AICAR (BioDeep_00000002270)
Secondary id: BioDeep_00000005644, BioDeep_00000399949, BioDeep_00000415794, BioDeep_00000871834
natural product human metabolite PANOMIX_OTCML-2023 Endogenous BioNovoGene_Lab2019
代谢物信息卡片
化学式: C9H15N4O8P (338.0627)
中文名称: 5-氨基-4-甲酰胺咪唑核糖核苷酸, 5-氨基咪唑-4-甲酰胺-1-Β-D-呋喃核糖苷5-一磷酸盐
谱图信息:
最多检出来源 Homo sapiens(blood) 14.12%
分子结构信息
SMILES: C([C@@H]1[C@H]([C@H]([C@H](n2cnc(c2N)C(=O)O)O1)O)O)OP(=O)(O)O
InChI: InChI=1S/C9H15N4O8P/c10-7-4(8(11)16)12-2-13(7)9-6(15)5(14)3(21-9)1-20-22(17,18)19/h2-3,5-6,9,14-15H,1,10H2,(H2,11,16)(H2,17,18,19)/t3-,5-,6-,9-/m1/s1
描述信息
Aicar, also known as 5-phosphoribosyl-5-amino-4-imidazolecarboxamide or 5-aminoimidazole-4-carboxamide ribotide, is a member of the class of compounds known as 1-ribosyl-imidazolecarboxamides. 1-ribosyl-imidazolecarboxamides are organic compounds containing the imidazole ring linked to a ribose ring through a 1-2 bond. Aicar is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Aicar can be found in a number of food items such as safflower, greenthread tea, common pea, and wild leek, which makes aicar a potential biomarker for the consumption of these food products. Aicar can be found primarily in saliva, as well as in human skeletal muscle tissue. Aicar exists in all living species, ranging from bacteria to humans. In humans, aicar is involved in few metabolic pathways, which include azathioprine action pathway, mercaptopurine action pathway, purine metabolism, and thioguanine action pathway. Aicar is also involved in several metabolic disorders, some of which include mitochondrial DNA depletion syndrome, purine nucleoside phosphorylase deficiency, xanthinuria type II, and gout or kelley-seegmiller syndrome.
AICAR also known as ZMP is an analog of AMP that is capable of stimulating AMP-dependent protein kinase activity(AMPK). AICAR is an intermediate in the generation of inosine monophosphate. AICAR is being clinically used to treat and protect against cardiac ischemic injury. AICAR can enter cardiac cells to inhibit adenosine kinase and adenosine deaminase. It enhances the rate of nucleotide re-synthesis increasing adenosine generation from adenosine monophosphate only during conditions of myocardial ischemia. AICAR increases glucose uptake by inducing translocation of GLUT4 and/or by activating the p38 MAPK pathway.
Acquisition and generation of the data is financially supported in part by CREST/JST.
COVID info from COVID-19 Disease Map
D007004 - Hypoglycemic Agents
Corona-virus
KEIO_ID A133
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
同义名列表
61 个代谢物同义名
{[(2R,3S,4R,5R)-5-(5-amino-4-carbamoyl-1H-imidazol-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}phosphonic acid; (2R,3S,4R,5R)-5-(4-Carbam0yl-5-aminoimidazol-1-yl)-3,4-dihydroxyoxolan-2-yljmethyl dihydrogen phosphate; AICAR (5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl 5-monophosphate); AICAR (5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranosyl 5’-monophosphate); AICAR (5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranosyl 5-monophosphate); 5-Amino-1-(5-O-phosphono-beta-D-ribofuranosyl)-1H-imidazole-4-carboxamide; 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranosyl 5-monophosphate; 5-Amino-1-(5-O-phosphono-β-D-ribofuranosyl)-1H-imidazole-4-carboxamide; 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl 5-monophosphate; N1-(β-D-5;-Phosphoribofuranosyl)-5-aminoimidazole-4-carboxamide; 5-Amino-1-beta-D-ribofuranosylimidazole-4-carboxamide monophosphate; 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranosyl 5’-monophosphate; 5-Amino-1beta-D-ribofuranosylimidazole-4-carboxamide 5-phosphate; 5-Amino-1β-D-ribofuranosylimidazole-4-carboxamide 5’-phosphate; 5-Amino-4-imidazolecarboxamide ribonucleoside 5’-monophosphate; 5-Aminoimidazole-4-carboxamide-1-ribofuranosyl 5-monophosphate; 5-Amino-4-imidazolecarboxamide ribofuranoside 5-monophosphate; 5-Amino-1β-D-ribofuranosylimidazole-4-carboxamide 5-phosphate; 5-Amino-4-imidazolecarboxamide ribonucleoside 5-monophosphate; 5-Amino-1-(5-phospho-beta-D-ribosyl)imidazole-4-carboxamide; 1-(5-Phosphoribosyl)-5-amino-4-imidazolecarboxamide (AICAR); 5-Amino-1-(5’-phosphofuranoribosyl)-4-imidazolecarboxamide; 5-Amino-1-(5-phosphofuranoribosyl)-4-imidazolecarboxamide; 5-Amino-4-imidazolecarboxamide riboside 5’-monophosphate; 5-Amino-1-(5-phospho-b-D-ribosyl)imidazole-4-carboxamide; 5-Amino-1-(5-phospho-β-D-ribosyl)imidazole-4-carboxamide; 5-Phospho-beta-D-ribosyl-5-amino-4-imidazolecarboxamide; 5-Amino-4-imidazolecarboxamide riboside 5-monophosphate; 5-amino-1-(5-phospho-D-Ribosyl)imidazole-4-carboxamide; 5’-Phospho-β-D-ribosyl-5-amino-4-imidazolecarboxamide; 5-Phospho-β-D-ribosyl-5-amino-4-imidazolecarboxamide; 1-(5-Phosphoribosyl)-5-amino-4-imidazolecarboxamide; 5-Phospho-ribosyl-5-amino-4-imidazole carboxamide; 5’-Phosphoribosyl-5-amino-4-imidazolecarboxamide; 5-Phosphoribosyl-5-amino-4-imidazole carboxamide; 5-Phosphoribosyl-5-amino-4-imidazolecarboxamide; AICA Ribonucleotide, (D-ribofuranosyl)-isomer; 5-Amino-4-imidazolecarboxamide ribonucleotide; 5-Aminoimidazole-4-carboxamide ribonucleotide; 5-Phosphoribosyl-4-carbamoyl-5-aminoimidazole; 5-p-Ribosyl-5-amino-4-imidazole carboxamide; Aminoimidazole carboxamide ribonucleotide; Aminoimidazolecarboxamide ribonucleotide; 5-Amino-4-imidazolecarboxamide ribotide; 5-Aminoimidazole-4-carboxamide ribotide; 4-Carboxy-5-aminoimidazole ribotide; Acadesine 5-monophosphoric acid; AICAriboside 5-monophosphate; Acadesine 5’-monophosphate; Acadesine 5-monophosphate; AICA-Ribonucleotide; AICAR monophosphate; Aica ribonucleotide; AICA Ribotide; Z-Nucleotide; AICAR; CAIR; ZMP; AICAR; 1-(5'-Phosphoribosyl)-5-amino-4-imidazolecarboxamide; 5-Aminoimidazole-4-carboxamide-1-酓-ribofuranosyl 5'-monophosphate
数据库引用编号
41 个数据库交叉引用编号
- ChEBI: CHEBI:18406
- KEGG: C04677
- PubChem: 65110
- PubChem: 200
- HMDB: HMDB0001517
- Metlin: METLIN3474
- DrugBank: DB01700
- ChEMBL: CHEMBL483849
- Wikipedia: AICA_ribonucleotide
- MetaCyc: AICAR
- KNApSAcK: C00007383
- foodb: FDB030675
- chemspider: 58620
- CAS: 3031-94-5
- MoNA: PR100309
- MoNA: KO000209
- MoNA: PS066204
- MoNA: KO002307
- MoNA: PS066202
- MoNA: KO000206
- MoNA: KO002304
- MoNA: KO002305
- MoNA: PS066201
- MoNA: KO002306
- MoNA: PS066206
- MoNA: KO000208
- MoNA: KO002303
- MoNA: PS066203
- MoNA: KO000205
- MoNA: PR100736
- MoNA: PS066205
- MoNA: KO000207
- PMhub: MS000002259
- PubChem: 7258
- PDB-CCD: AMZ
- 3DMET: B01774
- NIKKAJI: J7.665A
- RefMet: CAIR
- PubChem: 165388
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-245
- KNApSAcK: 18406
分类词条
相关代谢途径
Reactome(0)
BioCyc(3)
PlantCyc(0)
代谢反应
256 个相关的代谢反应过程信息。
Reactome(12)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleobase biosynthesis:
ATP + H2O + L-Gln + XMP ⟶ AMP + GMP + L-Glu + PPi
- Purine ribonucleoside monophosphate biosynthesis:
ATP + H2O + L-Gln + XMP ⟶ AMP + GMP + L-Glu + PPi
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleobase biosynthesis:
ATP + H2O + L-Gln + XMP ⟶ AMP + GMP + L-Glu + PPi
- Purine ribonucleoside monophosphate biosynthesis:
ATP + H2O + L-Gln + XMP ⟶ AMP + GMP + L-Glu + PPi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleobase biosynthesis:
ATP + H2O + L-Gln + XMP ⟶ AMP + GMP + L-Glu + PPi
- Purine ribonucleoside monophosphate biosynthesis:
ATP + H2O + L-Gln + XMP ⟶ AMP + GMP + L-Glu + PPi
BioCyc(6)
- purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- superpathway of histidine, purine, and pyrimidine biosynthesis:
