Pinoresinol (BioDeep_00000000431)
Secondary id: BioDeep_00000017492, BioDeep_00000178742, BioDeep_00000398760
PANOMIX_OTCML-2023 Marine Natural Products natural product
代谢物信息卡片
化学式: C20H22O6 (358.1416312)
中文名称: (+)-表松脂素, (+)-表松脂酚, 表松脂酚, (+)-松脂酚, 松脂醇, 松脂素, 表松脂酚
谱图信息:
最多检出来源 Viridiplantae(plant) 1.5%
分子结构信息
SMILES: COC1=C(C=CC(=C1)C2C3COC(C3CO2)C4=CC(=C(C=C4)O)OC)O
InChI: InChI=1S/C20H22O6/c1-23-17-7-11(3-5-15(17)21)19-13-9-26-20(14(13)10-25-19)12-4-6-16(22)18(8-12)24-2/h3-8,13-14,19-22H,9-10H2,1-2H3/t13-,14-,19+,20+/m0/s1
描述信息
Epipinoresinol is an enantiomer of pinoresinol having (+)-(1R,3aR,4S,6aR)-configuration. It has a role as a plant metabolite and a marine metabolite.
Epipinoresinol is a natural product found in Pandanus utilis, Abeliophyllum distichum, and other organisms with data available.
An enantiomer of pinoresinol having (+)-(1R,3aR,4S,6aR)-configuration.
(+)-pinoresinol is an enantiomer of pinoresinol having (+)-1S,3aR,4S,6aR-configuration. It has a role as a hypoglycemic agent, a plant metabolite and a phytoestrogen.
Pinoresinol is a natural product found in Pandanus utilis, Zanthoxylum beecheyanum, and other organisms with data available.
See also: Acai fruit pulp (part of).
An enantiomer of pinoresinol having (+)-1S,3aR,4S,6aR-configuration.
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.907
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.905
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.897
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.895
Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2].
Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2].
同义名列表
45 个代谢物同义名
PHENOL, 4,4-(TETRAHYDRO-1H,3H-FURO(3,4-C)FURAN-1,4-DIYL)BIS(2-METHOXY-, (1S-(1.ALPHA.,3A.ALPHA.,4.BETA.,6A.ALPHA.))-; 4-[(3R,3aR,6S,6aR)-6-(4-hydroxy-3-methoxy-phenyl)-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-3-yl]-2-methoxy-phenol; 4-[(3R,3aR,6S,6aR)-6-(4-hydroxy-3-methoxyphenyl)-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-3-yl]-2-methoxyphenol; PHENOL, 4,4-(3A.BETA.,4,6,6A.BETA.-TETRAHYDRO-1H,3H-FURO(3,4-C)FURAN-1.ALPHA.,4.BETA.-DIYL)BIS(2-METHOXY-; PHENOL, 4,4-((1R,3AR,4S,6AR)-TETRAHYDRO-1H,3H-FURO(3,4-C)FURAN-1,4-DIYL)BIS(2-METHOXY-; 4,4-((1R,3AR,4S,6AR)-TETRAHYDRO-1H,3H-FURO(3,4-C)FURAN-1,4-DIYL)BIS(2-METHOXYPHENOL); 4,4-(1R,3aR,4S,6aR)-tetrahydro-1H,3H-furo[3,4-c]furan-1,4-diylbis(2-methoxyphenol); HGXBRUKMWQGOIE-WZBLMQSHSA-N; (+)-epi-pinoresinol; (+)-Epipinoresinol; UNII-6YKG9JJC1S; epi-pinoresinol; Epipinoresinol; pino-resinol; Pinoresinol; 6YKG9JJC1S; PHENOL, 4,4-(TETRAHYDRO-1H,3H-FURO(3,4-C)FURAN-1,4-DIYLBIS(2-METHOXY-, (1S-(1.ALPHA.,3A.ALPHA.,4.ALPHA.,6A.ALPHA.))-; 4-[(3S,3aR,6S,6aR)-6-(3-methoxy-4-oxidanyl-phenyl)-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-3-yl]-2-methoxy-phenol; 4-[(3S,3aR,6S,6aR)-6-(4-hydroxy-3-methoxy-phenyl)-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-3-yl]-2-methoxy-phenol; Phenol, 4,4-(tetrahydro-1H,3H-furo(3,4-c)furan-1,4-diylbis(2-methoxy-, (1S-(1alpha,3aalpha,4alpha,6aalpha))-; Phenol, 4,4-[(1S,3aR,4R,6aS)-tetrahydro-1H,3H-furo[3,4-c]furan-1,4-diyl]bis[2-methoxy-; PHENOL, 4,4-((1S,3AR,4S,6AR)-TETRAHYDRO-1H,3H-FURO(3,4-C)FURAN-1,4-DIYL)BIS(2-METHOXY-; Phenol,4,4-[(1S,3aR,4R,6aS)-tetrahydro-1H,3H-furo[3,4-c]furan-1,4-diyl]bis[2-methoxy-; 4,4-(1s,3ar,4s,6ar)-tetrahydro-1h,3h-furo[3,4-c]furan-1,4-diylbis(2-methoxyphenol); 4,4-((1S,3aR,4S,6aR)-Hexahydrofuro[3,4-c]furan-1,4-diyl)bis(2-methoxyphenol); (7alpha,7alpha,8alpha,8alpha)-3,3-dimethoxy-7,9:7,9-diepoxylignane-4,4-diol; Pinoresinol, analytical reference material; ( inverted exclamation markA)-Pinoresinol; Pinoresinol, >=95.0\\% (HPLC); Pinoresinol, >=95\\% (HPLC); PINORESINOL, (+)-; UNII-V4N1UDY811; (+)-Pinoresinol; D-PINORESINOL; MEGxp0_000829; ACon1_001809; V4N1UDY811; CHEBI:40; 4-[(1S,3aR,4S,6aR)-4-(4-hydroxy-3-methoxy-phenyl)-1,3,3a,4,6,6a-hexahydrofuro[4,3-c]furan-1-yl]-2-methoxy-phenol; 4-[(1S,3aR,4S,6aR)-4-(4-hydroxy-3-methoxyphenyl)-1,3,3a,4,6,6a-hexahydrofuro[4,3-c]furan-1-yl]-2-methoxyphenol; AIDS-012018; AIDS012018; NSC 35444; 487-36-5; C10872
数据库引用编号
46 个数据库交叉引用编号
- ChEBI: CHEBI:132821
- ChEBI: CHEBI:8225
- ChEBI: CHEBI:40
- KEGG: C05366
- PubChem: 637584
- PubChem: 73399
- Metlin: METLIN66311
- ChEMBL: CHEMBL487611
- ChEMBL: CHEMBL260183
- Wikipedia: Pinoresinol
- MeSH: pinoresinol
- ChemIDplus: 0024404500
- ChemIDplus: 0000487365
- MetaCyc: CPD-8906
- KNApSAcK: C00007192
- chemspider: 66116
- CAS: 18779-41-4
- CAS: 24404-50-0
- CAS: 487-36-5
- MoNA: RIKENPlaSMA008005
- MoNA: RIKENPlaSMA008004
- MoNA: RIKENPlaSMA008003
- MoNA: RIKENPlaSMA008002
- MoNA: RIKENPlaSMA008001
- MoNA: RIKENPlaSMA008000
- MoNA: RIKENPlaSMA007999
- MoNA: RIKENPlaSMA007998
- MoNA: RIKENPlaSMA007997
- MoNA: RIKENPlaSMA007996
- MoNA: RIKENPlaSMA007995
- MoNA: RIKENPlaSMA007994
- MoNA: BML82378
- MoNA: BML82377
- MoNA: BML82376
- MoNA: BML82375
- medchemexpress: HY-N7534
- medchemexpress: HY-N6253
- PMhub: MS000014204
- MetaboLights: MTBLC132821
- MetaboLights: MTBLC40
- PubChem: 7741
- KNApSAcK: C00007190
- PDB-CCD: GEC
- NIKKAJI: J322.968H
- RefMet: Pinoresinol
- LOTUS: LTS0011247
分类词条
相关代谢途径
Reactome(0)
代谢反应
254 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(6)
- matairesinol biosynthesis:
(-)-secoisolariciresinol + NAD+ ⟶ (3R,4R)-3,4-bis(4-hydroxy-3-methoxybenzyl)tetrahydro-2-furanol + H+ + NADH
- justicidin B biosynthesis:
NAD+ + collinusin ⟶ H+ + NADH + justicidin B
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- pinoresinol degradation:
(+)-pinoresinol + A + H2O ⟶ (+)-6-hydroxypinoresinol + A(H2)
- matairesinol biosynthesis:
(+)-lariciresinol + H+ + NADPH ⟶ (-)-secoisolariciresinol + NADP+
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(248)
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
O2 + coniferyl alcohol ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
(-)-secoisolariciresinol + NADP+ ⟶ (+)-lariciresinol + H+ + NADPH
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
(-)-secoisolariciresinol + NADP+ ⟶ (+)-lariciresinol + H+ + NADPH
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
NAD+ + collinusin ⟶ H+ + NADH + justicidin B
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- justicidin B biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- sesamin biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
coniferyl alcohol + hydrogen peroxide ⟶ H2O + coniferyl alcohol radical
- matairesinol biosynthesis:
(-)-secoisolariciresinol + NAD+ ⟶ (3R,4R)-3,4-bis(4-hydroxy-3-methoxybenzyl)tetrahydro-2-furanol + H+ + NADH
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
536 个相关的物种来源信息
- 126358 - Abeliophyllum distichum: 10.1016/S0031-9422(97)01134-5
- 3319 - Abies: LTS0011247
- 97171 - Abies nephrolepis:
- 97171 - Abies nephrolepis: 10.1002/CBDV.201000373
- 97171 - Abies nephrolepis: LTS0011247
- 78264 - Abies sachalinensis: 10.1016/S0031-9422(00)97525-3
- 342581 - Abies spectabilis: 10.1248/CPB.58.1646
- 342581 - Abies spectabilis: LTS0011247
- 64478 - Actinidia arguta: 10.1248/CPB.57.397
- 3625 - Actinidia chinensis:
- 4206 - Adoxaceae: LTS0011247
- 1887443 - Ageratina ligustrina: 10.1016/0031-9422(88)80683-6
- 403096 - Allamanda schottii:
- 4682 - Allium sativum:
- 403097 - Alyxia reinwardtii:
- 171929 - Anacardium occidentale: 10.1079/BJN20051371
- 4615 - Ananas comosus:
- 663964 - Anastatica: LTS0011247
- 663965 - Anastatica hierochuntica: 10.1016/S0960-894X(03)00088-X
- 663965 - Anastatica hierochuntica: LTS0011247
- 22868 - Anemone: LTS0011247
- 714493 - Anemone chinensis: 10.1021/NP9901837
