperoxide synthase-2 in peroxidase catalysis, hydroperoxide reduction, and cyclooxygenase activation.
The Journal of biological chemistry.
1997 Aug; 272(34):21565-74. doi:
10.1074/jbc.272.34.21565
. [PMID: 9261177] - C Calzada, E Vericel, M Lagarde. Low concentrations of lipid hydroperoxides prime human platelet aggregation specifically via cyclo-oxygenase activation.
The Biochemical journal.
1997 Jul; 325 ( Pt 2)(?):495-500. doi:
10.1042/bj3250495
. [PMID: 9230133] - T D Foley. 5-HPETE is a potent inhibitor of neuronal Na+, K(+)-ATPase activity.
Biochemical and biophysical research communications.
1997 Jun; 235(2):374-6. doi:
10.1006/bbrc.1997.6790
. [PMID: 9199200] - A l Tsai, C Wei, H K Baek, R J Kulmacz, H E Van Wart. Comparison of peroxidase reaction mechanisms of prostaglandin H synthase-1 containing heme and mangano protoporphyrin IX.
The Journal of biological chemistry.
1997 Apr; 272(14):8885-94. doi:
10.1074/jbc.272.14.8885
. [PMID: 9083007] - A N Grechkin, A V Ilyasov, M Hamberg. On the mechanism of biosynthesis of divinyl ether oxylipins by enzyme from garlic bulbs.
European journal of biochemistry.
1997 Apr; 245(1):137-42. doi:
10.1111/j.1432-1033.1997.00137.x
. [PMID: 9128734] - D Di Pierro, B Tavazzi, G Lazzarino, M Galvano, M Bartolini, B Giardina. Separation of representative lipid compounds of biological membranes and lipid derivatives from peroxidized polyunsaturated fatty acids by reversed phase high-performance liquid chromatography.
Free radical research.
1997 Apr; 26(4):307-17. doi:
10.3109/10715769709097810
. [PMID: 9167935] - J V Ferrante, Z H Huang, M Nandoskar, C S Hii, B S Robinson, D A Rathjen, A Poulos, C P Morris, A Ferrante. Altered responses of human macrophages to lipopolysaccharide by hydroperoxy eicosatetraenoic acid, hydroxy eicosatetraenoic acid, and arachidonic acid. Inhibition of tumor necrosis factor production.
The Journal of clinical investigation.
1997 Mar; 99(6):1445-52. doi:
10.1172/jci119303
. [PMID: 9077554] - A N Grechkin, M Hamberg. Biosynthesis of novel divinyl ether oxylipins by enzyme from garlic (Allium sativum L.) bulbs.
Advances in experimental medicine and biology.
1997; 433(?):61-4. doi:
10.1007/978-1-4899-1810-9_11
. [PMID: 9561104] - A J Augustin, F H Grus, F Koch, M Spitznas. Detection of eicosanoids in epiretinal membranes of patients suffering from proliferative vitreoretinal diseases.
The British journal of ophthalmology.
1997 Jan; 81(1):58-60. doi:
10.1136/bjo.81.1.58
. [PMID: 9135410] - S Soeda, O Honda, N Fujii, H Shimeno. Effect of 15-hydroperoxyeicosatetraenoic acid on the fibrinolytic factor release and the antithrombin binding of vascular endothelial cells.
Biological & pharmaceutical bulletin.
1997 Jan; 20(1):15-9. doi:
10.1248/bpb.20.15
. [PMID: 9013799] - H Suzuki, S Yamamoto. Molecular and catalytic properties of mammalian lipoxygenases compared with soybean lipoxygenase-1.
Advances in experimental medicine and biology.
1997; 433(?):371-4. doi:
10.1007/978-1-4899-1810-9_80
. [PMID: 9561173] - S Yamamoto, K Kishimoto, T Arakawa, H Suzuki, M Nakamura, T Yoshimoto, T Takao, Y Shimonishi, T Tanabe. Arachidonate 12-lipoxygenases. Catalytic properties and regulation of the enzyme gene.
Advances in experimental medicine and biology.
1997; 407(?):191-6. doi:
"
. [PMID: 9321952] - G N Rao, W C Glasgow, T E Eling, M S Runge. Role of hydroperoxyeicosatetraenoic acids in oxidative stress-induced activating protein 1 (AP-1) activity.
The Journal of biological chemistry.
1996 Nov; 271(44):27760-4. doi:
10.1074/jbc.271.44.27760
. [PMID: 8910370] - H Kühn. Biosynthesis, metabolization and biological importance of the primary 15-lipoxygenase metabolites 15-hydro(pero)XY-5Z,8Z,11Z,13E-eicosatetraenoic acid and 13-hydro(pero)XY-9Z,11E-octadecadienoic acid.
Progress in lipid research.
1996 Sep; 35(3):203-26. doi:
10.1016/s0163-7827(96)00008-2
. [PMID: 9082450] - T Yamazaki, K Higuchi, S Kominami, S Takemori. 15-lipoxygenase metabolite(s) of arachidonic acid mediates adrenocorticotropin action in bovine adrenal steroidogenesis.
