Phyllanthin (BioDeep_00000003889)

 

Secondary id: BioDeep_00000396659

PANOMIX_OTCML-2023 natural product


代谢物信息卡片


4-[(2S,3S)-3-[(3,4-dimethoxyphenyl)methyl]-4-methoxy-2-(methoxymethyl)butyl]-1,2-dimethoxy-benzene

化学式: C24H34O6 (418.2355)
中文名称: 叶下珠脂素, 1,1'-[(2S,3S)-2,3-双(甲氧基甲基)-1,4-丁二基]双[3,4-二甲氧基苯]
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 66.96%

分子结构信息

SMILES: COCC(CC1=CC(=C(C=C1)OC)OC)C(CC2=CC(=C(C=C2)OC)OC)COC
InChI: InChI=1S/C24H34O6/c1-25-15-19(11-17-7-9-21(27-3)23(13-17)29-5)20(16-26-2)12-18-8-10-22(28-4)24(14-18)30-6/h7-10,13-14,19-20H,11-12,15-16H2,1-6H3/t19-,20-/m1/s1

描述信息

Phyllanthin is a major bioactive lignan component of Phyllanthus amarus. Phyllanthin exhibits high antioxidative and hepatoprotective properties[1].
Phyllanthin is a major bioactive lignan component of Phyllanthus amarus. Phyllanthin exhibits high antioxidative and hepatoprotective properties[1].

同义名列表

10 个代谢物同义名

4-[(2S,3S)-3-[(3,4-dimethoxyphenyl)methyl]-4-methoxy-2-(methoxymethyl)butyl]-1,2-dimethoxy-benzene; 4-[(2S,3S)-3-[(3,4-dimethoxyphenyl)methyl]-4-methoxy-2-(methoxymethyl)butyl]-1,2-dimethoxybenzene; 4-[(2S,3S)-3-(3,4-dimethoxybenzyl)-4-methoxy-2-(methoxymethyl)butyl]-1,2-dimethoxy-benzene; NCI60_005684; Phyllanthin; 10351-88-9; NSC619043; C10746; FT-0775299; Phyllanthin



