Pectolinarigenin (BioDeep_00000000290)

Main id: BioDeep_00000267733

 

human metabolite PANOMIX_OTCML-2023 natural product


代谢物信息卡片


4H-1-Benzopyran-4-one, 5,7-dihydroxy-6-methoxy-2-(4-methoxyphenyl)-

化学式: C17H14O6 (314.079)
中文名称: 柳穿鱼黄素, 番茄红素
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C1(O)=CC2OC(C3C=CC(OC)=CC=3)=CC(=O)C=2C(O)=C1OC
InChI: InChI=1S/C17H14O6/c1-21-10-5-3-9(4-6-10)13-7-11(18)15-14(23-13)8-12(19)17(22-2)16(15)20/h3-8,19-20H,1-2H3

描述信息

Pectolinarigenin is a dimethoxyflavone that is the 6,4-dimethyl ether derivative of scutellarein. It has a role as a plant metabolite. It is a dimethoxyflavone and a dihydroxyflavone. It is functionally related to a scutellarein.
Pectolinarigenin is a natural product found in Eupatorium cannabinum, Chromolaena odorata, and other organisms with data available.
Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2].
Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2].
Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2].

同义名列表

29 个代谢物同义名

4H-1-Benzopyran-4-one, 5,7-dihydroxy-6-methoxy-2-(4-methoxyphenyl)-; 5,7-dihydroxy-6-methoxy-2-(4-methoxyphenyl)-4H-1-benzopyran-4-one; 4H-1-Benzopyran-4-one,7-dihydroxy-6-methoxy-2-(4-methoxyphenyl)-; 5,7-Dihydroxy-6-methoxy-2-(4-methoxyphenyl)-4H-chromen-4-one #; 5,7-Dihydroxy-6-methoxy-2-(4-methoxyphenyl)-4H-chromen-4-one; 5,7-Dihydroxy-6-methoxy-2-(4-methoxy-phenyl)-chromen-4-one; 4,5-Dihydroxy-6-methoxy-2-(4-methoxy-phenyl)-chromen-7-one; 5,7-Dihydroxy-6-methoxy-2-(4-methoxyphenyl)-4-benzopyrone; 5,7-dihydroxy-6-methoxy-2-(4-methoxyphenyl)chromen-4-one; 5,7-dihydroxy-4',6-dimethoxyflavone; Flavone, 5,7-dihydroxy-4,6-dimethoxy-; 5,7-Dihydroxy-4,6-dimethoxyflavone; Flavone,7-dihydroxy-4,6-dimethoxy-; 5,7-Dihydroxy-6,4-dimethoxyflavone; scutellarein 6,4-dimethyl ether; scutellarein-6,4-dimethyl ether; GPQLHGCIAUEJQK-UHFFFAOYSA-N; 6-methoxy-4-methylapigenin; 6,4-dimethoxyscutellarein; PECTOLINARIGENIN [MI]; 4-Methylcapillarisin; Pectolinaringenin; 6-methoxyacacetin; Pectolinarigenin; UNII-4U3UZ1K35N; Oprea1_140721; ACon1_001597; 4U3UZ1K35N; 4'-Methylcapillarisin



