Subcellular Location: Golgi cisterna membrane
Found 500 associated metabolites.
93 associated genes.
A3GALT2, ABO, APH1A, ARAP1, ASAP2, ATP2C1, B3GALT6, B4GALNT3, B4GALNT4, B4GALT1, B4GALT2, B4GALT3, B4GALT4, B4GALT5, B4GALT6, B4GALT7, BCAP31, CANT1, CHPF, CHPF2, CHSY1, CHSY3, COG3, CSGALNACT1, CSGALNACT2, FUT1, FUT11, FUT2, FUT3, FUT4, FUT5, FUT6, FUT7, FUT8, FUT9, GAL3ST2, GAL3ST3, GAL3ST4, GALNT1, GALNT2, GALNT3, GGTA1, GOLGA2, GOLGA3, GOLGA6A, GOLGA6B, GOLGA6C, GOLGA6D, GOLGA8A, GOLGA8B, GOLGA8CP, GOLGA8DP, GOLGA8H, GOLGA8IP, GOLGA8J, GOLGA8K, GOLGA8M, GOLGA8N, GOLGA8O, GOLGA8Q, GOLGA8R, GOLGA8S, GOLGA8T, GOLIM4, GOLPH3, GOLPH3L, GPR89A, GPR89B, HACE1, HSPE1-MOB4, INPP5E, MOB4, NAGPA, NSG1, PITPNM1, PSENEN, RAB21, SAR1A, SAR1B, SCFD1, SLC30A5, SORT1, ST3GAL2, ST3GAL3, ST3GAL4, ST6GAL1, ST6GAL2, TMED2, TMED3, TMEM115, TMEM87A, UXS1, ZDHHC14
(-)-dehydrocostus lactone
Dehydrocostus lactone is an organic heterotricyclic compound and guaianolide sesquiterpene lactone that is acrylic acid which is substituted at position 2 by a 4-hydroxy-3,8-bis(methylene)decahydoazulen-5-yl group and in which the hydroxy group and the carboxy group have undergone formal condensation to afford the corresponding gamma-lactone. It has a role as a metabolite, a trypanocidal drug, an antineoplastic agent, a cyclooxygenase 2 inhibitor, an antimycobacterial drug and an apoptosis inducer. It is a sesquiterpene lactone, a guaiane sesquiterpenoid, an organic heterotricyclic compound and a gamma-lactone. Dehydrocostus lactone is a natural product found in Marshallia obovata, Cirsium carolinianum, and other organisms with data available. See also: Arctium lappa Root (part of). An organic heterotricyclic compound and guaianolide sesquiterpene lactone that is acrylic acid which is substituted at position 2 by a 4-hydroxy-3,8-bis(methylene)decahydoazulen-5-yl group and in which the hydroxy group and the carboxy group have undergone formal condensation to afford the corresponding gamma-lactone. CONFIDENCE standard compound; ML_ID 36 Dehydrocostus Lactone is a major sesquiterpene lactone isolated from the roots of Saussurea costus. IC50 value: Target: In vitro: Dehydrocostus Lactone promoted apoptosis with increased activation of caspases 8, 9, 7, 3, enhanced PARP cleavage, decreased Bcl-xL expression and increased levels of Bax, Bak, Bok, Bik, Bmf, and t-Bid. We have demonstrated that Dehydrocostus Lactone inhibits cell growth and induce apoptosis in DU145 cells [1]. Dehydrocostus Lactone inhibits NF-kappaB activation by preventing TNF-alpha-induced degradation and phosphorylation of its inhibitory protein I-kappaB alpha in human leukemia HL-60 cells and that dehydrocostus lactone renders HL-60 cells susceptible to TNF-alpha-induced apoptosis by enhancing caspase-8 and caspase-3 activities [2]. Dehydrocostus Lactone inhibited the production of NO in lipopolysaccharide (LPS)-activated RAW 264.7 cells by suppressing inducible nitric oxide synthase enzyme expression. In vivo: Dehydrocostus Lactone decreased the TNF-alpha level in LPS-activated systems in vivo [3]. Dehydrocostus Lactone is a major sesquiterpene lactone isolated from the roots of Saussurea costus. IC50 value: Target: In vitro: Dehydrocostus Lactone promoted apoptosis with increased activation of caspases 8, 9, 7, 3, enhanced PARP cleavage, decreased Bcl-xL expression and increased levels of Bax, Bak, Bok, Bik, Bmf, and t-Bid. We have demonstrated that Dehydrocostus Lactone inhibits cell growth and induce apoptosis in DU145 cells [1]. Dehydrocostus Lactone inhibits NF-kappaB activation by preventing TNF-alpha-induced degradation and phosphorylation of its inhibitory protein I-kappaB alpha in human leukemia HL-60 cells and that dehydrocostus lactone renders HL-60 cells susceptible to TNF-alpha-induced apoptosis by enhancing caspase-8 and caspase-3 activities [2]. Dehydrocostus Lactone inhibited the production of NO in lipopolysaccharide (LPS)-activated RAW 264.7 cells by suppressing inducible nitric oxide synthase enzyme expression. In vivo: Dehydrocostus Lactone decreased the TNF-alpha level in LPS-activated systems in vivo [3].
Vincamine
Vincamine is a vinca alkaloid, an alkaloid ester, an organic heteropentacyclic compound, a methyl ester and a hemiaminal. It has a role as an antihypertensive agent, a vasodilator agent and a metabolite. It is functionally related to an eburnamenine. Vincamine is a monoterpenoid indole alkaloid obtained from the leaves of *Vinca minor* with a vasodilatory property. Studies indicate that vincamine increases the regional cerebral blood flow. Vincamine is a natural product found in Vinca difformis, Vinca major, and other organisms with data available. A major alkaloid of Vinca minor L., Apocynaceae. It has been used therapeutically as a vasodilator and antihypertensive agent, particularly in cerebrovascular disorders. Vincamine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1617-90-9 (retrieved 2024-07-01) (CAS RN: 1617-90-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Vincamine?is a monoterpenoid indole alkaloid extracted from the?Madagascar periwinkle. Vincamine?is a peripheral?vasodilator?and exerts a selective vasoregulator action on the brain microcapilar circulation[1]. Vincamine?is a?GPR40?agonist and acts as a β-cell protector by ameliorating β-cell dysfunction and promoting glucose-stimulated insulin secretion (GSIS).?Vincamine?improves glucose homeostasis?in vivo, and has the potential for the type 2 diabetes mellitus (T2DM) research[2]. Vincamine?is a monoterpenoid indole alkaloid extracted from the?Madagascar periwinkle. Vincamine?is a peripheral?vasodilator?and exerts a selective vasoregulator action on the brain microcapilar circulation[1]. Vincamine?is a?GPR40?agonist and acts as a β-cell protector by ameliorating β-cell dysfunction and promoting glucose-stimulated insulin secretion (GSIS).?Vincamine?improves glucose homeostasis?in vivo, and has the potential for the type 2 diabetes mellitus (T2DM) research[2].
Ailanthone
Ailanthone is a triterpenoid. Ailanthone (Δ13-Dehydrochaparrinone) is a potent inhibitor of both full-length androgen receptor (AR) (IC50=69?nM) and constitutively active truncated AR splice variants (AR1-651 IC50=309?nM). Ailanthone (Δ13-Dehydrochaparrinone) is a potent inhibitor of both full-length androgen receptor (AR) (IC50=69?nM) and constitutively active truncated AR splice variants (AR1-651 IC50=309?nM).
Protopine
Protopine is a dibenzazecine alkaloid isolated from Fumaria vaillantii. It has a role as a plant metabolite. Protopine is a natural product found in Corydalis heterocarpa var. japonica, Fumaria capreolata, and other organisms with data available. Protopine is a benzylisoquinoline alkaloid occurring in opium poppies and other plants of the family papaveraceae. It has been found to inhibit histamine H1 receptors and platelet aggregation, and acts as an opioid analgesic. See also: Sanguinaria canadensis root (part of); Chelidonium majus flowering top (part of). Protopine is a benzylisoquinoline alkaloid occurring in opium poppies and other plants of the family papaveraceae. It has been found to inhibit histamine H1 receptors and platelet aggregation, and acts as an opioid analgesic [HMDB] Protopine is a benzylisoquinoline alkaloid occurring in opium poppies and other plants of the family papaveraceae. It has been found to inhibit histamine H1 receptors and platelet aggregation, and acts as an opioid analgesic. Protopine is an alkaloid occurring in opium poppy,[2] Corydalis tubers[3] and other plants of the family papaveraceae, like Fumaria officinalis.[4] Protopine is metabolically derived from the benzylisoquinoline alkaloid (S)-Reticuline through a progressive series of five enzymatic transformations: 1) berberine bridge enzyme to (S)-Scoulerine; 2) (S)-cheilanthifoline synthase/CYP719A25 to (S)-Cheilanthifoline; 3) (S)-stylopine synthase/CYP719A20 to (S)-Stylopine; 4) (S)-tetrahydroprotoberberine N-methyltransferase to (S)-cis-N-Methylstylopine; and ultimately, 5) N-methylstylopine hydroxylase to protopine.[5] It has been found to inhibit histamine H1 receptors and platelet aggregation, and acts as an analgesic.[6][7] Protopine (Corydinine), an isoquinoline alkaloid, is a specific reversible and competitive inhibitor of acetylcholinesterase. Protopine exhibits anti-inflammation, anti-microbial, anti-angiogenic and anti-tumour activity[1][2]. Protopine (Corydinine), an isoquinoline alkaloid, is a specific reversible and competitive inhibitor of acetylcholinesterase. Protopine exhibits anti-inflammation, anti-microbial, anti-angiogenic and anti-tumour activity[1][2].
griffonin
Lithospermoside is a glycoside. Lithospermoside is a natural product found in Tylosema fassoglense, Semiaquilegia adoxoides, and other organisms with data available. Lithospermoside (Griffonin) is a nature product isolated from the stem bark of Semiaquilegia adoxoides [1]. Lithospermoside (Griffonin) is a nature product isolated from the stem bark of Semiaquilegia adoxoides [1].
Neochlorogenic acid
Constituent of coffee and many other plants. First isolated from peaches (Prunus persica). trans-Neochlorogenic acid is found in coffee and coffee products, fruits, and pear. [Raw Data] CBA73_Neochlorogenic-_neg_50eV.txt [Raw Data] CBA73_Neochlorogenic-_neg_20eV.txt [Raw Data] CBA73_Neochlorogenic-_pos_40eV.txt [Raw Data] CBA73_Neochlorogenic-_pos_20eV.txt [Raw Data] CBA73_Neochlorogenic-_neg_10eV.txt [Raw Data] CBA73_Neochlorogenic-_pos_50eV.txt [Raw Data] CBA73_Neochlorogenic-_neg_40eV.txt [Raw Data] CBA73_Neochlorogenic-_neg_30eV.txt [Raw Data] CBA73_Neochlorogenic-_pos_10eV.txt [Raw Data] CBA73_Neochlorogenic-_pos_30eV.txt Neochlorogenic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=906-33-2 (retrieved 2024-07-17) (CAS RN: 906-33-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Neochlorogenic acid is a natural polyphenolic compound found in dried fruits and other plants. Neochlorogenic acid inhibits the production of TNF-α and IL-1β. Neochlorogenic acid suppresses iNOS and COX-2 protein expression. Neochlorogenic acid also inhibits phosphorylated NF-κB p65 and p38 MAPK activation. Neochlorogenic acid is a natural polyphenolic compound found in dried fruits and other plants. Neochlorogenic acid inhibits the production of TNF-α and IL-1β. Neochlorogenic acid suppresses iNOS and COX-2 protein expression. Neochlorogenic acid also inhibits phosphorylated NF-κB p65 and p38 MAPK activation.
Fusidic Acid
Fusidic acid is a steroid antibiotic that is isolated from the fermentation broth of Fusidium coccineum. It has a role as a protein synthesis inhibitor, an EC 2.7.1.33 (pantothenate kinase) inhibitor and an Escherichia coli metabolite. It is a 3alpha-hydroxy steroid, an 11alpha-hydroxy steroid, a sterol ester, a steroid acid, an alpha,beta-unsaturated monocarboxylic acid and a steroid antibiotic. It is a conjugate acid of a fusidate. It derives from a hydride of a 5alpha-cholestane. An antibiotic isolated from the fermentation broth of Fusidium coccineum. (From Merck Index, 11th ed) It acts by inhibiting translocation during protein synthesis. It is often used topically in creams and eyedrops but is available in systemic formulations including tablets and injections. Fusidic acid is a natural product found in Epidermophyton floccosum, Stilbella aciculosa, and other organisms with data available. Fusidic Acid is a bacteriostatic antibiotic derived from the fungus Fusidium coccineum and used as a topical medication to treat skin infections. Fusidic acid acts as a bacterial protein synthesis inhibitor by preventing the turnover of elongation factor G (EF-G) from the ribosome. Fusidic acid is effective primarily on gram-positive bacteria. An antibiotic isolated from the fermentation broth of Fusidium coccineum. (From Merck Index, 11th ed). It acts by inhibiting translocation during protein synthesis. See also: Fusidate Sodium (active moiety of). Fusidic Acid is only found in individuals that have used or taken this drug. It is an antibiotic isolated from the fermentation broth of Fusidium coccineum. (From Merck Index, 11th ed) It acts by inhibiting translocation during protein synthesis.Fusidic acid works by interfering with bacterial protein synthesis, specifically by preventing the translocation of the elongation factor G (EF-G) from the ribosome. It also can inhibit chloramphenicol acetyltransferase enzymes. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01X - Other antibacterials > J01XC - Steroid antibacterials D - Dermatologicals > D09 - Medicated dressings > D09A - Medicated dressings > D09AA - Medicated dressings with antiinfectives D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06A - Antibiotics for topical use S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AA - Antibiotics A steroid antibiotic that is isolated from the fermentation broth of Fusidium coccineum. D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C52588 - Antibacterial Agent COVID info from PDB, Protein Data Bank C784 - Protein Synthesis Inhibitor Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Fusidic acid (Fusidate) a bacteriostatic antibiotic produced from the Fusidium coccineum fungus, belongs to the class of steroids. Fusidic acid has no corticosteroid effects. Fusidic acid inhibits the growth of bacteria by preventing the release of translation elongation factor G (EF-G) from the ribosome[1][2].
Swertiamarin
Swertiamarin is a glycoside. Swertiamarin is a natural product found in Lonicera japonica, Fontanesia philliraeoides, and other organisms with data available. See also: Centaurium erythraea whole (part of). Swertiamarin, a secoiridoid glycoside found in genera of Enicostemma littorale, confers anti-hyperglycemic and anti-hyperlipidemic effects[1]. Swertiamarin, a secoiridoid glycoside found in genera of Enicostemma littorale, confers anti-hyperglycemic and anti-hyperlipidemic effects[1].