glt + imidazole acetol-phosphate ⟶ 2-oxoglutarate + L-histidinol-phosphate
- purine nucleotides de novo biosynthesis II:
adenylo-succinate ⟶ AMP + fumarate
- inosine-5'-phosphate biosynthesis I:
5'-phosphoribosyl-4-(N-succinocarboxamide)-5-aminoimidazole ⟶ aminoimidazole carboxamide ribonucleotide + fumarate
- inosine-5'-phosphate biosynthesis II:
5'-phosphoribosyl-4-(N-succinocarboxamide)-5-aminoimidazole ⟶ aminoimidazole carboxamide ribonucleotide + fumarate
- histidine biosynthesis:
glt + imidazole acetol-phosphate ⟶ 2-oxoglutarate + L-histidinol-phosphate
Plant Reactome(172)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
ATP + PRPP ⟶ PPi + phosphoribosyl-ATP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
INOH(4)
- Folate metabolism ( Folate metabolism ):
6-Pyruvoyl-5,6,7,8-tetrahydro-pterin + NADPH ⟶ 5,6,7,8-Tetrahydro-biopterin + NADP+
- Purine nucleotides and Nucleosides metabolism ( Purine nucleotides and Nucleosides metabolism ):
H2O + XTP ⟶ Pyrophosphate + XMP
- 5'-Phospho-ribosyl-4-(N-succino-carboxamide)-5-amino-imidazole = 5'-Phospho-ribosyl-4-carboxamido-5-amino-imidazole + Fumaric acid ( Purine nucleotides and Nucleosides metabolism ):
5'-Phospho-ribosyl-4-(N-succino-carboxamide)-5-amino-imidazole ⟶ 5'-Phospho-ribosyl-4-carboxamido-5-amino-imidazole + Fumaric acid
- 5'-Phospho-ribosyl-4-carboxamido-5-amino-imidazole + Pyrophosphate = 5-Amino-4-imidazole-carboxyamide + D-5-Phospho-ribosyl 1-diphosphate ( Purine nucleotides and Nucleosides metabolism ):
5'-Phospho-ribosyl-4-carboxamido-5-amino-imidazole + Pyrophosphate ⟶ 5-Amino-4-imidazole-carboxyamide + D-5-Phospho-ribosyl 1-diphosphate
PlantCyc(0)
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
Adenosine + Pi ⟶ Adenine + _alpha_-D-Ribose 1-phosphate
PathBank(60)
- Purine Metabolism:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Adenosine Deaminase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Adenylosuccinate Lyase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Gout or Kelley-Seegmiller Syndrome:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Lesch-Nyhan Syndrome (LNS):
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Molybdenum Cofactor Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Xanthine Dehydrogenase Deficiency (Xanthinuria):
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Purine Nucleoside Phosphorylase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- AICA-Ribosiduria:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Azathioprine Action Pathway:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Mercaptopurine Action Pathway:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Thioguanine Action Pathway:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Xanthinuria Type I:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Xanthinuria Type II:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Adenine Phosphoribosyltransferase Deficiency (APRT):
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Mitochondrial DNA Depletion Syndrome-3:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Myoadenylate Deaminase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Purine Nucleotides De Novo Biosynthesis:
N(6)-(1,2-dicarboxyethyl)AMP ⟶ Adenosine monophosphate + Fumaric acid
- One Carbon Pool by Folate:
S-Aminomethyldihydrolipoylprotein; + Tetrahydrofolic acid ⟶ 5,10-Methylene-THF + Ammonia + dihydrolipoylprotein
- Purine Nucleotides De Novo Biosynthesis 2:
N(6)-(1,2-dicarboxyethyl)AMP ⟶ Adenosine monophosphate + Fumaric acid
- One Carbon Pool by Folate I:
S-Aminomethyldihydrolipoylprotein; + Tetrahydrofolic acid ⟶ 5,10-Methylene-THF + Ammonia + dihydrolipoylprotein
- Purine Nucleotides De Novo Biosynthesis:
N(6)-(1,2-dicarboxyethyl)AMP ⟶ Adenosine monophosphate + Fumaric acid
- Purine Metabolism:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenosine Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenylosuccinate Lyase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- AICA-Ribosiduria:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Gout or Kelley-Seegmiller Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthine Dehydrogenase Deficiency (Xanthinuria):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Lesch-Nyhan Syndrome (LNS):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Molybdenum Cofactor Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Nucleoside Phosphorylase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type I:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type II:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenine Phosphoribosyltransferase Deficiency (APRT):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Mitochondrial DNA Depletion Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Myoadenylate Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Metabolism:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Metabolism:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenosine Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenylosuccinate Lyase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- AICA-Ribosiduria:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Gout or Kelley-Seegmiller Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthine Dehydrogenase Deficiency (Xanthinuria):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Lesch-Nyhan Syndrome (LNS):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Molybdenum Cofactor Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Nucleoside Phosphorylase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type I:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type II:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenine Phosphoribosyltransferase Deficiency (APRT):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Mitochondrial DNA Depletion Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Myoadenylate Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Nucleotides De Novo Biosynthesis:
N(6)-(1,2-dicarboxyethyl)AMP ⟶ Adenosine monophosphate + Fumaric acid
- One Carbon Pool by Folate:
S-Aminomethyldihydrolipoylprotein; + Tetrahydrofolic acid ⟶ 5,10-Methylene-THF + Ammonia + dihydrolipoylprotein
- Purine Nucleotides De Novo Biosynthesis 2:
N(6)-(1,2-dicarboxyethyl)AMP ⟶ Adenosine monophosphate + Fumaric acid
- Histidine Biosynthesis:
Adenosine triphosphate + D-Ribose 5-phosphate ⟶ Adenosine monophosphate + Hydrogen Ion + Phosphoribosyl pyrophosphate
- Histidine Metabolism:
Imidazole acetol-phosphate + L-Glutamic acid ⟶ L-histidinol phosphate + Oxoglutaric acid
- Histidine Biosynthesis:
Imidazole acetol-phosphate + L-Glutamic acid ⟶ L-histidinol-phosphate + Oxoglutaric acid
- Secondary Metabolites: Histidine Biosynthesis:
Imidazole acetol-phosphate + L-Glutamic acid ⟶ L-histidinol-phosphate + Oxoglutaric acid
- Histidine Biosynthesis:
L-Glutamine + Phosphoribulosylformimino-AICAR-P ⟶ 5-Aminoimidazole-4-carboxamide + D-Erythro-imidazole-glycerol-phosphate + Hydrogen Ion + L-Glutamic acid
- Secondary Metabolites: Histidine Biosynthesis:
Imidazole acetol-phosphate + L-Glutamic acid ⟶ L-histidinol-phosphate + Oxoglutaric acid
PharmGKB(0)
4 个相关的物种来源信息
- 3702 - Arabidopsis thaliana: 10.1034/J.1399-3054.2003.00030.X
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Cunxiang Bo, Fang Liu, Zewen Zhang, Zhongjun Du, Haidi Xiu, Zhenling Zhang, Ming Li, Caiqing Zhang, Qiang Jia. Simvastatin attenuates silica-induced pulmonary inflammation and fibrosis in rats via the AMPK-NOX pathway.