数据库引用编号

19 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

280 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 12 BCL2, CASP3, HDAC1, JAK2, OPA1, PIK3CA, PTGS2, PTPN6, SLC27A1, SMAD3, STAT3, TGFB1
Peripheral membrane protein 2 JAK2, PTGS2
Endoplasmic reticulum membrane 4 BCL2, PTGS2, SLC27A1, UGT1A1
Nucleus 11 BCL2, CASP3, DNMT1, GABPA, HDAC1, JAK2, PPARA, PTPN6, SMAD3, STAT3, TGFB1
cytosol 9 BCL2, CASP3, HDAC1, JAK2, OPA1, PIK3CA, PTPN6, SMAD3, STAT3
dendrite 1 OPA1
mitochondrial membrane 1 OPA1
nucleoplasm 10 CASP3, DNMT1, GABPA, HDAC1, JAK2, OPA1, PPARA, PTPN6, SMAD3, STAT3
RNA polymerase II transcription regulator complex 1 STAT3
Cell membrane 2 CD8A, SLC27A1
lamellipodium 1 PIK3CA
Multi-pass membrane protein 1 CPT1A
cell surface 1 TGFB1
glutamatergic synapse 2 CASP3, JAK2
Golgi membrane 1 INS
mitochondrial inner membrane 1 OPA1
neuronal cell body 3 CASP3, HDAC1, TGFB1
postsynapse 1 JAK2
plasma membrane 9 CD8A, JAK2, PIK3CA, PTPN6, SLC27A1, SMAD3, STAT3, TGFB1, UGT1A1
Membrane 7 BCL2, CPT1A, JAK2, OPA1, PTPN6, SLC27A1, UGT1A1
axon 1 TGFB1
caveola 2 JAK2, PTGS2
extracellular exosome 1 PTPN6
endoplasmic reticulum 4 BCL2, PTGS2, SLC27A1, UGT1A1
extracellular space 3 IL6, INS, TGFB1
perinuclear region of cytoplasm 2 PIK3CA, UGT1A1
intercalated disc 1 PIK3CA
mitochondrion 4 BCL2, CPT1A, DNMT1, OPA1
protein-containing complex 4 BCL2, HDAC1, PTGS2, PTPN6
Microsome membrane 1 PTGS2
postsynaptic density 1 CASP3
pericentric heterochromatin 1 DNMT1
Single-pass type I membrane protein 1 CD8A
Secreted 3 IL6, INS, TGFB1
extracellular region 5 CD8A, IL6, INS, PTPN6, TGFB1
cytoplasmic side of plasma membrane 1 JAK2
Mitochondrion outer membrane 2 BCL2, CPT1A
Single-pass membrane protein 4 BCL2, OPA1, SLC27A1, UGT1A1
mitochondrial outer membrane 3 BCL2, CPT1A, OPA1
[Isoform 2]: Secreted 1 CD8A
transcription regulator complex 2 SMAD3, STAT3
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 1 CD8A
Secreted, extracellular space, extracellular matrix 1 TGFB1
nucleolus 1 PTPN6
axon cytoplasm 1 OPA1
cell-cell junction 1 PTPN6
Cytoplasm, perinuclear region 1 UGT1A1
Mitochondrion inner membrane 1 OPA1
heterochromatin 1 HDAC1
Membrane raft 1 JAK2
pore complex 1 BCL2
focal adhesion 1 JAK2
microtubule 1 OPA1
extracellular matrix 1 TGFB1
Mitochondrion intermembrane space 1 OPA1
mitochondrial intermembrane space 1 OPA1
collagen-containing extracellular matrix 1 TGFB1
secretory granule 1 TGFB1
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 2 PTGS2, SMAD3
nuclear outer membrane 1 PTGS2
receptor complex 2 CD8A, SMAD3
neuron projection 1 PTGS2
chromatin 5 GABPA, HDAC1, PPARA, SMAD3, STAT3
cytoskeleton 1 JAK2
mitochondrial crista 1 OPA1
blood microparticle 1 TGFB1
Endomembrane system 2 JAK2, SLC27A1
endosome lumen 2 INS, JAK2
female germ cell nucleus 1 DNMT1
euchromatin 1 JAK2
replication fork 1 DNMT1
myelin sheath 1 BCL2
basal plasma membrane 1 SLC27A1
plasma membrane raft 1 CD8A
secretory granule lumen 1 INS
Golgi lumen 2 INS, TGFB1
endoplasmic reticulum lumen 3 IL6, INS, PTGS2
transcription repressor complex 1 HDAC1
platelet alpha granule lumen 1 TGFB1
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
specific granule lumen 1 PTPN6
tertiary granule lumen 1 PTPN6
histone deacetylase complex 1 HDAC1
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
NuRD complex 1 HDAC1
extrinsic component of cytoplasmic side of plasma membrane 1 JAK2
heteromeric SMAD protein complex 1 SMAD3
SMAD protein complex 1 SMAD3
Sin3-type complex 1 HDAC1
death-inducing signaling complex 1 CASP3
[Isoform 1]: Cell membrane 1 CD8A
[Dynamin-like GTPase OPA1, long form]: Mitochondrion inner membrane 1 OPA1
[Dynamin-like GTPase OPA1, short form]: Mitochondrion intermembrane space 1 OPA1
extrinsic component of plasma membrane 1 JAK2
granulocyte macrophage colony-stimulating factor receptor complex 1 JAK2
interleukin-12 receptor complex 1 JAK2
interleukin-23 receptor complex 1 JAK2
[Latency-associated peptide]: Secreted, extracellular space, extracellular matrix 1 TGFB1
[Transforming growth factor beta-1]: Secreted 1 TGFB1
T cell receptor complex 1 CD8A
alpha-beta T cell receptor complex 1 PTPN6
interleukin-6 receptor complex 1 IL6
endoplasmic reticulum chaperone complex 1 UGT1A1
BAD-BCL-2 complex 1 BCL2
cytochrome complex 1 UGT1A1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA


文献列表

  • Jun Qian, Qian Li, Yangjie Song, Xuyan Gong, Kaili Hu, Guangbo Ge, Yao Sun. Pectolinarigenin ameliorates osteoporosis via enhancing Wnt signaling cascade in PPARβ-dependent manner. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2024 Jul; 129(?):155587. doi: 10.1016/j.phymed.2024.155587. [PMID: 38608598]
  • Peiqi Liu, Qian Li, Guanghao Zhu, Tiantian Zhang, Dongzhu Tu, Feng Zhang, Moshe Finel, Yuqi He, Guangbo Ge. Characterization of the glucuronidating pathway of pectolinarigenin, the major active constituent of the Chinese medicine Daji, in humans and its influence on biological activities. Journal of ethnopharmacology. 2023 Oct; 319(Pt 1):117280. doi: 10.1016/j.jep.2023.117280. [PMID: 37797876]
  • Zhao Deng, Dexin Shen, Mengxue Yu, Fenfang Zhou, Danni Shan, Yayun Fang, Wan Jin, Kaiyu Qian, Shenjuan Li, Gang Wang, Yi Zhang, Lingao Ju, Yu Xiao, Xinghuan Wang. Pectolinarigenin inhibits bladder urothelial carcinoma cell proliferation by regulating DNA damage/autophagy pathways. Cell death discovery. 2023 Jul; 9(1):214. doi: 10.1038/s41420-023-01508-9. [PMID: 37393350]
  • Huixin Tan, Fenghe Wang, Jiahuan Hu, Xiaoyan Duan, Wanting Bai, Xinbo Wang, Baolian Wang, Yan Su, Jinping Hu. Inhibitory interaction of flavonoids with organic cation transporter 2 and their structure-activity relationships for predicting nephroprotective effects. Journal of applied toxicology : JAT. 2023 Apr; ?(?):. doi: 10.1002/jat.4474. [PMID: 37057715]
  • Qian Li, Wen Zhang, Nuo Cheng, Yadi Zhu, Hao Li, Shuijun Zhang, Wenzhi Guo, Guangbo Ge. Pectolinarigenin ameliorates acetaminophen-induced acute liver injury via attenuating oxidative stress and inflammatory response in Nrf2 and PPARa dependent manners. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2023 Feb; 113(?):154726. doi: 10.1016/j.phymed.2023.154726. [PMID: 36863308]
  • Lulu Shi, Mingzhe Zou, Xingxing Zhou, Songhua Wang, Wei Meng, Zhou Lan. Comparison of protective effects of hesperetin and pectolinarigenin on high-fat diet-induced hyperlipidemia and hepatic steatosis in Golden Syrian hamsters. Experimental animals. 2023 Feb; 72(1):123-131. doi: 10.1538/expanim.22-0115. [PMID: 36310057]
  • Yuling Feng, Ramesh Bhandari, Chunmeng Li, Pengfei Shu, Imran Ibrahim Shaikh. Pectolinarigenin Suppresses LPS-Induced Inflammatory Response in Macrophages and Attenuates DSS-Induced Colitis by Modulating the NF-κB/Nrf2 Signaling Pathway. Inflammation. 2022 Dec; 45(6):2529-2543. doi: 10.1007/s10753-022-01710-4. [PMID: 35931839]
  • Zhou Lan, Kun Zhang, Jianhui He, Qiong Kang, Wei Meng, Songhua Wang. Pectolinarigenin shows lipid-lowering effects by inhibiting fatty acid biosynthesis in vitro and in vivo. Phytotherapy research : PTR. 2022 Nov; ?(?):. doi: 10.1002/ptr.7679. [PMID: 36415143]
  • Yutao Zhang, Changjian Wan, Zijie Song, Wei Meng, Songhua Wang, Zhou Lan. Pectolinarigenin reduces the expression of sterol regulatory element-binding proteins and cellular lipid levels. Bioscience, biotechnology, and biochemistry. 2022 Aug; 86(9):1220-1230. doi: 10.1093/bbb/zbac095. [PMID: 35723236]