Endocrinology.
1996 Jul; 137(7):2670-5. doi:
10.1210/endo.137.7.8770885
. [PMID: 8770885] - C Sultana, Y Shen, V Rattan, V K Kalra. Lipoxygenase metabolites induced expression of adhesion molecules and transendothelial migration of monocyte-like HL-60 cells is linked to protein kinase C activation.
Journal of cellular physiology.
1996 Jun; 167(3):477-87. doi:
10.1002/(sici)1097-4652(199606)167:3<477::aid-jcp12>3.0.co;2-1
. [PMID: 8655602] - D G Tang, Y Q Chen, K V Honn. Arachidonate lipoxygenases as essential regulators of cell survival and apoptosis.
Proceedings of the National Academy of Sciences of the United States of America.
1996 May; 93(11):5241-6. doi:
10.1073/pnas.93.11.5241
. [PMID: 8643560] - K Kishimoto, M Nakamura, H Suzuki, T Yoshimoto, S Yamamoto, T Takao, Y Shimonishi, T Tanabe. Suicide inactivation of porcine leukocyte 12-lipoxygenase associated with its incorporation of 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid derivative.
Biochimica et biophysica acta.
1996 Mar; 1300(1):56-62. doi:
10.1016/0005-2760(95)00241-3
. [PMID: 8608163] - L M Landino, L J Marnett. Mechanism of hydroperoxide reduction by mangano-prostaglandin endoperoxide synthase.
Biochemistry.
1996 Feb; 35(8):2637-43. doi:
10.1021/bi952546h
. [PMID: 8611568] - M J Van Diest, A G Herman, T J Verbeuren. Influence of hypercholesterolaemia on the reactivity of isolated rabbit arteries to 15-lipoxygenase metabolites of arachidonic acid: comparison with platelet-derived agents and vasodilators.
Prostaglandins, leukotrienes, and essential fatty acids.
1996 Feb; 54(2):135-45. doi:
10.1016/s0952-3278(96)90071-x
. [PMID: 8848433] - M S Chang, W E Boeglin, F P Guengerich, A R Brash. Cytochrome P450-dependent transformations of 15R- and 15S-hydroperoxyeicosatetraenoic acids: stereoselective formation of epoxy alcohol products.
Biochemistry.
1996 Jan; 35(2):464-71. doi:
10.1021/bi952081v
. [PMID: 8555216] - J P Iliou, C Thollon, N Villeneuve, F Robin, C Cambarrat, C Jacquemin, J P Vilaine. Monohydroperoxidized fatty acids but not 4-hydroxynonenal induced acute cardiac cell damage.
Free radical biology & medicine.
1995 Dec; 19(6):773-83. doi:
10.1016/0891-5849(95)00097-h
. [PMID: 8582650] - C Thollon, J P Iliou, C Cambarrat, F Robin, J P Vilaine. Nature of the cardiomyocyte injury induced by lipid hydroperoxides.
Cardiovascular research.
1995 Nov; 30(5):648-55. doi:
. [PMID: 8595608]
- A Palumbo, M d'Ischia, G Misuraca, L De Martino, G Prota. Iron- and peroxide-dependent conjugation of dopamine with cysteine: oxidative routes to the novel brain metabolite 5-S-cysteinyldopamine.
Biochimica et biophysica acta.
1995 Oct; 1245(2):255-61. doi:
10.1016/0304-4165(95)00094-r
. [PMID: 7492586] - E J Bates, A Ferrante, A Poulos, L Smithers, D A Rathjen, B S Robinson. Inhibitory effects of arachidonic acid (20:4,n-6) and its monohydroperoxy- and hydroxy-metabolites on procoagulant activity in endothelial cells.
Atherosclerosis.
1995 Jul; 116(1):125-33. doi:
10.1016/0021-9150(95)05538-8
. [PMID: 7488327] - H Matsuda, K Miyatake, S E Dahlén. Pharmacodynamics of 15(S)-hydroperoxyeicosatetraenoic (15-HPETE) and 15(S)-hydroxyeicosatetraenoic acid (15-HETE) in isolated arteries from guinea pig, rabbit, rat and human.
The Journal of pharmacology and experimental therapeutics.
1995 Jun; 273(3):1182-9. doi:
. [PMID: 7791089]
- Y Fukui, M Morita, K Osakada, T Nakayama, M Matsuoka, R Hirota, H Iizumi, T Ueda. Visible light-sensitized oxidation of arachidonic acid in the presence of inperatorin.
Journal of nutritional science and vitaminology.
1995 Jun; 41(3):387-93. doi:
10.3177/jnsv.41.387
. [PMID: 7472682] - Q F Gan, G L Witkop, D L Sloane, K M Straub, E Sigal. Identification of a specific methionine in mammalian 15-lipoxygenase which is oxygenated by the enzyme product 13-HPODE: dissociation of sulfoxide formation from self-inactivation.
Biochemistry.