BMC pulmonary medicine.
2024 May; 24(1):224. doi:
10.1186/s12890-024-03014-9
. [PMID: 38720270] - Ye-Rang Yun, Ji-Eun Lee. Kimchi attenuates endoplasmic reticulum stress-induced hepatic steatosis in HepG2 cells and C57BL/6N mice.
Nutrition research (New York, N.Y.).
2024 Apr; 124(?):43-54. doi:
10.1016/j.nutres.2024.01.013
. [PMID: 38367426] - Ajay Krishnan U, Periyasamy Viswanathan, Anuradha Carani Venkataraman. AMPK activation by AICAR reduces diet induced fatty liver in C57BL/6 mice.
Tissue & cell.
2023 Mar; 82(?):102054. doi:
10.1016/j.tice.2023.102054
. [PMID: 36913846] - Doaa Hussein Zineldeen, Nahid Mohamed Tahoon, Naglaa Ibrahim Sarhan. AICAR Ameliorates Non-Alcoholic Fatty Liver Disease via Modulation of the HGF/NF-κB/SNARK Signaling Pathway and Restores Mitochondrial and Endoplasmic Reticular Impairments in High-Fat Diet-Fed Rats.
International journal of molecular sciences.
2023 Feb; 24(4):. doi:
10.3390/ijms24043367
. [PMID: 36834782] - Xiaoguang Chen, Sang-Hoon Kim, Sangkee Rhee, Claus-Peter Witte. A plastid nucleoside kinase is involved in inosine salvage and control of purine nucleotide biosynthesis.
The Plant cell.
2023 Jan; 35(1):510-528. doi:
10.1093/plcell/koac320
. [PMID: 36342213] - Mikhail V Samsonov, Nikita V Podkuychenko, Asker Y Khapchaev, Eugene E Efremov, Elena V Yanushevskaya, Tatiana N Vlasik, Vadim Z Lankin, Iurii S Stafeev, Maxim V Skulachev, Marina V Shestakova, Alexander V Vorotnikov, Vladimir P Shirinsky. AICAR Protects Vascular Endothelial Cells from Oxidative Injury Induced by the Long-Term Palmitate Excess.
International journal of molecular sciences.
2021 Dec; 23(1):. doi:
10.3390/ijms23010211
. [PMID: 35008640] - Israr Ahmad, Adam Molyvdas, Ming-Yuan Jian, Ting Zhou, Amie M Traylor, Huachun Cui, Gang Liu, Weifeng Song, Anupam Agarwal, Tamas Jilling, Saurabh Aggarwal, Sadis Matalon. AICAR decreases acute lung injury by phosphorylating AMPK and upregulating heme oxygenase-1.
The European respiratory journal.
2021 12; 58(6):. doi:
10.1183/13993003.03694-2020
. [PMID: 34049949] - Yong-Kyu Kim, Hye Kyoung Hong, Hyo Soon Yoo, Sung Pyo Park, Kyu Hyung Park. AICAR upregulates ABCA1/ABCG1 expression in the retinal pigment epithelium and reduces Bruch's membrane lipid deposit in ApoE deficient mice.
Experimental eye research.
2021 12; 213(?):108854. doi:
10.1016/j.exer.2021.108854
. [PMID: 34808137] - B Vandanmagsar, Y Yu, C Simmler, T N Dang, P Kuhn, A Poulev, D M Ribnicky, G F Pauli, Z E Floyd. Bioactive compounds from Artemisia dracunculus L. activate AMPK signaling in skeletal muscle.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2021 Nov; 143(?):112188. doi:
10.1016/j.biopha.2021.112188
. [PMID: 34563947] - Yuning Pang, Xiang Xu, Xiaojun Xiang, Yongnan Li, Zengqi Zhao, Jiamin Li, Shengnan Gao, Qiangde Liu, Kangsen Mai, Qinghui Ai. High Fat Activates O-GlcNAcylation and Affects AMPK/ACC Pathway to Regulate Lipid Metabolism.
Nutrients.
2021 May; 13(6):. doi:
10.3390/nu13061740
. [PMID: 34063748] - Sitai Liang, Bijaya K Nayak, Kristine S Vogel, Samy L Habib. TP63 Is Significantly Upregulated in Diabetic Kidney.
International journal of molecular sciences.
2021 Apr; 22(8):. doi:
10.3390/ijms22084070
. [PMID: 33920782] - Wang Zhang, Jing-Ya Li, Xiao-Chen Wei, Qian Wang, Ji-Yang Yang, Huan Hou, Zi-Wei Du, Xin-An Wu. Effects of dibutyl phthalate on lipid metabolism in liver and hepatocytes based on PPARα/SREBP-1c/FAS/GPAT/AMPK signal pathway.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2021 Mar; 149(?):112029. doi:
10.1016/j.fct.2021.112029
. [PMID: 33508418] - Shokoufeh Hashempour, Nahid Shahabadi, Aishat Adewoye, Brennen Murphy, Camaray Rouse, Brian A Salvatore, Christopher Stratton, Elahe Mahdavian. Binding Studies of AICAR and Human Serum Albumin by Spectroscopic, Theoretical, and Computational Methodologies.
Molecules (Basel, Switzerland).
2020 Nov; 25(22):. doi:
10.3390/molecules25225410
. [PMID: 33228044] - Jiwon Park, Yunkyoung Lee, Eun-Hye Jung, Sang-Min Kim, Hyeongjin Cho, Inn-Oc Han. Glucosamine regulates hepatic lipid accumulation by sensing glucose levels or feeding states of normal and excess.
Biochimica et biophysica acta. Molecular and cell biology of lipids.
