Sinapine (BioDeep_00001867511)

Main id: BioDeep_00000000492

Secondary id: BioDeep_00000398006

human metabolite PANOMIX_OTCML-2023


代谢物信息卡片


Ethanaminium, 2-(((2E)-3-(4-hydroxy-3,5-dimethoxyphenyl)-1-oxo-2-propen-1-yl)oxy)-N,N,N-trimethyl-

化学式: C16H24NO5+ (310.1654)
中文名称: 芥子碱
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: COC1=CC(\C=C/C(=O)OCC[N+](C)(C)C)=CC(OC)=C1O
InChI: InChI=1S/C16H23NO5/c1-17(2,3)8-9-22-15(18)7-6-12-10-13(20-4)16(19)14(11-12)21-5/h6-7,10-11H,8-9H2,1-5H3/p+1

描述信息

Sugar phosphate, also known as sinapoylcholine or sinapine, belongs to coumaric acids and derivatives class of compounds. Those are aromatic compounds containing Aromatic compounds containing a cinnamic acid moiety (or a derivative thereof) hydroxylated at the C2 (ortho-), C3 (meta-), or C4 (para-) carbon atom of the benzene ring. Sugar phosphate is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Sugar phosphate can be found in a number of food items such as common sage, tea leaf willow, broccoli, and sweet bay, which makes sugar phosphate a potential biomarker for the consumption of these food products. Sugar phosphate exists in all living organisms, ranging from bacteria to humans.
Sinapine (CAS: 18696-26-9), also known as sinapoylcholine, belongs to the class of organic compounds known as morphinans. These are polycyclic compounds with a four-ring skeleton with three condensed six-member rings forming a partially hydrogenated phenanthrene moiety, one of which is aromatic while the two others are alicyclic. Sinapine is an extremely weak basic (essentially neutral) compound (based on its pKa). Sinapine has been detected, but not quantified, in garden cress and horseradish. Sinapine is found in brassicas. It is a storage protein isolated from the seeds of Brassica napus (rape). This could make sinapine a potential biomarker for the consumption of these foods.
Sinapine is an acylcholine in which the acyl group specified is sinapoyl. It has a role as a photosynthetic electron-transport chain inhibitor, an antioxidant and a plant metabolite. It is functionally related to a trans-sinapic acid.
Sinapine is a natural product found in Alliaria petiolata, Isatis quadrialata, and other organisms with data available.
An acylcholine in which the acyl group specified is sinapoyl.
Sinapine is an alkaloid isolated from seeds of the cruciferous species. Sinapine exhibits anti-inflammatory, anti-oxidant, anti-tumor, anti-angiogenic and radio-protective effects. Sinapine is also an acetylcholinesterase (AChE) inhibitor and can be used for the research of Alzheimer’s disease, ataxia, myasthenia gravis, and Parkinson’s disease[1][2][3][4].
Sinapine is an alkaloid isolated from seeds of the cruciferous species. Sinapine exhibits anti-inflammatory, anti-oxidant, anti-tumor, anti-angiogenic and radio-protective effects. Sinapine is also an acetylcholinesterase (AChE) inhibitor and can be used for the research of Alzheimer’s disease, ataxia, myasthenia gravis, and Parkinson’s disease[1][2][3][4].

同义名列表

35 个代谢物同义名

Ethanaminium, 2-(((2E)-3-(4-hydroxy-3,5-dimethoxyphenyl)-1-oxo-2-propen-1-yl)oxy)-N,N,N-trimethyl-; Ethanaminium, 2-((3-(4-hydroxy-3,5-dimethoxyphenyl)-1-oxo-2-propen-1-yl)oxy)-N,N,N-trimethyl-; 2-[[3-(4-Hydroxy-3,5-dimethoxyphenyl)-1-oxo-2-propenyl]oxy]-N,N,N- trimethylethanaminium, 9CI; Ethanaminium,2-[[3-(4-hydroxy-3,5-dimethoxyphenyl)-1-oxo-2-propen-1-yl]oxy]-N,N,N-trimethyl-; 2-((3-(4-Hydroxy-3,5-dimethoxyphenyl)-1-oxo-2-propen-1-yl)oxy)-N,N,N-trimethylethanaminium; Ethanaminium, 2-((3-(4-hydroxy-3,5-dimethoxyphenyl)-1-oxo-2-propenyl)oxy)-N,N,N-trimethyl-; 2-((3-(4-Hydroxy-3,5-dimethoxyphenyl)-1-oxo-2-propenyl)oxy)-N,N,N-trimethylethanaminium; 2-[(2E)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyloxy]-N,N,N-trimethylethanaminium; (2-{[(2E)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxy}ethyl)trimethylazanium; 