- 4037 - Apiaceae: LTS0011247
- 4056 - Apocynaceae: LTS0011247
- 4454 - Araceae: LTS0011247
- 3818 - Arachis hypogaea:
- 137934 - Aralia bipinnata: 10.1016/0031-9422(95)00072-F
- 25666 - Araucaria: LTS0011247
- 56992 - Araucaria angustifolia:
- 56992 - Araucaria angustifolia: 10.1016/0031-9422(79)80188-0
- 56992 - Araucaria angustifolia: 10.1016/S0031-9422(00)00239-9
- 56992 - Araucaria angustifolia: 10.3891/ACTA.CHEM.SCAND.10-0445
- 56992 - Araucaria angustifolia: LTS0011247
- 25664 - Araucariaceae: LTS0011247
- 4710 - Arecaceae: LTS0011247
- 16727 - Aristolochiaceae: LTS0011247
- 4246 - Arnica: LTS0011247
- 436192 - Arnica angustifolia: 10.1080/14786410500218591
- 436195 - Arnica chamissonis: 10.1080/14786410500218591
- 436205 - Arnica lonchophylla: 10.1080/14786410500218591
- 4247 - Arnica mollis: 10.1016/0031-9422(96)00132-X
- 4247 - Arnica mollis: 10.1080/14786410500218591
- 4247 - Arnica mollis: LTS0011247
- 436207 - Arnica montana: 10.1080/14786410500218591
- 4219 - Artemisia: LTS0011247
- 72386 - Artemisia arborescens: 10.1016/S0031-9422(96)00720-0
- 72386 - Artemisia arborescens: LTS0011247
- 6656 - Arthropoda: LTS0011247
- 16728 - Asarum: LTS0011247
- 76098 - Asarum sieboldii: 10.1016/J.BMCL.2012.01.136
- 76098 - Asarum sieboldii: LTS0011247
- 40552 - Asparagaceae: LTS0011247
- 4685 - Asparagus: LTS0011247
- 4686 - Asparagus officinalis: 10.1021/JF0305229
- 4686 - Asparagus officinalis: 10.1021/JF051488W
- 4686 - Asparagus officinalis: LTS0011247
- 4210 - Asteraceae: LTS0011247
- 4498 - Avena sativa: 10.1021/JF051488W
- 25674 - Balanophora: LTS0011247
- 2906540 - Balanophora abbreviata: LTS0011247
- 29813 - Balanophora fungosa: 10.1248/CPB.57.1352
- 29813 - Balanophora fungosa: LTS0011247
- 1128102 - Balanophora japonica: 10.1248/CPB.30.1525
- 1128102 - Balanophora japonica: LTS0011247
- 25673 - Balanophoraceae: LTS0011247
- 81736 - Barnardia: LTS0011247
- 2033023 - Barnardia japonica: LTS0011247
- 41773 - Berberidaceae: LTS0011247
- 22774 - Berberis: LTS0011247
- 211974 - Berberis koreana: 10.1016/J.BMCL.2011.02.104
- 211974 - Berberis koreana: LTS0011247
- 324799 - Bhesa: LTS0011247
- 324800 - Bhesa paniculata: 10.1016/0031-9422(94)00314-J
- 324800 - Bhesa paniculata: LTS0011247
- 24079 - Bignoniaceae: LTS0011247
- 72904 - Boltonia asteroides: 10.1016/S0031-9422(00)89801-5
- 315440 - Boschniakia himalaica: 10.1016/J.BSE.2013.03.002
- 3705 - Brassica: LTS0011247
- 308264 - Brassica fruticulosa: 10.1021/JF034644C
- 308264 - Brassica fruticulosa: LTS0011247
- 3715 - Brassica oleracea var. botrytis: 10.1079/BJN20051371
- 3716 - Brassica oleracea var. capitata:
- 36774 - Brassica oleracea var. italica: 10.1079/BJN20051371
- 3713 - Brassica oleracea var. viridis:
- 3700 - Brassicaceae: LTS0011247
- 99295 - Breynia: LTS0011247
- 319561 - Breynia vitis-idaea: 10.1080/10286021003745452
- 319561 - Breynia vitis-idaea: LTS0011247
- 43722 - Brucea: LTS0011247
- 210348 - Brucea javanica: 10.1002/HLCA.201100165
- 210348 - Brucea javanica: 10.1002/JCCS.200500117
- 210348 - Brucea javanica: 10.1021/JF0709808
- 210348 - Brucea javanica: LTS0011247
- 46366 - Bupleurum: LTS0011247
- 199751 - Bupleurum salicifolium:
- 199751 - Bupleurum salicifolium: 10.1016/S0040-4020(01)90430-2
- 199751 - Bupleurum salicifolium: LTS0011247
- 4441 - Camellia: LTS0011247
- 4442 - Camellia sinensis: 10.1207/S15327914NC5402_5
- 4442 - Camellia sinensis: 10.1248/CPB.58.939
- 4442 - Camellia sinensis: LTS0011247
- 4200 - Caprifoliaceae: LTS0011247
- 4072 - Capsicum annuum: 10.1079/BJN20051371
- 92905 - Carduus: LTS0011247
- 196703 - Carduus tenuiflorus: 10.1016/S0031-9422(00)97569-1
- 32201 - Carya illinoinensis: 10.1207/S15327914NC5402_5
- 1284881 - Cassinia subtropica: 10.1016/0031-9422(88)83027-9
- 21019 - Castanea: 10.1207/S15327914NC5402_5
- 136893 - Catunaregam: LTS0011247
- 136894 - Catunaregam spinosa: 10.1002/CHIN.200844208
- 136894 - Catunaregam spinosa: LTS0011247
- 41503 - Centaurea: LTS0011247
- 41511 - Centaurea calcitrapa: 10.1016/0031-9422(92)83721-A
- 41511 - Centaurea calcitrapa: LTS0011247
- 41537 - Centaurea montana: 10.1016/J.TET.2006.09.020
- 41537 - Centaurea montana: LTS0011247
- 351316 - Centaurea paui: 10.1002/JLAC.199719970313
- 441543 - Centroplacaceae: LTS0011247
- 64995 - Cheirolophus intybaceus: 10.1016/S0031-9422(00)89537-0
- 65003 - Cheirolophus uliginosus: 10.1016/S0031-9422(00)89537-0
- 30102 - Cicadellidae: LTS0011247
- 13427 - Cichorium intybus: 10.1079/BJN20051371
- 149357 - Cissus: LTS0011247
- 165299 - Cissus discolor: 10.1248/CPB.57.1089
- 289665 - Cissus verticillata: 10.1248/CPB.57.1089
- 289665 - Cissus verticillata: LTS0011247
- 161396 - Cistanche salsa: 10.1248/CPB.32.3009
- 558547 - Citrus deliciosa: 10.1079/BJN20051371
- 85571 - Citrus reticulata: 10.1079/BJN20051371
- 86864 - Codonopsis pilosula: 10.1055/S-2006-959552
- 13442 - Coffea: 10.1207/S15327914NC5402_5
- 4459 - Colocasia: LTS0011247
- 199218 - Colocasia antiquorum: 10.1021/JF100323Q
- 199218 - Colocasia antiquorum: LTS0011247
- 4460 - Colocasia esculenta: 10.1021/JF100323Q
- 4460 - Colocasia esculenta: LTS0011247
- 4118 - Convolvulaceae: LTS0011247
- 3442 - Coptis japonica:
- 13450 - Corylus: 10.1207/S15327914NC5402_5
- 3656 - Cucumis melo: 10.1079/BJN20051371
- 2034236 - Cucumis melo var. dudaim: 10.1207/S15327914NC5402_5
- 3659 - Cucumis sativus:
- 869827 - Cucumis sativus var. sativus: 10.1055/S-0028-1088338
- 3661 - Cucurbita maxima: 10.1207/S15327914NC5402_5
- 3663 - Cucurbita pepo: 10.1079/BJN20051371
- 3367 - Cupressaceae: LTS0011247
- 267557 - Cuscuta chinensis:
- 492005 - Cynanchum acidum:
- 66679 - Daphne: LTS0011247
- 2753872 - Daphne acutiloba: 10.1016/S0031-9422(98)00181-2
- 2753873 - Daphne feddei: 10.1021/NP8004166
- 2753873 - Daphne feddei: LTS0011247
- 1799574 - Daphne giraldii: 10.1007/S10600-008-9163-3
- 1799574 - Daphne giraldii: LTS0011247
- 66680 - Daphne mezereum: 10.1016/0031-9422(90)85290-V
- 66680 - Daphne mezereum: LTS0011247
- 4039 - Daucus carota:
- 37818 - Dendrobium: LTS0011247
- 117954 - Dendrobium loddigesii: 10.1248/CPB.58.628
- 117954 - Dendrobium loddigesii: LTS0011247
- 142614 - Dendrobium moniliforme: 10.1055/S-2003-818005
- 1508135 - Dendrobium plicatile: 10.1248/CPB.41.1346
- 1508135 - Dendrobium plicatile: LTS0011247
- 339291 - Diplospora dubia: 10.1007/S11418-008-0248-X
- 1745051 - Disynaphia multicrenulata: 10.1016/S0305-1978(00)00092-2
- 1504171 - Doliocarpus dentatus: 10.1002/(SICI)1099-1573(199602)10:1<1::AID-PTR757>3.0.CO;2-A
- 454324 - Dolomiaea souliei: 10.1055/S-2006-961015
- 1351 - Enterococcus faecalis: 10.1248/CPB.51.508
- 34317 - Eucalyptus globulus: 10.1007/BF02975503
- 4391 - Eucommia: LTS0011247
- 4392 - Eucommia ulmoides:
- 4392 - Eucommia ulmoides: 10.1248/CPB.35.1785
- 4392 - Eucommia ulmoides: LTS0011247
- 4392 - Eucommia ulmoides Oliv.: -
- 4390 - Eucommiaceae: LTS0011247
- 2759 - Eukaryota: LTS0011247
- 115465 - Euterpe: LTS0011247
- 115466 - Euterpe oleracea: 10.1021/JF801792N
- 115466 - Euterpe oleracea: LTS0011247
- 3803 - Fabaceae: LTS0011247
- 3617 - Fagopyrum esculentum: 10.1021/JF051488W
- 26476 - Fagraea: LTS0011247
- 82737 - Fagraea racemosa: 10.1248/CPB.43.2200
- 82737 - Fagraea racemosa: LTS0011247
- 55182 - Forsythia: LTS0011247
- 205688 - Forsythia europaea: 10.1016/J.JPBA.2006.09.033
- 205688 - Forsythia europaea: 10.1248/CPB.36.3667
- 205688 - Forsythia europaea: LTS0011247
- 205689 - Forsythia giraldiana: 10.1016/J.JPBA.2006.09.033
- 205689 - Forsythia giraldiana: 10.1248/CPB.36.3667