1995 May; 34(21):7069-79. doi:
10.1021/bi00021a019
. [PMID: 7766617] - P A Sandstrom, D Pardi, P W Tebbey, R W Dudek, D M Terrian, T M Folks, T M Buttke. Lipid hydroperoxide-induced apoptosis: lack of inhibition by Bcl-2 over-expression.
FEBS letters.
1995 May; 365(1):66-70. doi:
10.1016/0014-5793(95)00443-d
. [PMID: 7774717] - M Björnstedt, M Hamberg, S Kumar, J Xue, A Holmgren. Human thioredoxin reductase directly reduces lipid hydroperoxides by NADPH and selenocystine strongly stimulates the reaction via catalytically generated selenols.
The Journal of biological chemistry.
1995 May; 270(20):11761-4. doi:
10.1074/jbc.270.20.11761
. [PMID: 7744824] - J Terao, T Ingemansson, K Ioku, H Yuki, Y Ito. Effects of rat bile-pancreatic juice on Fe2+ induced peroxidation of phospholipids.
Bioscience, biotechnology, and biochemistry.
1995 Jan; 59(1):55-8. doi:
10.1271/bbb.59.55
. [PMID: 7765976] - P H Kodaman, R F Aten, H R Behrman. Lipid hydroperoxides evoke antigonadotropic and antisteroidogenic activity in rat luteal cells.
Endocrinology.
1994 Dec; 135(6):2723-30. doi:
10.1210/endo.135.6.7988463
. [PMID: 7988463] - A R Brash, M S Chang, C D Funk, W Song. Novel transformations of HPETEs by cytochrome P450s.
Annals of the New York Academy of Sciences.
1994 Nov; 744(?):25-30. doi:
10.1111/j.1749-6632.1994.tb52720.x
. [PMID: 7825847] - A Bourdeau, M Moutahir, J C Souberbielle, P Bonnet, P Herviaux, C Sachs, M Lieberherr. Effects of lipoxygenase products of arachidonate metabolism on parathyroid hormone secretion.
Endocrinology.
1994 Sep; 135(3):1109-12. doi:
10.1210/endo.135.3.8070353
. [PMID: 8070353] - V V Vaidyanathan, P S Sastry. Preparation of hydroperoxy fatty acids.
Analytical biochemistry.
1994 Jun; 219(2):381-3. doi:
10.1006/abio.1994.1283
. [PMID: 8080099] - P A Sandstrom, P W Tebbey, S Van Cleave, T M Buttke. Lipid hydroperoxides induce apoptosis in T cells displaying a HIV-associated glutathione peroxidase deficiency.
The Journal of biological chemistry.
1994 Jan; 269(2):798-801. doi:
. [PMID: 8288627]
- N Mochizuki-Oda, M Negishi, K Mori, S Ito. Arachidonic acid activates cation channels in bovine adrenal chromaffin cells.
Journal of neurochemistry.
1993 Nov; 61(5):1882-90. doi:
10.1111/j.1471-4159.1993.tb09830.x
. [PMID: 7693870] - C Calzada, C Rice-Evans. Ruptured erythrocytes inhibit the oxidation of membranes by 15-hydroperoxy-eicosatetraenoic acid.
FEBS letters.
1993 Aug; 329(1-2):111-5. doi:
10.1016/0014-5793(93)80204-8
. [PMID: 8354383] - P W Tebbey, T M Buttke. Independent arachidonic acid-mediated gene regulatory pathways in lymphocytes.
Biochemical and biophysical research communications.
1993 Jul; 194(2):862-8. doi:
10.1006/bbrc.1993.1901
. [PMID: 8102055] - Y Uehara, Y Kawabata, N Hirawa, S Takada, T Nagata, A Numabe, J Iwai, T Sugimoto. Possible radical scavenging properties of cicletanine and renal protection in Dahl salt sensitive rats.
American journal of hypertension.
1993 Jun; 6(6 Pt 1):463-72. doi:
10.1093/ajh/6.6.463
. [PMID: 8343228] - Y V Kiran Kumar, A Raghunathan, S Sailesh, M Prasad, M C Vemuri, P Reddanna. Differential effects of 15-HPETE and 15-HETE on BHK-21 cell proliferation and macromolecular composition.
Biochimica et biophysica acta.
1993 Mar; 1167(1):102-8. doi:
10.1016/0005-2760(93)90223-v
. [PMID: 8384883] - S H Greenberg-Levy, P Budowski, S Grossman. Lipoxygenase and other enzymes of arachidonic acid metabolism in the brain of chicks affected by nutritional encephalomalacia.
The International journal of biochemistry.
1993 Mar; 25(3):403-9. doi:
10.1016/0020-711x(93)90631-n
. [PMID: 8462729] - M J Van Diest, T J Verbeuren, A G Herman. Vascular interaction between 5-hydroxytryptamine and 15-lipoxygenase metabolites of arachidonic acid.
European journal of pharmacology.
1993 Feb; 231(2):267-74. doi:
10.1016/0014-2999(93)90459-u
. [PMID: 8453981]