2-((3-(4-Hydroxy-3,5-dimethoxyphenyl)acryloyl)oxy)-N,N,N-trimethylethan-1-aminium; 2-[(E)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxyethyl-trimethylazanium; 2-[3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyloxy]ethyl-trimethylazanium; 2-(4-hydroxy-3,5-dimethoxycinnamoyloxy)-N,N,N-trimethylethanaminium; Cinnamic acid, 4-hydroxy-3,5-dimethoxy-, choline ester; Choline, 4-hydroxy-3,5-dimethoxycinnamate (ester); Choline 4-hydroxy-3,5-dimethoxycinnamate, 8CI; 4-hydroxy-3,5-dimethoxycinnamate choline; sinapine, monosulfate salt; sinapine, thiocyanate salt; trans-Sinapoylcholine; Sugar phosphoric acid; Sinapine thiocyanate; sinapine bisulphate; Sinapine bisulfate; O-sinapoylcholine; Sinapine cation; Sinapoylcholine; trans-Sinapine; Sinapine [MI]; MEGxp0_001763; ACon1_000255; Sinapine ion; Sinapine; sinapin; Sinapine



数据库引用编号

21 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

14 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 CAT, CD36, CDC42, CDH1, FGFR4, FRS2, JAK2, RB1, STAT3, TYR
Peripheral membrane protein 3 ACHE, CYP1B1, JAK2
Endosome membrane 2 TF, TFRC
Endoplasmic reticulum membrane 3 CDC42, CYP1B1, SLC7A11
Nucleus 6 ACHE, CDH1, JAK2, KRT6A, RB1, STAT3
cytosol 9 ACOX1, CAT, CDC42, CDH1, FRS2, JAK2, KRT6A, RB1, STAT3
phagocytic vesicle 2 CD36, CDC42
trans-Golgi network 1 CDH1
centrosome 1 CDC42
nucleoplasm 4 CDH1, JAK2, RB1, STAT3
RNA polymerase II transcription regulator complex 1 STAT3
Cell membrane 8 ACHE, CD36, CDC42, CDH1, FGFR4, SLC7A11, TFRC, TNF
Lipid-anchor 1 CDC42
Cytoplasmic side 1 CDC42
lamellipodium 1 CDH1
Multi-pass membrane protein 2 CD36, SLC7A11
Synapse 1 ACHE
cell junction 1 CDH1
cell surface 6 ACHE, CD36, SLC7A11, TF, TFRC, TNF
glutamatergic synapse 4 CDC42, CDH1, JAK2, TFRC
Golgi apparatus 4 ACHE, CD36, CDH1, FGFR4
Golgi membrane 1 CDC42
neuromuscular junction 1 ACHE
neuronal cell body 2 CDC42, TNF
postsynapse 2 CDH1, JAK2
Lysosome 1 TYR
endosome 3 CDH1, FGFR4, TFRC
plasma membrane 12 ACHE, CD36, CDC42, CDH1, FGFR4, FRS2, JAK2, SLC7A11, STAT3, TF, TFRC, TNF
Membrane 13 ACHE, ACOX1, CAT, CD36, CDC42, CDH1, CYP1B1, FGFR4, FRS2, JAK2, KRT6A, SLC7A11, TFRC
apical plasma membrane 2 CD36, TF
axon 1 CCK
basolateral plasma membrane 2 SLC7A11, TFRC
caveola 2 CD36, JAK2
extracellular exosome 6 CAT, CDC42, CDH1, KRT6A, TF, TFRC
endoplasmic reticulum 1 FGFR4
extracellular space 6 ACHE, CCK, CD36, TF, TFRC, TNF
perinuclear region of cytoplasm 5 ACHE, CDH1, TF, TFRC, TYR
Schaffer collateral - CA1 synapse 1 CDC42
adherens junction 2 CDH1, FRS2
mitochondrion 2 CAT, CYP1B1
protein-containing complex 2 CAT, CDC42
intracellular membrane-bounded organelle 4 CAT, CYP1B1, TFRC, TYR
Microsome membrane 1 CYP1B1
filopodium 1 CDC42
Single-pass type I membrane protein 4 CDH1, FGFR4, SLC7A11, TYR
Secreted 3 ACHE, CCK, TF
extracellular region 8 ACHE, CAT, CCK, CDH1, FGFR4, TF, TFRC, TNF
cytoplasmic side of plasma membrane 2 CDH1, JAK2
basal part of cell 1 TF
mitochondrial matrix 1 CAT
Extracellular side 1 ACHE
transcription regulator complex 1 STAT3
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 CDC42
nuclear membrane 1 CDH1
external side of plasma membrane 3 CD36, TFRC, TNF
Extracellular vesicle 1 TFRC
actin cytoskeleton 1 CDH1
dendritic spine 1 CDC42
cytoplasmic vesicle 2 TF, TFRC
Melanosome membrane 1 TYR
midbody 1 CDC42
Early endosome 2 TF, TFRC
apical part of cell 2 CDC42, SLC7A11
cell-cell junction 2 CDC42, FRS2
clathrin-coated pit 2 TF, TFRC
Golgi-associated vesicle 1 TYR
recycling endosome 3 TF, TFRC, TNF
spindle midzone 1 CDC42
Single-pass type II membrane protein 2 TFRC, TNF
vesicle 1 TF
Apical cell membrane 1 CD36
Membrane raft 3 CD36, JAK2, TNF
Cytoplasm, cytoskeleton, spindle 1 CDC42
focal adhesion 3 CAT, CDC42, JAK2
spindle 1 RB1