- 205689 - Forsythia giraldiana: LTS0011247
- 205690 - Forsythia japonica: 10.1016/J.JPBA.2006.09.033
- 205690 - Forsythia japonica: 10.1248/CPB.36.3667
- 205690 - Forsythia japonica: LTS0011247
- 205692 - Forsythia koreana:
- 205692 - Forsythia koreana: 10.1016/J.JPBA.2006.09.033
- 205692 - Forsythia koreana: 10.1016/S0031-9422(97)01134-5
- 205692 - Forsythia koreana: LTS0011247
- 126418 - Forsythia suspensa:
- 126418 - Forsythia suspensa: 10.1016/J.JPBA.2006.09.033
- 126418 - Forsythia suspensa: 10.1055/S-1999-14093
- 126418 - Forsythia suspensa: LTS0011247
- 205691 - Forsythia viridissima: 10.1016/S0031-9422(97)01134-5
- 55183 - Forsythia × intermedia: 10.1016/0031-9422(90)85050-P
- 55183 - Forsythia × intermedia: 10.1016/J.JPBA.2006.09.033
- 55183 - Forsythia × intermedia: 10.1016/S0031-9422(00)97545-9
- 3746 - Fragaria:
- 38871 - Fraxinus: LTS0011247
- 56033 - Fraxinus chinensis: LTS0011247
- 126596 - Fraxinus chinensis subsp. rhynchophylla: LTS0011247
- 126596 - Fraxinus chinensis subsp. rhynchophylla: NA
- 56035 - Fraxinus longicuspis: 10.1248/CPB.32.4482
- 56029 - Fraxinus mandshurica: 10.1248/CPB.32.4482
- 56029 - Fraxinus mandshurica: LTS0011247
- 56029 - Fraxinus mandshurica: NA
- 21472 - Gentianaceae: LTS0011247
- 167663 - Gliricidia sepium: 10.1016/S0031-9422(97)00977-1
- 3846 - Glycine:
- 3379 - Gnetaceae: LTS0011247
- 3372 - Gnetopsida: LTS0011247
- 3380 - Gnetum: LTS0011247
- 3381 - Gnetum montanum: 10.1007/S10600-009-9325-Y
- 3381 - Gnetum montanum: LTS0011247
- 1602035 - Goniothalamus amuyon:
- 59323 - Gymnadenia: LTS0011247
- 59324 - Gymnadenia conopsea: 10.1248/CPB.54.506
- 59324 - Gymnadenia conopsea: LTS0011247
- 58416 - Hedyotis: LTS0011247
- 497234 - Hedyotis lawsoniae: 10.1248/CPB.33.1444
- 497234 - Hedyotis lawsoniae: LTS0011247
- 4231 - Helianthus: LTS0011247
- 4232 - Helianthus annuus:
- 4232 - Helianthus annuus: 10.1021/JF048945D
- 4232 - Helianthus annuus: LTS0011247
- 82426 - Helicteres: LTS0011247
- 190244 - Helicteres angustifolia: 10.1016/J.PHYTOCHEM.2006.03.005
- 190244 - Helicteres angustifolia: LTS0011247
- 1489665 - Helicteres hirsuta: 10.1002/PTR.1806
- 1489665 - Helicteres hirsuta: LTS0011247
- 13560 - Hernandia: LTS0011247
- 13561 - Hernandia ovigera: 10.1055/S-2004-832612
- 13561 - Hernandia ovigera: LTS0011247
- 22009 - Hernandiaceae: LTS0011247
- 229543 - Hibiscus cannabinus:
- 1008445 - Himatanthus drasticus: 10.1021/NP970253E
- 4513 - Hordeum vulgare: 10.1021/JF051488W
- 50557 - Insecta: LTS0011247
- 4119 - Ipomoea: LTS0011247
- 129201 - Ipomoea cairica: 10.1080/1057530290033123
- 35883 - Ipomoea nil: 10.1248/CPB.59.1425
- 35883 - Ipomoea nil: LTS0011247
- 161755 - Isatis: LTS0011247
- 161756 - Isatis tinctoria: 10.1016/J.PHYTOCHEM.2009.04.019
- 161756 - Isatis tinctoria: 10.1055/S-2006-949964
- 161756 - Isatis tinctoria: LTS0011247
- 51240 - Juglans regia: 10.1207/S15327914NC5402_5
- 496633 - Jungia polita: 10.1016/0031-9422(92)83741-G
- 224740 - Juniperus sabina: 10.1016/0031-9422(91)83240-L
- 2038521 - Justicia diffusa: 10.1016/0031-9422(90)87120-J
- 4236 - Lactuca sativa:
- 4136 - Lamiaceae: LTS0011247
- 188317 - Lancea tibetica: 10.1055/S-1999-14026
- 54800 - Larix kaempferi: 10.1016/0031-9422(91)80071-8
- 236003 - Leptadenia arborea: 10.1016/S0367-326X(02)00314-3
- 4447 - Liliopsida: LTS0011247
- 4004 - Linaceae: LTS0011247
- 4005 - Linum: LTS0011247
- 191219 - Linum album: 10.1016/S0031-9422(97)00957-6
- 191219 - Linum album: LTS0011247
- 407263 - Linum flavum: 10.1016/S0305-1978(96)00094-4
- 4006 - Linum usitatissimum:
- 3415 - Liriodendron tulipifera: 10.1007/BF00776644
- 49606 - Lonicera: LTS0011247
- 1304680 - Lonicera insularis: 10.1055/S-2001-10623
- 1304680 - Lonicera insularis: LTS0011247
- 109849 - Macaranga tanarius: 10.1016/J.PHYTOCHEM.2009.07.020
- 460780 - Machilus robusta: 10.1021/NP2001896
- 3402 - Magnolia: LTS0011247
- 86725 - Magnolia biondii:
- 86725 - Magnolia biondii: 10.1016/0031-9422(92)83756-O
- 86725 - Magnolia biondii: 10.1248/CPB.55.137
- 86725 - Magnolia biondii: LTS0011247
- 85854 - Magnolia coco: 10.1002/JCCS.199800116
- 85854 - Magnolia coco: LTS0011247
- 85856 - Magnolia denudata:
- 3401 - Magnoliaceae: LTS0011247
- 3398 - Magnoliopsida: LTS0011247
- 3750 - Malus domestica: 10.1079/BJN20051371
- 283210 - Malus pumila: 10.1079/BJN20051371
- 3629 - Malvaceae: LTS0011247
- 145819 - Mantisalca salmantica: 10.1016/0031-9422(93)85349-V
- 43708 - Melia: LTS0011247
- 155640 - Melia azedarach:
- 155640 - Melia azedarach: 10.1021/JF026083F
- 155640 - Melia azedarach: 10.1021/JF0482461
- 155640 - Melia azedarach: LTS0011247
- 43707 - Meliaceae: LTS0011247
- 47081 - Melilotus: LTS0011247
- 1279044 - Melilotus messanensis: 10.1016/S0031-9422(98)00453-1
- 1279044 - Melilotus messanensis: LTS0011247
- 33208 - Metazoa: LTS0011247
- 102786 - Mikania: LTS0011247
- 2855421 - Mikania haenkeana: 10.1016/0031-9422(92)83720-J
- 2855421 - Mikania haenkeana: LTS0011247
- 170021 - Mitragyna: LTS0011247
- 170351 - Mitragyna speciosa: 10.1016/S0040-4020(98)00464-5
- 170351 - Mitragyna speciosa: LTS0011247
- 180071 - Morina chinensis: 10.1016/S0040-4020(99)00933-3
- 43521 - Morinda: LTS0011247
- 43522 - Morinda citrifolia: 10.1021/NP0605539
- 43522 - Morinda citrifolia: LTS0011247
- 4640 - Musa:
- 3931 - Myrtaceae: LTS0011247
- 59169 - Nardostachys: LTS0011247
- 179860 - Nardostachys jatamansi: 10.1016/J.BMCL.2011.10.043
- 179860 - Nardostachys jatamansi: LTS0011247
- 4146 - Olea europaea:
- 4144 - Oleaceae: LTS0011247
- 92915 - Onopordum acanthium: 10.1055/S-2006-962793
- 196747 - Onopordum acaulon: 10.1016/0031-9422(92)83742-H
- 4747 - Orchidaceae: LTS0011247
- 4724 - Pandanaceae: LTS0011247
- 4725 - Pandanus: LTS0011247
- 1035881 - Pandanus boninensis: 10.1016/J.PHYTOCHEM.2005.08.019
- 1035881 - Pandanus boninensis: LTS0011247
- 240453 - Pandanus odoratissimus: 10.1016/S0031-9422(98)00390-2
- 240453 - Pandanus odoratissimus: LTS0011247
- 1165086 - Pandanus odorifer: 10.1016/S0031-9422(98)00390-2
- 1165086 - Pandanus odorifer: LTS0011247
- 4726 - Pandanus tectorius: 10.1016/S0031-9422(98)00390-2
- 4726 - Pandanus tectorius: LTS0011247
- 3468 - Papaver: 10.1079/BJN20051371
- 4041 - Pastinaca sativa: 10.1055/S-2001-18849
- 4180 - Pedaliaceae: LTS0011247
- 13196 - Peperomia: LTS0011247
- 352167 - Peperomia blanda: 10.1016/S0031-9422(03)00183-3
- 352167 - Peperomia blanda: LTS0011247
- 1719525 - Peperomia humilis: 10.1016/S0031-9422(03)00183-3
- 511531 - Peperomia leptostachya: 10.1016/S0031-9422(03)00183-3
- 511531 - Peperomia leptostachya: LTS0011247
- 3885 - Phaseolus vulgaris: 10.1079/BJN20051371
- 1006602 - Phlomoides: LTS0011247
- 694375 - Phlomoides hamosa:
- 694375 - Phlomoides hamosa: 10.1016/J.TET.2003.08.029
- 694375 - Phlomoides hamosa: LTS0011247
- 42345 - Phoenix dactylifera: 10.1207/S15327914NC5402_5
- 233880 - Phyllanthaceae: LTS0011247
- 58880 - Phyllanthus: LTS0011247
- 319601 - Phyllanthus oxyphyllus: 10.1016/J.TET.2003.10.023
- 3328 - Picea: LTS0011247
- 3329 - Picea abies: 10.1016/0031-9422(95)00144-V
- 3329 - Picea abies: LTS0011247
- 3330 - Picea glauca: 10.1016/S0031-9422(96)00388-3
- 3330 - Picea glauca: LTS0011247
- 130206 - Picea glehnii: 10.1016/0031-9422(94)85069-0
- 130206 - Picea glehnii: LTS0011247
- 308680 - Picea koraiensis: 10.1007/BF00563906
- 331118 - Picea obovata: 10.1007/BF00563906
- 3318 - Pinaceae: LTS0011247
- 1097227 - Pinalia: LTS0011247
- 2058695 - Pinalia floribunda: 10.5012/BKCS.2011.32.6.2079
- 2058695 - Pinalia floribunda: LTS0011247
- 58019 - Pinopsida: LTS0011247