数据库引用编号

15 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

25 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 11 ABCB1, AIMP2, BCL2, CASP3, MAPK8, MYD88, NFE2L2, NOS2, PIK3CA, PTGS2, TLR4
Peripheral membrane protein 2 GORASP1, PTGS2
Endosome membrane 2 MYD88, TLR4
Endoplasmic reticulum membrane 4 BCL2, CD4, HMOX1, PTGS2
Nucleus 8 AIMP2, BCL2, CASP3, HMOX1, MAPK8, MYD88, NFE2L2, NOS2
cytosol 10 AIMP2, BCL2, CASP3, HMOX1, IL1B, MAPK8, MYD88, NFE2L2, NOS2, PIK3CA
centrosome 1 NFE2L2
nucleoplasm 5 CASP3, HMOX1, MAPK8, NFE2L2, NOS2
RNA polymerase II transcription regulator complex 1 NFE2L2
Cell membrane 6 ABCB1, CD4, ITGAM, MGAM, TLR4, TNF
Cytoplasmic side 2 GORASP1, HMOX1
lamellipodium 1 PIK3CA
Multi-pass membrane protein 1 ABCB1
Golgi apparatus membrane 1 GORASP1
Synapse 1 MAPK8
cell surface 5 ABCB1, ITGAM, MYD88, TLR4, TNF
glutamatergic synapse 1 CASP3
Golgi apparatus 2 GORASP1, NFE2L2
Golgi membrane 1 GORASP1
neuronal cell body 2 CASP3, TNF
Cytoplasm, cytosol 4 AIMP2, IL1B, NFE2L2, NOS2
Lysosome 1 IL1B
plasma membrane 10 ABCB1, CD4, ITGAM, MGAM, MYD88, NFE2L2, NOS2, PIK3CA, TLR4, TNF
Membrane 7 ABCB1, AIMP2, BCL2, HMOX1, ITGAM, MGAM, TLR4
apical plasma membrane 2 ABCB1, MGAM
axon 1 MAPK8
caveola 1 PTGS2
extracellular exosome 3 ABCB1, ITGAM, MGAM
endoplasmic reticulum 3 BCL2, HMOX1, PTGS2
extracellular space 6 HMOX1, IL1B, IL4, IL6, ITGAM, TNF
perinuclear region of cytoplasm 4 HMOX1, NOS2, PIK3CA, TLR4
intercalated disc 1 PIK3CA
mitochondrion 1 BCL2
protein-containing complex 3 BCL2, MYD88, PTGS2
Microsome membrane 1 PTGS2
postsynaptic density 1 CASP3
Single-pass type I membrane protein 3 CD4, ITGAM, TLR4
Secreted 4 IL1B, IL4, IL6, MGAM
extracellular region 5 IL1B, IL4, IL6, MGAM, TNF
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 2 BCL2, MGAM
mitochondrial outer membrane 2 BCL2, HMOX1
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 4 CD4, ITGAM, TLR4, TNF
Cytoplasm, P-body 1 NOS2
P-body 1 NOS2
Early endosome 2 CD4, TLR4
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Apical cell membrane 1 ABCB1
Cytoplasm, perinuclear region 1 NOS2
Membrane raft 3 CD4, ITGAM, TNF
pore complex 1 BCL2
cis-Golgi network 1 GORASP1
Peroxisome 1 NOS2
peroxisomal matrix 1 NOS2
secretory granule 1 IL1B
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Cell projection, ruffle 1 TLR4
ruffle 1 TLR4
receptor complex 1 TLR4
neuron projection 1 PTGS2
chromatin 1 NFE2L2
mediator complex 1 NFE2L2
phagocytic cup 2 TLR4, TNF
specific granule membrane 1 ITGAM
tertiary granule membrane 2 ITGAM, MGAM
myelin sheath 1 BCL2
lipopolysaccharide receptor complex 1 TLR4
plasma membrane raft 1 ITGAM
endoplasmic reticulum lumen 3 CD4, IL6, PTGS2
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
Secreted, extracellular exosome 1 IL1B
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 GORASP1
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
Single-pass type IV membrane protein 1 HMOX1
clathrin-coated endocytic vesicle membrane 1 CD4
extrinsic component of cytoplasmic side of plasma membrane 1 MYD88
protein-DNA complex 1 NFE2L2
ficolin-1-rich granule membrane 1 MGAM
external side of apical plasma membrane 1 ABCB1
basal dendrite 1 MAPK8
death-inducing signaling complex 1 CASP3
aminoacyl-tRNA synthetase multienzyme complex 1 AIMP2
extrinsic component of plasma membrane 1 MYD88