2020 10; 1865(10):158764. doi:
10.1016/j.bbalip.2020.158764
. [PMID: 32663610] - José M López, Esther L Outtrim, Rong Fu, Diane J Sutcliffe, Rosa J Torres, H A Jinnah. Physiological levels of folic acid reveal purine alterations in Lesch-Nyhan disease.
Proceedings of the National Academy of Sciences of the United States of America.
2020 06; 117(22):12071-12079. doi:
10.1073/pnas.2003475117
. [PMID: 32430324] - Jonathan Kopel, Kei Higuchi, Bojana Ristic, Toshihiro Sato, Sabarish Ramachandran, Vadivel Ganapathy. The Hepatic Plasma Membrane Citrate Transporter NaCT (SLC13A5) as a Molecular Target for Metformin.
Scientific reports.
2020 05; 10(1):8536. doi:
10.1038/s41598-020-65621-w
. [PMID: 32444674] - Wan-Long Tsai, Chien-Ning Hsu, You-Lin Tain. Whether AICAR in Pregnancy or Lactation Prevents Hypertension Programmed by High Saturated Fat Diet: A Pilot Study.
Nutrients.
2020 Feb; 12(2):. doi:
10.3390/nu12020448
. [PMID: 32053935] - Luping Yang, Yijing Jiang, Lihong Shi, Dongling Zhong, Yuxi Li, Juan Li, Rongjiang Jin. AMPK: Potential Therapeutic Target for Alzheimer's Disease.
Current protein & peptide science.
2020; 21(1):66-77. doi:
10.2174/1389203720666190819142746
. [PMID: 31424367] - J-M Li, W Lu, J Ye, Y Han, H Chen, L-S Wang. Association between expression of AMPK pathway and adiponectin, leptin, and vascular endothelial function in rats with coronary heart disease.
European review for medical and pharmacological sciences.
2020 01; 24(2):905-914. doi:
10.26355/eurrev_202001_20075
. [PMID: 32016997] - Maya W Haaker, Hedwig S Kruitwagen, Arie B Vaandrager, Martin Houweling, Louis C Penning, Martijn R Molenaar, Monique E van Wolferen, Loes A Oosterhoff, Bart Spee, J Bernd Helms. Identification of potential drugs for treatment of hepatic lipidosis in cats using an in vitro feline liver organoid system.
Journal of veterinary internal medicine.
2020 Jan; 34(1):132-138. doi:
10.1111/jvim.15670
. [PMID: 31830357] - Ran Hee Choi, Abigail McConahay, Mackenzie B Johnson, Ha-Won Jeong, Ho-Jin Koh. Adipose tissue-specific knockout of AMPKα1/α2 results in normal AICAR tolerance and glucose metabolism.
Biochemical and biophysical research communications.
2019 11; 519(3):633-638. doi:
10.1016/j.bbrc.2019.09.049
. [PMID: 31540695] - Mamoru Tanida, Yusaku Iwasaki, Naoki Yamamoto. Central Injection of Leptin Increases Sympathetic Nerve Outflows to the Stomach and Spleen in Anesthetized Rats.
In vivo (Athens, Greece).
2019 Nov; 33(6):1827-1832. doi:
10.21873/invivo.11675
. [PMID: 31662509] - Christelle Viglino, Bernard Foglia, Christophe Montessuit. Chronic AICAR treatment prevents metabolic changes in cardiomyocytes exposed to free fatty acids.
Pflugers Archiv : European journal of physiology.
2019 09; 471(9):1219-1234. doi:
10.1007/s00424-019-02285-0
. [PMID: 31152240] - Sreenath Nair, Anne M Strohecker, Avinash K Persaud, Bhawana Bissa, Shanmugam Muruganandan, Craig McElroy, Rakesh Pathak, Michelle Williams, Radhika Raj, Amal Kaddoumi, Alex Sparreboom, Aaron M Beedle, Rajgopal Govindarajan. Adult stem cell deficits drive Slc29a3 disorders in mice.
Nature communications.
2019 07; 10(1):2943. doi:
10.1038/s41467-019-10925-3
. [PMID: 31270333] - Tim Sobolevsky, Brian Ahrens. Urinary concentrations of AICAR and mannitol in athlete population.
Drug testing and analysis.
2019 Mar; 11(3):530-535. doi:
10.1002/dta.2557
. [PMID: 30548818] - Bodokhsuren Tsogbadrakh, Hyunjin Ryu, Kyung Don Ju, Jinho Lee, Sohyun Yun, Kyung-Sang Yu, Hyo Jin Kim, Curie Ahn, Kook-Hwan Oh. AICAR, an AMPK activator, protects against cisplatin-induced acute kidney injury through the JAK/STAT/SOCS pathway.
Biochemical and biophysical research communications.
2019 02; 509(3):680-686. doi:
10.1016/j.bbrc.2018.12.159
. [PMID: 30616891] - Péter Monostori, Glynis Klinke, Jana Hauke, Sylvia Richter, Jörgen Bierau, Sven F Garbade, Georg F Hoffmann, Claus-Dieter Langhans, Dorothea Haas, Jürgen G Okun. Extended diagnosis of purine and pyrimidine disorders from urine: LC MS/MS assay development and clinical validation.
PloS one.
2019; 14(2):e0212458. doi:
10.1371/journal.pone.0212458
. [PMID: 30817767] - Zhifa Wang, Yukun Cao, Qiang Yin, Yuehu Han, Yunya Wang, Guocheng Sun, Hailong Zhu, Ming Xu, Chunhu Gu. Activation of AMPK alleviates cardiopulmonary bypass-induced cardiac injury via ameliorating acute cardiac glucose metabolic disorder.
Cardiovascular therapeutics.
2018 Dec; 36(6):e12482. doi:
10.1111/1755-5922.12482
. [PMID: 30632675] - Jianlong Gao, Rui Xiong, Dan Xiong, Wenxing Zhao, Sheng Zhang, Tao Yin, Xinhua Zhang, Guozhen Jiang, Zhengyu Yin. The Adenosine Monophosphate (AMP) Analog, 5-Aminoimidazole-4-Carboxamide Ribonucleotide (AICAR) Inhibits Hepatosteatosis and Liver Tumorigenesis in a High-Fat Diet Murine Model Treated with Diethylnitrosamine (DEN).
Medical science monitor : international medical journal of experimental and clinical research.
2018 Nov; 24(?):8533-8543. doi:
10.12659/msm.910544
. [PMID: 30474622] - Carolina Nylén, Wataru Aoi, Ahmed M Abdelmoez, David G Lassiter, Leonidas S Lundell, Harriet Wallberg-Henriksson, Erik Näslund, Nicolas J Pillon, Anna Krook. IL6 and LIF mRNA expression in skeletal muscle is regulated by AMPK and the transcription factors NFYC, ZBTB14, and SP1.
American journal of physiology. Endocrinology and metabolism.
2018 11; 315(5):E995-E1004. doi:
10.1152/ajpendo.00398.2017
. [PMID: 29688769] - Sitai Liang, Edward A Medina, Boajie Li, Samy L Habib. Preclinical evidence of the enhanced effectiveness of combined rapamycin and AICAR in reducing kidney cancer.
Molecular oncology.
2018 11; 12(11):1917-1934. doi:
10.1002/1878-0261.12370
. [PMID: 30107094] - Yu Inata, Giovanna Piraino, Paul W Hake, Michael O'Connor, Patrick Lahni, Vivian Wolfe, Christine Schulte, Victoria Moore, Jeanne M James, Basilia Zingarelli. Age-dependent cardiac function during experimental sepsis: effect of pharmacological activation of AMP-activated protein kinase by AICAR.