- 3337 - Pinus: LTS0011247
- 88733 - Pinus armandii:
- 88733 - Pinus armandii: 10.1016/S0031-9422(00)95231-2
- 88733 - Pinus armandii: LTS0011247
- 88730 - Pinus massoniana: 10.1016/0031-9422(93)85098-C
- 16739 - Piperaceae: LTS0011247
- 55513 - Pistacia vera: 10.1207/S15327914NC5402_5
- 33090 - Plants: -
- 41623 - Pluchea: LTS0011247
- 175519 - Pluchea sagittalis: 10.1016/S0031-9422(98)00098-3
- 175519 - Pluchea sagittalis: LTS0011247
- 13228 - Potamogeton: LTS0011247
- 16362 - Potamogetonaceae: LTS0011247
- 36596 - Prunus armeniaca:
- 3758 - Prunus domestica: 10.1079/BJN20051371
- 3755 - Prunus dulcis: 10.1207/S15327914NC5402_5
- 3760 - Prunus persica:
- 323851 - Prunus persica var. nucipersica: 10.1079/BJN20051371
- 3357 - Pseudotsuga menziesii: 10.1016/S0031-9422(97)00245-8
- 46977 - Pulsatilla: LTS0011247
- 714493 - Pulsatilla chinensis: LTS0011247
- 22663 - Punica granatum: 10.3390/MOLECULES22101606
- 23211 - Pyrus communis: 10.1079/BJN20051371
- 3440 - Ranunculaceae: LTS0011247
- 240228 - Raphanus sativus var. sativus: 10.1021/JF051488W
- 174221 - Rhaphidophora: LTS0011247
- 258281 - Rhaphidophora decursiva: 10.1021/NP010037C
- 258281 - Rhaphidophora decursiva: LTS0011247
- 152203 - Rhodanthe manglesii: 10.1016/0031-9422(89)80045-7
- 78511 - Ribes nigrum:
- 74647 - Rosa multiflora: 10.1007/BF02980061
- 25473 - Rubia: LTS0011247
- 1650721 - Rubia yunnanensis: 10.1021/NP2002918
- 1650721 - Rubia yunnanensis: LTS0011247
- 24966 - Rubiaceae: LTS0011247
- 57936 - Rubus chamaemorus: 10.1016/J.FOODCHEM.2012.03.133
- 23513 - Rutaceae: LTS0011247
- 4201 - Sambucus: LTS0011247
- 57203 - Sambucus adnata: 10.1248/CPB.59.1396
- 57203 - Sambucus adnata: LTS0011247
- 4202 - Sambucus nigra: 10.1016/S0031-9422(01)00401-0
- 4202 - Sambucus nigra: LTS0011247
- 180062 - Sambucus williamsii: 10.3390/MOLECULES15053507
- 180062 - Sambucus williamsii: LTS0011247
- 3958 - Santalaceae: LTS0011247
- 41629 - Saussurea: LTS0011247
- 254913 - Saussurea laniceps: 10.1002/HLCA.200790096
- 254913 - Saussurea laniceps: LTS0011247
- 2893703 - Saussurea macrota: 10.1002/CHIN.200516160
- 137893 - Saussurea medusa:
- 137893 - Saussurea medusa: 10.1016/S0031-9422(01)00429-0
- 137893 - Saussurea medusa: 10.1248/CPB.53.1416
- 137893 - Saussurea medusa: LTS0011247
- 4550 - Secale cereale: 10.1021/JF051488W
- 4181 - Sesamum: LTS0011247
- 4182 - Sesamum indicum:
- 4182 - Sesamum indicum: 10.1016/J.BMCL.2012.06.068
- 4182 - Sesamum indicum: 10.1021/JF061694J
- 4182 - Sesamum indicum: LTS0011247
- 23808 - Simaroubaceae: LTS0011247
- 60077 - Simira: LTS0011247
- 4081 - Solanum lycopersicum:
- 4111 - Solanum melongena: 10.1021/JF051488W
- 4112 - Solanum Nigrum Linn.: -
- 4113 - Solanum tuberosum: 10.1079/BJN20051371
- 50190 - Sonchus: LTS0011247
- 2984305 - Sonchus macrocarpus: LTS0011247
- 3562 - Spinacia oleracea: 10.1207/S15327914NC5402_5
- 53171 - Stachys: LTS0011247
- 142737 - Stellera: LTS0011247
- 142738 - Stellera chamaejasme:
- 142738 - Stellera chamaejasme: 10.1248/CPB.32.1612
- 142738 - Stellera chamaejasme: LTS0011247
- 142738 - Stellera chamaejasme: NA
- 260324 - Stereospermum: LTS0011247
- 1090621 - Stereospermum colais: 10.1021/NP058036Y
- 1090621 - Stereospermum colais: LTS0011247
- 1401051 - Stereospermum tetragonum: 10.1021/NP058036Y
- 1883 - Streptomyces: 10.7164/ANTIBIOTICS.47.487
- 35493 - Streptophyta: LTS0011247
- 52858 - Strophanthus: LTS0011247
- 141614 - Strophanthus gratus: 10.1016/S0367-326X(00)00240-9
- 141614 - Strophanthus gratus: LTS0011247
- 246706 - Stuckenia: LTS0011247
- 55444 - Stuckenia pectinata: 10.1016/J.PHYTOCHEM.2003.08.014
- 55444 - Stuckenia pectinata: LTS0011247
- 20019 - Symplocaceae: LTS0011247
- 55372 - Symplocos: LTS0011247
- 251576 - Symplocos glomerata: 10.1016/J.PHYTOCHEM.2004.01.012
- 251576 - Symplocos glomerata: LTS0011247
- 2291169 - Symplocos lucida: 10.1021/NP0101189
- 210366 - Symplocos setchuensis: 10.1021/NP0101189
- 2945534 - Symplocos theifolia: 10.1021/NP0101189
- 178174 - Syzygium: LTS0011247
- 260142 - Syzygium cumini: 10.1080/14786410802038697
- 260142 - Syzygium cumini: LTS0011247
- 1547788 - Tarenna attenuata: 10.1021/NP0603931
- 99806 - Taxus cuspidata: 10.1007/BF00777366
- 313942 - Tessaria integrifolia: 10.3136/FSTR.6.106
- 27065 - Theaceae: LTS0011247
- 3315 - Thuja: LTS0011247
- 3317 - Thuja occidentalis: 10.1016/S0031-9422(99)00004-7
- 3317 - Thuja occidentalis: LTS0011247
- 39987 - Thymelaeaceae: LTS0011247
- 147277 - Torreya jackii: 10.1016/S0021-9673(99)00050-3
- 58023 - Tracheophyta: LTS0011247
- 4565 - Triticum aestivum:
- 3359 - Tsuga heterophylla: 10.1016/S0031-9422(96)00705-4
- 1692179 - Urolepis hecatantha: 10.1016/0031-9422(95)00091-K
- 2807146 - Utania racemosa: 10.1248/CPB.43.2200
- 180763 - Vaccinium myrtillus: 10.1016/J.FOODCHEM.2012.03.133
- 180772 - Vaccinium vitis-idaea: 10.1016/J.FOODCHEM.2012.03.133
- 19952 - Valeriana: LTS0011247
- 59170 - Valeriana jatamansi: 10.1016/J.BMCL.2011.10.043
- 243116 - Valeriana microphylla: 10.1055/S-2006-959740
- 243116 - Valeriana microphylla: LTS0011247
- 4204 - Viburnum: LTS0011247
- 436500 - Viburnum foetidum: 10.1248/CPB.57.1129
- 436500 - Viburnum foetidum: LTS0011247
- 2717252 - Viburnum foetidum var. foetidum: 10.1248/CPB.57.1129
- 2717252 - Viburnum foetidum var. foetidum: LTS0011247
- 33090 - Viridiplantae: LTS0011247
- 1003255 - Viscaceae: LTS0011247
- 3971 - Viscum: LTS0011247
- 159976 - Viscum coloratum: 10.1007/S10600-009-9361-7
- 159976 - Viscum coloratum: LTS0011247
- 3602 - Vitaceae: LTS0011247
- 54476 - Vitex: LTS0011247
- 413482 - Vitex glabrata: 10.1021/NP9006298
- 361442 - Vitex negundo: 10.1016/J.PHYTOL.2011.05.004
- 361442 - Vitex negundo: LTS0011247
- 29760 - Vitis vinifera:
- 142693 - Wikstroemia: LTS0011247
- 224084 - Wikstroemia canescens: 10.1248/CPB.60.554
- 224084 - Wikstroemia canescens: LTS0011247
- 3921 - Wisteria: LTS0011247
- 3922 - Wisteria floribunda: 10.5012/BKCS.2011.32.6.2079
- 3922 - Wisteria floribunda: LTS0011247
- 36590 - Xanthium: LTS0011247
- 318068 - Xanthium strumarium: 10.1055/S-2008-1081295
- 318068 - Xanthium strumarium: LTS0011247
- 261811 - Xerochrysum: LTS0011247
- 1436938 - Xerochrysum subundulatum: 10.1016/S0031-9422(00)84791-3
- 69720 - Zantedeschia: LTS0011247
- 69721 - Zantedeschia aethiopica: 10.1016/S0031-9422(98)00092-2
- 69721 - Zantedeschia aethiopica: LTS0011247
- 67937 - Zanthoxylum: LTS0011247
- 159071 - Zanthoxylum ailanthoides: 10.1055/S-2005-864144
- 159071 - Zanthoxylum ailanthoides: 10.1248/YAKUSHI1947.103.3_279
- 159071 - Zanthoxylum ailanthoides: LTS0011247
- 67938 - Zanthoxylum armatum: LTS0011247
- 1056465 - Zanthoxylum beecheyanum: 10.1002/JCCS.200400159
- 1056465 - Zanthoxylum beecheyanum: LTS0011247
- 2099534 - Zanthoxylum kellermanii: 10.1055/S-2005-864144
- 2099534 - Zanthoxylum kellermanii: LTS0011247
- 1056477 - Zanthoxylum riedelianum: LTS0011247
- 328402 - Zanthoxylum simulans: 10.1016/S0031-9422(02)00268-6
- 328402 - Zanthoxylum simulans: LTS0011247
- 4577 - Zea mays:
- 33090 - 了哥王根: -
- 33090 - 半边莲: -
- 33090 - 杜仲: -
- 33090 - 杜仲叶: -
- 33090 - 板蓝根: -
- 33090 - 洋金花: -
- 33090 - 白头翁: -
- 33090 - 肉苁蓉: -
- 33090 - 菟丝子: -
- 33090 - 辛夷: -
- 33090 - 连翘: -
- 569774 - 金线莲: -
- 33090 - 骨碎补: -
- 33090 - 龙葵: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Jingxian Feng, Yuan Yao, Yuqi Qiao, Xueqi Ma, Zongtai Wu, Yonghao Duan, Peng Di, Wansheng Chen, Ying Xiao. Effect of pinoresinol-lariciresinol reductases on biosynthesis of lignans with substrate selectivity in Schisandra chinensis.