integrin complex 1 ITGAM
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
T cell receptor complex 1 CD4
cortical cytoskeleton 1 NOS2
integrin alphaM-beta2 complex 1 ITGAM
interleukin-6 receptor complex 1 IL6
BAD-BCL-2 complex 1 BCL2
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Honey Dzikri Marhaeny, Aty Widyawaruyanti, Tri Widiandani, Achmad Fuad Hafid, Tutik Sri Wahyuni. Phyllanthin and hypophyllanthin, the isolated compounds of Phyllanthus niruri inhibit protein receptor of corona virus (COVID-19) through in silico approach. Journal of basic and clinical physiology and pharmacology. 2021 Jun; 32(4):809-815. doi: 10.1515/jbcpp-2020-0473. [PMID: 34214339]
  • Jinal Patel, Padamnabhi Shanker Nagar, Kalpana Pal, Raghuraj Singh, Tushar Dhanani, Vyomesh Patel, Sharad Srivastava, Satyanshu Kumar. Comparative Profiling of Four Lignans (Phyllanthin, Hypophyllanthin, Nirtetralin, and Niranthin) in Nine Phyllanthus Species from India Using a Validated Reversed Phase HPLC-PDA Detection Method. Journal of AOAC International. 2021 May; 104(2):485-497. doi: 10.1093/jaoacint/qsaa133. [PMID: 33259591]
  • Yulai You, Fengfeng Zhu, Zhenhuan Li, LingFeng Zhang, Yu Xie, Arunachalam Chinnathambi, Tahani Awad Alahmadi, Bei Lu. Phyllanthin prevents diethylnitrosamine (DEN) induced liver carcinogenesis in rats and induces apoptotic cell death in HepG2 cells. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2021 May; 137(?):111335. doi: 10.1016/j.biopha.2021.111335. [PMID: 33581648]
  • Nur Zahirah Abd Rani, Kok Wai Lam, Juriyati Jalil, Hazni Falina Mohamad, Mohd Shukri Mat Ali, Khairana Husain. Mechanistic Studies of the Antiallergic Activity of Phyllanthus amarus Schum. & Thonn. and Its Compounds. Molecules (Basel, Switzerland). 2021 Jan; 26(3):. doi: 10.3390/molecules26030695. [PMID: 33525733]
  • Haitao Yuan, Qin Yang, Bo Yang, Hong Xu, Omaima Nasif, Sankareswaran Muruganantham, Jing Chen. Phyllanthin Averts Oxidative Stress and Neuroinflammation in Cerebral Ischemic-Reperfusion Injury through Modulation of the NF-κB and AMPK/Nrf2 Pathways. Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer. 2021; 40(1):85-97. doi: 10.1615/jenvironpatholtoxicoloncol.2020036307. [PMID: 33639076]
  • Atul R Chopade, Rahul P Pol, Pramod A Patil, Vyankatesh R Dharanguttikar, Nilofar S Naikwade, Remeth J Dias, Suraj N Mali. An Insight Into the Anxiolytic Effects of Lignans (Phyllanthin and Hypophyllanthin) and Tannin (Corilagin) Rich Extracts of Phyllanthus amarus : An In-Silico and In-vivo approaches. Combinatorial chemistry & high throughput screening. 2021; 24(3):415-422. doi: 10.2174/1386207323666200605150915. [PMID: 32503404]
  • Harichandra A Nikule, Kirti M Nitnaware, Mahadev R Chambhare, Nitin S Kadam, Mahesh Y Borde, Tukaram D Nikam. In-vitro propagation, callus culture and bioactive lignan production in Phyllanthus tenellus Roxb: a new source of phyllanthin, hypophyllanthin and phyltetralin. Scientific reports. 2020 06; 10(1):10668. doi: 10.1038/s41598-020-67637-8. [PMID: 32606305]
  • Subhabrata Paul, Debashis Patra, Rita Kundu. Lignan enriched fraction (LRF) of Phyllanthus amarus promotes apoptotic cell death in human cervical cancer cells in vitro. Scientific reports. 2019 10; 9(1):14950. doi: 10.1038/s41598-019-51480-7. [PMID: 31628385]