Cell junction, adherens junction 1 CDH1
flotillin complex 1 CDH1
Peroxisome 2 ACOX1, CAT
basement membrane 1 ACHE
collagen trimer 1 CD36
Peroxisome matrix 1 CAT
peroxisomal matrix 2 ACOX1, CAT
peroxisomal membrane 2 ACOX1, CAT
PML body 1 RB1
secretory granule 1 CDC42
intermediate filament 1 KRT6A
lateral plasma membrane 2 CDH1, SLC7A11
Late endosome 1 TF
receptor complex 2 CD36, FGFR4
neuron projection 1 CDC42
chromatin 2 RB1, STAT3
phagocytic cup 1 TNF
cell periphery 1 CD36
mitotic spindle 1 CDC42
cytoskeleton 1 JAK2
cytoplasmic ribonucleoprotein granule 1 CDC42
brush border membrane 2 CD36, SLC7A11
Golgi apparatus, trans-Golgi network 1 CDH1
blood microparticle 2 TF, TFRC
Basolateral cell membrane 1 SLC7A11
Lipid-anchor, GPI-anchor 1 ACHE
Cell projection, microvillus membrane 1 SLC7A11
microvillus membrane 1 SLC7A11
Recycling endosome membrane 1 TFRC
Endomembrane system 2 FRS2, JAK2
endosome lumen 1 JAK2
leading edge membrane 1 CDC42
Cell projection, dendrite 1 CDC42
specific granule membrane 1 CD36
Melanosome 2 TFRC, TYR
euchromatin 1 JAK2
side of membrane 1 ACHE
basal plasma membrane 1 TF
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 2 CAT, TF
HFE-transferrin receptor complex 2 TF, TFRC
endoplasmic reticulum lumen 1 TF
endocytic vesicle membrane 1 CD36
endocytic vesicle 1 TF
transport vesicle 1 FGFR4
anaphase-promoting complex 1 CDH1
SWI/SNF complex 1 RB1
clathrin-coated endocytic vesicle membrane 2 TF, TFRC
[Isoform 2]: Nucleus 1 CDH1
extrinsic component of cytoplasmic side of plasma membrane 1 JAK2
synaptic cleft 1 ACHE
apical junction complex 1 CDH1
keratin filament 1 KRT6A
Cell junction, desmosome 1 CDH1
desmosome 1 CDH1
extrinsic component of plasma membrane 1 JAK2
granulocyte macrophage colony-stimulating factor receptor complex 1 JAK2
interleukin-12 receptor complex 1 JAK2
interleukin-23 receptor complex 1 JAK2
catenin complex 1 CDH1
postsynaptic recycling endosome membrane 1 TFRC
platelet alpha granule membrane 1 CD36
vesicle coat 1 TF
astrocyte projection 1 SLC7A11
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
[Transferrin receptor protein 1, serum form]: Secreted 1 TFRC
catalase complex 1 CAT
chromatin lock complex 1 RB1
Rb-E2F complex 1 RB1
[Isoform H]: Cell membrane 1 ACHE
dense body 1 TF
Golgi transport complex 1 CDC42
storage vacuole 1 CDC42
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Simeng Chu, Fukui Shen, Wenjuan Liu, Jin Zhang, Xiaoying Wang, Min Jiang, Gang Bai. Sinapine targeting PLCβ3 EF hands disrupts Gαq-PLCβ3 interaction and ameliorates cardiovascular diseases. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2024 Apr; 126(?):155200. doi: 10.1016/j.phymed.2023.155200. [PMID: 38387273]
  • Jian-Li Huang, Yi-Hua Xu, Xin-Wei Yang, Jie Wang, Yu Zhu, Xian-Bo Wu. Jiawei guomin decoction regulates the degranulation of mast cells in atopic dermatitis mice via the HIS/PAR-2 pathway. Journal of ethnopharmacology. 2024 Mar; 321(?):117485. doi: 10.1016/j.jep.2023.117485. [PMID: 38008276]
  • Ying Huang, Xueqin Gao, Yang An, Ping Zeng, Changming Chen, Wukai Ma, Xueming Yao. Inhibitory Effect of Jinwujiangu Prescription on Peripheral Blood Osteoclasts in Patients with Rheumatoid Arthritis and the Relevant Molecular Mechanism. Mediators of inflammation. 2023; 2023(?):4814412. doi: 10.1155/2023/4814412. [PMID: 36816744]
  • Yufei Feng, Shuyuan Chang, Zhongxu Jing, Haibo Jiang, Yuwei Liu, Guozhao Qin. Transdermal delivery of sinapine thiocyanate by gelatin microspheres and hyaluronic acid microneedles for allergic asthma in guinea pigs. International journal of pharmaceutics. 2022 Jul; 623(?):121899. doi: 10.1016/j.ijpharm.2022.121899. [PMID: 35710072]
  • Min Shao, Qi Jiang, Chao Shen, Zhong Liu, Lihong Qiu. Sinapine induced ferroptosis in non-small cell lung cancer cells by upregulating transferrin/transferrin receptor and downregulating SLC7A11. Gene. 2022 Jun; 827(?):146460. doi: 10.1016/j.gene.2022.146460. [PMID: 35358657]