Phytochemistry.
2024 May; 221(?):114053. doi:
10.1016/j.phytochem.2024.114053
. [PMID: 38479587] - Mona Soltani, Reza Fotovat, Mohsen Sharifi, Najmeh Ahmadian Chashmi, Mehrdad Behmanesh. In Vitro Comparative Study on Antineoplastic Effects of Pinoresinol and Lariciresinol on Healthy Cells and Breast Cancer-Derived Human Cells.
Iranian journal of medical sciences.
2024 Jan; 49(1):30-39. doi:
10.30476/ijms.2023.94805.2611
. [PMID: 38322161] - Mareia Ahmed-M Elgaleidh, Hafize Dilek Tepe, Fatma Doyuk, Talip Çeter, İdris Yazgan. Identification of Marker Molecules in Aqueous Plant Extracts Affecting the Gold Nanostructures' Morphology and Size.
Chemistry & biodiversity.
2023 Dec; ?(?):e202301349. doi:
10.1002/cbdv.202301349
. [PMID: 38108659] - Fabiola Muro-Villanueva, Leonard D Pysh, Hoon Kim, Tyler Bouse, John Ralph, Zhiwei Luo, Bruce R Cooper, Amber S Jannasch, Zeyu Zhang, Chong Gu, Clint Chapple. Pinoresinol rescues developmental phenotypes of Arabidopsis phenylpropanoid mutants overexpressing FERULATE 5-HYDROXYLASE.
Proceedings of the National Academy of Sciences of the United States of America.
2023 08; 120(31):e2216543120. doi:
10.1073/pnas.2216543120
. [PMID: 37487096] - Meng-Ting Li, He-Jia Hu, Yang Jin, Yi Chen, Si-Ying Chen, Yue-Ting Li, Yong Huang, Lin Zheng, Jing Huang, Zi-Peng Gong. [Content determination of seven active components of Eucommiae Cortex in aortic vascular endothelial cells of spontaneously hypertensive rats by UPLC-MS/MS].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2023 Jul; 48(13):3623-3632. doi:
10.19540/j.cnki.cjcmm.20230224.202
. [PMID: 37474995] - Yakun Pei, Wenhan Cao, Wenwen Yu, Chaoyang Peng, Wenhao Xu, Yayun Zuo, Wenjun Wu, Zhaonong Hu. Identification and functional characterization of the dirigent gene family in Phryma leptostachya and the contribution of PlDIR1 in lignan biosynthesis.
BMC plant biology.
2023 May; 23(1):291. doi:
10.1186/s12870-023-04297-6
. [PMID: 37259047] - Niamh M O'Boyle, Ida B Niklasson, David J Ponting, Miguel A Ortega, Tina Seifert, Andreas Natsch, Kristina Luthman, Ann-Therese Karlberg. Nature-derived epoxy resins: Synthesis, allergenicity, and thermosetting properties of pinoresinol diglycidyl ether.
Toxicology and industrial health.
2022 May; 38(5):259-269. doi:
10.1177/07482337221089595
. [PMID: 35465773] - Ying Xiao, Kai Shao, Jingwen Zhou, Lian Wang, Xueqi Ma, Di Wu, Yingbo Yang, Junfeng Chen, Jingxian Feng, Shi Qiu, Zongyou Lv, Lei Zhang, Peng Zhang, Wansheng Chen. Structure-based engineering of substrate specificity for pinoresinol-lariciresinol reductases.
Nature communications.
2021 05; 12(1):2828. doi:
10.1038/s41467-021-23095-y
. [PMID: 33990581] - Li Yang, Ronghua Liu, Yiwei Fang, Junwei He. Anti-inflammatory effect of phenylpropanoids from Dendropanax dentiger in TNF-α-induced MH7A cells via inhibition of NF-κB, Akt and JNK signaling pathways.
International immunopharmacology.
2021 May; 94(?):107463. doi:
10.1016/j.intimp.2021.107463
. [PMID: 33618295] - Davide Decembrino, Esther Ricklefs, Stefan Wohlgemuth, Marco Girhard, Katrin Schullehner, Guido Jach, Vlada B Urlacher. Assembly of Plant Enzymes in E. coli for the Production of the Valuable (-)-Podophyllotoxin Precursor (-)-Pluviatolide.
ACS synthetic biology.
2020 11; 9(11):3091-3103. doi:
10.1021/acssynbio.0c00354
. [PMID: 33095000] - Zsuzsanna Hajdú, Peter Forgo, Gergely Király, Gyula Pinke, István Zupkó, Judit Hohmann. Isolation of chemical constituents from Filago vulgaris and antiproliferative activity of the plant extract and its flavonoid against human tumor cell lines.
Pakistan journal of pharmaceutical sciences.
2020 Jul; 33(4):1593-1597. doi:
. [PMID: 33583792]
- Madhura Shettigar, Sahil Balotra, Annette Kasprzak, Stephen L Pearce, Michael J Lacey, Matthew C Taylor, Jian-Wei Liu, David Cahill, John G Oakeshott, Gunjan Pandey. Oxidative Catabolism of (+)-Pinoresinol Is Initiated by an Unusual Flavocytochrome Encoded by Translationally Coupled Genes within a Cluster of (+)-Pinoresinol-Coinduced Genes in Pseudomonas sp. Strain SG-MS2.
Applied and environmental microbiology.
2020 05; 86(10):. doi:
10.1128/aem.00375-20
. [PMID: 32198167] - Hejia Hu, Linlin Wu, Mei Li, Cun Xue, Guangcheng Wang, Siying Chen, Yong Huang, Lin Zheng, Aimin Wang, Yueting Li, Zipeng Gong. Comparative absorption kinetics of seven active ingredients of Eucommia ulmoides extracts by intestinal in situ circulatory perfusion in normal and spontaneous hypertensive rats.
Biomedical chromatography : BMC.
2020 Jan; 34(1):e4714. doi:
10.1002/bmc.4714
. [PMID: 31633806] - Sun Young Kim, Joo Young Lee, Changho Jhin, Ji Min Shin, Myungsuk Kim, Hong Ruyl Ahn, Gyhye Yoo, Yang-Ju Son, Sang Hoon Jung, Chu Won Nho. Reduction of Hepatic Lipogenesis by Loliolide and Pinoresinol from Lysimachia vulgaris via Degrading Liver X Receptors.
Journal of agricultural and food chemistry.
2019 Nov; 67(45):12419-12427. doi:
10.1021/acs.jafc.9b01488
. [PMID: 31610126] - Ji-Won Choi, Joon Yeon Shin, Il-Joo Jo, Dong-Gu Kim, Ho-Joon Song, Chi-Su Yoon, Hyuncheol Oh, Youn-Chul Kim, Gi-Sang Bae, Sung-Joo Park. 8α-Hydroxypinoresinol isolated from Nardostachys jatamansi ameliorates cerulein-induced acute pancreatitis through inhibition of NF-κB activation.
Molecular immunology.
2019 10; 114(?):620-628. doi:
10.1016/j.molimm.2019.09.002
. [PMID: 31542607] - So-Ra Lee, Khong Trong Quan, Hee Sun Byun, InWha Park, Kidong Kang, Xuezhe Piao, Eunjin Ju, Hyunju Ro, MinKyun Na, Gang Min Hur. Accelerated degradation of cFLIPL and sensitization of the TRAIL DISC-mediated apoptotic cascade by pinoresinol, a lignan isolated from Rubia philippinensis.
Scientific reports.
2019 09; 9(1):13505. doi:
10.1038/s41598-019-49909-0
. [PMID: 31534206] - Lucija Markulin, Cyrielle Corbin, Sullivan Renouard, Samantha Drouet, Laurent Gutierrez, Ivan Mateljak, Daniel Auguin, Christophe Hano, Elisabeth Fuss, Eric Lainé. Pinoresinol-lariciresinol reductases, key to the lignan synthesis in plants.
Planta.
2019 Jun; 249(6):1695-1714. doi:
10.1007/s00425-019-03137-y
. [PMID: 30895445] - Yingling Wu, Dawei Xing, Guoliang Ma, Xinlong Dai, Liping Gao, Tao Xia. A variable loop involved in the substrate selectivity of pinoresinol/lariciresinol reductase from Camellia sinensis.
Phytochemistry.
2019 Jun; 162(?):1-9. doi:
10.1016/j.phytochem.2019.02.003
. [PMID: 30844490] - Yang Ning, Yue Ling Fu, Qing Hua Zhang, Chun Zhang, Ying Chen. Inhibition of in vitro and in vivo ovarian cancer cell growth by pinoresinol occurs by way of inducing autophagy, inhibition of cell invasion, loss of mitochondrial membrane potential and inhibition Ras/MEK/ERK signalling pathway.
Journal of B.U.ON. : official journal of the Balkan Union of Oncology.
2019 Mar; 24(2):709-714. doi:
. [PMID: 31128027]
- Jing Li, Xiaoli Liang, Beixian Zhou, Xiaowei Chen, Peifang Xie, Haiming Jiang, Zhihong Jiang, Zifeng Yang, Xiping Pan. (+)‑pinoresinol‑O‑β‑D‑glucopyranoside from Eucommia ulmoides Oliver and its anti‑inflammatory and antiviral effects against influenza A (H1N1) virus infection.
Molecular medicine reports.