Inosine
Inosine, also known as hypoxanthosine or inotin, belongs to the class of organic compounds known as purine nucleosides. Purine nucleosides are compounds comprising a purine base attached to a ribosyl or deoxyribosyl moiety. Inosine is formed when hypoxanthine is attached to a ribose ring a beta-N9-glycosidic bond. Inosine is an intermediate in the degradation of purines and purine nucleosides to uric acid. Inosine is also an intermediate in the purine salvage pathway. Inosine occurs in the anticodon of certain transfer RNA molecules and is essential for proper translation of the genetic code in wobble base pairs. Inosine exists in all living species, ranging from bacteria to plants to humans. Inosine participates in a number of enzymatic reactions. In particular, inosine can be biosynthesized from inosinic acid through its interaction with the enzyme known as cytosolic purine 5-nucleotidase. In addition, inosine can be converted into hypoxanthine and ribose 1-phosphate through its interaction with the enzyme known as purine nucleoside phosphorylase. Altered levels of inosine have also been associated with purine nucleoside phosphorylase deficiency and xanthinuria type I, both of which are inborn errors of metabolism. Animal studies have suggested that inosine has neuroprotective properties. It has been proposed as a potential treatment for spinal cord injury (PMID: 16317421) and for administration after stroke, as inosine appears to induce axonal rewiring (PMID: 12084941). After ingestion, inosine is metabolized into uric acid, which has been found to be a natural antioxidant and peroxynitrite scavenger. As such, inosine may have potential benefits to patients with multiple sclerosis and Parkinson’s disease (PMID: 19425822). Inosine can also be produced by gut bacteria and appears to have a number of beneficial effects. Inosine, has been shown to activate peroxisome proliferator-activated receptor (PPAR)-gamma signaling in human colon epithelial cells. Furthermore, exogenous treatment of inosine has been found to protect against DSS-induced colitis in rodents by improving adenosine 2A receptor (A2AR)/PPAR-gamma-dependent mucosal barrier functions (PMID: 33820558). Microbiome-derived inosine has also been shown to modulate the response to checkpoint inhibitor immunotherapy in cancer models. In particular, decreased gut barrier function induced by immunotherapy increases systemic translocation of bacterially derived inosine and activates antitumor T cells. The effect of inosine is dependent on T cell expression of the adenosine A2A receptor and requires co-stimulation. Inosine appears to have other roles in non-mammalian system. For instance, it has been found to be an important feed stimulant by itself or in combination with certain amino acids in some species of farmed fish. For example, inosine and inosine-5-monophosphate have been reported as specific feeding stimulants for turbot fry, (Scophthalmus maximus) and Japanese amberjack. Inosine is a purine nucleoside in which hypoxanthine is attached to ribofuranose via a beta-N(9)-glycosidic bond. It has a role as a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is a purines D-ribonucleoside and a member of inosines. It is functionally related to a hypoxanthine and a ribofuranose. A purine nucleoside that has hypoxanthine linked by the N9 nitrogen to the C1 carbon of ribose. It is an intermediate in the degradation of purines and purine nucleosides to uric acid and in pathways of purine salvage. It also occurs in the anticodon of certain transfer RNA molecules. (Dorland, 28th ed) Inosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Inosine is a natural product found in Fritillaria thunbergii, Cichorium endivia, and other organisms with data available. Inosine is a metabolite found in or produced by Saccharomyces cerevisiae. A purine nucleoside that has hypoxanthine linked by the N9 nitrogen to the C1 carbon of ribose. It is an intermediate in the degradation of purines and purine nucleosides to uric acid and in pathways of purine salvage. It also occurs in the anticodon of certain transfer RNA molecules. (Dorland, 28th ed) G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06B - Chemotherapeutics for topical use > D06BB - Antivirals A purine nucleoside in which hypoxanthine is attached to ribofuranose via a beta-N(9)-glycosidic bond. COVID info from COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials S - Sensory organs > S01 - Ophthalmologicals Present in meat extracts and sugar beet Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS [Spectral] Inosine (exact mass = 268.08077) and L-Methionine (exact mass = 149.05105) and Adenosine (exact mass = 267.09675) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Inosine (exact mass = 268.08077) and L-Tyrosine (exact mass = 181.07389) and Guanosine (exact mass = 283.09167) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Inosine (exact mass = 268.08077) and S-Adenosyl-L-homocysteine (exact mass = 384.12159) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Inosine (exact mass = 268.08077) and Guanosine (exact mass = 283.09167) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 110 KEIO_ID I003 Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3].
codonolactone
Atractylenolide III is a naphthofuran. It has a role as a metabolite. Atractylenolide III is a natural product found in Codonopsis canescens, Codonopsis subglobosa, and other organisms with data available. A natural product found in Atractylodes lancea. Atractylenolide-III is the main component of Atractylodes rhizome and has the activity of inducing apoptosis in lung cancer cells. Atractylenolide-III is the main component of Atractylodes rhizome and has the activity of inducing apoptosis in lung cancer cells.
Atractylenolide
Atractylenolide I is a natural product found in Solanum lyratum, Atractylodes japonica, and other organisms with data available. Atractylenolide I is a sesquiterpene derived from the rhizome of Atractylodes macrocephala, possesses diverse bioactivities, such as neuroprotective, anti-allergic, anti-inflammatory and anticancer properties. Atractylenolide I reduces protein levels of phosphorylated JAK2 and STAT3 in A375 cells, and acts as a TLR4-antagonizing agent. Atractylenolide I is a sesquiterpene derived from the rhizome of Atractylodes macrocephala, possesses diverse bioactivities, such as neuroprotective, anti-allergic, anti-inflammatory and anticancer properties. Atractylenolide I reduces protein levels of phosphorylated JAK2 and STAT3 in A375 cells, and acts as a TLR4-antagonizing agent.
Cytidine
Cytidine is a nucleoside that is composed of the base cytosine linked to the five-carbon sugar D-ribose. Cytidine is a pyrimidine that besides being incorporated into nucleic acids, can serve as a substrate for the salvage pathway of pyrimidine nucleotide synthesis. It is a precursor of cytidine triphosphate (CTP) needed in the phosphatidylcholine (PC) and phosphatidylethanolamine (PE) biosynthetic pathways. These variations probably reflect the species differences in cytidine deaminase, the enzyme that converts cytidine to uridine in the body. The transport of cytidine into the brains extracellular fluid, and then into neurons and glia, are essential prerequisites for cytidine to be utilized in the brain. An efficient mechanism mediating the brain uptake of circulating cytidine has not yet been demonstrated. The biosynthesis of PC, the most abundant phosphatide in the brain, via the Kennedy pathway requires phosphocholine and cytidine triphosphate (CTP), a cytidine nucleotide involved in the rate-limiting step. The enzyme that converts CTP to endogenous CDP-choline (CTP:phosphocholine cytidylyltransferase) is unsaturated at physiological brain CTP levels. APOBEC is a family of enzymes that has been discovered with the ability to deaminate cytidines on RNA or DNA. The human apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G protein (APOBEC3G, or hA3G), provides cells with an intracellular antiretroviral activity that is associated with the hypermutation of viral DNA through cytidine deamination. Indeed, hA3G belongs to a family of vertebrate proteins that contains one or two copies of a signature sequence motif unique to cytidine deaminases (CTDAs) (PMID: 16769123, 15780864, 16720547). Cytidine is a nucleoside that is composed of the base cytosine linked to the five-carbon sugar D-ribose. Cytidine is a pyrimidine that besides being incorporated into nucleic acids, can serve as substrate for the salvage pathway of pyrimidine nucleotide synthesis; as precursor of the cytidine triphosphate (CTP) needed in the phosphatidylcholine (PC) and phosphatidylethanolamine (PE) biosynthetic pathway. These variations probably reflect the species differences in cytidine deaminase, the enzyme that converts cytidine to uridine in the body. The transports of cytidine into the brains extracellular fluid, and then into neurons and glia, are essential prerequisites for cytidine to be utilized in brain. An efficient mechanism mediating the brain uptake of circulating cytidine has not yet been demonstrated. The biosynthesis of PC, the most abundant phosphatide in the brain, via the Kennedy pathway requires phosphocholine and cytidine triphosphate (CTP), a cytidine nucleotide, which is involved in the rate-limiting step. The enzyme that converts CTP to endogenous CDP-choline (CTP: phosphocholine cytidylyltransferase) is unsaturated at physiological brain CTP levels. Cytidine is a white crystalline powder. (NTP, 1992) Cytidine is a pyrimidine nucleoside in which cytosine is attached to ribofuranose via a beta-N(1)-glycosidic bond. It has a role as a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is functionally related to a cytosine. Cytidine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Cytidine is a natural product found in Fritillaria thunbergii, Castanopsis fissa, and other organisms with data available. Cytidine is a pyrimidine nucleoside comprised of a cytosine bound to ribose via a beta-N1-glycosidic bond. Cytidine is a precursor for uridine. Both cytidine and uridine are utilized in RNA synthesis. Cytidine is a metabolite found in or produced by Saccharomyces cerevisiae. A pyrimidine nucleoside that is composed of the base CYTOSINE linked to the five-carbon sugar D-RIBOSE. A pyrimidine nucleoside in which cytosine is attached to ribofuranose via a beta-N(1)-glycosidic bond. [Spectral] Cytidine (exact mass = 243.08552) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) and NAD+ (exact mass = 663.10912) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Cytidine (exact mass = 243.08552) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Cytidine (exact mass = 243.08552) and S-Adenosyl-L-homocysteine (exact mass = 384.12159) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3]. Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3]. Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3].
Dacarbazine
Dacarbazine appears as white to ivory microcrystals or off-white crystalline solid. (NTP, 1992) (E)-dacarbazine is a dacarbazine in which the N=N double bond adopts a trans-configuration. An antineoplastic agent. It has significant activity against melanomas. (from Martindale, The Extra Pharmacopoeia, 31st ed, p564). Dacarbazine with Oblimersen is in clinical trials for the treatment of malignant melanoma. Dacarbazine is an Alkylating Drug. The mechanism of action of dacarbazine is as an Alkylating Activity. Dacarbazine (also known as DTIC) is an intravenously administered alkylating agent used in the therapy of Hodgkin disease and malignant melanoma. Dacarbazine therapy has been associated with serum enzyme elevations during therapy and occasional cases of severe and distinctive acute hepatic failure, probably caused by acute sinusoidal obstruction syndrome. Dacarbazine is a triazene derivative with antineoplastic activity. Dacarbazine alkylates and cross-links DNA during all phases of the cell cycle, resulting in disruption of DNA function, cell cycle arrest, and apoptosis. (NCI04) An antineoplastic agent. It has significant activity against melanomas. (from Martindale, The Extra Pharmacopoeia, 31st ed, p564) Dacarbazine is only found in individuals that have used or taken this drug. It is an antineoplastic agent. It has significant activity against melanomas. (from Martindale, The Extra Pharmacopoeia, 31st ed, p564)The mechanism of action is not known, but appears to exert cytotoxic effects via its action as an alkylating agent. Other theories include DNA synthesis inhibition by its action as a purine analog, and interaction with SH groups. Dacarbazine is not cell cycle-phase specific. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D009676 - Noxae > D000477 - Alkylating Agents D000970 - Antineoplastic Agents
Cucurbitacin B
Together wth other cucurbitacins, is responsible for the bitter taste and toxic props. of spoilt cucumbers. Cucurbitacin B is found in many foods, some of which are muskmelon, bitter gourd, green vegetables, and cucumber. Cucurbitacin B is found in bitter gourd. Together wth other cucurbitacins, is responsible for the bitter taste and toxic properties of spoilt cucumber Cucurbitacin B is a cucurbitacin in which a lanostane skeleton is multi-substituted with hydroxy, methyl and oxo substituents, with unsaturation at positions 5 and 23; a hydroxy function at C-25 is acetylated. It is a cucurbitacin, a secondary alpha-hydroxy ketone and a tertiary alpha-hydroxy ketone. It derives from a hydride of a lanostane. Cucurbitacin B is a natural product found in Begonia plebeja, Trichosanthes miyagii, and other organisms with data available. Cucurbitacin B belongs to a class of highly oxidized tetracyclic triterpenoids and is oral active. Cucurbitacin B inhibits tumor cell growth, migration and invasion and cycle arrest, but induces cell apoptosis. Cucurbitacin B has potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective activity[1][2][3][4][5]. Cucurbitacin B belongs to a class of highly oxidized tetracyclic triterpenoids and is oral active. Cucurbitacin B inhibits tumor cell growth, migration and invasion and cycle arrest, but induces cell apoptosis. Cucurbitacin B has potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective activity[1][2][3][4][5]. (+)-Cucurbitacin B. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=6199-67-3 (retrieved 2024-08-12) (CAS RN: 6199-67-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Phorbol
Phorbol is a white solid. (NTP, 1992) Phorbol is a diterpenoid with the structure of tigliane hydroxylated at C-4, -9, -12(beta), -13 and -20, with an oxo group at C-3 and unsaturation at the 1- and 6-positions. It is a tetracyclic diterpenoid, an enone, a cyclic ketone, a tertiary alcohol and a tertiary alpha-hydroxy ketone. It derives from a hydride of a tigliane. Phorbol is a natural product found in Euphorbia tirucalli, Croton tiglium, and Rehmannia glutinosa with data available. Phorbol is a natural, plant-derived organic compound. It is a member of the tigliane family of diterpenes. Phorbol was first isolated in 1934 as the hydrolysis product of croton oil, which is derived from the seeds of the purging croton, Croton tiglium. The structure of phorbol was determined in 1967. It is very soluble in most polar organic solvents, as well as in water. Phorbol is a highly toxic diterpene, whose esters have important biological properties. Phorbol is a highly toxic diterpene, whose esters have important biological properties.
Cafestol
Cafestol is an organic heteropentacyclic compound and furan diterpenoid with formula C20H28O3 obtained from the unsaponifiable fraction of coffee oil (a lipid fraction obtained from coffee beans by organic solvent extraction). It has a role as a plant metabolite, an apoptosis inducer, a hypoglycemic agent, an angiogenesis inhibitor, an antineoplastic agent, an antioxidant and an anti-inflammatory agent. It is an organic heteropentacyclic compound, a tertiary alcohol, a diterpenoid, a member of furans and a primary alcohol. Cafestol is a natural product found in Coffea arabica, Diplospora dubia, and other organisms with data available. Cafestol is found in arabica coffee. Cafestol is a constituent of coffee bean oil. Cafestol is present in boiled-type coffee beverages. Possesses hypercholesterolaemic activity. Diterpenoid constits. of coffee products are associated with cardiotoxic properties Cafestol is a diterpene molecule present in coffee Cafestol is a diterpene molecule and is a constituent of coffee bean oil. It is found in boiled-type coffee beverages. Possesses hypercholesterolaemic activity. Diterpenoid constitsuents of coffee products are associated with cardiotoxic props. Cafestol, one of the major components of coffee, is a coffee-specific diterpene from. Cafestol is a ERK inhibitor for AP-1-targeted activity against PGE2 production and the mRNA expression of cyclooxygenase (COX)-2 in LPS-activated RAW264.7 cells. Cafestol has strong inhibitory activity on PGE2 production by suppressing the NF-kB activation pathway. Cafestol contributes to its beneficial effects through various biological activities such as chemopreventive, antitumorigenic, hepatoprotective, antioxidative and antiinflammatory effects[1]. Cafestol, one of the major components of coffee, is a coffee-specific diterpene from. Cafestol is a ERK inhibitor for AP-1-targeted activity against PGE2 production and the mRNA expression of cyclooxygenase (COX)-2 in LPS-activated RAW264.7 cells. Cafestol has strong inhibitory activity on PGE2 production by suppressing the NF-kB activation pathway. Cafestol contributes to its beneficial effects through various biological activities such as chemopreventive, antitumorigenic, hepatoprotective, antioxidative and antiinflammatory effects[1]. Cafestol, one of the major components of coffee, is a coffee-specific diterpene from. Cafestol is a ERK inhibitor for AP-1-targeted activity against PGE2 production and the mRNA expression of cyclooxygenase (COX)-2 in LPS-activated RAW264.7 cells. Cafestol has strong inhibitory activity on PGE2 production by suppressing the NF-kB activation pathway. Cafestol contributes to its beneficial effects through various biological activities such as chemopreventive, antitumorigenic, hepatoprotective, antioxidative and antiinflammatory effects[1].
Bellidifolin
Bellidifolin is a member of the xanthone family that is bellidin substituted with a methyl group at O-3. A natural product found particularly in Swertia chirata and Gentianella campestris. It has a role as an EC 3.1.1.7 (acetylcholinesterase) inhibitor, a hypoglycemic agent and a metabolite. It is a member of xanthones and a polyphenol. It is functionally related to a bellidin. Bellidifolin is a natural product found in Gentiana orbicularis, Gentianella amarella, and other organisms with data available. Bellidifolin is a xanthone isolated from the stems of Swertia punicea, with hepatoprotective, hypoglycemic, anti-oxidation, anti-inflammatory and antitumor activities[1][2][3]. Bellidifolin also acts as a viral protein R (Vpr) inhibitor[4]. Bellidifolin is a xanthone isolated from the stems of Swertia punicea, with hepatoprotective, hypoglycemic, anti-oxidation, anti-inflammatory and antitumor activities[1][2][3]. Bellidifolin also acts as a viral protein R (Vpr) inhibitor[4].