  • Guillaume N Menard, Mollie Langdon, Rupam Kumar Bhunia, Aishwarya R Shankhapal, Clarice Noleto-Dias, Charlotte Lomax, Jane L Ward, Smita Kurup, Peter J Eastmond. Diverting phenylpropanoid pathway flux from sinapine to produce industrially useful 4-vinyl derivatives of hydroxycinnamic acids in Brassicaceous oilseeds. Metabolic engineering. 2022 03; 70(?):196-205. doi: 10.1016/j.ymben.2022.01.016. [PMID: 35121114]
  • Huida Guan, Qiyan Lin, Chao Ma, Zhengcai Ju, Changhong Wang. Metabolic profiling and pharmacokinetic studies of sinapine thiocyanate by UHPLC-Q/TOF-MS and UHPLC-MS/MS. Journal of pharmaceutical and biomedical analysis. 2022 Jan; 207(?):114431. doi: 10.1016/j.jpba.2021.114431. [PMID: 34710728]
  • Hera Nadeem, Pieter Malan, Amir Khan, Mohd Asif, Mansoor Ahmad Siddiqui, Simon Tuhafeni Angombe, Faheem Ahmad. New insights on the utilization of ultrasonicated mustard seed cake: chemical composition and antagonistic potential for root-knot nematode, Meloidogyne javanica. Journal of Zhejiang University. Science. B. 2021 Jul; 22(7):563-574. doi: 10.1631/jzus.b2000746. [PMID: 34269009]
  • Atsuhiro Iguchi, Shigesaburo Ogawa, Yukihiro Yamamoto, Setsuko Hara. Facile Preparation of Purified Sinapate Ethyl Ester from Rapeseed Meal Extracts Using Cation-exchange Resin in Dual Role as Adsorber and Catalyst. Journal of oleo science. 2021 Jul; 70(7):1007-1012. doi: 10.5650/jos.ess21036. [PMID: 34121031]
  • Hong Chen, Ling Peng, Marta Pérez de Nanclares, Michaela P Trudeau, Dan Yao, Zaixing Cheng, Pedro E Urriola, Liv Torunn Mydland, Gerald C Shurson, Margareth Overland, Chi Chen. Identification of Sinapine-Derived Choline from a Rapeseed Diet as a Source of Serum Trimethylamine N-Oxide in Pigs. Journal of agricultural and food chemistry. 2019 Jul; 67(27):7748-7754. doi: 10.1021/acs.jafc.9b02950. [PMID: 31203621]
  • Kyari Yates, Franziska Pohl, Maike Busch, Annika Mozer, Louis Watters, Andrey Shiryaev, Paul Kong Thoo Lin. Determination of sinapine in rapeseed pomace extract: Its antioxidant and acetylcholinesterase inhibition properties. Food chemistry. 2019 Mar; 276(?):768-775. doi: 10.1016/j.foodchem.2018.10.045. [PMID: 30409660]
  • Zhen Zhang, Xia Xiang, Jianbin Shi, Fenghong Huang, Xiaoyang Xia, Mingming Zheng, Ling Han, Hu Tang. A cationic conjugated polymer and graphene oxide: Application to amplified fluorescence detection of sinapine. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2018 Oct; 203(?):370-374. doi: 10.1016/j.saa.2018.05.110. [PMID: 29886167]
  • Xia Xiang, Ling Han, Zhen Zhang, Fenghong Huang. Graphene oxide-based fluorescent sensor for sensitive turn-on detection of sinapine. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2017 Mar; 174(?):75-79. doi: 10.1016/j.saa.2016.11.025. [PMID: 27886646]
  • Sachin Kajla, Arundhati Mukhopadhyay, Akshay K Pradhan. Development of transgenic Brassica juncea lines for reduced seed sinapine content by perturbing phenylpropanoid pathway genes. PloS one. 2017; 12(8):e0182747. doi: 10.1371/journal.pone.0182747. [PMID: 28787461]
  • Karina Hettwer, Christoph Böttcher, Andrej Frolov, Juliane Mittasch, Andreas Albert, Edda von Roepenack-Lahaye, Dieter Strack, Carsten Milkowski. Dynamic metabolic changes in seeds and seedlings of Brassica napus (oilseed rape) suppressing UGT84A9 reveal plasticity and molecular regulation of the phenylpropanoid pathway. Phytochemistry. 2016 Apr; 124(?):46-57. doi: 10.1016/j.phytochem.2016.01.014. [PMID: 26833384]
  • Yanzhou Zhang, Xunhang Li, Zhikui Hao, Ruchun Xi, Yujie Cai, Xiangru Liao. Hydrogen Peroxide-Resistant CotA and YjqC of Bacillus altitudinis Spores Are a Promising Biocatalyst for Catalyzing Reduction of Sinapic Acid and Sinapine in Rapeseed Meal. PloS one. 2016; 11(6):e0158351. doi: 10.1371/journal.pone.0158351. [PMID: 27362423]