American journal of physiology. Heart and circulatory physiology.
2018 10; 315(4):H826-H837. doi:
10.1152/ajpheart.00052.2018
. [PMID: 29979626] - Philipp Glosse, Martina Feger, Kerim Mutig, Hong Chen, Frank Hirche, Ahmed Abdallah Hasan, Mohamed M S Gaballa, Berthold Hocher, Florian Lang, Michael Föller. AMP-activated kinase is a regulator of fibroblast growth factor 23 production.
Kidney international.
2018 09; 94(3):491-501. doi:
10.1016/j.kint.2018.03.006
. [PMID: 29861059] - Shumiao Zhang, Yaguang Zhou, Lei Zhao, Xin Tian, Min Jia, Xiaoming Gu, Na Feng, Rui An, Lu Yang, Guoxu Zheng, Juan Li, Haitao Guo, Rong Fan, Jianming Pei. κ-opioid receptor activation protects against myocardial ischemia-reperfusion injury via AMPK/Akt/eNOS signaling activation.
European journal of pharmacology.
2018 Aug; 833(?):100-108. doi:
10.1016/j.ejphar.2018.05.043
. [PMID: 29856969] - Michael Mendler, Stefan Kopf, Jan B Groener, Christin Riedinger, Thomas H Fleming, Peter P Nawroth, Jürgen G Okun. Urine levels of 5-aminoimidazole-4-carboxamide riboside (AICAR) in patients with type 2 diabetes.
Acta diabetologica.
2018 Jun; 55(6):585-592. doi:
10.1007/s00592-018-1130-2
. [PMID: 29546577] - Dong Fu, Jennifer Lippincott-Schwartz. Monitoring the Effects of Pharmacological Reagents on Mitochondrial Morphology.
Current protocols in cell biology.
2018 06; 79(1):e45. doi:
10.1002/cpcb.45
. [PMID: 29924486] - Xinwei Li, Yu Li, Hongyan Ding, Jihong Dong, Renhe Zhang, Dan Huang, Lin Lei, Zhe Wang, Guowen Liu, Xiaobing Li. Insulin suppresses the AMPK signaling pathway to regulate lipid metabolism in primary cultured hepatocytes of dairy cows.
The Journal of dairy research.
2018 May; 85(2):157-162. doi:
10.1017/s002202991800016x
. [PMID: 29785900] - Nicolas O Jørgensen, Jørgen F P Wojtaszewski, Rasmus Kjøbsted. Serum Is Not Necessary for Prior Pharmacological Activation of AMPK to Increase Insulin Sensitivity of Mouse Skeletal Muscle.
International journal of molecular sciences.
2018 Apr; 19(4):. doi:
10.3390/ijms19041201
. [PMID: 29662023] - Rosalyn D Abbott, Francis E Borowsky, Carlo A Alonzo, Adam Zieba, Irene Georgakoudi, David L Kaplan. Variability in responses observed in human white adipose tissue models.
Journal of tissue engineering and regenerative medicine.
2018 03; 12(3):840-847. doi:
10.1002/term.2572
. [PMID: 28879656] - Huajie Li, Jian Wu, Linfeng Zhu, Luolin Sha, Song Yang, Jiang Wei, Lei Ji, Xiaochun Tang, Keshi Mao, Liping Cao, Ning Wei, Wei Xie, Zhilong Yang. Insulin degrading enzyme contributes to the pathology in a mixed model of Type 2 diabetes and Alzheimer's disease: possible mechanisms of IDE in T2D and AD.
Bioscience reports.
2018 02; 38(1):. doi:
10.1042/bsr20170862
. [PMID: 29222348] - David G Lassiter, Carolina Nylén, Rasmus J O Sjögren, Alexander V Chibalin, Harriet Wallberg-Henriksson, Erik Näslund, Anna Krook, Juleen R Zierath. FAK tyrosine phosphorylation is regulated by AMPK and controls metabolism in human skeletal muscle.
Diabetologia.
2018 02; 61(2):424-432. doi:
10.1007/s00125-017-4451-8
. [PMID: 29022062] - Kathryn Glaser, Peter Dickie, Derek Neilson, Alexander Osborn, Belinda Hsi Dickie. Linkage of Metabolic Defects to Activated PIK3CA Alleles in Endothelial Cells Derived from Lymphatic Malformation.
Lymphatic research and biology.
2018 Feb; 16(1):43-55. doi:
10.1089/lrb.2017.0033
. [PMID: 29346025] - Nadia Boudaba, Allison Marion, Camille Huet, Rémi Pierre, Benoit Viollet, Marc Foretz. AMPK Re-Activation Suppresses Hepatic Steatosis but its Downregulation Does Not Promote Fatty Liver Development.
EBioMedicine.
2018 Feb; 28(?):194-209. doi:
10.1016/j.ebiom.2018.01.008
. [PMID: 29343420] - Bo Kou, Wei Liu, Xu Xu, Yang Yang, Qiuyue Yi, Fengwei Guo, Jianpeng Li, Jinsong Zhou, Qingshan Kou. Autophagy induction enhances tetrandrine-induced apoptosis via the AMPK/mTOR pathway in human bladder cancer cells.
Oncology reports.
2017 Nov; 38(5):3137-3143. doi:
10.3892/or.2017.5988
. [PMID: 29048631] - C Buisson, C Frelat, C Mongongu, N Martinat, M Audran. Implementation of AICAR analysis by GC-C-IRMS for anti-doping purposes.
Drug testing and analysis.
2017 Nov; 9(11-12):1704-1712. doi:
10.1002/dta.2322
. [PMID: 29032594] - Lucas Adrian, Matthias Lenski, Klaus Tödter, Jörg Heeren, Michael Böhm, Ulrich Laufs. AMPK Prevents Palmitic Acid-Induced Apoptosis and Lipid Accumulation in Cardiomyocytes.
Lipids.
2017 09; 52(9):737-750. doi:
10.1007/s11745-017-4285-7
. [PMID: 28825205] - Jenny K Y Wong, Wai Him Kwok, George H M Chan, Timmy L S Choi, Emmie N M Ho, Murielle Jaubert, Ludovic Bailly-Chouriberry, Yves Bonnaire, Adam Cawley, H Ming Williams, John Keledjian, Lydia Brooks, Adam Chambers, Yuanyuan Lin, Terence S M Wan. Doping control study of AICAR in post-race urine and plasma samples from horses.
Drug testing and analysis.
2017 Sep; 9(9):1363-1371. doi:
10.1002/dta.2205
. [PMID: 28407446] - Lindsey R Klingbeil, Paul Kim, Giovanna Piraino, Michael O'Connor, Paul W Hake, Vivian Wolfe, Basilia Zingarelli. Age-Dependent Changes in AMPK Metabolic Pathways in the Lung in a Mouse Model of Hemorrhagic Shock.
American journal of respiratory cell and molecular biology.
2017 05; 56(5):585-596. doi:
10.1165/rcmb.2016-0118oc
. [PMID: 28085510] - Xiao-Yu Cheng, Yang-Yang Li, Cheng Huang, Jun Li, Hong-Wei Yao. AMP-activated protein kinase reduces inflammatory responses and cellular senescence in pulmonary emphysema.
Oncotarget.