Campesterol
Campesterol is a phytosterol, meaning it is a steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\\\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. -- Wikipedia. Campesterol is a member of phytosterols, a 3beta-sterol, a 3beta-hydroxy-Delta(5)-steroid and a C28-steroid. It has a role as a mouse metabolite. It derives from a hydride of a campestane. Campesterol is a natural product found in Haplophyllum bucharicum, Bugula neritina, and other organisms with data available. Campesterol is a steroid derivative that is the simplest sterol, characterized by the hydroxyl group in position C-3 of the steroid skeleton, and saturated bonds throughout the sterol structure, with the exception of the 5-6 double bond in the B ring. Campesterol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=474-62-4 (retrieved 2024-07-01) (CAS RN: 474-62-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects.
Isofucosterol
Isofucosterol, also known as delta5-avenasterol, is a phytosterol. Phytosterols, or plant sterols, are compounds that occur naturally and bear a close structural resemblance to cholesterol but have different side-chain configurations. Phytosterols are relevant in pharmaceuticals (production of therapeutic steroids), nutrition (anti-cholesterol additives in functional foods, anti-cancer properties), and cosmetics (creams, lipstick). Phytosterols can be obtained from vegetable oils or from industrial wastes, which gives an added value to the latter. Considerable efforts have been recently dedicated to the development of efficient processes for phytosterol isolation from natural sources. The present work aims to summarize information on the applications of phytosterols and to review recent approaches, mainly from the industry, for the large-scale recovery of phytosterols (PMID: 17123816, 16481154). Isofucosterol is found to be associated with phytosterolemia, which is an inborn error of metabolism. Isofucosterol, also known as (24z)-stigmasta-5,24(28)-dien-3-ol or delta5-avenasterol, belongs to stigmastanes and derivatives class of compounds. Those are sterol lipids with a structure based on the stigmastane skeleton, which consists of a cholestane moiety bearing an ethyl group at the carbon atom C24. Thus, isofucosterol is considered to be a sterol lipid molecule. Isofucosterol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Isofucosterol can be found in a number of food items such as globe artichoke, gooseberry, deerberry, and ucuhuba, which makes isofucosterol a potential biomarker for the consumption of these food products. Isofucosterol can be found primarily in blood. Moreover, isofucosterol is found to be associated with sitosterolemia. Isofucosterol is a 3beta-sterol consisting of stigmastan-3beta-ol with double bonds at positions 5 and 24(28). The double bond at postion 24(28) adopts a Z-configuration. It has a role as an animal metabolite, a plant metabolite, an algal metabolite and a marine metabolite. It is a 3beta-sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Fucosterol is a natural product found in Echinometra lucunter, Ulva fasciata, and other organisms with data available. A 3beta-sterol consisting of stigmastan-3beta-ol with double bonds at positions 5 and 24(28). The double bond at postion 24(28) adopts a Z-configuration. Fucosterol is a sterol isolated from algae, seaweed or diatoms.?Fucosterol exhibits various biological activities, including antioxidant, anti-adipogenic, blood cholesterol reducing, anti-diabetic and anti-cancer activities[1][2]. Fucosterol regulates adipogenesis via inhibition of?PPARα?and?C/EBPα?expression and can be used for anti-obesity agents development research. Isofucosterol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=481-14-1 (retrieved 2024-10-08) (CAS RN: 481-14-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Afzelin
Afzelin is a glycosyloxyflavone that is kaempferol attached to an alpha-L-rhamnosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite, an antibacterial agent and an anti-inflammatory agent. It is a glycosyloxyflavone, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a kaempferol. It is a conjugate acid of an afzelin(1-). Afzelin is a natural product found in Premna odorata, Vicia tenuifolia, and other organisms with data available. [Raw Data] CBA27_Afzelin_neg_30eV_1-1_01_1585.txt [Raw Data] CBA27_Afzelin_pos_20eV_1-1_01_1549.txt [Raw Data] CBA27_Afzelin_pos_10eV_1-1_01_1540.txt [Raw Data] CBA27_Afzelin_neg_10eV_1-1_01_1576.txt [Raw Data] CBA27_Afzelin_neg_20eV_1-1_01_1584.txt [Raw Data] CBA27_Afzelin_neg_40eV_1-1_01_1586.txt [Raw Data] CBA27_Afzelin_pos_30eV_1-1_01_1550.txt [Raw Data] CBA27_Afzelin_pos_50eV_1-1_01_1552.txt [Raw Data] CBA27_Afzelin_pos_40eV_1-1_01_1551.txt [Raw Data] CBA27_Afzelin_neg_50eV_1-1_01_1587.txt Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1]. Afzelin (Kaempferol-3-O-rhamnoside)It is a flavonol glycoside that has anti-inflammatory, anti-oxidative stress response, anti-apoptotic, and anti-cardiac cytotoxic effects. AfzelinIt can reduce mitochondrial damage, enhance mitochondrial biosynthesis, and reduce mitochondria-related proteins. Parkinand PTENinduced putative kinase 1 (putative kinase 1)s level. AfzelinCan be improved D-galactosamine(GalN)/LPSSurvival rate of mice treated with doxorubicin prophylaxis (HY-15142A)Induced cardiotoxicity and scopolamine (HY-N0296)-induced neurological injury. AfzelinAlso inhibits asthma and allergies caused by ovalbumin[1][2][3][4]. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1].
Cucurbitacin
Cucurbitacin S is an 11-oxo steroid. Cucurbitacin S is a natural product found in Cucurbita foetidissima with data available. Triterpenes that derive from LANOSTEROL by a shift of the C19 methyl to the C9 position. They are found in seeds and roots of CUCURBITACEAE and other plants and are noted for intense bitterness.
Cucurbitacin D
Cucurbitacin D is a cucurbitacin in which a lanostane skeleton is multi-substituted with hydroxy, methyl and oxo substituents, with unsaturation at positions 5 and 23. It is a cucurbitacin, a secondary alpha-hydroxy ketone and a tertiary alpha-hydroxy ketone. It derives from a hydride of a lanostane. Cucurbitacin D is a natural product found in Elaeocarpus chinensis, Elaeocarpus hainanensis, and other organisms with data available. Cucurbitacin D is found in calabash. Cucurbitacin D is isolated from plants of the Cucurbitacea Cucurbitacin D is an active component in Trichosanthes kirilowii, disrupts interactions between Hsp90 and two co-chaperones, Cdc37 and p23. Cucurbitacin D prevents Hsp90 client (Her2, Raf, Cdk6, pAkt) maturation without induction of the heat shock response. Anti-cancer activity[1]. Cucurbitacin D is an active component in Trichosanthes kirilowii, disrupts interactions between Hsp90 and two co-chaperones, Cdc37 and p23. Cucurbitacin D prevents Hsp90 client (Her2, Raf, Cdk6, pAkt) maturation without induction of the heat shock response. Anti-cancer activity[1].
Bruceantin
Bruceantin is a triterpenoid. Bruceantin is a natural product found in Brucea javanica and Brucea antidysenterica with data available. Bruceantin is a triterpene quassinoid antineoplastic antibiotic isolated from the plant Brucea antidysenterica. Bruceantin inhibits the peptidyl transferase elongation reaction, resulting in decreased protein and DNA synthesis. Bruceantin also has antiamoebic and antimalarial activity. (NCI04) C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product > C1974 - Quassinoid Agent C784 - Protein Synthesis Inhibitor C1907 - Drug, Natural Product Bruceantin (NSC165563) can be extracted from B. javanica and has inhibitory effects on B16 melanoma, colon cancer 38, L1210 and leukemia P388. Bruceantin (NSC165563) can be extracted from B. javanica and has inhibitory effects on B16 melanoma, colon cancer 38, L1210 and leukemia P388.
Soyasaponin I
Soyasaponin I is a triterpenoid saponin that is composed of soyasapogenol B having an alpha-L-rhamnopyranosyl-(1->2)-beta-D-galactopyranosyl-(1->2)-beta-D-glucopyranosiduronic acid moiety attached at the 3-position via a glycosidic linkage. It has a role as a sialyltransferase inhibitor. It is a pentacyclic triterpenoid, a triterpenoid saponin, a trisaccharide derivative and a carbohydrate acid derivative. It is functionally related to a soyasapogenol B. It is a conjugate acid of a soyasaponin I(1-). Soyasaponin I is a natural product found in Crotalaria albida, Hedysarum polybotrys, and other organisms with data available. A triterpenoid saponin that is composed of soyasapogenol B having an alpha-L-rhamnopyranosyl-(1->2)-beta-D-galactopyranosyl-(1->2)-beta-D-glucopyranosiduronic acid moiety attached at the 3-position via a glycosidic linkage. Azukisaponin V is found in pulses. Azukisaponin V is isolated from seeds of azuki bean (Vigna angularis). soyasaponin Bb is a soyasaponin isolated from Phaseolus vulgaris, acting as an aldose reductase differential inhibitor (ARDI)[1]. soyasaponin Bb is a soyasaponin isolated from Phaseolus vulgaris, acting as an aldose reductase differential inhibitor (ARDI)[1].
alpha-Carotene
alpha-Carotene belongs to the class of organic compounds known as carotenes. These are a type of unsaturated hydrocarbons containing eight consecutive isoprene units. They are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. alpha-Carotene is considered to be an isoprenoid lipid molecule. alpha-Carotene is one of the primary isomers of carotene. Plasma levels of alpha-carotene are positively associated with the detection rate of AFB1-DNA adducts in a dose-dependent manner, whereas plasma lycopene level was inversely related to the presence of the adducts in urine (PMID: 9214602). (6R)-beta,epsilon-carotene is an alpha-carotene. It is an enantiomer of a (6S)-beta,epsilon-carotene. alpha-Carotene is a natural product found in Hibiscus syriacus, Scandix stellata, and other organisms with data available. Widespread carotenoid, e.g. in carrots and palm oil. Has vitamin A activity but less than that of b-Carotene A cyclic carotene with a beta- and an epsilon-ring at opposite ends respectively. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
Helenalin
Helenalin is a sesquiterpene lactone that is 3,3a,4,4a,7a,8,9,9a-octahydroazuleno[6,5-b]furan-2,5-dione substituted by a hydroxy group at position 4, methyl groups at positions 4a and 8 and a methylidene group at position 3 (the 3aS,4S,4aR,7aR,8R,9aR stereoisomer). It has a role as an anti-inflammatory agent, an antineoplastic agent, a plant metabolite and a metabolite. It is a gamma-lactone, a cyclic ketone, an organic heterotricyclic compound, a sesquiterpene lactone and a secondary alcohol. Helenalin is a natural product found in Pentanema britannicum, Psilostrophe cooperi, and other organisms with data available. A sesquiterpene lactone that is 3,3a,4,4a,7a,8,9,9a-octahydroazuleno[6,5-b]furan-2,5-dione substituted by a hydroxy group at position 4, methyl groups at positions 4a and 8 and a methylidene group at position 3 (the 3aS,4S,4aR,7aR,8R,9aR stereoisomer). D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics D020011 - Protective Agents > D002316 - Cardiotonic Agents D000893 - Anti-Inflammatory Agents D000970 - Antineoplastic Agents D002317 - Cardiovascular Agents D018501 - Antirheumatic Agents
senegalensin
6,8-diprenylnaringenin is a trihydroxyflavanone that is (S)-naringenin substituted by prenyl groups at positions 6 and 8. It has a role as a plant metabolite and an antibacterial agent. It is a trihydroxyflavanone, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. Lonchocarpol A is a natural product found in Macaranga conifera, Erythrina suberosa, and other organisms with data available. A trihydroxyflavanone that is (S)-naringenin substituted by prenyl groups at positions 6 and 8.
Khellin
D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Khellin is a furochromone that can be isolated from Ammi visnuga L.. Khellin is an EGFR inhibitor with an IC50 of 0.15 μM. Khelline has anti-proliferative activity in vitro. Khellin has antispasmodic and coronary vasodilator effects[1][2]. Khellin is a furochromone that can be isolated from Ammi visnuga L.. Khellin is an EGFR inhibitor with an IC50 of 0.15 μM. Khelline has anti-proliferative activity in vitro. Khellin has antispasmodic and coronary vasodilator effects[1][2].
(-)-beta-Pinene
(-)-beta-pinene is the (1S,5S)-enantiomer of beta-pinene. It is an enantiomer of a (+)-beta-pinene. (-)-beta-Pinene is a natural product found in Curcuma amada, Molopospermum peloponnesiacum, and other organisms with data available. Flavouring ingredient. (-)-beta-Pinene is found in many foods, some of which are almond, hyssop, sweet bay, and common sage. (-)-beta-Pinene is found in almond. (-)-beta-Pinene is a flavouring ingredient. The (1S,5S)-enantiomer of beta-pinene. β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2]. β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2].
beta-Myrcene
7-Methyl-3-methylene-1,6-octadiene, also known as beta-Myrcene or myrcene is an acyclic monoterpene. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in the plastids. beta-Myrcene is a significant component of the essential oil of several plants, including allspice, bay, cannabis, hops, houttuynia, lemon grass, mango, myrcia, verbena, west indian bay tree, and cardamom. It is also the main component of wild thyme, the leaves of which contain up to 40\\\\% by weight of myrcene. Industrially, it is produced mainly semi-synthetically from myrcia, from which it gets its name. Myrcene has been detected as a volatile component in cannabis plant samples (PMID:26657499 ) and its essential oils (PMID:6991645 ). beta-Myrcene is the most abundant monoterpene in Cannabis and it has analgesic, anti-inflammatory, antibiotic, and antimutagenic activities. beta-Myrcene is a flavouring agent and it is used in the perfumery industry. It has a pleasant odor but is rarely used directly. It is a key intermediate in the production of several fragrances such as menthol, citral, citronellol, citronellal, geraniol, nerol, and linalool. Myrcene, [liquid] appears as a yellow oily liquid with a pleasant odor. Flash point below 200 °F. Insoluble in water and less dense than water. Beta-myrcene is a monoterpene that is octa-1,6-diene bearing methylene and methyl substituents at positions 3 and 7 respectively. It has a role as a plant metabolite, an anti-inflammatory agent, an anabolic agent, a fragrance, a flavouring agent and a volatile oil component. Myrcene is a natural product found in Teucrium montanum, Xylopia aromatica, and other organisms with data available. 7-Methyl-3-methylene-1,6-octadiene is found in allspice. 7-Methyl-3-methylene-1,6-octadiene is found in many essential oils, e.g. hop oil. 7-Methyl-3-methylene-1,6-octadiene is a flavouring agent. Myrcene is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Caraway Oil (part of); Mandarin oil (part of); Juniper Berry Oil (part of) ... View More ... A monoterpene that is octa-1,6-diene bearing methylene and methyl substituents at positions 3 and 7 respectively. Found in many essential oils, e.g. hop oil. Flavouring agent Myrcene (β-Myrcene), an aromatic volatile compound, suppresses TNFα-induced NF-κB activity. Myrcene has anti-invasive effect[1][2]. Myrcene (β-Myrcene), an aromatic volatile compound, suppresses TNFα-induced NF-κB activity. Myrcene has anti-invasive effect[1][2].
Visnagin
D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Visnagin, an antioxidant furanocoumarin derivative, possess anti-inflammatory and analgesic properties. Visnagin has substantial potential to prevent Cerulein induced acute pancreatitis (AP). Visnagin possess promising vasodilator effects in vascular smooth muscles[1][2]. Visnagin, an antioxidant furanocoumarin derivative, possess anti-inflammatory and analgesic properties. Visnagin has substantial potential to prevent Cerulein induced acute pancreatitis (AP). Visnagin possess promising vasodilator effects in vascular smooth muscles[1][2].
Glaucarubinone
Glaucarubinone is a quassinoid with formula C25H34O10. It is a natural product isolated from several plant species and exhibits anti-cancer and anti-malarial properties. It has a role as a geroprotector, a plant metabolite, an antineoplastic agent and an antimalarial. It is a carboxylic ester, a quassinoid, an organic heteropentacyclic compound, a tetrol, a secondary alpha-hydroxy ketone and a tertiary alpha-hydroxy ketone. Glaucarubinone is a natural product found in Simarouba amara, Cunila, and other organisms with data available. A quassinoid with formula C25H34O10. It is a natural product isolated from several plant species and exhibits anti-cancer and anti-malarial properties.