2019 01; 19(1):563-572. doi:
10.3892/mmr.2018.9696
. [PMID: 30483751] - Joséphine Ottavioli, Mathieu Paoli, Joseph Casanova, Félix Tomi, Ange Bighelli. Identification and Quantitative Determination of Resin Acids from Corsican Pinus pinaster Aiton Oleoresin Using 13 C-NMR Spectroscopy.
Chemistry & biodiversity.
2019 Jan; 16(1):e1800482. doi:
10.1002/cbdv.201800482
. [PMID: 30632681] - Nadiah Syafiqah Nor Azman, Md Shahadat Hossan, Veeranoot Nissapatorn, Chairat Uthaipibull, Parichat Prommana, Khoo Teng Jin, Mohammed Rahmatullah, Tooba Mahboob, Chandramathi Samudi Raju, Hassan Mahmood Jindal, Banasri Hazra, Mohd Ridzuan Mohd Abd Razak, Vijay Kumar Prajapati, Rajan Kumar Pandey, Norhaniza Aminudin, Khozirah Shaari, Nor Hadiani Ismail, Mark S Butler, Vladimir V Zarubaev, Christophe Wiart. Anti-infective activities of 11 plants species used in traditional medicine in Malaysia.
Experimental parasitology.
2018 Nov; 194(?):67-78. doi:
10.1016/j.exppara.2018.09.020
. [PMID: 30268422] - Luca Pompermaier, Elke H Heiss, Mostafa Alilou, Fabian Mayr, Mawunu Monizi, Thea Lautenschlaeger, Daniela Schuster, Stefan Schwaiger, Hermann Stuppner. Dihydrochalcone Glucosides from the Subaerial Parts of Thonningia sanguinea and Their in Vitro PTP1B Inhibitory Activities.
Journal of natural products.
2018 09; 81(9):2091-2100. doi:
10.1021/acs.jnatprod.8b00450
. [PMID: 30207720] - Taewoong Rho, Kee Dong Yoon. Application of off-line two-dimensional high-performance countercurrent chromatography on the chloroform-soluble extract of Cuscuta auralis seeds.
Journal of separation science.
2018 May; 41(10):2169-2177. doi:
10.1002/jssc.201701498
. [PMID: 29450982] - Madhura Shettigar, Sahil Balotra, David Cahill, Andrew C Warden, Michael J Lacey, Hans-Peter E Kohler, Daniel Rentsch, John G Oakeshott, Gunjan Pandey. Isolation of the (+)-Pinoresinol-Mineralizing Pseudomonas sp. Strain SG-MS2 and Elucidation of Its Catabolic Pathway.
Applied and environmental microbiology.
2018 02; 84(4):. doi:
10.1128/aem.02531-17
. [PMID: 29222099] - En Gao, Zheng-Qun Zhou, Jian Zou, Yang Yu, Xiao-Lin Feng, Guo-Dong Chen, Rong-Rong He, Xin-Sheng Yao, Hao Gao. Bioactive Asarone-Derived Phenylpropanoids from the Rhizome of Acorus tatarinowii Schott.
Journal of natural products.
2017 11; 80(11):2923-2929. doi:
10.1021/acs.jnatprod.7b00457
. [PMID: 29116780] - Xiaojian Gong, Qingxiang Luan, Xin Zhou, Yang Zhao, Chao Zhao. UHPLC-ESI-MS/MS determination and pharmacokinetics of pinoresinol glucoside and chlorogenic acid in rat plasma after oral administration of Eucommia ulmoides Oliv extract.
Biomedical chromatography : BMC.
2017 Nov; 31(11):. doi:
10.1002/bmc.4008
. [PMID: 28493441] - Yan Song, Lan Pan, Wenjie Li, Yingying Si, Di Zhou, Chengjian Zheng, Xiaofang Hao, Xinyue Jia, Yuemei Jia, Minghui Shi, Xiaoguang Jia, Ning Li, Yue Hou. Natural neuro-inflammatory inhibitors from Caragana turfanensis.
Bioorganic & medicinal chemistry letters.
2017 10; 27(20):4765-4769. doi:
10.1016/j.bmcl.2017.08.047
. [PMID: 28911817] - Eun Jin Mo, Jong Hoon Ahn, Yang Hee Jo, Seon Beom Kim, Bang Yeon Hwang, Mi Kyeong Lee. Inositol Derivatives and Phenolic Compounds from the Roots of Taraxacum coreanum.
Molecules (Basel, Switzerland).
2017 Aug; 22(8):. doi:
10.3390/molecules22081349
. [PMID: 28805750] - Khang D H Nguyen, Phu H Dang, Hai X Nguyen, Mai T T Nguyen, Suresh Awale, Nhan T Nguyen. Phytochemical and cytotoxic studies on the leaves of Calotropis gigantea.
Bioorganic & medicinal chemistry letters.
2017 07; 27(13):2902-2906. doi:
10.1016/j.bmcl.2017.04.087
. [PMID: 28495081] - Anna Sólyomváry, Ágnes Alberti, András Darcsi, Rita Könye, Gergő Tóth, Béla Noszál, Ibolya Molnár-Perl, László Lorántfy, Judit Dobos, László Őrfi, Szabolcs Béni, Imre Boldizsár. Optimized conversion of antiproliferative lignans pinoresinol and epipinoresinol: Their simultaneous isolation and identification by centrifugal partition chromatography and high performance liquid chromatography.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2017 May; 1052(?):142-149. doi:
10.1016/j.jchromb.2017.03.036
. [PMID: 28384606] - Yun Zhu, Kayoko Kawaguchi, Ryoiti Kiyama. Differential and directional estrogenic signaling pathways induced by enterolignans and their precursors.
PloS one.
2017; 12(2):e0171390. doi:
10.1371/journal.pone.0171390
. [PMID: 28152041] - Jiaolin Bao, Ren-Bo Ding, Yeer Liang, Fang Liu, Kai Wang, Xuejing Jia, Chao Zhang, Meiwan Chen, Peng Li, Huanxing Su, Jian-Bo Wan, Yitao Wang, Chengwei He. Differences in Chemical Component and Anticancer Activity of Green and Ripe Forsythiae Fructus.
The American journal of Chinese medicine.
2017; 45(7):1513-1536. doi:
10.1142/s0192415x17500823
. [PMID: 28946767] - Qi Li, Yan Zhang, Jun-Ling Shi, Yi-Lin Wang, Hao-Bin Zhao, Dong-Yan Shao, Qing-Sheng Huang, Hui Yang, Ming-Liang Jin. Mechanism and Anticancer Activity of the Metabolites of an Endophytic Fungi from Eucommia ulmoides Oliv.
Anti-cancer agents in medicinal chemistry.
2017; 17(7):982-989. doi:
10.2174/1871520616666160923094814
. [PMID: 27671307] - Fadia S Youssef, Mohamed L Ashour, Mansour Sobeh, Hesham A El-Beshbishy, Abdel Nasser Singab, Michael Wink. Eremophila maculata-Isolation of a rare naturally-occurring lignan glycoside and the hepatoprotective activity of the leaf extract.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2016 Nov; 23(12):1484-1493. doi:
10.1016/j.phymed.2016.08.006
. [PMID: 27765369] - Yongjun Li, Zipeng Gong, Xu Cao, Yonglin Wang, Aimin Wang, Lin Zheng, Yong Huang, Yanyu Lan. A UPLC-MS Method for Simultaneous Determination of Geniposidic Acid, Two Lignans and Phenolics in Rat Plasma and its Application to Pharmacokinetic Studies of Eucommia ulmoides Extract in Rats.
European journal of drug metabolism and pharmacokinetics.
2016 Oct; 41(5):595-603. doi:
10.1007/s13318-015-0282-5
. [PMID: 25990756] - Nguyen Phuong Thao, Bui Thi Thuy Luyen, Le Ba Vinh, Jung Yun Lee, Young In Kwon, Young Ho Kim. Rat intestinal sucrase inhibited by minor constituents from the leaves and twigs of Archidendron clypearia (Jack.) Nielsen.
Bioorganic & medicinal chemistry letters.
2016 09; 26(17):4272-6. doi:
10.1016/j.bmcl.2016.07.044
. [PMID: 27481560] - Yan-xi Chang, Bao-quan Bao, Xuan Zhang, J I Rimubatu, Ping Zhang. [Chemical Constituents from A Taditional Mongolian Medicine Clematis aethusifolia].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2016 Jul; 39(7):1545-9. doi:
. [PMID: 30203953]
- Esther Ricklefs, Marco Girhard, Vlada B Urlacher. Three-steps in one-pot: whole-cell biocatalytic synthesis of enantiopure (+)- and (-)-pinoresinol via kinetic resolution.
Microbial cell factories.
2016 May; 15(?):78. doi:
10.1186/s12934-016-0472-0
. [PMID: 27160378] - Yue-ping Jiang, Yu-feng Liu, Qing-lan Guo, Cheng-bo Xu, Sheng Lin, Cheng-gen Zhu, Yong-chun Yang, Jian-gong Shi. [Lignanoids from an aqueous extract of the roots of Codonopsis pilosula].
Yao xue xue bao = Acta pharmaceutica Sinica.
2016 04; 51(4):616-25. doi:
. [PMID: 29860746]
- Nuoendagula, Naofumi Kamimura, Tetsuya Mori, Ryo Nakabayashi, Yukiko Tsuji, Shojiro Hishiyama, Kazuki Saito, Eiji Masai, Shinya Kajita. Expression and functional analyses of a putative phenylcoumaran benzylic ether reductase in Arabidopsis thaliana.
Plant cell reports.
2016 Mar; 35(3):513-26. doi:
10.1007/s00299-015-1899-1
. [PMID: 26601823] - Kyeong Wan Woo, Won Se Suh, Lalita Subedi, Sun Yeou Kim, Aejung Kim, Kang Ro Lee. Bioactive lignan derivatives from the stems of Firmiana simplex.
Bioorganic & medicinal chemistry letters.
2016 Feb; 26(3):730-733. doi:
10.1016/j.bmcl.2016.01.008
. [PMID: 26774654] - Ying-peng Chen, Zhong-ping Wang, Hong-hong Zheng, Yan-tong Xu, Yani Zhu, Peng Zhang, Hong-hua Wu. A new caffeate compound from Nardostachys chinensis.
Yao xue xue bao = Acta pharmaceutica Sinica.
2016 Jan; 51(1):100-4. doi:
. [PMID: 27405169]
- ". [Chemical Constituents from Serissa japonica].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2016 Jan; 39(1):94-7. doi:
"
. [PMID: 30080007] - Thao Quyen Cao, Manh Hung Tran, Jeong Ah Kim, Phuong Thao Tran, Jeong-Hyung Lee, Mi Hee Woo, Hyeong-Kyu Lee, Byung Sun Min. Inhibitory effects of compounds from Styrax obassia on NO production.