2017 Apr; 8(14):22513-22523. doi:
10.18632/oncotarget.15116
. [PMID: 28186975] - Jing Wang, Ang Ma, Ming Zhao, Haibo Zhu. AMPK activation reduces the number of atheromata macrophages in ApoE deficient mice.
Atherosclerosis.
2017 03; 258(?):97-107. doi:
10.1016/j.atherosclerosis.2017.01.036
. [PMID: 28235712] - Zhengguang Wang, Fangyuan Xiong, Xiaoshan Wang, Yijun Qi, Haoyuan Yu, Yong Zhu, Huaqing Zhu. Nuclear receptor retinoid-related orphan receptor alpha promotes apoptosis but is reduced in human gastric cancer.
Oncotarget.
2017 Feb; 8(7):11105-11113. doi:
10.18632/oncotarget.14364
. [PMID: 28052040] - So-Young Lee, Jun Mo Kang, Dong-Jin Kim, Seon Hwa Park, Hye Yun Jeong, Yu Ho Lee, Yang Gyun Kim, Dong Ho Yang, Sang Ho Lee. PGC1α Activators Mitigate Diabetic Tubulopathy by Improving Mitochondrial Dynamics and Quality Control.
Journal of diabetes research.
2017; 2017(?):6483572. doi:
10.1155/2017/6483572
. [PMID: 28409163] - Dzmitry Matsiukevich, Giovanna Piraino, Lindsey R Klingbeil, Paul W Hake, Vivian Wolfe, Michael O'Connor, Basilia Zingarelli. The AMPK Activator Aicar Ameliorates Age-Dependent Myocardial Injury in Murine Hemorrhagic Shock.
Shock (Augusta, Ga.).
2017 01; 47(1):70-78. doi:
10.1097/shk.0000000000000730
. [PMID: 27513082] - Tomohiro Suzuki, Naoki Yamamoto, Jae-Hoon Choi, Tomoyuki Takano, Yohei Sasaki, Yurika Terashima, Akinobu Ito, Hideo Dohra, Hirofumi Hirai, Yukino Nakamura, Kentaro Yano, Hirokazu Kawagishi. The biosynthetic pathway of 2-azahypoxanthine in fairy-ring forming fungus.
Scientific reports.
2016 12; 6(?):39087. doi:
10.1038/srep39087
. [PMID: 27991529] - Samy L Habib, Anamika Yadav, Dawit Kidane, Robert H Weiss, Sitai Liang. Novel protective mechanism of reducing renal cell damage in diabetes: Activation AMPK by AICAR increased NRF2/OGG1 proteins and reduced oxidative DNA damage.
Cell cycle (Georgetown, Tex.).
2016 Nov; 15(22):3048-3059. doi:
10.1080/15384101.2016.1231259
. [PMID: 27611085] - Guido A Gualdoni, Katharina A Mayer, Lisa Göschl, Nicole Boucheron, Wilfried Ellmeier, Gerhard J Zlabinger. The AMP analog AICAR modulates the Treg/Th17 axis through enhancement of fatty acid oxidation.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
2016 11; 30(11):3800-3809. doi:
10.1096/fj.201600522r
. [PMID: 27492924] - Mohammad M Al-Bataineh, Hui Li, Kazuhiro Ohmi, Fan Gong, Allison L Marciszyn, Sajid Naveed, Xiaoqing Zhu, Dietbert Neumann, Qi Wu, Lei Cheng, Robert A Fenton, Núria M Pastor-Soler, Kenneth R Hallows. Activation of the metabolic sensor AMP-activated protein kinase inhibits aquaporin-2 function in kidney principal cells.
American journal of physiology. Renal physiology.
2016 11; 311(5):F890-F900. doi:
10.1152/ajprenal.00308.2016
. [PMID: 27534994] - Bo Chen, Jin Li, Haibo Zhu. AMP-activated protein kinase attenuates oxLDL uptake in macrophages through PP2A/NF-κB/LOX-1 pathway.
Vascular pharmacology.
2016 10; 85(?):1-10. doi:
10.1016/j.vph.2015.08.012
. [PMID: 26297684] - Wilfred Lieberthal, Meiyi Tang, Mark Lusco, Mersema Abate, Jerrold S Levine. Preconditioning mice with activators of AMPK ameliorates ischemic acute kidney injury in vivo.
American journal of physiology. Renal physiology.
2016 10; 311(4):F731-F739. doi:
10.1152/ajprenal.00541.2015
. [PMID: 27252492] - K Perdan-Pirkmajer, S Pirkmajer, M Thevis, A Thomas, S Praprotnik, A Hočevar, Ž Rotar, N Gašperšič, S Sodin-Šemrl, J Žibert, J Omersel, A V Chibalin, M Tomšič, A Ambrožič. Methotrexate reduces HbA1c concentration but does not produce chronic accumulation of ZMP in patients with rheumatoid or psoriatic arthritis.
Scandinavian journal of rheumatology.
2016 Oct; 45(5):347-55. doi:
10.3109/03009742.2015.1105290
. [PMID: 26726793] - M López-Yoldi, R Castilla-Madrigal, M P Lostao, A Barber, J Prieto, J A Martínez, M Bustos, M J Moreno-Aliaga. Cardiotrophin-1 decreases intestinal sugar uptake in mice and in Caco-2 cells.
Acta physiologica (Oxford, England).
2016 07; 217(3):217-26. doi:
10.1111/apha.12674
. [PMID: 26972986] - Wai Him Kwok, Timmy L S Choi, Karen Y Kwok, George H M Chan, Jenny K Y Wong, Terence S M Wan. Doping control analysis of 46 polar drugs in horse plasma and urine using a 'dilute-and-shoot' ultra high performance liquid chromatography-high resolution mass spectrometry approach.
Journal of chromatography. A.
2016 Jun; 1451(?):41-49. doi:
10.1016/j.chroma.2016.05.002
. [PMID: 27180888] - Quancai Sun, Weipeng Qi, Jeremy J Yang, Kyong Sup Yoon, John M Clark, Yeonhwa Park. Fipronil promotes adipogenesis via AMPKα-mediated pathway in 3T3-L1 adipocytes.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2016 Jun; 92(?):217-23. doi:
10.1016/j.fct.2016.04.011
. [PMID: 27103584] - Elizabeth Moreno-Arriola, Mohammed El Hafidi, Daniel Ortega-Cuéllar, Karla Carvajal. AMP-Activated Protein Kinase Regulates Oxidative Metabolism in Caenorhabditis elegans through the NHR-49 and MDT-15 Transcriptional Regulators.
PloS one.
2016; 11(1):e0148089. doi:
10.1371/journal.pone.0148089
. [PMID: 26824904] - Omar Abdul-Rahman, Endre Kristóf, Quang-Minh Doan-Xuan, András Vida, Lilla Nagy, Ambrus Horváth, József Simon, Tamás Maros, István Szentkirályi, Lehel Palotás, Tamás Debreceni, Péter Csizmadia, Tamás Szerafin, Tamás Fodor, Magdolna Szántó, Attila Tóth, Borbála Kiss, Zsolt Bacsó, Péter Bai. AMP-Activated Kinase (AMPK) Activation by AICAR in Human White Adipocytes Derived from Pericardial White Adipose Tissue Stem Cells Induces a Partial Beige-Like Phenotype.
PloS one.
2016; 11(6):e0157644. doi:
10.1371/journal.pone.0157644
. [PMID: 27322180] - Jing Li, Jun Song, Heidi L Weiss, Todd Weiss, Courtney M Townsend, B Mark Evers. Activation of AMPK Stimulates Neurotensin Secretion in Neuroendocrine Cells.