  • Luana Heimfarth, Leandro da Silva Nascimento, Márcia de Jesus Amazonas da Silva, Waldecy de Lucca Junior, Emerson Silva Lima, Lucindo José Quintans-Junior, Valdir Florêncio da Veiga-Junior. Neuroprotective and anti-inflammatory effect of pectolinarigenin, a flavonoid from Amazonian Aegiphila integrifolia (Jacq.), against lipopolysaccharide-induced inflammation in astrocytes via NFκB and MAPK pathways. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2021 Nov; 157(?):112538. doi: 10.1016/j.fct.2021.112538. [PMID: 34500010]
  • Ahmed A Al-Karmalawy, Mai M Farid, Ahmed Mostafa, Alia Y Ragheb, Sara H Mahmoud, Mahmoud Shehata, Noura M Abo Shama, Mohamed GabAllah, Gomaa Mostafa-Hedeab, Mona M Marzouk. Naturally Available Flavonoid Aglycones as Potential Antiviral Drug Candidates against SARS-CoV-2. Molecules (Basel, Switzerland). 2021 Oct; 26(21):. doi: 10.3390/molecules26216559. [PMID: 34770969]
  • Yanfen Li, Fan Guo, Rongshuang Huang, Liang Ma, Ping Fu. Natural flavonoid pectolinarigenin alleviated kidney fibrosis via inhibiting the activation of TGFβ/SMAD3 and JAK2/STAT3 signaling. International immunopharmacology. 2021 Feb; 91(?):107279. doi: 10.1016/j.intimp.2020.107279. [PMID: 33340783]
  • Shih-Chung Yen, Liang-Chieh Chen, Han-Li Huang, Sin-Ting Ngo, Yi-Wen Wu, Tony Eight Lin, Tzu-Ying Sung, Ssu-Ting Lien, Hui-Ju Tseng, Shiow-Lin Pan, Wei-Jan Huang, Kai-Cheng Hsu. Investigation of Selected Flavonoid Derivatives as Potent FLT3 Inhibitors for the Potential Treatment of Acute Myeloid Leukemia. Journal of natural products. 2021 01; 84(1):1-10. doi: 10.1021/acs.jnatprod.0c00589. [PMID: 33393294]
  • Ling Feng, Yu Zhang, Yan-Chun Liu, Yan Liu, Shi-Hong Luo, Chun-Shuai Huang, Sheng-Hong Li. Leucoflavonine, a new bioactive racemic flavoalkaloid from the leaves of Leucosceptrum canum. Bioorganic & medicinal chemistry. 2019 01; 27(2):442-446. doi: 10.1016/j.bmc.2018.12.023. [PMID: 30579802]
  • Ho Jeong Lee, Venu Venkatarame Gowda Saralamma, Seong Min Kim, Sang Eun Ha, Preethi Vetrivel, Eun Hee Kim, Snag Joon Lee, Jeong Doo Heo, Shailima Rampogu, Keun Woo Lee, Gon Sup Kim. Comparative Proteomic Profiling of Tumor-Associated Proteins in Human Gastric Cancer Cells Treated with Pectolinarigenin. Nutrients. 2018 Oct; 10(11):. doi: 10.3390/nu10111596. [PMID: 30380781]
  • Njogu M Kimani, Josphat C Matasyoh, Marcel Kaiser, Reto Brun, Thomas J Schmidt. Antiprotozoal Sesquiterpene Lactones and Other Constituents from Tarchonanthus camphoratus and Schkuhria pinnata. Journal of natural products. 2018 01; 81(1):124-130. doi: 10.1021/acs.jnatprod.7b00747. [PMID: 29244495]
  • Sullim Lee, Da-Hye Lee, Jin-Chul Kim, Byung Hun Um, Sang Hyun Sung, Lak Shin Jeong, Yong Kee Kim, Su-Nam Kim. Pectolinarigenin, an aglycone of pectolinarin, has more potent inhibitory activities on melanogenesis than pectolinarin. Biochemical and biophysical research communications. 2017 11; 493(1):765-772. doi: 10.1016/j.bbrc.2017.08.106. [PMID: 28851651]