  • Yuxin An, Xia Li, Huanmei Sun, Wenhai Bian, Zijian Li, Youyi Zhang, Xinfeng Zhao, Xiaohui Zheng. Target-directed screening of the bioactive compounds specifically binding to β₂-adrenoceptor in Semen brassicae by high-performance affinity chromatography. Journal of molecular recognition : JMR. 2015 Oct; 28(10):628-34. doi: 10.1002/jmr.2478. [PMID: 25982051]
  • Yanxing Niu, Mulan Jiang, Mian Guo, Chuyun Wan, Shuangxi Hu, Hu Jin, Fenghong Huang. Characterization of the factors that influence sinapine concentration in rapeseed meal during fermentation. PloS one. 2015; 10(1):e0116470. doi: 10.1371/journal.pone.0116470. [PMID: 25606856]
  • Stefania Colombini, Glen A Broderick, Incoronata Galasso, Tommaso Martinelli, Luca Rapetti, Roberto Russo, Remo Reggiani. Evaluation of Camelina sativa (L.) Crantz meal as an alternative protein source in ruminant rations. Journal of the science of food and agriculture. 2014 Mar; 94(4):736-43. doi: 10.1002/jsfa.6408. [PMID: 24105894]
  • Jeremiah Dubie, Aaron Stancik, Matthew Morra, Caleb Nindo. Antioxidant extraction from mustard (Brassica juncea) seed meal using high-intensity ultrasound. Journal of food science. 2013 Apr; 78(4):E542-8. doi: 10.1111/1750-3841.12085. [PMID: 23488824]
  • Juliane Mittasch, Christoph Böttcher, Andrej Frolov, Dieter Strack, Carsten Milkowski. Reprogramming the phenylpropanoid metabolism in seeds of oilseed rape by suppressing the orthologs of reduced epidermal fluorescence1. Plant physiology. 2013 Apr; 161(4):1656-69. doi: 10.1104/pp.113.215491. [PMID: 23424250]
  • Qin Liu, Li Wu, Huiming Pu, Chunyang Li, Qiuhui Hu. Profile and distribution of soluble and insoluble phenolics in Chinese rapeseed (Brassica napus). Food chemistry. 2012 Nov; 135(2):616-22. doi: 10.1016/j.foodchem.2012.04.142. [PMID: 22868137]
  • Gian Carlo Tenore, Jacopo Troisi, Raffaele Di Fiore, Adriana Basile, Ettore Novellino. Chemical composition, antioxidant and antimicrobial properties of Rapa Catozza Napoletana (Brassica rapa L. var. rapa DC.) seed meal, a promising protein source of Campania region (southern Italy) horticultural germplasm. Journal of the science of food and agriculture. 2012 Jun; 92(8):1716-24. doi: 10.1002/jsfa.5537. [PMID: 22173690]
  • Hans-Joachim Harloff, Susanne Lemcke, Juliane Mittasch, Andrej Frolov, Jian Guo Wu, Felix Dreyer, Gunhild Leckband, Christian Jung. A mutation screening platform for rapeseed (Brassica napus L.) and the detection of sinapine biosynthesis mutants. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik. 2012 Mar; 124(5):957-69. doi: 10.1007/s00122-011-1760-z. [PMID: 22198204]
  • F Khater, D Fournand, S Vialet, E Meudec, V Cheynier, N Terrier. Identification and functional characterization of cDNAs coding for hydroxybenzoate/hydroxycinnamate glucosyltransferases co-expressed with genes related to proanthocyanidin biosynthesis. Journal of experimental botany. 2012 Feb; 63(3):1201-14. doi: 10.1093/jxb/err340. [PMID: 22090445]
  • Jingjing Fang, Michael Reichelt, William Hidalgo, Sara Agnolet, Bernd Schneider. Tissue-specific distribution of secondary metabolites in rapeseed (Brassica napus L.). PloS one. 2012; 7(10):e48006. doi: 10.1371/journal.pone.0048006. [PMID: 23133539]
  • Gregory P Lech, Robert C Reigh. Plant products affect growth and digestive efficiency of cultured Florida pompano (Trachinotus carolinus) fed compounded diets. PloS one. 2012; 7(4):e34981. doi: 10.1371/journal.pone.0034981. [PMID: 22536344]
  • Dejuan Huang, Liping Luo, Cuicui Jiang, Jing Han, Jiang Wang, Tingting Zhang, Jie Jiang, Zhiquan Zhou, Huanwen Chen. Sinapine detection in radish taproot using surface desorption atmospheric pressure chemical ionization mass spectrometry. Journal of agricultural and food chemistry. 2011 Mar; 59(6):2148-56. doi: 10.1021/jf103725f. [PMID: 21332204]