Molecular endocrinology (Baltimore, Md.).
2016 Jan; 30(1):26-36. doi:
10.1210/me.2015-1094
. [PMID: 26528831] - Yong Rao, Hong Liu, Lin Gao, Hong Yu, Tian-Miao Ou, Jia-Heng Tan, Shi-Liang Huang, Hong-Gen Wang, Ding Li, Lian-Quan Gu, Ji-Ming Ye, Zhi-Shu Huang. Synthesis and Biological Evaluation of Novel Bouchardatine Derivatives as Potential Adipogenesis/Lipogenesis Inhibitors for Antiobesity Treatment.
Journal of medicinal chemistry.
2015 Dec; 58(23):9395-413. doi:
10.1021/acs.jmedchem.5b01566
. [PMID: 26572282] - Jinmi Lee, Seok-Woo Hong, Se Eun Park, Eun-Jung Rhee, Cheol-Young Park, Ki-Won Oh, Sung-Woo Park, Won-Young Lee. AMP-activated protein kinase suppresses the expression of LXR/SREBP-1 signaling-induced ANGPTL8 in HepG2 cells.
Molecular and cellular endocrinology.
2015 Oct; 414(?):148-55. doi:
10.1016/j.mce.2015.07.031
. [PMID: 26254015] - Dan Zhou, Qing Ai, Ling Lin, Xianqiong Gong, Pu Ge, Qian Che, Jingyuan Wan, Aiqing Wen, Li Zhang. 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside-attenuates LPS/D-Gal-induced acute hepatitis in mice.
Innate immunity.
2015 Oct; 21(7):698-705. doi:
10.1177/1753425915586231
. [PMID: 25979627] - Yu-Shan Zheng, Jian-You Zhang, Dong-Hui Zhang. Fatsioside A‑induced apoptotic death of HepG2 cells requires activation of AMP‑activated protein kinase.
Molecular medicine reports.
2015 Oct; 12(4):5679-84. doi:
10.3892/mmr.2015.4194
. [PMID: 26252753] - M A de Laat, M A Robinson, K J Gruntmeir, Y Liu, L R Soma, V A Lacombe. AICAR administration affects glucose metabolism by upregulating the novel glucose transporter, GLUT8, in equine skeletal muscle.
Veterinary journal (London, England : 1997).
2015 Sep; 205(3):381-6. doi:
10.1016/j.tvjl.2015.05.018
. [PMID: 26116041] - Shu-Jun Jiang, Hui Dong, Jing-Bin Li, Li-Jun Xu, Xin Zou, Kai-Fu Wang, Fu-Er Lu, Ping Yi. Berberine inhibits hepatic gluconeogenesis via the LKB1-AMPK-TORC2 signaling pathway in streptozotocin-induced diabetic rats.
World journal of gastroenterology.
2015 Jul; 21(25):7777-85. doi:
10.3748/wjg.v21.i25.7777
. [PMID: 26167077] - Elizabeth C Bowdridge, Madhusudan P Goravanahally, E Keith Inskeep, Jorge A Flores. Activation of Adenosine Monophosphate-Activated Protein Kinase Is an Additional Mechanism That Participates in Mediating Inhibitory Actions of Prostaglandin F2Alpha in Mature, but Not Developing, Bovine Corpora Lutea.
Biology of reproduction.
2015 Jul; 93(1):7. doi:
10.1095/biolreprod.115.129411
. [PMID: 25972015] - Christian Görgens, Sven Guddat, Anne-Katrin Orlovius, Gerd Sigmund, Andreas Thomas, Mario Thevis, Wilhelm Schänzer. "Dilute-and-inject" multi-target screening assay for highly polar doping agents using hydrophilic interaction liquid chromatography high resolution/high accuracy mass spectrometry for sports drug testing.
Analytical and bioanalytical chemistry.
2015 Jul; 407(18):5365-79. doi:
10.1007/s00216-015-8699-x
. [PMID: 25925859] - Qiong Lv, Qianna Zhen, Lulu Liu, Rufei Gao, Shumin Yang, Huang Zhou, Richa Goswami, Qifu Li. AMP-kinase pathway is involved in tumor necrosis factor alpha-induced lipid accumulation in human hepatoma cells.
Life sciences.
2015 Jun; 131(?):23-9. doi:
10.1016/j.lfs.2015.03.003
. [PMID: 25817233] - Jinghong Zhao, Satoshi Miyamoto, Young-Hyun You, Kumar Sharma. AMP-activated protein kinase (AMPK) activation inhibits nuclear translocation of Smad4 in mesangial cells and diabetic kidneys.
American journal of physiology. Renal physiology.
2015 May; 308(10):F1167-77. doi:
10.1152/ajprenal.00234.2014
. [PMID: 25428125] - Thomas E Jensen, Fiona A Ross, Maximilian Kleinert, Lykke Sylow, Jonas R Knudsen, Graeme J Gowans, D Grahame Hardie, Erik A Richter. PT-1 selectively activates AMPK-γ1 complexes in mouse skeletal muscle, but activates all three γ subunit complexes in cultured human cells by inhibiting the respiratory chain.
The Biochemical journal.
2015 May; 467(3):461-72. doi:
10.1042/bj20141142
. [PMID: 25695398] - Martial Boutchueng-Djidjou, Gabriel Collard-Simard, Suzanne Fortier, Sébastien S Hébert, Isabelle Kelly, Christian R Landry, Robert L Faure. The last enzyme of the de novo purine synthesis pathway 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC) plays a central role in insulin signaling and the Golgi/endosomes protein network.
Molecular & cellular proteomics : MCP.
2015 Apr; 14(4):1079-92. doi:
10.1074/mcp.m114.047159
. [PMID: 25687571] - Daniel A Escobar, Ana M Botero-Quintero, Benjamin C Kautza, Jason Luciano, Patricia Loughran, Sophie Darwiche, Matthew R Rosengart, Brian S Zuckerbraun, Hernando Gomez. Adenosine monophosphate-activated protein kinase activation protects against sepsis-induced organ injury and inflammation.
The Journal of surgical research.
2015 Mar; 194(1):262-72. doi:
10.1016/j.jss.2014.10.009
. [PMID: 25456115] - Khadija El Hadri, Chantal Denoyelle, Lucas Ravaux, Benoit Viollet, Marc Foretz, Bertrand Friguet, Mustapha Rouis, Michel Raymondjean. AMPK Signaling Involvement for the Repression of the IL-1β-Induced Group IIA Secretory Phospholipase A2 Expression in VSMCs.
PloS one.
2015; 10(7):e0132498. doi:
10.1371/journal.pone.0132498
. [PMID: 26162096] - Yu-Lu Dai, Su-Ling Huang, Ying Leng. AICAR and Metformin Exert AMPK-dependent Effects on INS-1E Pancreatic β-cell Apoptosis via Differential Downstream Mechanisms.
International journal of biological sciences.
2015; 11(11):1272-80. doi:
10.7150/ijbs.12108
. [PMID: 26435693] - Xiaodong Zhang, Bradlee L Heckmann, Xitao Xie, Alicia M Saarinen, Jun Liu. Regulation of FSP27 protein stability by AMPK and HSC70.
American journal of physiology. Endocrinology and metabolism.
2014 Dec; 307(11):E1047-56. doi:
10.1152/ajpendo.00125.2014
. [PMID: 25315694] - A C Maher, J McFarlan, J Lally, L A Snook, A Bonen. TBC1D1 reduces palmitate oxidation by inhibiting β-HAD activity in skeletal muscle.