  • Ochuko L Erukainure, M Ahmed Mesaik, Olubunmi Atolani, Aliyu Muhammad, Chika I Chukwuma, Md Shahidul Islam. Pectolinarigenin from the leaves of Clerodendrum volubile shows potent immunomodulatory activity by inhibiting T - cell proliferation and modulating respiratory oxidative burst in phagocytes. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2017 Sep; 93(?):529-535. doi: 10.1016/j.biopha.2017.06.060. [PMID: 28686966]
  • Amer Tarawneh, Francisco León, Sara Pettaway, Khaled M Elokely, Michael L Klein, Janet Lambert, Arsala Mansoor, Stephen J Cutler. Flavonoids from Perovskia atriplicifolia and Their in Vitro Displacement of the Respective Radioligands for Human Opioid and Cannabinoid Receptors. Journal of natural products. 2015 Jun; 78(6):1461-5. doi: 10.1021/acs.jnatprod.5b00218. [PMID: 26035635]
  • Intouch Sakpakdeejaroen, Thana Juckmeta, Arunporn Itharat. Development and validation of RP-HPLC method to determine anti-allergic compound in Thai traditional remedy called Benjalokawichien. Journal of the Medical Association of Thailand = Chotmaihet thangphaet. 2014 Aug; 97 Suppl 8(?):S76-80. doi: . [PMID: 25518297]
  • Yusuke Watanabe, Paula Novaes, Rosa M Varela, José M G Molinillo, Hisashi Kato-Noguchi, Francisco A Macías. Phytotoxic potential of Onopordum acanthium L. (Asteraceae). Chemistry & biodiversity. 2014 Aug; 11(8):1247-55. doi: 10.1002/cbdv.201400070. [PMID: 25146768]
  • Elke H Heiss, Thi Van Anh Tran, Kristin Zimmermann, Stefan Schwaiger, Corina Vouk, Barbara Mayerhofer, Clemens Malainer, Atanas G Atanasov, Hermann Stuppner, Verena M Dirsch. Identification of chromomoric acid C-I as an Nrf2 activator in Chromolaena odorata. Journal of natural products. 2014 Mar; 77(3):503-8. doi: 10.1021/np400778m. [PMID: 24476568]
  • Palatheeya Sujatha, Gandhe Sreekanth, Shaikh Khasim, Belvotagi Venkatrao Adavi Rao, Bobbala Ravi Kumar, Achanta Venkata Narasimha Appa Rao. Flavonoids of Dikamali: A phytochemical reinvestigation. Natural product research. 2013 Oct; 27(20):1930-2. doi: 10.1080/14786419.2013.782494. [PMID: 23537094]
  • Chellaiah Muthu, Appadurai Daniel Reegan, Selvadurai Kingsley, Savarimuthu Ignacimuthu. Larvicidal activity of pectolinaringenin from Clerodendrum phlomidis L. against Culex quinquefasciatus Say and Aedes aegypti L. (Diptera: Culicidae). Parasitology research. 2012 Sep; 111(3):1059-65. doi: 10.1007/s00436-012-2932-8. [PMID: 22562213]
  • Rosa Tundis, Marco Bonesi, Federica Menichini, Monica R Loizzo, Filomena Conforti, Giancarlo Statti, Filippo M Pirisi, Francesco Menichini. Antioxidant and anti-cholinesterase activity of Globularia meridionalis extracts and isolated constituents. Natural product communications. 2012 Aug; 7(8):1015-20. doi: . [PMID: 22978219]
  • Jie Zhang, Linxi Li, Xiuhua Liu, Yong Wang, Dongbao Zhao. [Study on chemical constituents of Artemisia sphaerocephala]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2012 Jan; 37(2):238-42. doi: . [PMID: 22737859]
  • Zhiyong Liao, Zhihua Wu, Mingjiang Wu. Cirsium japonicum flavones enhance adipocyte differentiation and glucose uptake in 3T3-L1 cells. Biological & pharmaceutical bulletin. 2012; 35(6):855-60. doi: 10.1248/bpb.35.855. [PMID: 22687475]