Isocaryophyllene
Isocaryophyllene, also known as gamma-caryophyllene, belongs to the class of organic compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Isocaryophyllene can be found primarily in saliva. Isocaryophyllene is found in allspice, and is widespread in plants (Jasminum, Origanum, and Pimpinella species). Beta-caryophyllene is a pale yellow oily liquid with an odor midway between odor of cloves and turpentine. (NTP, 1992) Isocaryophyllene is a sesquiterpenoid. Isocaryophyllene is a natural product found in Aloysia gratissima, Vismia cayennensis, and other organisms with data available. See also: Caryophyllene (related). D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents
Proscillaridin
Proscillaridin is an organic molecular entity. Proscillaridin is a cardiac glycoside that is derived from plants of the genus Scilla and in Drimia maritima (Scilla maritima). Studies suggest the potential cytotoxic and anticancer property of proscillaridin, based on evidence of the drug potently disrupting topoisomerase I and II activity at nanomolar drug concentrations and triggering cell death and blocking cell proliferation of glioblastoma cell lines. Proscillaridin is a natural product found in Drimia indica with data available. A cardiotonic glycoside isolated from Scilla maritima var. alba (Squill). C - Cardiovascular system > C01 - Cardiac therapy > C01A - Cardiac glycosides > C01AB - Scilla glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides C78274 - Agent Affecting Cardiovascular System > C78322 - Cardiotonic Agent D002317 - Cardiovascular Agents D004791 - Enzyme Inhibitors Proscillaridin A is a potent poison of topoisomerase I/II activity with IC50 values of 30 nM and 100 nM, respectively[1]. Proscillaridin A is a potent poison of topoisomerase I/II activity with IC50 values of 30 nM and 100 nM, respectively[1].
Afzelechin
Afzelechin is a tetrahydroxyflavan that is (2S)-flavan substituted by hydroxy groups at positions 3, 5, 7 and 4 respectively. It has a role as a plant metabolite and an EC 3.2.1.20 (alpha-glucosidase) inhibitor. It is a tetrahydroxyflavan and a catechin. It derives from a hydride of a (2S)-flavan. Afzelechin is a natural product found in Cassipourea gummiflua, Bergenia ligulata, and other organisms with data available. A tetrahydroxyflavan that is (2S)-flavan substituted by hydroxy groups at positions 3, 5, 7 and 4 respectively.
Canthin-6-one
Canthin-6-one is an indole alkaloid that is 6H-indolo[3,2,1-de][1,5]naphthyridine substituted by an oxo group at position 6. It has a role as a metabolite and an antimycobacterial drug. It is an indole alkaloid, an organic heterotetracyclic compound and an enone. Canthin-6-one is a natural product found in Zanthoxylum mayu, Zanthoxylum ovalifolium, and other organisms with data available. D016573 - Agrochemicals D010575 - Pesticides Canthin-6-one displays a wide range of biological activities, such as antimycobacterial activity[1]. Canthin-6-one displays a wide range of biological activities, such as antimycobacterial activity[1].
Caryophyllene alpha-oxide
Caryophyllene oxide is an epoxide. It has a role as a metabolite.
Caryophyllene oxide is a natural product found in Xylopia emarginata, Eupatorium altissimum, and other organisms with data available.
See also: Cannabis sativa subsp. indica top (part of).
Caryophyllene alpha-oxide is a minor produced of epoxidn. of
dammarenediol
Dammarenediol-II is a tetracyclic triterpenoid that is dammarane which has a double bond between positions 24 and 25, and is substituted by hydroxy groups at the 3beta- and 20- positions. It has a role as a metabolite. It is a tetracyclic triterpenoid, a secondary alcohol and a tertiary alcohol. It derives from a hydride of a dammarane. Dammarenediol II is a natural product found in Olea capensis, Aglaia abbreviata, and other organisms with data available. A tetracyclic triterpenoid that is dammarane which has a double bond between positions 24 and 25, and is substituted by hydroxy groups at the 3beta- and 20- positions.
Nonacosane
Nonacosane, also known as CH3-[CH2]27-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Nonacosane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, nonacosane is considered to be a hydrocarbon lipid molecule. Nonacosane is a straight-chain hydrocarbon with a molecular formula of C29H60. Nonacosane has been identified within several essential oils. Nonacosane has been detected, but not quantified, in several different foods, such as peachs, ginkgo nuts, cauliflowers, arabica coffee, and lambsquarters. This could make nonacosane a potential biomarker for the consumption of these foods. Nonacosane occurs naturally and has been reported to be a component of a pheromone of Orgyia leucostigma, and evidence suggests it plays a role in the chemical communication of several insects, including the female Anopheles stephensi (a mosquito). It can also be prepared synthetically. It has 1,590,507,121 constitutional isomers. Nonacosane, also known as ch3-[ch2]27-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, nonacosane is considered to be a hydrocarbon lipid molecule. Nonacosane can be found in a number of food items such as garden tomato (variety), papaya, brussel sprouts, and wild carrot, which makes nonacosane a potential biomarker for the consumption of these food products. Nonacosane occurs naturally and has been reported to be a component of a pheromone of Orgyia leucostigma, and evidence suggests it plays a role in the chemical communication of several insects, including the female Anopheles stephensi (a mosquito) . Nonacosane is a straight-chain alkane comprising of 29 carbon atoms. It has a role as a plant metabolite and a volatile oil component. Nonacosane is a natural product found in Euphorbia larica, Quercus salicina, and other organisms with data available. See also: Moringa oleifera leaf oil (part of). A straight-chain alkane comprising of 29 carbon atoms. Nonacosane, isolated from Baphia massaiensis, exhibits weak activities against E. coli, B. subtilis, P. aeruginosa and S. aureus[1]. Nonacosane, isolated from Baphia massaiensis, exhibits weak activities against E. coli, B. subtilis, P. aeruginosa and S. aureus[1].
alpha-Methylene-gamma-butyrolactone
Alpha-methylene gamma-butyrolactone is a butan-4-olide having a methylene group at the 3-position. It has a role as a gastrointestinal drug and an anti-ulcer drug. alpha-Methylene-gamma-butyrolactone is a natural product found in Tulipa agenensis, Tulipa humilis, and other organisms with data available. D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents Tulipalin A (α-Methylene butyrolactone) is a glycoside. Tulipalin A is a causative allergen that induces Allergic contact dermatitides[1]. Tulipalin A (α-Methylene butyrolactone) at low dose affects the functionality of immune cells, such as Jurkat T cells[2]. Tulipalin A (α-Methylene butyrolactone) is a glycoside. Tulipalin A is a causative allergen that induces Allergic contact dermatitides[1]. Tulipalin A (α-Methylene butyrolactone) at low dose affects the functionality of immune cells, such as Jurkat T cells[2].
trans-beta-Farnesene
Trans-beta-farnesene is a beta-farnesene in which the double bond at position 6-7 has E configuration. It is the major or sole alarm pheromone in most species of aphid. It has a role as an alarm pheromone and a metabolite. beta-Farnesene is a natural product found in Nepeta nepetella, Eupatorium capillifolium, and other organisms with data available. trans-beta-Farnesene, also known as (E)-β-Farnesene or (E)-7,11-Dimethyl-3-methylenedodeca-1,6,10-triene, is classified as a member of the Sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. trans-beta-Farnesene is a hydrocarbon lipid molecule. (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2]. (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2].
Tomentosin
Tomentosin is a sesquiterpene lactone. Tomentosin is a natural product found in Apalochlamys spectabilis, Leucophyta brownii, and other organisms with data available.
Lactupicrin
Lactucopicrin is an azulenofuran, a cyclic terpene ketone, an enone, a member of phenols, a sesquiterpene lactone and a primary alcohol. It has a role as a plant metabolite, a sedative and an antimalarial. It is functionally related to a 4-hydroxyphenylacetic acid and a lactucin. Lactupicrin is a natural product found in Cichorium endivia, Cichorium spinosum, and other organisms with data available. Constituent of Lactuca sativa (lettuce), Cichorium intybus (chicory) and Cichorium endivia (endive). Lactupicrin is found in many foods, some of which are endive, romaine lettuce, chicory, and lettuce. Lactupicrin is found in chicory. Lactupicrin is a constituent of Lactuca sativa (lettuce), Cichorium intybus (chicory) and Cichorium endivia (endive) Lactupicrin (Lactucopicrin) is a characteristic bitter sesquiterpene lactone that can relieve pain. Lactupicrin exhibits atheroprotective effect[1][2]. Lactupicrin (Lactucopicrin) is a characteristic bitter sesquiterpene lactone that can relieve pain. Lactupicrin exhibits atheroprotective effect[1][2].
2',4',6'-Trihydroxyacetophenone
2,4,6-trihydroxyacetophenone is a benzenetriol that is acetophenone in which the hydrogens at positions 2, 4, and 6 on the phenyl group are replaced by hydroxy groups. It is used as a matrix in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of acidic glycans and glycopeptides. It has a role as a MALDI matrix material and a plant metabolite. It is a methyl ketone, a benzenetriol and an aromatic ketone. 2,4,6-Trihydroxyacetophenone is a natural product found in Artemisia gypsacea, Daldinia eschscholtzii, and other organisms with data available. A benzenetriol that is acetophenone in which the hydrogens at positions 2, 4, and 6 on the phenyl group are replaced by hydroxy groups. It is used as a matrix in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of acidic glycans and glycopeptides. 2,4,6-Trihydroxyacetophenone is found in fruits. 2,4,6-Trihydroxyacetophenone is isolated from bark of Prunus domestica (plum Phloracetophenone (2,4,6-trihydroxyacetophenone) is the aglycone part of acetophenone glycoside obtained from Curcuma comosa Roxb, with cholesterol-lowering activity. Phloracetophenone enhances cholesterol 7α-hydroxylase (CYP7A1) activity[1]. Phloracetophenone stimulats bile secretion mediated through Mrp2[2]. Phloracetophenone (2,4,6-trihydroxyacetophenone) is the aglycone part of acetophenone glycoside obtained from Curcuma comosa Roxb, with cholesterol-lowering activity. Phloracetophenone enhances cholesterol 7α-hydroxylase (CYP7A1) activity[1]. Phloracetophenone stimulats bile secretion mediated through Mrp2[2].
2-Methoxy-4-vinylphenol
2-methoxy-4-vinylphenol is a member of the class of phenols that is guaiacol in which the hydrogen para- to the hydroxy group is replaced by a vinyl group. It has a role as a pheromone, a flavouring agent and a plant metabolite. 2-Methoxy-4-vinylphenol is a natural product found in Coffea, Coffea arabica, and other organisms with data available. 4-Vinylguaiacol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Moringa oleifera leaf oil (part of). 2-Methoxy-4-vinylphenol is an aromatic substance used as a flavoring agent. It is one of the compounds responsible for the natural aroma of buckwheat. A member of the class of phenols that is guaiacol in which the hydrogen para- to the hydroxy group is replaced by a vinyl group. Responsible for off-flavour of old fruit in stored orange juice 2-Methoxy-4-vinylphenol (2M4VP), a naturally Germination inhibitor, exerts potent anti-inflammatory effects[1][2]. 2-Methoxy-4-vinylphenol (2M4VP), a naturally Germination inhibitor, exerts potent anti-inflammatory effects[1][2].
2-Hydroxyethanesulfonate
2-Hydroxyethanesulfonate (also known as 2-Hydroxyethanesulfonic acid or isethionic acid) is an organosulfur compound containing a short chain alkane sulfonate linked to a hydroxyl group. It is a water-soluble liquid used in the manufacture of mild, biodegradable, and high-foaming anionic surfactants. These surfactants provide gentle cleansing and a soft skin feel. 2-Hydroxyethanesulfonate forms a colourless, syrupy, and strongly acidic liquid that can form detergents with oleic acid. 2-Hydroxyethanesulfonate is frequently used in the industrial production of taurine. Mammals are also able to endogenously synthesize 2-hydroxyethanesulfonate via taurine through a possible enzymatic deamination process (PMID: 14490797). 2-Hydroxyethanesulfonate can be found in both human plasma and urine (PMID: 1159536, PMID: 6066118). Higher plasma levels of 2-hydroxyethanesulfonate have been shown to be protective against type 2 diabetes. Isethionic acid is an alkanesulfonic acid in which the sulfo group is directly linked to a 2-hydroxyethyl group. It has a role as a human metabolite. It is a conjugate acid of an isethionate. Isethionic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). 2-Hydroxyethanesulfonic acid is a natural product found in Gayliella flaccida, Tichocarpus crinitus, and Trypanosoma brucei with data available. A colorless, syrupy, strongly acidic liquid that can form detergents with oleic acid. Isethionic acid C2H6O4S is a short chain alkane sulfonate containing hydroxy group, is a water soluble liquid used in the manufacture of mild, biodegradable and high foaming anionic surfactants which provides gentle cleansing and soft skin feel. An alkanesulfonic acid in which the sulfo group is directly linked to a 2-hydroxyethyl group. KEIO_ID I041
(+)-alpha-Pinene
alpha-Pinene (CAS: 80-56-8) is an organic compound of the terpene class and is one of two isomers of pinene. It is found in the oils of many species of many coniferous trees, notably the pine. It is also found in the essential oil of rosemary (Rosmarinus officinalis). Both enantiomers are known in nature. 1S,5S- or (-)-alpha-pinene is more common in European pines, whereas the 1R,5R- or (+)-alpha-isomer is more common in North America. The racemic mixture is present in some oils such as eucalyptus oil (Wikipedia). alpha-Pinene is an organic compound of the terpene class, one of two isomers of pinene. It is found in the oils of many species of many coniferous trees, notably the pine. It is also found in the essential oil of rosemary (Rosmarinus officinalis). Both enantiomers are known in nature; 1S,5S- or (-)-alpha-pinene is more common in European pines, whereas the 1R,5R- or (+)-alpha-isomer is more common in North America. The racemic mixture is present in some oils such as eucalyptus oil. (+)-alpha-pinene is the (+)-enantiomer of alpha-pinene. It has a role as a plant metabolite and a human metabolite. It is an enantiomer of a (-)-alpha-pinene. (+)-alpha-Pinene is a natural product found in Juniperus drupacea, Eucalyptus deglupta, and other organisms with data available. The (+)-enantiomer of alpha-pinene. (1R)-α-Pinene is a volatile monoterpene with antimicrobial activities. (1R)-α-Pinene reduces Bacillus cereus population growth, and exhibits repellent effects[1][2]. (1R)-α-Pinene is a volatile monoterpene with antimicrobial activities. (1R)-α-Pinene reduces Bacillus cereus population growth, and exhibits repellent effects[1][2].