American journal of physiology. Regulatory, integrative and comparative physiology.
2014 Nov; 307(9):R1115-23. doi:
10.1152/ajpregu.00014.2014
. [PMID: 25163918] - Sandra C Rodrigues, Lucas C Pantaleão, Tatiane C Nogueira, Patrícia R Gomes, Gabriela G Albuquerque, Renato T Nachbar, Francisco L Torres-Leal, Luciana C Caperuto, Camilo Lellis-Santos, Gabriel F Anhê, Silvana Bordin. Selective regulation of hepatic lipid metabolism by the AMP-activated protein kinase pathway in late-pregnant rats.
American journal of physiology. Regulatory, integrative and comparative physiology.
2014 Nov; 307(9):R1146-56. doi:
10.1152/ajpregu.00513.2013
. [PMID: 25163923] - Jing Xiong, Huan Yang, Lili Wu, Wei Shang, Enfang Shan, Wei Liu, Gang Hu, Tao Xi, Jian Yang. Fluoxetine suppresses AMP-activated protein kinase signaling pathway to promote hepatic lipid accumulation in primary mouse hepatocytes.
The international journal of biochemistry & cell biology.
2014 Sep; 54(?):236-44. doi:
10.1016/j.biocel.2014.07.019
. [PMID: 25102273] - Hayley M O'Neill, James S Lally, Sandra Galic, Melissa Thomas, Paymon D Azizi, Morgan D Fullerton, Brennan K Smith, Thomas Pulinilkunnil, Zhiping Chen, M Constantine Samaan, Sebastian B Jorgensen, Jason R B Dyck, Graham P Holloway, Thomas J Hawke, Bryce J van Denderen, Bruce E Kemp, Gregory R Steinberg. AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice.
Diabetologia.
2014 Aug; 57(8):1693-702. doi:
10.1007/s00125-014-3273-1
. [PMID: 24913514] - Sookhee Bang, Yong Chen, Rexford S Ahima, Sangwon F Kim. Convergence of IPMK and LKB1-AMPK signaling pathways on metformin action.
Molecular endocrinology (Baltimore, Md.).
2014 Jul; 28(7):1186-93. doi:
10.1210/me.2014-1134
. [PMID: 24877601] - Thomas Piper, Andreas Thomas, Norbert Baume, Timothy Sobolevsky, Martial Saugy, Grigory Rodchenkov, Wilhelm Schänzer, Mario Thevis. Determination of ¹³C/¹² C ratios of endogenous urinary 5-amino-imidazole-4-carboxamide 1β-D-ribofuranoside (AICAR).
Rapid communications in mass spectrometry : RCM.
2014 Jun; 28(11):1194-202. doi:
10.1002/rcm.6891
. [PMID: 24760559] - Fleur Lien, Alexandre Berthier, Emmanuel Bouchaert, Céline Gheeraert, Jeremy Alexandre, Geoffrey Porez, Janne Prawitt, Hélène Dehondt, Maheul Ploton, Sophie Colin, Anthony Lucas, Alexandre Patrice, François Pattou, Hélène Diemer, Alain Van Dorsselaer, Christophe Rachez, Jelena Kamilic, Albert K Groen, Bart Staels, Philippe Lefebvre. Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk.
The Journal of clinical investigation.
2014 Mar; 124(3):1037-51. doi:
10.1172/jci68815
. [PMID: 24531544] - Scott A Fraser, Matthew Davies, Marina Katerelos, Kurt Gleich, Suet-Wan Choy, Rohan Steel, Sandra Galic, Peter F Mount, Bruce E Kemp, David A Power. Activation of AMPK reduces the co-transporter activity of NKCC1.
Molecular membrane biology.
2014 Mar; 31(2-3):95-102. doi:
10.3109/09687688.2014.902128
. [PMID: 24702155] - Anne-Emilie Declèves, Zarazuela Zolkipli, Joseph Satriano, Lin Wang, Tomohiro Nakayama, Mihael Rogac, Thuy P Le, Joëlle L Nortier, Marilyn G Farquhar, Robert K Naviaux, Kumar Sharma. Regulation of lipid accumulation by AMP-activated kinase [corrected] in high fat diet-induced kidney injury.
Kidney international.
2014 Mar; 85(3):611-23. doi:
10.1038/ki.2013.462
. [PMID: 24304883] - Weina Liu, Xiaofeng Zhai, Haipeng Li, Liu Ji. Depression-like behaviors in mice subjected to co-treatment of high-fat diet and corticosterone are ameliorated by AICAR and exercise.
Journal of affective disorders.
2014 Mar; 156(?):171-7. doi:
10.1016/j.jad.2013.11.025
. [PMID: 24388462] - Clinton M Hasenour, D Emerson Ridley, Curtis C Hughey, Freyja D James, E Patrick Donahue, Jane Shearer, Benoit Viollet, Marc Foretz, David H Wasserman. 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) effect on glucose production, but not energy metabolism, is independent of hepatic AMPK in vivo.
The Journal of biological chemistry.
2014 Feb; 289(9):5950-9. doi:
10.1074/jbc.m113.528232
. [PMID: 24403081] - Kapil Kampe, Jonas Sieber, Jana Marina Orellana, Peter Mundel, Andreas Werner Jehle. Susceptibility of podocytes to palmitic acid is regulated by fatty acid oxidation and inversely depends on acetyl-CoA carboxylases 1 and 2.
American journal of physiology. Renal physiology.
2014 Feb; 306(4):F401-9. doi:
10.1152/ajprenal.00454.2013
. [PMID: 24338821] - Pauline Erpicum, Jean-Marie Krzesinski, François Jouret. [Role of AMP-activated protein kinase in renal ischemic preconditioning].
Nephrologie & therapeutique.
2014 Feb; 10(1):17-24. doi:
10.1016/j.nephro.2013.10.006
. [PMID: 24387947] - Yuan Guo, Yi Zhang, Kai Hong, Fengyan Luo, Qiuping Gu, Nonghua Lu, Aiping Bai. AMPK inhibition blocks ROS-NFκB signaling and attenuates endotoxemia-induced liver injury.
PloS one.
2014; 9(1):e86881. doi:
10.1371/journal.pone.0086881
. [PMID: 24475189] - Nirma D Perera, Rebecca K Sheean, John W Scott, Bruce E Kemp, Malcolm K Horne, Bradley J Turner. Mutant TDP-43 deregulates AMPK activation by PP2A in ALS models.
PloS one.
2014; 9(3):e90449. doi:
10.1371/journal.pone.0090449
. [PMID: 24595038] - Jidong Cheng, Tianliang Huang, Youfeng Li, Yubai Guo, Yuzhang Zhu, Qingjia Wang, Xiaojun Tan, Weisheng Chen, Yongneng Zhang, Weijie Cheng, Tetsuya Yamamoto, Xubin Jing, Jiexiong Huang. AMP-activated protein kinase suppresses the in vitro and in vivo proliferation of hepatocellular carcinoma.
PloS one.
2014; 9(4):e93256. doi:
10.1371/journal.pone.0093256
. [PMID: 24709998] - Mohamed Kodiha, Ali Salimi, Yi Meng Wang, Ursula Stochaj. Pharmacological AMP kinase activators target the nucleolar organization and control cell proliferation.
PloS one.
2014; 9(1):e88087. doi:
10.1371/journal.pone.0088087
. [PMID: 24498249]