  • Alessandra Maria Braga Ribeiro, Jonas Nascimento de Sousa, Luciana Muratori Costa, Felipe Araújo de Alcântara Oliveira, Raimunda Cardoso Dos Santos, Aline Suelen Silva Nunes, Wanderson Oliveira da Silva, Paulo Jorge Marques Cordeiro, José de Sousa Lima Neto, José Pinto de Siqueira-Júnior, Glenn William Kaatz, Humberto Medeiros Barreto, Aldeídia Pereira de Oliveira. Antimicrobial activity of Phyllanthus amarus Schumach. & Thonn and inhibition of the NorA efflux pump of Staphylococcus aureus by Phyllanthin. Microbial pathogenesis. 2019 May; 130(?):242-246. doi: 10.1016/j.micpath.2019.03.012. [PMID: 30876871]
  • Wei Wu, Yinfang Li, Zelin Jiao, Li Zhang, Xiaohua Wang, Rui Qin. Phyllanthin and hypophyllanthin from Phyllanthus amarus ameliorates immune-inflammatory response in ovalbumin-induced asthma: role of IgE, Nrf2, iNOs, TNF-α, and IL's. Immunopharmacology and immunotoxicology. 2019 Feb; 41(1):55-67. doi: 10.1080/08923973.2018.1545788. [PMID: 30541359]
  • Vanessa Santana Vieira Santos, Karen Magalhães Arantes, Ester Luiza Gonçalves, Carlos Fernando Campos, Edimar Olegário de Campos Júnior, Antônio Marcos Machado de Oliveira, Boscolli Barbosa Pereira. Contamination of soil and the medicinal plant Phyllanthus niruri Linn. with cadmium in ceramic industrial areas. Environmental monitoring and assessment. 2018 Apr; 190(5):303. doi: 10.1007/s10661-018-6693-4. [PMID: 29680902]
  • Kittisak Buddhachat, Siriwadee Chomdej, Waranee Pradit, Korakot Nganvongpanit, Siriwan Ongchai. In Vitro Chondroprotective Potential of Extracts Obtained from Various Phyllantus Species. Planta medica. 2017 Jan; 83(1-02):87-96. doi: 10.1055/s-0042-110097. [PMID: 27340791]
  • Menaga Ilangkovan, Ibrahim Jantan, Syed Nasir Abbas Bukhari. Phyllanthin from Phyllanthus amarus inhibits cellular and humoral immune responses in Balb/C mice. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2016 Nov; 23(12):1441-1450. doi: 10.1016/j.phymed.2016.08.002. [PMID: 27765364]
  • Rajesh Krithika, Vasavan Jyothilakshmi, Ramtej Jayaram Verma. Phyllanthin inhibits CCl4-mediated oxidative stress and hepatic fibrosis by down-regulating TNF-α/NF-κB, and pro-fibrotic factor TGF-β1 mediating inflammatory signaling. Toxicology and industrial health. 2016 May; 32(5):953-60. doi: 10.1177/0748233714532996. [PMID: 24817434]
  • Yuandani, Ibrahim Jantan, Menaga Ilangkovan, Khairana Husain, Kok Meng Chan. Inhibitory effects of compounds from Phyllanthus amarus on nitric oxide production, lymphocyte proliferation, and cytokine release from phagocytes. Drug design, development and therapy. 2016; 10(?):1935-45. doi: 10.2147/dddt.s105651. [PMID: 27354767]
  • Neeraj K Sethiya, Pankaj Shah, Aruna Rajpara, P A Nagar, S H Mishra. Antioxidant and hepatoprotective effects of mixed micellar lipid formulation of phyllanthin and piperine in carbon tetrachloride-induced liver injury in rodents. Food & function. 2015 Nov; 6(11):3593-603. doi: 10.1039/c5fo00947b. [PMID: 26333006]
  • Rajesh Krithika, Vasavan Jyothilakshmi, Karunakar Prashantha, Ramtej J Verma. Mechanism of protective effect of phyllanthin against carbon tetrachloride-induced hepatotoxicity and experimental liver fibrosis in mice. Toxicology mechanisms and methods. 2015; 25(9):708-17. doi: 10.3109/15376516.2015.1077361. [PMID: 26337812]