Epoxiconazole
D016573 - Agrochemicals D010575 - Pesticides CONFIDENCE standard compound; INTERNAL_ID 238; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9422; ORIGINAL_PRECURSOR_SCAN_NO 9420 CONFIDENCE standard compound; INTERNAL_ID 238; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9436; ORIGINAL_PRECURSOR_SCAN_NO 9433 CONFIDENCE standard compound; INTERNAL_ID 238; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9461; ORIGINAL_PRECURSOR_SCAN_NO 9459 CONFIDENCE standard compound; INTERNAL_ID 238; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9474; ORIGINAL_PRECURSOR_SCAN_NO 9472 CONFIDENCE standard compound; INTERNAL_ID 238; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9445; ORIGINAL_PRECURSOR_SCAN_NO 9444 CONFIDENCE standard compound; INTERNAL_ID 238; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9488; ORIGINAL_PRECURSOR_SCAN_NO 9486 CONFIDENCE standard compound; INTERNAL_ID 2574 CONFIDENCE standard compound; INTERNAL_ID 8407 CONFIDENCE standard compound; EAWAG_UCHEM_ID 95
1-Methylhistidine
1-Methylhistidine, also known as 1-MHis or 1MH, belongs to the class of organic compounds known as histidine and derivatives. 1MH is also classified as a methylamino acid. Methylamino acids are primarily proteogenic amino acids (found in proteins) which have been methylated (in situ) on their side chains by various methyltransferase enzymes. Histidine can be methylated at either the N1 or N3 position of its imidazole ring, yielding the isomers 1-methylhistidine (1MH; also referred to as pi-methylhistidine) or 3-methylhistidine (3MH; tau-methylhistidine), respectively. There is considerable confusion with regard to the nomenclature of the methylated nitrogen atoms on the imidazole ring of histidine and other histidine-containing peptides such as anserine. In particular, older literature (mostly prior to the year 2000) designated anserine (Npi methylated) as beta-alanyl-N1-methyl-histidine, whereas according to standard IUPAC nomenclature, anserine is correctly named as beta-alanyl-N3-methyl-histidine. As a result, many papers published prior to the year 2000 incorrectly identified 1MH as a specific marker for dietary consumption or various pathophysiological effects when they really were referring to 3MH (PMID: 24137022). Recent discoveries have shown that 1MH is produced in essentially all mammals (and other vertebrates) via the enzyme known as METTL9 (PMID: 33563959). METTL9 is a broad-specificity methyltransferase that mediates the formation of the majority of 1MH present in mammalian proteomes. METTL9-catalyzed methylation requires a His-x-His (HxH) motif, where "x" is a small amino acid. This HxH motif is found in a number of abundant mammalian proteins such as ARMC6, S100A9, and NDUFB3 (PMID: 33563959). Because of its abundance in many muscle-related proteins, 1MH has been found to be a good biomarker for the consumption of meat (PMID: 21527577). Dietary studies have shown that poultry consumption (p-trend = 0.0006) and chicken consumption (p-trend = 0.0003) are associated with increased levels of 1MH in human plasma (PMID: 30018457). The consumption of fish, especially salmon and cod, has also been shown to increase the levels of 1MH in serum and urine (PMID: 31401679). As a general rule, urinary 1MH is associated with white meat intake (p< 0.001), whereas urinary 3MH is associated with red meat intake (p< 0.001) (PMID: 34091671). 1-Methyl-L-histidine is an objective indicator of meat ingestion and exogenous 3-methylhistidine (3MH) intake. 1-Methyl-L-histidine is an objective indicator of meat ingestion and exogenous 3-methylhistidine (3MH) intake. 3-Methyl-L-histidine is a biomarker for meat consumption, especially chicken. It is also a biomarker for the consumption of soy products.
3-ureidopropionate
Ureidopropionic acid, also known as 3-ureidopropanoate or N-carbamoyl-beta-alanine, belongs to the class of organic compounds known as ureas. Ureas are compounds containing two amine groups joined by a carbonyl (C=O) functional group. Ureidopropionic acid is an intermediate in the metabolism of uracil. More specifically, it is a breakdown product of dihydrouracil and is produced by the enzyme dihydropyrimidase. It is further decomposed into beta-alanine via the enzyme beta-ureidopropionase. Ureidopropionic acid is essentially a urea derivative of beta-alanine. High levels of ureidopropionic acid are found in individuals with beta-ureidopropionase (UP) deficiency (PMID: 11675655). Enzyme deficiencies in pyrimidine metabolism are associated with a risk for severe toxicity against the antineoplastic agent 5-fluorouracil. Ureidopropionic acid has been detected, but not quantified in, several different foods, such as gram beans, broccoli, climbing beans, oriental wheat, and mandarin orange (clementine, tangerine). This could make ureidopropionic acid a potential biomarker for the consumption of these foods. N-Carbamoyl-β-alanine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=462-88-4 (retrieved 2024-07-01) (CAS RN: 462-88-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Ureidopropionic acid (3-Ureidopropionic acid) is an intermediate in the metabolism of uracil.
7a-Hydroxytestosterone
4-Hydroxytestosterone is the 17-hydroxylated analog to formestane. It is commercially available on the internet as anabolic steroid for oral self-administration and does not have any therapeutic indication. Hence, only little information is available about its metabolism. So far, most studies dealt with 4-hydroxytestosterone as metabolite of formestane while one study investigated the glucuronic acid conjugates of metabolic products of 4-hydroxytestosterone. This substance is prohibited in sports by the World Anti-Doping Agency; there is to a considerable increase of structurally related steroids with anabolic effects offered via the internet. 4-Hydroxytestosterone is a metabolite of the steroidal aromatase inhibitor 4-hydroxyandrost-4-ene-3,17-dione (4OHA). (PMID: 17724580, 17610244, 17207827, 1284430) [HMDB] 4-Hydroxytestosterone is the 17-hydroxylated analog to formestane. It is commercially available on the internet as anabolic steroid for oral self-administration and does not have any therapeutic indication. Hence, only little information is available about its metabolism. So far, most studies dealt with 4-hydroxytestosterone as metabolite of formestane while one study investigated the glucuronic acid conjugates of metabolic products of 4-hydroxytestosterone. This substance is prohibited in sports by the World Anti-Doping Agency; there is to a considerable increase of structurally related steroids with anabolic effects offered via the internet. 4-Hydroxytestosterone is a metabolite of the steroidal aromatase inhibitor 4-hydroxyandrost-4-ene-3,17-dione (4OHA). (PMID: 17724580, 17610244, 17207827, 1284430).
Acetamiprid
D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 2327 CONFIDENCE standard compound; INTERNAL_ID 8448 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2986 Acetamiprid is a neonicotinoid insecticide used worldwide. Acetamiprid is a nicotinic acetylcholine receptor (nAChR) agonist, and is shown to be associated with neuromuscular and reproductive disorders[1][2].
Adenosine diphosphate
Adenosine diphosphate (ADP), also known as adenosine pyrophosphate (APP), is an important organic compound in metabolism and is essential to the flow of energy in living cells. ADP consists of three important structural components: a sugar backbone attached to adenine and two phosphate groups bonded to the 5 carbon atom of ribose. The diphosphate group of ADP is attached to the 5’ carbon of the sugar backbone, while the adenine attaches to the 1’ carbon. ADP belongs to the class of organic compounds known as purine ribonucleoside diphosphates. These are purine ribobucleotides with diphosphate group linked to the ribose moiety. It is an ester of pyrophosphoric acid with the nucleotide adenine. Adenosine diphosphate is a nucleotide. ADP exists in all living species, ranging from bacteria to humans. In humans, ADP is involved in d4-gdi signaling pathway. ADP is the product of ATP dephosphorylation by ATPases. ADP is converted back to ATP by ATP synthases. ADP consists of the pyrophosphate group, the pentose sugar ribose, and the nucleobase adenine. Adenosine diphosphate, abbreviated ADP, is a nucleotide. It is an ester of pyrophosphoric acid with the nucleotide adenine. ADP consists of the pyrophosphate group, the pentose sugar ribose, and the nucleobase adenine. 5′-ADP. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-64-0 (retrieved 2024-07-01) (CAS RN: 58-64-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Adenosine 5'-diphosphate (Adenosine diphosphate) is a nucleoside diphosphate. Adenosine 5'-diphosphate is the product of ATP dephosphorylation by ATPases. Adenosine 5'-diphosphate induces human platelet aggregation and inhibits stimulated adenylate cyclase by an action at P2T-purinoceptors. Adenosine 5'-diphosphate (Adenosine diphosphate) is a nucleoside diphosphate. Adenosine 5'-diphosphate is the product of ATP dephosphorylation by ATPases. Adenosine 5'-diphosphate induces human platelet aggregation and inhibits stimulated adenylate cyclase by an action at P2T-purinoceptors.
Argininosuccinic acid disodium
Arginosuccinic acid is a basic amino acid. Some cells synthesize it from citrulline, aspartic acid and use it as a precursor for arginine in the urea cycle or Citrulline-NO cycle. The enzyme that catalyzes the reaction is argininosuccinate synthetase. Argininosuccinic acid is a precursor to fumarate in the citric acid cycle via argininosuccinate lyase. Defects in the argininosuccinate lyase enzyme can lead to argininosuccinate lyase deficiency, which is an inborn error of metabolism. Argininosuccinate (ASA) lyase deficiency results in defective cleavage of ASA. This leads to an accumulation of ASA in cells and an excessive excretion of ASA in urine (argininosuccinic aciduria). In virtually all respects, this disorder shares the characteristics of other urea cycle defects. The most important characteristic of ASA lyase deficiency is its propensity to cause hyperammonemia in affected individuals. ASA in affected individuals is excreted by the kidney at a rate practically equivalent to the glomerular filtration rate (GFR). Whether ASA itself causes a degree of toxicity due to hepatocellular accumulation is unknown; such an effect could help explain hyperammonemia development in affected individuals. Regardless, the name of the disease is derived from the rapid clearance of ASA in urine, although elevated levels of ASA can be found in plasma. ASA lyase deficiency is associated with high mortality and morbidity rates. Symptoms of ASA lyase deficiency include anorexia, irritability rapid breathing, lethargy and vomiting. Extreme symptoms include coma and cerebral edema. Arginosuccinic acid is a basic amino acid. Some cells synthesize it from citrulline, aspartic acid and use it as a precursor for arginine in the urea cycle or Citrulline-NO cycle. The enzyme that catalyzes the reaction is argininosuccinate synthetase. Argininosuccinic acid is a precursor to fumarate in the citric acid cycle via argininosuccinate lyase. Defects in the arginosuccinate lyase enzyme can lead to arginosuccinate lyase deficiency. Argininosuccinate (ASA) lyase deficiency results in defective cleavage of ASA. This leads to an accumulation of ASA in cells and an excessive excretion of ASA in urine (arginosuccinic aciduria). In virtually all respects, this disorder shares the characteristics of other urea cycle defects. The most important characteristic of ASA lyase deficiency is its propensity to cause hyperammonemia in affected individuals. ASA in affected individuals is excreted by the kidney at a rate practically equivalent to the glomerular filtration rate (GFR). Whether ASA itself causes a degree of toxicity due to hepatocellular accumulation is unknown; such an effect could help explain hyperammonemia development in affected individuals. Regardless, the name of the disease is derived from the rapid clearance of ASA in urine, although elevated levels of ASA can be found in plasma. ASA lyase deficiency is associated with high mortality and morbidity rates. Symptoms of ASA lyase deficiency include anorexia, irritability rapid breathing, lethargy and vomiting. Extreme symptoms include coma and cerebral edema. [HMDB] KEIO_ID A039; [MS2] KO008844 KEIO_ID A039
Dethiobiotin
Dethiobiotin is a synthetic metabolite that mimic the effects of biotin on gene expression and thus have biotin-like activities. In mammals, biotin serves as a coenzyme for carboxylases such as propionyl-CoA carboxylase. (PMID 12730407) [HMDB]. Dethiobiotin is found in many foods, some of which are agave, garden onion, lime, and black mulberry. Dethiobiotin is a synthetic metabolite that mimic the effects of biotin on gene expression and thus have biotin-like activities. In mammals, biotin serves as a coenzyme for carboxylases such as propionyl-CoA carboxylase. (PMID 12730407). D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D050258 - Mitosis Modulators > D008934 - Mitogens KEIO_ID D075; [MS3] KO009104 KEIO_ID D075; [MS2] KO009103 KEIO_ID D075 D-Desthiobiotin is a biotin derivative used in affinity chromatography and protein chromatography. D-Desthiobiotin also can be used for protein and cell labeling, detection and isolation[1].
Guanidinosuccinic acid
Guanidinosuccinic acid (GSA) has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821). It is one of the earliest uremic toxins isolated and its toxicity identified. Its metabolic origins show that it arose from the oxidation of argininosuccinic acid (ASA) by free radicals. The stimulus for this oxidation, occurring optimally in the presence of the failed kidney, is the rising level of urea which, through enzyme inhibition, results in a decline in hepatic levels of the semi-essential amino acid, arginine. It is further noted that concentrations of GSA in both serum and urine decline sharply in animals and humans exposed to the essential amino acid, methionine. Uremic patients suffer from a defective ability to generate methyl groups due to anorexia, dietary restrictions and renal protein leakage. This leads to the accumulation of homocysteine, a substance known to produce vascular damage. Even in healthy subjects intake of choline together with methionine is insufficient to satisfy total metabolic requirements for methyl groups. In end-stage renal disease, therefore, protein restriction contributes to the build-up of toxins in uremia. Replacement using specific amino acid mixtures should be directed toward identified deficiencies and adequacy monitored by following serum levels of the related toxins, in this case GSA and homocysteine. (PMID 12701806). Guanidinosuccinic acid (GSA) is one of the earliest uremic toxins isolated and its toxicity identified. Its metabolic origins show that it arose from the oxidation of argininosuccinic acid (ASA) by free radicals. The stimulus for this oxidation, occurring optimally in the presence of the failed kidney, is the rising level of urea which, through enzyme inhibition, results in a decline in hepatic levels of the semi-essential amino acid, arginine. It is further noted that concentrations of GSA in both serum and urine decline sharply in animals and humans exposed to the essential amino acid, methionine. Uremic patients suffer from a defective ability to generate methyl groups due to anorexia, dietary restrictions and renal protein leakage. This leads to the accumulation of homocysteine, a substance known to produce vascular damage. Even in healthy subjects intake of choline together with methionine is insufficient to satisfy total metabolic requirements for methyl groups. In end-stage renal disease, therefore, protein restriction contributes to the build-up of toxins in uremia. Replacement using specific amino acid mixtures should be directed toward identified deficiencies and adequacy monitored by following serum levels of the related toxins, in this case GSA and homocysteine. (PMID 12701806) [HMDB] Guanidinosuccinic acid is a nitrogenous metabolite.
Indole-3-lactic acid
Indolelactic acid (CAS: 1821-52-9) is a tryptophan metabolite found in human plasma, serum, and urine. Tryptophan is metabolized by two major pathways in humans, either through kynurenine or via a series of indoles, and some of its metabolites are known to be biologically active. Indolelactic acid is present in various amounts, significantly higher in umbilical fetal plasma than in maternal plasma in the protein-bound form (PMID 2361979, 1400722, 3597614, 11060358, 1400722). Indolelactic acid is also a microbial metabolite; urinary indole-3-lactate is produced by Clostridium sporogenes (PMID: 29168502). Indolelactic acid is a tryptophan metabolite found in human plasma and serum and normal urine. Tryptophan is metabolized by two major pathways in humans, either through kynurenine or via a series of indoles, and some of its metabolites are known to be biologically active. Indolelactic acid is present in various amounts, significantly higher in umbilical foetal plasma than in maternal plasma in the protein-bound form. (PMID 2361979, 1400722, 3597614, 11060358, 1400722) [HMDB] Indolelactic acid (Indole-3-lactic acid) is a tryptophan (Trp) catabolite in Azotobacter vinelandii cultures. Indolelactic acid has anti-inflammation and potential anti-viral activity[1][3][4].
Morphine-3-glucuronide
Morphine-3-glucuronide belongs to the family of Morphinans. These are polycyclic compounds with a four-ring skeleton with three condensed six-member rings forming a partially hydrogenated phenanthrene moiety, one of which is aromatic while the two others are alicyclic. D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants
N-Acetylleucine
N-Acetyl-L-leucine or N-Acetylleucine, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetylleucine can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetylleucine is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-lecuine. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\\% of all human proteins and 68\\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetylleucine can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free leucine can also occur. In particular, N-Acetylleucine can be biosynthesized from L-leucine and acetyl-CoA by the enzyme leucine N-acetyltransferase (EC 2.3.1.66). Excessive amounts N-acetyl amino acids including N-acetylleucine (as well as N-acetylglycine, N-acetylserine, N-acetylglutamine, N-acetylglutamate, N-acetylalanine, N-acetylmethionine and smaller amounts of N-acetylthreonine, N-acetylisoleucine, and N-acetylvaline) can be detected in the urine with individuals with acylase I deficiency, a genetic disorder (PMID: 16465618). Aminoacylase I is a soluble homodimeric zinc binding enzyme that catalyzes the formation of free aliphatic amino acids from N-acetylated precursors. In humans, Aminoacylase I is encoded by the aminoacylase 1 gene (ACY1) on chromosome 3p21 that consists of 15 exons (OMIM 609924). Individuals with aminoacylase I deficiency will experience convulsions, hearing loss and difficulty feeding (PMID: 16465618). ACY1 can also catalyze the reverse reaction, the synthesis of acetylated amino acids. Many N-acetylamino acids, including N-acetylleucine are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557). N-Acetyl-L-leucine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1188-21-2 (retrieved 2024-07-02) (CAS RN: 1188-21-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). N-Acetyl-L-leucine is an endogenous metabolite.