  • Kathleen Clauss, Edda von Roepenack-Lahaye, Christoph Böttcher, Mary R Roth, Ruth Welti, Alexander Erban, Joachim Kopka, Dierk Scheel, Carsten Milkowski, Dieter Strack. Overexpression of sinapine esterase BnSCE3 in oilseed rape seeds triggers global changes in seed metabolism. Plant physiology. 2011 Mar; 155(3):1127-45. doi: 10.1104/pp.110.169821. [PMID: 21248075]
  • Ari Palomäki, Hanna Pohjantähti-Maaroos, Marja Wallenius, Päivi Kankkunen, Heikki Aro, Sari Husgafvel, Juha-Matti Pihlava, Kalevi Oksanen. Effects of dietary cold-pressed turnip rapeseed oil and butter on serum lipids, oxidized LDL and arterial elasticity in men with metabolic syndrome. Lipids in health and disease. 2010 Dec; 9(?):137. doi: 10.1186/1476-511x-9-137. [PMID: 21122147]
  • Karina Wolfram, Jürgen Schmidt, Victor Wray, Carsten Milkowski, Willibald Schliemann, Dieter Strack. Profiling of phenylpropanoids in transgenic low-sinapine oilseed rape (Brassica napus). Phytochemistry. 2010 Jul; 71(10):1076-84. doi: 10.1016/j.phytochem.2010.04.007. [PMID: 20451226]
  • Carsten Milkowski, Dieter Strack. Sinapate esters in brassicaceous plants: biochemistry, molecular biology, evolution and metabolic engineering. Planta. 2010 Jun; 232(1):19-35. doi: 10.1007/s00425-010-1168-z. [PMID: 20428885]
  • Juliane Mittasch, Sabine Mikolajewski, Frank Breuer, Dieter Strack, Carsten Milkowski. Genomic microstructure and differential expression of the genes encoding UDP-glucose:sinapate glucosyltransferase (UGT84A9) in oilseed rape (Brassica napus). TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik. 2010 May; 120(8):1485-500. doi: 10.1007/s00122-010-1270-4. [PMID: 20087565]
  • Federico Ferreres, Fátima Fernandes, Carla Sousa, Patrícia Valentão, José A Pereira, Paula B Andrade. Metabolic and bioactivity insights into Brassica oleracea var. acephala. Journal of agricultural and food chemistry. 2009 Oct; 57(19):8884-92. doi: 10.1021/jf902661g. [PMID: 19722523]
  • Jun Huang, V-S Bhinu, Xiang Li, Zafer Dallal Bashi, Rong Zhou, Abdelali Hannoufa. Pleiotropic changes in Arabidopsis f5h and sct mutants revealed by large-scale gene expression and metabolite analysis. Planta. 2009 Oct; 230(5):1057-69. doi: 10.1007/s00425-009-1007-2. [PMID: 19714359]
  • Kanako Kawaura, Keiichi Mochida, Akiko Enju, Yasushi Totoki, Atsushi Toyoda, Yoshiyuki Sakaki, Chikatoshi Kai, Jun Kawai, Yoshihide Hayashizaki, Motoaki Seki, Kazuo Shinozaki, Yasunari Ogihara. Assessment of adaptive evolution between wheat and rice as deduced from full-length common wheat cDNA sequence data and expression patterns. BMC genomics. 2009 Jun; 10(?):271. doi: 10.1186/1471-2164-10-271. [PMID: 19534823]
  • Christoph Böttcher, Edda von Roepenack-Lahaye, Jürgen Schmidt, Stephan Clemens, Dierk Scheel. Analysis of phenolic choline esters from seeds of Arabidopsis thaliana and Brassica napus by capillary liquid chromatography/electrospray- tandem mass spectrometry. Journal of mass spectrometry : JMS. 2009 Apr; 44(4):466-76. doi: 10.1002/jms.1522. [PMID: 19034950]
  • H Jeroch, J G Brettschneider, S Dänicke, J Jankowski, K Kozłowski, F Schöne. The effect of chemically and hydrothermally treated rapeseed on the performance and thyroid parameters of layers. Polish journal of veterinary sciences. 2009; 12(4):439-48. doi: . [PMID: 20169916]
  • Dirk Meissner, Andreas Albert, Christoph Böttcher, Dieter Strack, Carsten Milkowski. The role of UDP-glucose:hydroxycinnamate glucosyltransferases in phenylpropanoid metabolism and the response to UV-B radiation in Arabidopsis thaliana. Planta. 2008 Sep; 228(4):663-74. doi: 10.1007/s00425-008-0768-3. [PMID: 18563436]