  • Nguyen Duc Hanh, Nuttanan Sinchaipanid, Ampol Mitrevej. Physicochemical characterization of phyllanthin from Phyllanthus amarus Schum. et Thonn. Drug development and industrial pharmacy. 2014 Jun; 40(6):793-802. doi: 10.3109/03639045.2013.788010. [PMID: 23594304]
  • Graziella Rigueira Molska, Giuseppina Negri, Lyvia Izaura Gomes Paula-Freire, Leandro Pires Araujo, Daniele Oliveira Köhn, Alexandre Salgado Basso, Elisaldo Araújo Carlini. Phyllanthus amarus does not affect hypernociception in experimental autoimmune encephalomyelitis. Planta medica. 2014 Mar; 80(4):277-82. doi: 10.1055/s-0033-1360400. [PMID: 24610345]
  • Ajit A Patil, Sachin S Bhusari, Devanand B Shinde, Pravin S Wakte. Optimization of process variables for phyllanthin extraction from Phyllanthus amarus leaves by supercritical fluid using a Box-Behnken experimental design followed by HPLC identification. Acta pharmaceutica (Zagreb, Croatia). 2013 Jun; 63(2):193-207. doi: 10.2478/acph-2013-0020. [PMID: 23846142]
  • R Srirama, H B Deepak, U Senthilkumar, G Ravikanth, B R Gurumurthy, M B Shivanna, C V Chandrasekaran, Amit Agarwal, R Uma Shaanker. Hepatoprotective activity of Indian Phyllanthus. Pharmaceutical biology. 2012 Aug; 50(8):948-53. doi: 10.3109/13880209.2011.649858. [PMID: 22480277]
  • Marisa Inchoo, Hemvala Chirdchupunseree, Pornpen Pramyothin, Suree Jianmongkol. Endothelium-independent effects of phyllanthin and hypophyllanthin on vascular tension. Fitoterapia. 2011 Dec; 82(8):1231-6. doi: 10.1016/j.fitote.2011.08.013. [PMID: 21893171]
  • Theerada Taesotikul, Weeraya Dumrongsakulchai, Nitsupa Wattanachai, Vichien Navinpipat, Aimon Somanabandhu, Wongwiwat Tassaneeyakul, Wichittra Tassaneeyakul. Inhibitory effects of Phyllanthus amarus and its major lignans on human microsomal cytochrome P450 activities: evidence for CYP3A4 mechanism-based inhibition. Drug metabolism and pharmacokinetics. 2011; 26(2):154-61. doi: 10.2133/dmpk.dmpk-10-rg-107. [PMID: 21178301]
  • Hemvala Chirdchupunseree, Pornpen Pramyothin. Protective activity of phyllanthin in ethanol-treated primary culture of rat hepatocytes. Journal of ethnopharmacology. 2010 Mar; 128(1):172-6. doi: 10.1016/j.jep.2010.01.003. [PMID: 20064596]
  • Rajesh Krithika, Ramasamy Mohankumar, Ramtej J Verma, Pranav S Shrivastav, Illiyas L Mohamad, Palani Gunasekaran, Srinivasan Narasimhan. Isolation, characterization and antioxidative effect of phyllanthin against CCl4-induced toxicity in HepG2 cell line. Chemico-biological interactions. 2009 Oct; 181(3):351-8. doi: 10.1016/j.cbi.2009.06.014. [PMID: 19576190]
  • Vartika Rai, Shanta Mehrotra. Chromium-induced changes in ultramorphology and secondary metabolites of Phyllanthus amarus Schum & Thonn. - an hepatoprotective plant. Environmental monitoring and assessment. 2008 Dec; 147(1-3):307-15. doi: 10.1007/s10661-007-0122-4. [PMID: 18274875]
  • Arvind S Negi, J K Kumar, Suaib Luqman, Karuna Shanker, M M Gupta, S P S Khanuja. Recent advances in plant hepatoprotectives: a chemical and biological profile of some important leads. Medicinal research reviews. 2008 Sep; 28(5):746-72. doi: 10.1002/med.20115. [PMID: 17979145]
  • K V Syamasundar, B Singh, R S Thakur, A Husain, Y Kiso, H Hikino. Antihepatotoxic principles of Phyllanthus niruri herbs. Journal of ethnopharmacology. 1985 Sep; 14(1):41-4. doi: 10.1016/0378-8741(85)90026-1. [PMID: 4087921]