N-Methyl-D-aspartic acid
N-Methyl-D-aspartic acid is an amino acid derivative acting as a specific agonist at the NMDA receptor, and therefore mimics the action of the neurotransmitter glutamate on that receptor. In contrast to glutamate, NMDA binds to and regulates the above receptor only, but not other glutamate receptors. NMDA is a water-soluble endogenous metabolite that plays an important role in the neuroendocrine system of species across Animalia (PMID:18096065). It was first synthesized in the 1960s (PMID:14056452). NMDA is an excitotoxin; this trait has applications in behavioural neuroscience research. The body of work utilizing this technique falls under the term "lesion studies." Researchers apply NMDA to specific regions of an (animal) subjects brain or spinal cord and subsequently test for the behaviour of interest, such as operant behaviour. If the behaviour is compromised, it suggests that the destroyed tissue was part of a brain region that made an important contribution to the normal expression of that behaviour. Examples of antagonists of the NMDA receptor are ketamine, amantadine, dextromethorphan (DXM), riluzole, and memantine. They are commonly referred to as NMDA receptor antagonists (PMID:28877137). N-Methyl-D-aspartic acid is an amino acid derivative acting as a specific agonist at the NMDA receptor, and therefore mimics the action of the neurotransmitter glutamate on that receptor. In contrast to glutamate, NMDA binds to and regulates the above receptor only, but not other glutamate receptors. D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists N-Methyl-DL-aspartic acid is a glutamate analogue and a?NMDA?receptor?agonist and can be used for neurological diseases research[1][2].
O-Acetylserine
O-Acetylserine is an α-amino acid with the chemical formula HO2CCH(NH2)CH2OC(O)CH3. It is an intermediate in the biosynthesis of the common amino acid cysteine in bacteria and plants. O-Acetylserine is biosynthesized by acetylation of the serine by the enzyme serine transacetylase. The enzyme O-acetylserine (thiol)-lyase, using sulfide sources, converts this ester into cysteine, releasing acetate. O-Acetylserine belongs to the class of organic compounds known as l-alpha-amino acids. These are alpha amino acids which have the L-configuration of the alpha-carbon atom. O-Acetylserine (OASS) is an acylated amino acid derivative. O-Acetylserine exists in all living species, ranging from bacteria to humans. Outside of the human body, O-Acetylserine has been detected, but not quantified in several different foods, such as okra, vaccinium (blueberry, cranberry, huckleberry), rapes, sparkleberries, and lingonberries. This could make O-acetylserine a potential biomarker for the consumption of these foods. O-acetyl-l-serine, also known as L-serine, acetate (ester) or (2s)-3-acetyloxy-2-aminopropanoate, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. O-acetyl-l-serine is soluble (in water) and a moderately acidic compound (based on its pKa). O-acetyl-l-serine can be found in a number of food items such as sorrel, summer savory, purslane, and cherimoya, which makes O-acetyl-l-serine a potential biomarker for the consumption of these food products. O-acetyl-l-serine can be found primarily in blood and urine, as well as in human prostate tissue. O-acetyl-l-serine exists in all living species, ranging from bacteria to humans. Acquisition and generation of the data is financially supported in part by CREST/JST. O-Acetylserine (O-Acetyl-L-serine) is an intermediate in the biosynthesis of the amino acid cysteine in bacteria and plants.
Prostaglandin B1
Prostaglandin B1 (PGB1) is a metabolite of PGE1. PGE1 is a prostanoid. Prostanoids is a term that collectively describes prostaglandins, prostacyclines and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2). PGB1does not inhibit phospholipase activity, but oligomers of PGB1 (PGBx) extracted from human neutrophils inhibit human phospholipases A2 in vitro and in situ in a dose-dependent manner; these oligomers inhibit arachidonic acid mobilization in human neutrophils and endothelial cells. One mechanism for the pharmacological effects of PGBx may be inhibition of cell-associated and extracellular phospholipase A2. PGB1 has the ability to enhance peripheral vascular resistance and elevate blood pressure. The effect is not central in origin and apparently is not the result of changes in cholinergic or alpha-adrenoceptor sensitivity or changes in vascular smooth muscle susceptibility per se. PGB1 blocks S-phase DNA synthesis; inhibition of DNA synthesis does not appear to require elevated levels of cAMP. (PMID: 7667505, 1477202, 2129000, 2597672, 6635328). Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin B1 (PGB1) is a metabolite of PGE1. PGE1 is a prostanoid. Prostanoids is a term that collectively describes prostaglandins, prostacyclines and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2).
Baclofen
Baclofen is a gamma-amino-butyric acid (GABA) derivative used as a skeletal muscle relaxant. Baclofen stimulates GABA-B receptors leading to decreased frequency and amplitude of muscle spasms. It is especially useful in treating muscle spasticity associated with spinal cord injury. It appears to act primarily at the spinal cord level by inhibiting spinal polysynaptic afferent pathways and, to a lesser extent, monosynaptic afferent pathways. M - Musculo-skeletal system > M03 - Muscle relaxants > M03B - Muscle relaxants, centrally acting agents D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant D002491 - Central Nervous System Agents (R)-Baclofen (Arbaclofen) is a selective GABAB receptor agonist[1]. Baclofen, a lipophilic derivative of γ-aminobutyric acid (GABA), is an orally active, selective metabotropic GABAB receptor (GABABR) agonist. Baclofen mimics the action of GABA and produces slow presynaptic inhibition through the GABAB receptor. Baclofen has high blood brain barrier penetrance. Baclofen has the potential for muscle spasticity research[1][2][3].
Thyrotropin releasing hormone
Thyrotropin-releasing hormone (TRH), also called thyrotropin-releasing factor (TRF), thyroliberin or protirelin, is a tripeptide hormone that stimulates the release of thyroid-stimulating hormone and prolactin by the anterior pituitary. In humans, it also acts as a prolactin-releasing factor. It is also a neurotransmitter in the central nervous system. TRH is produced by the hypothalamus and travels across the median eminence to the pituitary via the hypophyseal portal system. In addition to the brain, TRH can also be detected in other areas of the body including the gastrointestinal system and pancreatic islets. Medical preparations of TRH are used in diagnostic tests of thyroid disorders and in acromegaly. [HMDB] This compound belongs to the family of N-acyl-alpha Amino Acids and Derivatives. These are compounds containing an alpha amino acid which bears an acyl group at his terminal nitrogen atom. C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C76367 - Thyrotropin-Releasing Hormone Analogue V - Various > V04 - Diagnostic agents > V04C - Other diagnostic agents > V04CJ - Tests for thyreoidea function D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones KEIO_ID G117; [MS2] KO008963 KEIO_ID G117 Protirelin is a highly conserved neuropeptide that exerts the hormonal control of thyroid-stimulating hormone (TSH) levels as well as neuromodulatory functions.
N-Acetyltryptophan
N-Acetyl-L-tryptophan or N-Acetyltryptophan, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetyltryptophan can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetyltryptophan is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-tryptophan. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\\\% of all human proteins and 68\\\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetyltryptophan can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free tryptophan can also occur. Many N-acetylamino acids, including N-acetyltryptophan are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557). N-Acetyltryptophan has also been used as a protein stabilizer. It prevents protein molecules from oxidative degradation by scavenging oxygen dissolved in protein solutions (PMID: 21903216 ). N-Acetyltryptophan has been identified as a catabolite of tryptophan generated by the gut microbiota. After absorption through the intestinal epithelium, tryptophan catabolites enter the bloodstream and are later excreted in the urine (PMID: 28916042). N-Acetyltryptophan is an inhibitor of cytochrome c release and an antagonist of the neurokinin 1 receptor (NK-1R). These inhibitory effects are thought have a useful role in neuroprotection. For instance, in mouse models of amyotrophic lateral sclerosis (ALS) the administration of N-Acetyltryptophan has been shown delay disease onset, extend survival, and ameliorate deterioration in motor performance ALS transgenic mice (PMID: 25986728). N-acetyltryptophan has been shown to significantly reduce blood-brain barrier permeability and improve functional outcome in rat models of traumatic brain injury (PMID: 29256408). N-Acetyltryptophan has also been shown to have a role in preventing hepatic ischemia-reperfusion injury. This is thought to occur through de-activation of the RIP2/caspase/IL-1beta signaling pathway (PMID: 31184936). D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors Ac-DL-Trp-OH is an endogenous metabolite. Ac-DL-Trp-OH is an endogenous metabolite. N-Acetyl-L-tryptophan is an endogenous metabolite.
Clindamycin
Clindamycin is a semisynthetic lincosamide antibiotic that has largely replaced lincomycin due to an improved side effect profile. Clindamycin inhibits bacterial protein synthesis by binding to bacterial 50S ribosomal subunits. It may be bacteriostatic or bactericidal depending on the organism and drug concentration. Clindamycin, also known as cleocin or 7-CDL, belongs to the class of organic compounds known as proline and derivatives. Proline and derivatives are compounds containing proline or a derivative thereof resulting from reaction of proline at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. Clindamycin is a drug. Clindamycin is a semisynthetic lincosamide antibiotic that has largely replaced lincomycin due to an improved side effect profile. Clindamycin is a very strong basic compound (based on its pKa). In humans, clindamycin is involved in clindamycin action pathway. Orally and parenterally administered clindamycin has been associated with severe colitis (pseudomembranous colitis) which may result in patient death. Use of the topical formulation of clindamycin results in absorption of the antibiotic from the skin surface. Clindamycin is a potentially toxic compound. Rapidly absorbed after oral administration with peak serum concentrations observed after about 45 minutes. Oral; topical; parenteral (intramuscular, intravenous). Systemic/vaginal clindamycin inhibits protein synthesis of bacteria by binding to the 50S ribosomal subunits of the bacteria. Clindamycin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=18323-44-9 (retrieved 2024-06-28) (CAS RN: 18323-44-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Flonicamid
D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 2943 EAWAG_UCHEM_ID 2943; CONFIDENCE standard compound
Thiacloprid
D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 52; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7159; ORIGINAL_PRECURSOR_SCAN_NO 7155 CONFIDENCE standard compound; INTERNAL_ID 52; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7152; ORIGINAL_PRECURSOR_SCAN_NO 7150 CONFIDENCE standard compound; INTERNAL_ID 52; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7161; ORIGINAL_PRECURSOR_SCAN_NO 7158 CONFIDENCE standard compound; INTERNAL_ID 52; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7190; ORIGINAL_PRECURSOR_SCAN_NO 7188 CONFIDENCE standard compound; INTERNAL_ID 52; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7200; ORIGINAL_PRECURSOR_SCAN_NO 7197 CONFIDENCE standard compound; INTERNAL_ID 52; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7197; ORIGINAL_PRECURSOR_SCAN_NO 7195 INTERNAL_ID 52; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7197; ORIGINAL_PRECURSOR_SCAN_NO 7195 CONFIDENCE standard compound; INTERNAL_ID 3024 CONFIDENCE standard compound; INTERNAL_ID 8424 CONFIDENCE standard compound; INTERNAL_ID 4044 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2954 EAWAG_UCHEM_ID 2954; CONFIDENCE standard compound
Actara
D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 1241; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5832; ORIGINAL_PRECURSOR_SCAN_NO 5830 CONFIDENCE standard compound; INTERNAL_ID 1241; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5856; ORIGINAL_PRECURSOR_SCAN_NO 5853 CONFIDENCE standard compound; INTERNAL_ID 1241; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5865; ORIGINAL_PRECURSOR_SCAN_NO 5862 CONFIDENCE standard compound; INTERNAL_ID 1241; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5851; ORIGINAL_PRECURSOR_SCAN_NO 5850 CONFIDENCE standard compound; INTERNAL_ID 1241; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5874; ORIGINAL_PRECURSOR_SCAN_NO 5871 CONFIDENCE standard compound; INTERNAL_ID 1241; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5871; ORIGINAL_PRECURSOR_SCAN_NO 5868 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2941 CONFIDENCE standard compound; INTERNAL_ID 2595 CONFIDENCE standard compound; INTERNAL_ID 8471
Tetrachlorvinphos
D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 497; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9564; ORIGINAL_PRECURSOR_SCAN_NO 9561 ORIGINAL_PRECURSOR_SCAN_NO 9569; CONFIDENCE standard compound; INTERNAL_ID 497; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9571 CONFIDENCE standard compound; INTERNAL_ID 497; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9637; ORIGINAL_PRECURSOR_SCAN_NO 9633 CONFIDENCE standard compound; INTERNAL_ID 497; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9615; ORIGINAL_PRECURSOR_SCAN_NO 9613 CONFIDENCE standard compound; INTERNAL_ID 497; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9571; ORIGINAL_PRECURSOR_SCAN_NO 9569 CONFIDENCE standard compound; INTERNAL_ID 497; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9608; ORIGINAL_PRECURSOR_SCAN_NO 9606 CONFIDENCE standard compound; INTERNAL_ID 497; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9523; ORIGINAL_PRECURSOR_SCAN_NO 9519
L-Cysteine
Cysteine (Cys), also known as L-cysteine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-alanine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Cysteine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aliphatic, non-polar, sulfur-containing amino acid. Cysteine is an important source of sulfur in human metabolism, and although it is classified as a non-essential amino acid, cysteine may be essential for infants, the elderly, and individuals with certain metabolic disease or who suffer from malabsorption syndromes. Cysteine can occasionally be considered as an essential or conditionally essential amino acid. Cysteine is unique amongst the twenty natural amino acids as it contains a thiol group. Thiol groups can undergo oxidation/reduction (redox) reactions; when cysteine is oxidized it can form cystine, which is two cysteine residues joined by a disulfide bond. This reaction is reversible since the reduction of this disulphide bond regenerates two cysteine molecules. The disulphide bonds of cystine are crucial to defining the structures of many proteins. Cysteine is often involved in electron-transfer reactions, and help the enzyme catalyze its reaction. Cysteine is also part of the antioxidant glutathione. N-Acetyl-L-cysteine (NAC) is a form of cysteine where an acetyl group is attached to cysteines nitrogen atom and is sold as a dietary supplement. Cysteine is named after cystine, which comes from the Greek word kustis meaning bladder (cystine was first isolated from kidney stones). Oxidation of cysteine can produce a disulfide bond with another thiol and further oxidation can produce sulphfinic or sulfonic acids. The cysteine thiol group is also a nucleophile and can undergo addition and substitution reactions. Thiol groups become much more reactive when they are ionized, and cysteine residues in proteins have pKa values close to neutrality, so they are often in their reactive thiolate form in the cell. The thiol group also has a high affinity for heavy metals and proteins containing cysteine will bind metals such as mercury, lead, and cadmium tightly. Due to this ability to undergo redox reactions, cysteine has antioxidant properties. Cysteine is important in energy metabolism. As cystine, it is a structural component of many tissues and hormones. Cysteine has clinical uses ranging from treating baldness to psoriasis to preventing smokers hack. In some cases, oral cysteine therapy has proved excellent for treatment of asthmatics, enabling them to stop theophylline and other medications. Cysteine also enhances the effect of topically applied silver, tin, and zinc salts in preventing dental cavities. In the future, cysteine may play a role in the treatment of cobalt toxicity, diabetes, psychosis, cancer, and seizures (http://www.dcnutrition.com/AminoAcids/). Cysteine has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). [Spectral] L-Cysteine (exact mass = 121.01975) and D-2-Aminobutyrate (exact mass = 103.06333) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] L-Cysteine (exact mass = 121.01975) and Creatine (exact mass = 131.06948) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Detoxicant, dietary supplement, dough strengthener, yeast nutrient for leavened bakery products. Flavouring agent. Enzymic browning inhibitor. L-Cysteine is found in many foods, some of which are bilberry, mugwort, cowpea, and sweet bay. L-(+)-Cysteine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=52-90-4 (retrieved 2024-07-01) (CAS RN: 52-90-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Cysteine is a conditionally essential amino acid, which acts as a precursor for biologically active molecules such as hydrogen sulphide (H2S), glutathione and taurine. L-Cysteine suppresses ghrelin and reduces appetite in rodents and humans[1]. L-Cysteine is a conditionally essential amino acid, which acts as a precursor for biologically active molecules such as hydrogen sulphide (H2S), glutathione and taurine. L-Cysteine suppresses ghrelin and reduces appetite in rodents and humans[1].