Bioorganic & medicinal chemistry letters.
2015 Nov; 25(22):5087-91. doi:
10.1016/j.bmcl.2015.10.020
. [PMID: 26483135] - Qing-wei Yan, Rui-jian Zhong, Guo-ping Zhou, Hui-zheng Fu, Tian-xiao Zhang. [Chemical Constituents from Camellia oleifera Stem].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2015 Oct; 38(10):2102-4. doi:
. [PMID: 27254924]
- Hao Wang, Chang-An Geng, Hong-Bo Xu, Xiao-Yan Huang, Yun-Bao Ma, Cai-Yan Yang, Xue-Mei Zhang, Ji-Jun Chen. Lignans from the Fruits of Melia toosendan and Their Agonistic Activities on Melatonin Receptor MT1.
Planta medica.
2015 Jul; 81(10):847-54. doi:
10.1055/s-0035-1546127
. [PMID: 26085048] - Doralyn S Dalisay, Kye Won Kim, Choonseok Lee, Hong Yang, Oliver Rübel, Benjamin P Bowen, Laurence B Davin, Norman G Lewis. Dirigent Protein-Mediated Lignan and Cyanogenic Glucoside Formation in Flax Seed: Integrated Omics and MALDI Mass Spectrometry Imaging.
Journal of natural products.
2015 Jun; 78(6):1231-42. doi:
10.1021/acs.jnatprod.5b00023
. [PMID: 25981198] - Yan Zhang, Junling Shi, Zhenhong Gao, Ruiming Yangwu, Huanshi Jiang, Jinxin Che, Yanlin Liu. Production of pinoresinol diglucoside, pinoresinol monoglucoside, and pinoresinol by Phomopsis sp. XP-8 using mung bean and its major components.
Applied microbiology and biotechnology.
2015 Jun; 99(11):4629-43. doi:
10.1007/s00253-015-6491-7
. [PMID: 25805340] - Karoline Koch, Christian Büchter, Susannah Havermann, Wim Wätjen. The Lignan Pinoresinol Induces Nuclear Translocation of DAF-16 in Caenorhabditis elegans but has No Effect on Life Span.
Phytotherapy research : PTR.
2015 Jun; 29(6):894-901. doi:
10.1002/ptr.5330
. [PMID: 25826281] - Ya-mei Zhang, Pu-zhao Zhang. [Lignans from Stem Bark of Styrax perkinsiae].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2015 Jun; 38(6):1202-5. doi:
"
. [PMID: 26762060] - Herana Kamal Seneviratne, Doralyn S Dalisay, Kye-Won Kim, Syed G A Moinuddin, Hong Yang, Christopher M Hartshorn, Laurence B Davin, Norman G Lewis. Non-host disease resistance response in pea (Pisum sativum) pods: Biochemical function of DRR206 and phytoalexin pathway localization.
Phytochemistry.
2015 May; 113(?):140-8. doi:
10.1016/j.phytochem.2014.10.013
. [PMID: 25457488] - Gui-hui Wu, Yan Chen, Li-hua Zheng, Tao Huang, Xiao-jiang Hao, Jian-xin Zhang. [Chemical Constituents of Eucommia ulmoides in Guizhou Province].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2015 May; 38(5):980-4. doi:
. [PMID: 26767291]
- Yan Zhang, Junling Shi, Laping Liu, Zhenhong Gao, Jinxin Che, Dongyan Shao, Yanlin Liu. Bioconversion of Pinoresinol Diglucoside and Pinoresinol from Substrates in the Phenylpropanoid Pathway by Resting Cells of Phomopsis sp.XP-8.
PloS one.
2015; 10(9):e0137066. doi:
10.1371/journal.pone.0137066
. [PMID: 26331720] - P Reboredo-Rodríguez, C González-Barreiro, B Cancho-Grande, J Simal-Gándara. Quality of extra virgin olive oils produced in an emerging olive growing area in north-western Spain.
Food chemistry.
2014 Dec; 164(?):418-26. doi:
10.1016/j.foodchem.2014.05.043
. [PMID: 24996353] - Sullivan Renouard, Marie-Aude Tribalatc, Frederic Lamblin, Gaëlle Mongelard, Ophélie Fliniaux, Cyrielle Corbin, Djurdjica Marosevic, Serge Pilard, Hervé Demailly, Laurent Gutierrez, Christophe Hano, François Mesnard, Eric Lainé. RNAi-mediated pinoresinol lariciresinol reductase gene silencing in flax (Linum usitatissimum L.) seed coat: consequences on lignans and neolignans accumulation.
Journal of plant physiology.
2014 Sep; 171(15):1372-7. doi:
10.1016/j.jplph.2014.06.005
. [PMID: 25046758] - T Kulik, M Buśko, A Pszczółkowska, J Perkowski, A Okorski. Plant lignans inhibit growth and trichothecene biosynthesis in Fusarium graminearum.
Letters in applied microbiology.
2014 Jul; 59(1):99-107. doi:
10.1111/lam.12250
. [PMID: 24635164] - Guo-Kai Wang, Jin-Song Liu, Ying-Sheng Xu, Gang Wang. [Study on chemical constituents from crop pathogenic fungus active fraction of Wisteria sinensis tumor].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2014 Jul; 37(7):1187-9. doi:
"
. [PMID: 25566653] - Eliana Spilioti, Bjarne Holmbom, Athanasios G Papavassiliou, Paraskevi Moutsatsou. Lignans 7-hydroxymatairesinol and 7-hydroxymatairesinol 2 exhibit anti-inflammatory activity in human aortic endothelial cells.
Molecular nutrition & food research.
2014 Apr; 58(4):749-59. doi:
10.1002/mnfr.201300318
. [PMID: 24311533] - Sourav Chakraborty, Justin G A Whitehill, Amy L Hill, Stephen O Opiyo, Don Cipollini, Daniel A Herms, Pierluigi Bonello. Effects of water availability on emerald ash borer larval performance and phloem phenolics of Manchurian and black ash.
Plant, cell & environment.
2014 Apr; 37(4):1009-21. doi:
10.1111/pce.12215
. [PMID: 24125060] - Hui Chen, Zhi-You Hao, Xiao-Lan Wang, Xiao-Ke Zheng, Wei-Sheng Feng, Yan-Zhi Wang. Sinensioside A, a new sesquilignan glycoside from Selaginella sinensis.
Chinese journal of natural medicines.
2014 Feb; 12(2):148-50. doi:
10.1016/s1875-5364(14)60024-8
. [PMID: 24636067] - Dhammaprakash Pandhari Wankhede, Dipul Kumar Biswas, Subramani Rajkumar, Alok Krishna Sinha. Expressed sequence tags and molecular cloning and characterization of gene encoding pinoresinol/lariciresinol reductase from Podophyllum hexandrum.
Protoplasma.
2013 Dec; 250(6):1239-49. doi:
10.1007/s00709-013-0505-z
. [PMID: 23653238] - Augusta Caligiani, Letizia Tonelli, Gerardo Palla, Angela Marseglia, Damiano Rossi, Renato Bruni. Looking beyond sugars: phytochemical profiling and standardization of manna exudates from Sicilian Fraxinus excelsior L.
Fitoterapia.
2013 Oct; 90(?):65-72. doi:
10.1016/j.fitote.2013.07.002
. [PMID: 23850543] - Shan-Zhai Shang, Huan Chen, Cheng-Qin Liang, Zhong-Hua Gao, Xue Du, Rui-Rui Wang, Yi-Ming Shi, Yong-Tang Zheng, Wei-Lie Xiao, Han-Dong Sun. Phenolic constituents from Parakmeria yunnanensis and their anti-HIV-1 activity.
Archives of pharmacal research.
2013 Oct; 36(10):1223-30. doi:
10.1007/s12272-013-0070-1
. [PMID: 23444043] - Laila Meija, Paivi Söderholm, Adile Samaletdin, Gita Ignace, Inese Siksna, Rafaels Joffe, Aivars Lejnieks, Vilnis Lietuvietis, Indrikis Krams, Herman Adlercreutz. Dietary intake and major sources of plant lignans in Latvian men and women.
International journal of food sciences and nutrition.
2013 Aug; 64(5):535-43. doi:
10.3109/09637486.2013.765835
. [PMID: 23373826] - Christian Kazenwadel, Janosch Klebensberger, Sven Richter, Jens Pfannstiel, Uwe Gerken, Benjamin Pickel, Andreas Schaller, Bernhard Hauer. Optimized expression of the dirigent protein AtDIR6 in Pichia pastoris and impact of glycosylation on protein structure and function.
Applied microbiology and biotechnology.
2013 Aug; 97(16):7215-27. doi:
10.1007/s00253-012-4579-x
. [PMID: 23188459] - Ghayth Rigane, Maher Boukhris, Ridha Ben Salem, Sami Sayadi, Mohamed Bouaziz, Mohamed Bouaaziz. Analytical evaluation of two monovarietal virgin olive oils cultivated in the south of Tunisia: Jemri-Bouchouka and Chemlali-Tataouin cultivars.
Journal of the science of food and agriculture.
2013 Mar; 93(5):1242-8. doi:
10.1002/jsfa.5864
. [PMID: 22936570] - Ghayth Rigane, Mohamed Ayadi, Maher Boukhris, Sami Sayadi, Mohamed Bouaziz. Characterisation and phenolic profiles of two rare olive oils from southern Tunisia: Dhokar and Gemri-Dhokar cultivars.
Journal of the science of food and agriculture.
2013 Feb; 93(3):527-34. doi:
10.1002/jsfa.5815
. [PMID: 22886385] - Y Fukuhara, N Kamimura, M Nakajima, S Hishiyama, H Hara, D Kasai, Y Tsuji, S Narita-Yamada, S Nakamura, Y Katano, N Fujita, Y Katayama, M Fukuda, S Kajita, E Masai. Discovery of pinoresinol reductase genes in sphingomonads.
Enzyme and microbial technology.
2013 Jan; 52(1):38-43. doi:
10.1016/j.enzmictec.2012.10.004
. [PMID: 23199737] - Sheng-Zhuo Huang, Qing-Yun Ma, Yu-Qing Liu, Jun Zhou, You-Xing Zhao. [Chemical constituents from Daphne acutiloba].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2013 Jan; 38(1):64-9. doi:
. [PMID: 23596879]
- Kye-Won Kim, Syed G A Moinuddin, Kathleen M Atwell, Michael A Costa, Laurence B Davin, Norman G Lewis. Opposite stereoselectivities of dirigent proteins in Arabidopsis and schizandra species.