  • Christoph Böttcher, Edda von Roepenack-Lahaye, Jürgen Schmidt, Constanze Schmotz, Steffen Neumann, Dierk Scheel, Stephan Clemens. Metabolome analysis of biosynthetic mutants reveals a diversity of metabolic changes and allows identification of a large number of new compounds in Arabidopsis. Plant physiology. 2008 Aug; 147(4):2107-20. doi: 10.1104/pp.108.117754. [PMID: 18552234]
  • Jun Huang, Kevin Rozwadowski, V S Bhinu, Ulrike Schäfer, Abdelali Hannoufa. Manipulation of sinapine, choline and betaine accumulation in Arabidopsis seed: towards improving the nutritional value of the meal and enhancing the seedling performance under environmental stresses in oilseed crops. Plant physiology and biochemistry : PPB. 2008 Jul; 46(7):647-654. doi: 10.1016/j.plaphy.2008.04.014. [PMID: 18515127]
  • Samija Amar, Wolfgang Ecke, Heiko C Becker, Christian Möllers. QTL for phytosterol and sinapate ester content in Brassica napus L. collocate with the two erucic acid genes. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik. 2008 May; 116(8):1051-61. doi: 10.1007/s00122-008-0734-2. [PMID: 18335203]
  • Ling He, Hai-Tao Li, Sheng-Wei Guo, Li-Fang Liu, Jia-Bin Qiu, Fu Li, Bao-Chang Cai. [Inhibitory effects of sinapine on activity of acetylcholinesterase in cerebral homogenate and blood serum of rats]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2008 Apr; 33(7):813-5. doi: . [PMID: 18589789]
  • H Y Qiao, J P Dahiya, H L Classen. Nutritional and physiological effects of dietary sinapic acid (4-hydroxy-3,5-dimethoxy-cinnamic acid) in broiler chickens and its metabolism in the digestive tract. Poultry science. 2008 Apr; 87(4):719-26. doi: 10.3382/ps.2007-00357. [PMID: 18339994]
  • Kathleen Clauss, Alfred Baumert, Manfred Nimtz, Carsten Milkowski, Dieter Strack. Role of a GDSL lipase-like protein as sinapine esterase in Brassicaceae. The Plant journal : for cell and molecular biology. 2008 Mar; 53(5):802-13. doi: 10.1111/j.1365-313x.2007.03374.x. [PMID: 18036206]
  • Meghna R Malik, Feng Wang, Joan M Dirpaul, Ning Zhou, Joe Hammerlindl, Wilf Keller, Suzanne R Abrams, Alison M R Ferrie, Joan E Krochko. Isolation of an embryogenic line from non-embryogenic Brassica napus cv. Westar through microspore embryogenesis. Journal of experimental botany. 2008; 59(10):2857-73. doi: 10.1093/jxb/ern149. [PMID: 18552352]
  • Diana Weier, Juliane Mittasch, Dieter Strack, Carsten Milkowski. The genes BnSCT1 and BnSCT2 from Brassica napus encoding the final enzyme of sinapine biosynthesis: molecular characterization and suppression. Planta. 2008 Jan; 227(2):375-85. doi: 10.1007/s00425-007-0624-x. [PMID: 17882453]
  • Carla Sousa, Graciliana Lopes, David M Pereira, Marcos Taveira, Patrícia Valentão, Rosa M Seabra, José A Pereira, Paula Baptista, Federico Ferreres, Paula B Andrade. Screening of antioxidant compounds during sprouting of Brassica oleracea L. var. costata DC. Combinatorial chemistry & high throughput screening. 2007 Jun; 10(5):377-86. doi: 10.2174/138620707781662817. [PMID: 17896933]
  • Taksina Sinlapadech, Jake Stout, Max O Ruegger, Michael Deak, Clint Chapple. The hyper-fluorescent trichome phenotype of the brt1 mutant of Arabidopsis is the result of a defect in a sinapic acid: UDPG glucosyltransferase. The Plant journal : for cell and molecular biology. 2007 Feb; 49(4):655-68. doi: 10.1111/j.1365-313x.2006.02984.x. [PMID: 17217457]
  • Richard N Bennett, Eduardo A S Rosa, Fred A Mellon, Paul A Kroon. Ontogenic profiling of glucosinolates, flavonoids, and other secondary metabolites in Eruca sativa (salad rocket), Diplotaxis erucoides (wall rocket), Diplotaxis tenuifolia (wild rocket), and Bunias orientalis (Turkish rocket). Journal of agricultural and food chemistry. 2006 May; 54(11):4005-15. doi: 10.1021/jf052756t. [PMID: 16719527]