N-formylmethionine
N-formyl-L-methionine is a L-methionine derivative in which one of the hydrogens attached to the nitrogen is replaced by a formyl group. It has a role as a metabolite. It is a proteinogenic amino acid, a N-formyl amino acid and a L-methionine derivative. It is a conjugate acid of a N-formyl-L-methioninate. N-Formyl-L-methionine belongs to the class of organic compounds known as methionine and derivatives. Methionine and derivatives are compounds containing methionine or a derivative thereof resulting from reaction of methionine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. N-Formyl-L-methionine is effective in the initiation of protein synthesis. The initiating methionine residue enters the ribosome as N-formylmethionyl-tRNA. This process occurs in Escherichia coli and other bacteria as well as in the mitochondria of eukaryotic cells. Effective in the initiation of protein synthesis. The initiating methionine residue enters the ribosome as N-formylmethionyl tRNA. This process occurs in Escherichia coli and other bacteria as well as in the mitochondria of eucaryotic cells. [HMDB] For-Met-OH is an endogenous metabolite.
N-Glycolylneuraminic acid
N-Glycolylneuraminic acid (Neu5Gc) is a widely expressed sialic acid found in most mammalian cells. Although humans are genetically deficient in producing Neu5Gc, small amounts are present in human cells and biofluids. Humans cannot synthesize Neu5Gc because the human gene CMAH is irreversibly mutated, though it is found in apes. This loss of the CMAH gene was estimated to have occurred two to three million years ago, just before the emergence of the genus Homo. A dietary origin of Neu5Gc was suggested by human volunteer studies. These trace amounts of Neu5Gc were determined to come from the consumption of animals in the human diet (i.e. red meats such as lamb, pork, and beef). Neu5Gc can also be found in dairy products, but to a lesser extent. Neu5Gc is not found in poultry and is found in only trace amounts in fish (Wikipedia). Isolated from beef serum KEIO_ID G062
dTDP
Is an intermediate in the Thymidylate kinase (EC 2.7.4.9; ATP:dTMP phosphotransferase) catalyzes the phosphorylation of dTMP (to form dTDP) in the dTTP synthesis pathway for DNA synthesis. (OMIM 188345 ) [HMDB]. dTDP is found in many foods, some of which are bog bilberry, poppy, garden tomato, and chanterelle. Is an intermediate in the Thymidylate kinase (EC 2.7.4.9; ATP:dTMP phosphotransferase) catalyzes the phosphorylation of dTMP (to form dTDP) in the dTTP synthesis pathway for DNA synthesis. (OMIM 188345 ) Acquisition and generation of the data is financially supported in part by CREST/JST. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents
D-Glucuronate
Glucuronic acid (CAS: 6556-12-3) is a carboxylic acid that has the structure of a glucose molecule that has had its sixth carbon atom (of six total) oxidized. The salts of glucuronic acid are known as glucuronates. Glucuronic acid is highly soluble in water. In humans, glucuronic acid is often linked to toxic or poisonous substances to allow for subsequent elimination, and to hormones to allow for easier transport. These linkages involve O-glycosidic bonds. The process is known as glucuronidation, and the resulting substances are known as glucuronides (or glucuronosides). Glucuronidation uses UDP-glucuronic acid (glucuronic acid linked via a glycosidic bond to uridine diphosphate) as an intermediate. UDP-glucuronic acid is formed in the liver of all animals. D-Glucuronic acid is an important intermediate isolated from many gums. D-Glucuronic acid and its derivative glucuronolactone are as a liver antidote in the prophylaxis of human health. D-Glucuronic acid has an anti-inflammatory effect for the skin[1]. D-Glucuronic acid is an important intermediate isolated from many gums. D-Glucuronic acid and its derivative glucuronolactone are as a liver antidote in the prophylaxis of human health. D-Glucuronic acid has an anti-inflammatory effect for the skin[1].
D-myo-Inositol 1,4-bisphosphate
D-myo-Inositol 1,4-bisphosphate belongs to the class of organic compounds known as inositol phosphates. Inositol phosphates are compounds containing a phosphate group attached to an inositol (or cyclohexanehexol) moiety. D-myo-Inositol 1,4-bisphosphate is an extremely weak basic (essentially neutral) compound (based on its pKa). D-myo-Inositol 1,4-bisphosphate is a substrate for several proteins including inositol polyphosphate 1-phosphatase, phosphatidylinositol 4,5-bisphosphate 5-phosphatase A, skeletal muscle and kidney enriched inositol phosphatase, and type I inositol-1,4,5-trisphosphate 5-phosphatase. 1D-Myo-inositol 1,4-bisphosphate is a substrate for Inositol polyphosphate 1-phosphatase, Phosphatidylinositol 4,5-bisphosphate 5-phosphatase A, Skeletal muscle and kidney enriched inositol phosphatase and Type I inositol-1,4,5-trisphosphate 5-phosphatase. [HMDB]
3-Hydroxyl kyneurenine
Hydroxykynurenine is a free radical generator and a bioprecursor quinolinic acid which is a endogenous excitotoxin (PMID 16697652). It is a product of enzyme kynurenine 3-monooxygenase in the tryptophan catabolism pathway (Reactome http://www.reactome.org). [HMDB] Hydroxykynurenine is a free radical generator and a bioprecursor quinolinic acid which is a endogenous excitotoxin (PMID 16697652). It is a product of enzyme kynurenine 3-monooxygenase in the tryptophan catabolism pathway (Reactome http://www.reactome.org). Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA12_3-OH-kynurenine_pos_20eV_1-4_01_802.txt [Raw Data] CBA12_3-OH-kynurenine_pos_10eV_1-4_01_801.txt [Raw Data] CBA12_3-OH-kynurenine_pos_50eV_1-4_01_805.txt [Raw Data] CBA12_3-OH-kynurenine_pos_40eV_1-4_01_804.txt [Raw Data] CBA12_3-OH-kynurenine_pos_30eV_1-4_01_803.txt C26170 - Protective Agent > C275 - Antioxidant KEIO_ID H050; [MS3] KO009001 KEIO_ID H050; [MS2] KO009000 KEIO_ID H050
Guanosine diphosphate mannose
Guanosine diphosphate mannose, also known as gdp-D-mannose or guanosine pyrophosphoric acid mannose, is a member of the class of compounds known as purine nucleotide sugars. Purine nucleotide sugars are purine nucleotides bound to a saccharide derivative through the terminal phosphate group. Guanosine diphosphate mannose is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Guanosine diphosphate mannose can be found in a number of food items such as sorrel, common persimmon, citrus, and butternut, which makes guanosine diphosphate mannose a potential biomarker for the consumption of these food products. Guanosine diphosphate mannose exists in all living species, ranging from bacteria to humans. In humans, guanosine diphosphate mannose is involved in a couple of metabolic pathways, which include fructose and mannose degradation and fructose intolerance, hereditary. Guanosine diphosphate mannose is also involved in fructosuria, which is a metabolic disorder. Guanosine diphosphate mannose or GDP-mannose is a nucleotide sugar that is a substrate for glycosyltransferase reactions in metabolism. This compound is a substrate for enzymes called mannosyltransferases . GDP-mannose is a nucleoside diphosphate sugar that is important in the production of fucosylated oligosaccharides. In particular, GDP-mannose is converted to GDP-fucose, which is the fucose donor in the construction of all mammalian fucosylated glycans. GDP-mannose is transformed to GDP-fucose via three enzymatic reactions carried out by two proteins, GDP-mannose 4,6-dehydratase (GMD) and a second enzyme, GDP-keto-6-deoxymannose 3,5-epimerase, 4-reductase. GDP-mannose 4,6-dehydratase (EC 4.2.1.47) catalyzes the chemical reaction: GDP-mannose <--> GDP-4-dehydro-6-deoxy-D-mannose + H2O. The epimerase converts the GDP-4-dehydro-6-deoxy-D-mannose to GDP-fucose (PMID: 12651883). GDP-mannose is also synthesized from mannose 1-phosphate via the enzyme ATP-mannose-1-phosphate-guanyltransferase and GTP. Acquisition and generation of the data is financially supported in part by CREST/JST.
Bialaphos
A tripeptide comprising one L-phosphinothricyl and two L-alanyl units joined in sequence. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals
Etodolac
Etodolac is only found in individuals that have used or taken this drug. It is a non-steroidal anti-inflammatory drug (NSAID) with anti-inflammatory, analgesic and antipyretic properties. Its therapeutic effects are due to its ability to inhibit prostaglandin synthesis. It is indicated for relief of signs and symptoms of rheumatoid arthritis and osteoarthritis. Similar to other NSAIDs, the anti-inflammatory effects of etodolac result from inhibition of the enzyme cycooxygenase (COX). This decreases the synthesis of peripheral prostaglandins involved in mediating inflammation. Etodolac binds to the upper portion of the COX enzyme active site and prevents its substrate, arachidonic acid, from entering the active site. Etodolac was previously thought to be a non-selective COX inhibitor, but it is now known to be 5 – 50 times more selective for COX-2 than COX-1. Antipyresis may occur by central action on the hypothalamus, resulting in peripheral dilation, increased cutaneous blood flow, and subsequent heat loss. M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AB - Acetic acid derivatives and related substances D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D004791 - Enzyme Inhibitors > D016861 - Cyclooxygenase Inhibitors > D052246 - Cyclooxygenase 2 Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D006133 - Growth Substances > D010937 - Plant Growth Regulators > D007210 - Indoleacetic Acids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents KEIO_ID E034; [MS2] KO008956 KEIO_ID E034
Amantadine
An antiviral that is used in the prophylactic or symptomatic treatment of influenza A. It is also used as an antiparkinsonian agent, to treat extrapyramidal reactions, and for postherpetic neuralgia. The mechanisms of its effects in movement disorders are not well understood but probably reflect an increase in synthesis and release of dopamine, with perhaps some inhibition of dopamine uptake. [PubChem] N - Nervous system > N04 - Anti-parkinson drugs > N04B - Dopaminergic agents > N04BB - Adamantane derivatives D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent D002491 - Central Nervous System Agents > D000700 - Analgesics D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C254 - Anti-Infective Agent > C281 - Antiviral Agent C93038 - Cation Channel Blocker KEIO_ID A061 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Acetazolamide
One of the carbonic anhydrase inhibitors that is sometimes effective against absence seizures. It is sometimes useful also as an adjunct in the treatment of tonic-clonic, myoclonic, and atonic seizures, particularly in women whose seizures occur or are exacerbated at specific times in the menstrual cycle. However, its usefulness is transient often because of rapid development of tolerance. Its antiepileptic effect may be due to its inhibitory effect on brain carbonic anhydrase, which leads to an increased transneuronal chloride gradient, increased chloride current, and increased inhibition. (From Smith and Reynard, Textbook of Pharmacology, 1991, p337) S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EC - Carbonic anhydrase inhibitors D004791 - Enzyme Inhibitors > D002257 - Carbonic Anhydrase Inhibitors D002491 - Central Nervous System Agents > D000927 - Anticonvulsants C471 - Enzyme Inhibitor > C29577 - Carbonic Anhydrase Inhibitor D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic D045283 - Natriuretic Agents > D004232 - Diuretics CONFIDENCE standard compound; EAWAG_UCHEM_ID 3011
Valdecoxib
Valdecoxib is a prescription drug used in the treatment of osteoarthritis, rheumatoid arthritis, and painful menstruation and menstrual symptoms. It is classified as a nonsteroidal anti-inflammatory drug, or NSAID, and should not be taken by anyone allergic to these types of medications. [HMDB] Valdecoxib is a prescription drug used in the treatment of osteoarthritis, rheumatoid arthritis, and painful menstruation and menstrual symptoms. It is classified as a nonsteroidal anti-inflammatory drug, or NSAID, and should not be taken by anyone allergic to these types of medications. M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AH - Coxibs D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D004791 - Enzyme Inhibitors > D016861 - Cyclooxygenase Inhibitors > D052246 - Cyclooxygenase 2 Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents
Emetine
A pyridoisoquinoline comprising emetam having methoxy substituents at the 6-, 7-, 10- and 11-positions. It is an antiprotozoal agent and emetic. It inhibits SARS-CoV2, Zika and Ebola virus replication and displays antimalarial, antineoplastic and antiamoebic properties. P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01A - Agents against amoebiasis and other protozoal diseases D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D005765 - Gastrointestinal Agents > D002400 - Cathartics D005765 - Gastrointestinal Agents > D004639 - Emetics D002491 - Central Nervous System Agents Origin: Plant; Formula(Parent): C29H40N2O4; Bottle Name:Emetine dihydrochloride; PRIME Parent Name:Emetine; PRIME in-house No.:V0282; SubCategory_DNP: Isoquinoline alkaloids, Emetine alkaloids Annotation level-1 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2501; CONFIDENCE confident structure
Guanfacine
A centrally acting antihypertensive agent. The drug lowers both systolic and diastolic blood pressure by activating the central nervous system alpha-2 adrenoreceptors, which results in reduced sympathetic outflow leading to reduced vascular tone. Its adverse reactions include dry mouth, sedation, and constipation. [PubChem] C - Cardiovascular system > C02 - Antihypertensives > C02A - Antiadrenergic agents, centrally acting > C02AC - Imidazoline receptor agonists C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents
Terfenadine
Terfenadine is only found in individuals that have used or taken this drug. In the U.S., Terfenadine was superseded by fexofenadine in the 1990s due to the risk of cardiac arrhythmia caused by QT interval prolongation.Terfenadine competes with histamine for binding at H1-receptor sites in the GI tract, uterus, large blood vessels, and bronchial muscle. This reversible binding of terfenadine to H1-receptors suppresses the formation of edema, flare, and pruritus resulting from histaminic activity. As the drug does not readily cross the blood-brain barrier, CNS depression is minimal. R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist Terfenadine ((±)-Terfenadine) is a potent open-channel blocker of hERG with an IC50 of 204 nM[1]. Terfenadine, an H1 histamine receptor antagonist, acts as a potent apoptosis inducer in melanoma cells through modulation of Ca2+ homeostasis. Terfenadine induces ROS-dependent apoptosis, simultaneously activates Caspase-4, -2, -9[2].
Sumatriptan
Oftentimes, serotonin levels in the brain become extremely erratic before the onset of a migraine. In an attempt to stabilize this, sumatriptan is administered to help aid in leveling the serotonin levels in the brain. Sumatriptan is structurally similar to serotonin, and is a 5-HT (5-HT1D) agonist, which is one of the receptors that serotonin binds to. The specific receptor subtype it activates is present in the cranial and basilar arteries. Activation of these receptors causes vasoconstriction of those dilated arteries. Sumatriptan is also shown to decrease the activity of the trigeminal nerve. Sumatriptan is a triptan drug including a sulfonamide group structurally similar to serotonin, and is a 5-HT (5-HT1D) agonist, which is one of the receptors that serotonin binds to. Oftentimes, serotonin levels in the brain become extremely erratic before the onset of a migraine. In an attempt to stabilize this, sumatriptan is administered to help aid in leveling the serotonin levels in the brain. A serotonin agonist that acts selectively at 5HT1 receptors. It is used in the treatment of migraines. Sumatriptan (Imitrex, Imigran, Imigran Recovery) is a triptan drug including a sulfonamide group which was originally developed by Glaxo for the treatment of migraine headaches. Oftentimes, serotonin levels in the brain become extremely erratic before the onset of a migraine. In an attempt to stabilize this, sumatriptan is administered to help aid in leveling the serotonin levels in the brain. Sumatriptan is structurally similar to serotonin, and is a 5-HT (5-HT1D) agonist, which is one of the receptors that serotonin binds to. The specific receptor subtype it activates is present in the cranial and basilar arteries. Activation of these receptors causes vasoconstriction of those dilated arteries. Sumatriptan is also shown to decrease the activity of the trigeminal nerve.; Sumatriptan is a triptan drug including a sulfonamide group structurally similar to serotonin, and is a 5-HT (5-HT1D) agonist, which is one of the receptors that serotonin binds to. N - Nervous system > N02 - Analgesics > N02C - Antimigraine preparations > N02CC - Selective serotonin (5ht1) agonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents Sumatriptan (GR 43175) is an orally active 5-HT1 receptor agonist with IC50s of 7.3 nm, 9.3nm and 17.8 nm for 5-HT1D, 5-HT1B and 5-HT1F receptors, respectively. Sumatriptan can be used for migraine headache research[1][2][3][4].