  • Luiz Felipe D Passero, Alexis Bonfim-Melo, Carlos Eduardo P Corbett, Márcia D Laurenti, Marcos H Toyama, Daniela O de Toyama, Paulete Romoff, Oriana A Fávero, Simone S dos Grecco, Cynthia A Zalewsky, João Henrique G Lago. Anti-leishmanial effects of purified compounds from aerial parts of Baccharis uncinella C. DC. (Asteraceae). Parasitology research. 2011 Mar; 108(3):529-36. doi: 10.1007/s00436-010-2091-8. [PMID: 20886232]
  • Mamdouh Nabil Samy, Hany Ezzat Khalil, Sachiko Sugimoto, Katsuyoshi Matsunami, Hideaki Otsuka, Mohamed Salah Kamel. Three new flavonoid glycosides, byzantionoside B 6'-O-sulfate and xyloglucoside of (Z)-hex-3-en-1-ol from Ruellia patula. Chemical & pharmaceutical bulletin. 2011; 59(6):725-9. doi: 10.1248/cpb.59.725. [PMID: 21628908]
  • Zhiyong Liao, Xiaoli Chen, Mingjiang Wu. Antidiabetic effect of flavones from Cirsium japonicum DC in diabetic rats. Archives of pharmacal research. 2010 Mar; 33(3):353-62. doi: 10.1007/s12272-010-0302-6. [PMID: 20361298]
  • Ye Yin, Fang-Yuan Gong, Xing-Xin Wu, Yang Sun, Yi-Hua Li, Ting Chen, Qiang Xu. Anti-inflammatory and immunosuppressive effect of flavones isolated from Artemisia vestita. Journal of ethnopharmacology. 2008 Oct; 120(1):1-6. doi: 10.1016/j.jep.2008.07.029. [PMID: 18721870]
  • Yeong-Min Yoo, Jung-Hwan Nam, Min-Young Kim, Jongwon Choi, Hee-Juhn Park. Pectolinarin and Pectolinarigenin of Cirsium setidens Prevent the Hepatic Injury in Rats Caused by D-Galactosamine via an Antioxidant Mechanism. Biological & pharmaceutical bulletin. 2008 Apr; 31(4):760-4. doi: 10.1248/bpb.31.760. [PMID: 18379079]
  • Sujun Liu, Jie Zhang, Daxu Li, Wei Liu, Xun Luo, Rongxian Zhang, Li Li, Jian Zhao. Anticancer activity and quantitative analysis of flavone of Cirsium japonicum DC. Natural product research. 2007 Aug; 21(10):915-22. doi: 10.1080/14786410701494686. [PMID: 17680503]
  • Odile Thoison, Thierry Sévenet, Hermann M Niemeyer, Graeme B Russell. Insect antifeedant compounds from Nothofagus dombeyi and N. pumilio. Phytochemistry. 2004 Jul; 65(14):2173-6. doi: 10.1016/j.phytochem.2004.04.002. [PMID: 15279992]
  • Hasan Kirmizibekmez, Pinar Akbay, Otto Sticher, Ihsan Caliş. Iridoids from Globularia dumulosa. Zeitschrift fur Naturforschung. C, Journal of biosciences. 2003 Mar; 58(3-4):181-6. doi: 10.1515/znc-2003-3-407. [PMID: 12710725]
  • Tsuneatsu Nagao, Fumiko Abe, Junei Kinjo, Hikaru Okabe. Antiproliferative constituents in plants 10. Flavones from the leaves of Lantana montevidensis Briq. and consideration of structure-activity relationship. Biological & pharmaceutical bulletin. 2002 Jul; 25(7):875-9. doi: 10.1248/bpb.25.875. [PMID: 12132661]
  • C Weimann, U Goransson, U Pongprayoon-Claeson, P Claeson, L Bohlin, H Rimpler, M Heinrich. Spasmolytic effects of baccharis conferta and some of its constituents. The Journal of pharmacy and pharmacology. 2002 Jan; 54(1):99-104. doi: 10.1211/0022357021771797. [PMID: 11829135]