  • Lifang Liu, Yuxin Wang, Haiyan Li, Ying Ji. [Study of distribution of sinapine in commonly used crude drugs from cruciferous plants]. Se pu = Chinese journal of chromatography. 2006 Jan; 24(1):49-51. doi: ". [PMID: 16827311]
  • R N Bennett, T Wenke, B Freudenberg, F A Mellon, J Ludwig-Müller. The tu8 mutation of Arabidopsis thaliana encoding a heterochromatin protein 1 homolog causes defects in the induction of secondary metabolite biosynthesis. Plant biology (Stuttgart, Germany). 2005 Jul; 7(4):348-57. doi: 10.1055/s-2005-837634. [PMID: 16025407]
  • Alfred Baumert, Carsten Milkowski, Jürgen Schmidt, Manfred Nimtz, Victor Wray, Dieter Strack. Formation of a complex pattern of sinapate esters in Brassica napus seeds, catalyzed by enzymes of a serine carboxypeptidase-like acyltransferase family?. Phytochemistry. 2005 Jun; 66(11):1334-45. doi: 10.1016/j.phytochem.2005.02.031. [PMID: 15907956]
  • Hui Zhou, Yinxi Huang, Tomonori Hoshi, Yoshitomo Kashiwagi, Jun-Ichi Anzai, Genxi Li. Electrochemistry of sinapine and its detection in medicinal plants. Analytical and bioanalytical chemistry. 2005 Jun; 382(4):1196-201. doi: 10.1007/s00216-005-3241-1. [PMID: 15906009]
  • Carsten Milkowski, Alfred Baumert, Diana Schmidt, Lilian Nehlin, Dieter Strack. Molecular regulation of sinapate ester metabolism in Brassica napus: expression of genes, properties of the encoded proteins and correlation of enzyme activities with metabolite accumulation. The Plant journal : for cell and molecular biology. 2004 Apr; 38(1):80-92. doi: 10.1111/j.1365-313x.2004.02036.x. [PMID: 15053762]
  • Matthew R Hemm, Max O Ruegger, Clint Chapple. The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. The Plant cell. 2003 Jan; 15(1):179-94. doi: 10.1105/tpc.006544. [PMID: 12509530]
  • Ramesh B Nair, Qun Xia, Cyril J Kartha, Eugen Kurylo, Rozina N Hirji, Raju Datla, Gopalan Selvaraj. Arabidopsis CYP98A3 mediating aromatic 3-hydroxylation. Developmental regulation of the gene, and expression in yeast. Plant physiology. 2002 Sep; 130(1):210-20. doi: 10.1104/pp.008649. [PMID: 12226501]
  • B Matthäus. Antioxidant activity of extracts obtained from residues of different oilseeds. Journal of agricultural and food chemistry. 2002 Jun; 50(12):3444-52. doi: 10.1021/jf011440s. [PMID: 12033809]
  • M Ruegger, C Chapple. Mutations that reduce sinapoylmalate accumulation in Arabidopsis thaliana define loci with diverse roles in phenylpropanoid metabolism. Genetics. 2001 Dec; 159(4):1741-9. doi: 10.1093/genetics/159.4.1741. [PMID: 11779811]
  • A M Shirley, C M McMichael, C Chapple. The sng2 mutant of Arabidopsis is defective in the gene encoding the serine carboxypeptidase-like protein sinapoylglucose:choline sinapoyltransferase. The Plant journal : for cell and molecular biology. 2001 Oct; 28(1):83-94. doi: 10.1046/j.1365-313x.2001.01123.x. [PMID: 11696189]
  • R B Nair, R W Joy, E Kurylo, X Shi, J Schnaider, R S Datla, W A Keller, G Selvaraj. Identification of a CYP84 family of cytochrome P450-dependent mono-oxygenase genes in Brassica napus and perturbation of their expression for engineering sinapine reduction in the seeds. Plant physiology. 2000 Aug; 123(4):1623-34. doi: 10.1104/pp.123.4.1623. [PMID: 10938378]
  • Q Li, F Q Guo, R Q Gu. [Radiation protection effects of sinapine on Drosophila melanogaster in a sex-linked recessive lethal test system]. Shi yan sheng wu xue bao. 1993 Sep; 26(3):269-74. doi: . [PMID: 8191802]
  • G R Fenwick. The assessment of a new protein source--rapeseed. The Proceedings of the Nutrition Society. 1982 Sep; 41(3):277-88. doi: 10.1079/pns19820043. [PMID: 6294671]
  • E Josefsson, B Uppström. Influence of sinapine and p-hydroxybenzylglucosinolate on the nutritional value of rapeseed and white mustard meals. Journal of the science of food and agriculture. 1976 May; 27(5):438-42. doi: 10.1002/jsfa.2740270509. [PMID: 131880]
  • . . . . doi: . [PMID: 16160820]