The Journal of biological chemistry.
2012 Oct; 287(41):33957-72. doi:
10.1074/jbc.m112.387423
. [PMID: 22854967] - Alexandrine During, Céline Debouche, Thomas Raas, Yvan Larondelle. Among plant lignans, pinoresinol has the strongest antiinflammatory properties in human intestinal Caco-2 cells.
The Journal of nutrition.
2012 Oct; 142(10):1798-805. doi:
10.3945/jn.112.162453
. [PMID: 22955517] - Wen-Jie Li, Zhi-Hao Zhang, Xian-Long Cheng, Jing Liu, Yi He, Chao Zhou, Ying Guo, Rui-Chao Lin, Gang-Li Wang. Two new compounds isolated from Liriope muscari.
Molecules (Basel, Switzerland).
2012 Jul; 17(8):8773-81. doi:
10.3390/molecules17088773
. [PMID: 22832879] - J L Peñalvo, B Moreno-Franco, L Ribas-Barba, L Serra-Majem. Determinants of dietary lignan intake in a representative sample of young Spaniards: association with lower obesity prevalence among boys but not girls.
European journal of clinical nutrition.
2012 Jul; 66(7):795-8. doi:
10.1038/ejcn.2012.45
. [PMID: 22588634] - V Sánchez de Medina, F Priego-Capote, M D Luque de Castro. Characterization of refined edible oils enriched with phenolic extracts from olive leaves and pomace.
Journal of agricultural and food chemistry.
2012 Jun; 60(23):5866-73. doi:
10.1021/jf301161v
. [PMID: 22616838] - Benjamin Pickel, Jens Pfannstiel, Alexander Steudle, Axel Lehmann, Uwe Gerken, Jürgen Pleiss, Andreas Schaller. A model of dirigent proteins derived from structural and functional similarities with allene oxide cyclase and lipocalins.
The FEBS journal.
2012 Jun; 279(11):1980-93. doi:
10.1111/j.1742-4658.2012.08580.x
. [PMID: 22443713] - Xiao-Lan Lv, Xi Mai, Hui Guo, Xiao-Ping Lai. [Chemical constituents of the roots of Vaccinium bracteatum].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2012 Jun; 35(6):917-9. doi:
"
. [PMID: 23236828] - Liang Chen, Lei Wang, Qingwen Zhang, Shengyuan Zhang, Wencai Ye. [Non-alkaloid chemical constituents from Coptis chinensis].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2012 May; 37(9):1241-4. doi:
10.4268/cjcmm20120915
. [PMID: 22803368] - Gang Ren, Zhang-Ping Luo, Hui-Lian Huang, Feng Shao, Gong-Hui Li, Chang-Xin Zhou, Rong-Hua Liu. [Study on the chemical constituents of the roots of Dendropanax chevalieri].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2012 Jan; 35(1):62-4. doi:
. [PMID: 22734412]
- Sullivan Renouard, Cyrielle Corbin, Tatiana Lopez, Josiane Montguillon, Laurent Gutierrez, Frédéric Lamblin, Eric Lainé, Christophe Hano. Abscisic acid regulates pinoresinol-lariciresinol reductase gene expression and secoisolariciresinol accumulation in developing flax (Linum usitatissimum L.) seeds.
Planta.
2012 Jan; 235(1):85-98. doi:
10.1007/s00425-011-1492-y
. [PMID: 21837520] - Marcelo F de Araújo, Ivo J Curcino Vieira, Raimundo Braz-Filho, Mário G de Carvalho. Simiranes A and B: erythroxylanes diterpenes and other compounds from Simira eliezeriana (Rubiaceae).
Natural product research.
2011 Oct; 25(18):1713-9. doi:
10.1080/14786419.2011.560575
. [PMID: 21936665] - Joo Hee Kwon, Jee Hun Kim, Sun Eun Choi, Kwan Hee Park, Min Won Lee. Inhibitory effects of phenolic compounds from needles of Pinus densiflora on nitric oxide and PGE2 production.
Archives of pharmacal research.
2010 Dec; 33(12):2011-6. doi:
10.1007/s12272-010-1217-y
. [PMID: 21191767] - Hyo Won Jung, Ramalingam Mahesh, Jong Gu Lee, Seung Ho Lee, Young Shik Kim, Yong-Ki Park. Pinoresinol from the fruits of Forsythia koreana inhibits inflammatory responses in LPS-activated microglia.
Neuroscience letters.
2010 Aug; 480(3):215-20. doi:
10.1016/j.neulet.2010.06.043
. [PMID: 20600612] - Bomi Hwang, Juneyoung Lee, Qing-He Liu, Eun-Rhan Woo, Dong Gun Lee. Antifungal effect of (+)-pinoresinol isolated from Sambucus williamsii.
Molecules (Basel, Switzerland).
2010 May; 15(5):3507-16. doi:
10.3390/molecules15053507
. [PMID: 20657496] - Chen-yang Li, Hui-yuan Zhai, Sheng-an Tang, Hong-quan Duan. [Studies on the chemical constituents of Pachysandra terminalis and their antioxidant activity].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2010 May; 33(5):729-32. doi:
"
. [PMID: 20873557] - Ying Zhao, Fei Liu, Hong-Xiang Lou. [Studies on the chemical constituents of Solanum nigrum].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2010 Apr; 33(4):555-6. doi:
"
. [PMID: 20845784] - N Pellegrini, S Valtueña, D Ardigò, F Brighenti, L Franzini, D Del Rio, F Scazzina, P M Piatti, I Zavaroni. Intake of the plant lignans matairesinol, secoisolariciresinol, pinoresinol, and lariciresinol in relation to vascular inflammation and endothelial dysfunction in middle age-elderly men and post-menopausal women living in Northern Italy.
Nutrition, metabolism, and cardiovascular diseases : NMCD.
2010 Jan; 20(1):64-71. doi:
10.1016/j.numecd.2009.02.003
. [PMID: 19361969] - Hyo-Yeon Kim, Joon-Ki Kim, Jun-Ho Choi, Joo-Yeon Jung, Woo-Yong Oh, Dong Chun Kim, Hee Sang Lee, Yeong Shik Kim, Sam Sik Kang, Seung-Ho Lee, Sun-Mee Lee. Hepatoprotective effect of pinoresinol on carbon tetrachloride-induced hepatic damage in mice.
Journal of pharmacological sciences.
2010; 112(1):105-12. doi:
10.1254/jphs.09234fp
. [PMID: 20093790] - Benjamin Pickel, Mihaela-Anca Constantin, Jens Pfannstiel, Jürgen Conrad, Uwe Beifuss, Andreas Schaller. An enantiocomplementary dirigent protein for the enantioselective laccase-catalyzed oxidative coupling of phenols.
Angewandte Chemie (International ed. in English).
2010; 49(1):202-4. doi:
10.1002/anie.200904622
. [PMID: 19946920] - Hyun Jung Kim, Eiichiro Ono, Kinuyo Morimoto, Tohru Yamagaki, Atsushi Okazawa, Akio Kobayashi, Honoo Satake. Metabolic engineering of lignan biosynthesis in Forsythia cell culture.
Plant & cell physiology.
2009 Dec; 50(12):2200-9. doi:
10.1093/pcp/pcp156
. [PMID: 19887541] - Li-hua Yan, Li-zhen Xu, Jia Lin, Zhong-mei Zou, Bao-hua Zhao, Shi-lin Yang. [Studies on lignan constituents of Clematis parviloba].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2008 Aug; 33(15):1839-43. doi:
. [PMID: 19007011]
- Lucia Fini, Erin Hotchkiss, Vincenzo Fogliano, Giulia Graziani, Marco Romano, Edward B De Vol, Huanying Qin, Michael Selgrad, C Richard Boland, Luigi Ricciardiello. Chemopreventive properties of pinoresinol-rich olive oil involve a selective activation of the ATM-p53 cascade in colon cancer cell lines.
Carcinogenesis.
2008 Jan; 29(1):139-46. doi:
10.1093/carcin/bgm255
. [PMID: 17999988] - Ming-An Ouyang, Yung-Shung Wein, Zhen-Kun Zhang, Yueh-Hsiung Kuo. Inhibitory activity against tobacco mosaic virus (TMV) replication of pinoresinol and syringaresinol lignans and their glycosides from the root of Rhus javanica var. roxburghiana.
Journal of agricultural and food chemistry.
2007 Aug; 55(16):6460-5. doi:
10.1021/jf0709808
. [PMID: 17616139] - Ai-Mei Yang, Run-Hua Lu, Yan-Ping Shi. [Chemical constituents from Pyrethrum tatsienense].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2007 May; 30(5):546-8. doi:
"
. [PMID: 17727058] - Frank C Schroeder, Marta L del Campo, Jacqualine B Grant, Douglas B Weibel, Scott R Smedley, Kelly L Bolton, Jerrold Meinwald, Thomas Eisner. Pinoresinol: A lignol of plant origin serving for defense in a caterpillar.
Proceedings of the National Academy of Sciences of the United States of America.
2006 Oct; 103(42):15497-501. doi:
10.1073/pnas.0605921103
. [PMID: 17030818] - Ivon E J Milder, Edith J M Feskens, Ilja C W Arts, H Bas Bueno-de-Mesquita, Peter C H Hollman, Daan Kromhout. Intakes of 4 dietary lignans and cause-specific and all-cause mortality in the Zutphen Elderly Study.
The American journal of clinical nutrition.
2006 Aug; 84(2):400-5. doi:
10.1093/ajcn/84.1.400
. [PMID: 16895890] - Ana María Gómez Caravaca, Alegría Carrasco Pancorbo, Beatriz Cañabate Díaz, Antonio Segura Carretero, Alberto Fernández Gutiérrez. Electrophoretic identification and quantitation of compounds in the polyphenolic fraction of extra-virgin olive oil.
Electrophoresis.
2005 Sep; 26(18):3538-51. doi:
10.1002/elps.200500202
. [PMID: 16167367] - Laurence B Davin, Norman G Lewis. Lignin primary structures and dirigent sites.
Current opinion in biotechnology.
2005 Aug; 16(4):407-15. doi:
10.1016/j.copbio.2005.06.011
. [PMID: 16023847] - Ivon E J Milder, Edith J M Feskens, Ilja C W Arts, H Bas Bueno de Mesquita, Peter C H Hollman, Daan Kromhout. Intake of the plant lignans secoisolariciresinol, matairesinol, lariciresinol, and pinoresinol in Dutch men and women.
The Journal of nutrition.
2005 May; 135(5):1202-7. doi:
10.1093/jn/135.5.1202
. [PMID: 15867304]