NORFLURAZON
D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 206; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4060; ORIGINAL_PRECURSOR_SCAN_NO 4056 ORIGINAL_ACQUISITION_NO 4060; CONFIDENCE standard compound; INTERNAL_ID 206; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_PRECURSOR_SCAN_NO 4056 DATA_PROCESSING MERGING RMBmix ver. 0.2.7; CONFIDENCE standard compound; INTERNAL_ID 206; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4018; ORIGINAL_PRECURSOR_SCAN_NO 4016 CONFIDENCE standard compound; INTERNAL_ID 206; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8632; ORIGINAL_PRECURSOR_SCAN_NO 8629 CONFIDENCE standard compound; INTERNAL_ID 206; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4018; ORIGINAL_PRECURSOR_SCAN_NO 4016 CONFIDENCE standard compound; INTERNAL_ID 206; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8613; ORIGINAL_PRECURSOR_SCAN_NO 8609 CONFIDENCE standard compound; INTERNAL_ID 206; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4026; ORIGINAL_PRECURSOR_SCAN_NO 4022 CONFIDENCE standard compound; INTERNAL_ID 206; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8558; ORIGINAL_PRECURSOR_SCAN_NO 8555 CONFIDENCE standard compound; INTERNAL_ID 206; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8639; ORIGINAL_PRECURSOR_SCAN_NO 8637 CONFIDENCE standard compound; INTERNAL_ID 206; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4017; ORIGINAL_PRECURSOR_SCAN_NO 4015 CONFIDENCE standard compound; INTERNAL_ID 206; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4023; ORIGINAL_PRECURSOR_SCAN_NO 4018 CONFIDENCE standard compound; INTERNAL_ID 206; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8625; ORIGINAL_PRECURSOR_SCAN_NO 8623 CONFIDENCE standard compound; INTERNAL_ID 206; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8604; ORIGINAL_PRECURSOR_SCAN_NO 8602
Clothianidin
CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6612; ORIGINAL_PRECURSOR_SCAN_NO 6610 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3164; ORIGINAL_PRECURSOR_SCAN_NO 3162 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3102; ORIGINAL_PRECURSOR_SCAN_NO 3100 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6570; ORIGINAL_PRECURSOR_SCAN_NO 6567 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3103; ORIGINAL_PRECURSOR_SCAN_NO 3100 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3120; ORIGINAL_PRECURSOR_SCAN_NO 3119 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3100; ORIGINAL_PRECURSOR_SCAN_NO 3098 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6580; ORIGINAL_PRECURSOR_SCAN_NO 6577 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6605; ORIGINAL_PRECURSOR_SCAN_NO 6603 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6531; ORIGINAL_PRECURSOR_SCAN_NO 6529 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3091; ORIGINAL_PRECURSOR_SCAN_NO 3089 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6599; ORIGINAL_PRECURSOR_SCAN_NO 6595 D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids CONFIDENCE standard compound; INTERNAL_ID 8455 CONFIDENCE standard compound; INTERNAL_ID 2328 D016573 - Agrochemicals
N-PHENYL-1-NAPHTHYLAMINE
CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10077; ORIGINAL_PRECURSOR_SCAN_NO 10074 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10054; ORIGINAL_PRECURSOR_SCAN_NO 10051 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10017; ORIGINAL_PRECURSOR_SCAN_NO 10013 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10109; ORIGINAL_PRECURSOR_SCAN_NO 10106 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10083; ORIGINAL_PRECURSOR_SCAN_NO 10080 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10041; ORIGINAL_PRECURSOR_SCAN_NO 10037 D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes CONFIDENCE standard compound; INTERNAL_ID 4139 CONFIDENCE standard compound; INTERNAL_ID 2426 CONFIDENCE standard compound; INTERNAL_ID 8127 D009676 - Noxae > D002273 - Carcinogens
Diethylhexyl adipate
Diethylhexyl adipate (DEHA) is an indirect food additive arising from contact with polymers and adhesives. DEHA is a plasticizer. DEHA is an ester of 2-ethylhexanol and adipic acid. Its chemical formula is C22H42O4. Indirect food additive arising from contact with polymers and adhesives
Methoxyfenozide
CONFIDENCE standard compound; INTERNAL_ID 278; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9207; ORIGINAL_PRECURSOR_SCAN_NO 9204 CONFIDENCE standard compound; INTERNAL_ID 278; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4782; ORIGINAL_PRECURSOR_SCAN_NO 4777 CONFIDENCE standard compound; INTERNAL_ID 278; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4744; ORIGINAL_PRECURSOR_SCAN_NO 4743 CONFIDENCE standard compound; INTERNAL_ID 278; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9204; ORIGINAL_PRECURSOR_SCAN_NO 9202 CONFIDENCE standard compound; INTERNAL_ID 278; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9198; ORIGINAL_PRECURSOR_SCAN_NO 9195 CONFIDENCE standard compound; INTERNAL_ID 278; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4851; ORIGINAL_PRECURSOR_SCAN_NO 4847 CONFIDENCE standard compound; INTERNAL_ID 278; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4749; ORIGINAL_PRECURSOR_SCAN_NO 4745 CONFIDENCE standard compound; INTERNAL_ID 278; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4763; ORIGINAL_PRECURSOR_SCAN_NO 4760 CONFIDENCE standard compound; INTERNAL_ID 278; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9185; ORIGINAL_PRECURSOR_SCAN_NO 9184 CONFIDENCE standard compound; INTERNAL_ID 278; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4756; ORIGINAL_PRECURSOR_SCAN_NO 4754 CONFIDENCE standard compound; INTERNAL_ID 278; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9149; ORIGINAL_PRECURSOR_SCAN_NO 9146 CONFIDENCE standard compound; INTERNAL_ID 278; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9175; ORIGINAL_PRECURSOR_SCAN_NO 9172 D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals
Erythromycin
Erythromycin belongs to the class of organic compounds known as xanthines. These are purine derivatives with a ketone group conjugated at carbons 2 and 6 of the purine moiety. Thus, erythromycin is considered to be a macrolide lipid molecule. Erythromycin is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Erythromycin is a macrolide antibiotic produced by Streptomyces erythreus. It inhibits bacterial protein synthesis by binding to bacterial 50S ribosomal subunits; binding inhibits peptidyl transferase activity and interferes with the translocation of amino acids during the translation and assembly of proteins. Erythromycin may be bacteriostatic or bactericidal depending on the organism and drug concentration. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01F - Macrolides, lincosamides and streptogramins > J01FA - Macrolides D - Dermatologicals > D10 - Anti-acne preparations > D10A - Anti-acne preparations for topical use > D10AF - Antiinfectives for treatment of acne S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AA - Antibiotics D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic D005765 - Gastrointestinal Agents Erythromycin is a macrolide antibiotic produced by actinomycete?Streptomyces erythreus?with a broad spectrum of antimicrobial activity. Erythromycin binds to bacterial 50S ribosomal subunits and inhibits?RNA-dependent protein synthesis?by blockage of transpeptidation and/or translocation reactions, without affecting synthesis of nucleic acid[1][2]. Erythromycin also exhibits antitumor and neuroprotective effect in different fields of research[3][4]. Erythromycin is a macrolide antibiotic produced by actinomycete?Streptomyces erythreus?with a broad spectrum of antimicrobial activity. Erythromycin binds to bacterial 50S ribosomal subunits and inhibits?RNA-dependent protein synthesis?by blockage of transpeptidation and/or translocation reactions, without affecting synthesis of nucleic acid[1][2]. Erythromycin also exhibits antitumor and neuroprotective effect in different fields of research[3][4].
Penicillin G
Penicillin G is narrow spectrum antibiotic used to treat infections caused by susceptible bacteria. It is a natural penicillin antibiotic that is administered intravenously or intramuscularly due to poor oral absorption. Penicillin G may also be used in some cases as prophylaxis against susceptible organisms. Natural penicillins are considered the drugs of choice for several infections caused by susceptible gram positive aerobic organisms, such as Streptococcus pneumoniae, groups A, B, C and G streptococci, nonenterococcal group D streptococci, viridans group streptococci, and non-penicillinase producing staphylococcus. Aminoglycosides may be added for synergy against group B streptococcus (S. agalactiae), S. viridans, and Enterococcus faecalis. The natural penicillins may also be used as first or second line agents against susceptible gram positive aerobic bacilli such as Bacillus anthracis, Corynebacterium diphtheriae, and Erysipelothrix rhusiopathiae. Natural penicillins have limited activity against gram negative organisms; however, they may be used in some cases to treat infections caused by Neisseria meningitidis and Pasteurella. They are not generally used to treat anaerobic infections. Resistance patterns, susceptibility and treatment guidelines vary across regions. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CE - Beta-lactamase sensitive penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AA - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
4,4'-Diphenylmethane diisocyanate
COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Nitrilotriacetic acid
D064449 - Sequestering Agents > D002614 - Chelating Agents
Daminozide
D006133 - Growth Substances > D010937 - Plant Growth Regulators CONFIDENCE standard compound; INTERNAL_ID 2629 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals KEIO_ID D173 Daminozide, a plant growth regulator, is a selective inhibitor of the human KDM2/7 histone demethylases, with IC50s of 0.55, 1.5 and 2.1 μM for PHF8, KDM2A, and KIAA1718, respectively. Daminozide has >100-fold selectivity for KDM2/7 subfamily versus other demethylase subfamily members tested[1][2].
Doxepin
Doxepin hydrochloride is a dibenzoxepin-derivative tricyclic antidepressant (TCA). TCAs are structurally similar to phenothiazines. They contain a tricyclic ring system with an alkyl amine substituent on the central ring. In non-depressed individuals, doxepin does not affect mood or arousal, but may cause sedation. In depressed individuals, doxepin exerts a positive effect on mood. TCAs are potent inhibitors of serotonin and norepinephrine reuptake. Tertiary amine TCAs, such as doxepin and amitriptyline, are more potent inhibitors of serotonin reuptake than secondary amine TCAs, such as nortriptyline and desipramine. TCAs also down-regulate cerebral cortical β-adrenergic receptors and sensitize post-synaptic serotonergic receptors with chronic use. The antidepressant effects of TCAs are thought to be due to an overall increase in serotonergic neurotransmission. TCAs also block histamine H1 receptors, α1-adrenergic receptors and muscarinic receptors, which accounts for their sedative, hypotensive and anticholinergic effects (e.g. blurred vision, dry mouth, constipation, urinary retention), respectively. Doxepin has less sedative and anticholinergic effects than amitriptyline. See toxicity section below for a complete listing of side effects. Doxepin may be used to treat depression and insomnia. Unlabeled indications include chronic and neuropathic pain, and anxiety. Doxepin may also be used as a second line agent to treat idiopathic urticaria. D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AA - Non-selective monoamine reuptake inhibitors D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent > C94727 - Tricyclic Antidepressant D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists EAWAG_UCHEM_ID 3676; CONFIDENCE standard compound CONFIDENCE standard compound; EAWAG_UCHEM_ID 3676
Rimantadine
Rimantadine is only found in individuals that have used or taken this drug. It is an RNA synthesis inhibitor that is used as an antiviral agent in the prophylaxis and treatment of influenza. [PubChem]The mechanism of action of rimantadine is not fully understood. Rimantadine appears to exert its inhibitory effect early in the viral replicative cycle, possibly inhibiting the uncoating of the virus. Genetic studies suggest that a virus protein specified by the virion M2 gene plays an important role in the susceptibility of influenza A virus to inhibition by rimantadine. J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AC - Cyclic amines D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C254 - Anti-Infective Agent > C281 - Antiviral Agent CONFIDENCE standard compound; EAWAG_UCHEM_ID 3149
Cefixime
Cefixime, an antibiotic, is a third-generation cephalosporin like ceftriaxone and cefotaxime. Cefixime is highly stable in the presence of beta-lactamase enzymes. As a result, many organisms resistant to penicillins and some cephalosporins due to the presence of beta-lactamases, may be susceptible to cefixime. The antibacterial effect of cefixime results from inhibition of mucopeptide synthesis in the bacterial cell wall. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DD - Third-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C61101 - Glycopeptide Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
Aflatoxin M1
D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D000348 - Aflatoxins
Kasugamycin
An amino cyclitol glycoside that is isolated from Streptomyces kasugaensis and exhibits antibiotic and fungicidal properties. Kasugamycin is an amino cyclitol glycoside that is isolated from Streptomyces kasugaensis and exhibits antibiotic and fungicidal properties. It has a role as a bacterial metabolite, a protein synthesis inhibitor and an antifungal agrochemical. It is an amino cyclitol glycoside, an aminoglycoside antibiotic, a monosaccharide derivative, a carboxamidine and an antibiotic fungicide. Kasugamycin has been reported in Streptomyces celluloflavus and Streptomyces kasugaensis. Kasugamycin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=6980-18-3 (retrieved 2024-12-11) (CAS RN: 6980-18-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Spectinomycin
Spectinomycin is only found in individuals that have used or taken this drug. It is an antibiotic produced by Streptomyces spectabilis. It is active against gram-negative bacteria and used for the treatment of gonorrhea. Spectinomycin is an inhibitor of protein synthesis in the bacterial cell; the site of action is the 30S ribosomal subunit. It is bactericidal in its action. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic KEIO_ID S044; [MS2] KO009242 KEIO_ID S044
Shikimic acid 3-phosphate
Shikimic acid 3-phosphate is a member of the class of compounds known as monoalkyl phosphates. Monoalkyl phosphates are organic compounds containing a phosphate group that is linked to exactly one alkyl chain. Shikimic acid 3-phosphate is soluble (in water) and a moderately acidic compound (based on its pKa). Shikimic acid 3-phosphate can be found in a number of food items such as date, hard wheat, common sage, and peppermint, which makes shikimic acid 3-phosphate a potential biomarker for the consumption of these food products. Shikimic acid 3-phosphate exists in E.coli (prokaryote) and yeast (eukaryote).
Tiamulin
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic Same as: D06127 CONFIDENCE standard compound; INTERNAL_ID 1055
Ethionamide
Ethionamide is only found in individuals that have used or taken this drug. It is a second-line antitubercular agent that inhibits mycolic acid synthesis. It also may be used for treatment of leprosy. (From Smith and Reynard, Textbook of Pharmacology, 1992, p868)Ethionamide may be bacteriostatic or bactericidal in action, depending on the concentration of the drug attained at the site of infection and the susceptibility of the infecting organism. Ethionamide, like prothionamide and pyrazinamide, is a nicotinic acid derivative related to isoniazid. It is thought that ethionamide undergoes intracellular modification and acts in a similar fashion to isoniazid. Isoniazid inhibits the synthesis of mycoloic acids, an essential component of the bacterial cell wall. Specifically isoniazid inhibits InhA, the enoyl reductase from Mycobacterium tuberculosis, by forming a covalent adduct with the NAD cofactor. It is the INH-NAD adduct that acts as a slow, tight-binding competitive inhibitor of InhA. Ethionamide. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=536-33-4 (retrieved 2024-07-12) (CAS RN: 536-33-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Ethionamide (2-ethylthioisonicotinamide) is a second-line anti-tuberculosis antibiotic.
Medrysone
Medrysone is only found in individuals that have used or taken this drug. It is a corticosteroid used in ophthalmology. [Wikipedia]There is no generally accepted explanation for the mechanism of action of ocular corticosteroids. However, corticosteroids are thought to act by the induction of phospholipase A2 inhibitory proteins, collectively called lipocortins. It is postulated that these proteins control the biosynthesis of potent mediators of inflammation such as prostaglandins and leukotrienes by inhibiting the release of their common precursor, arachidonic acid. Arachidonic acid is released from membrane phospholipids by phospholipase A2. Initially, the drug binds to the glucocorticoid receptor in the cytosol. This migrates to the nucleus and binds to genetic elements which cause activation and repression of the involved genes in the inflammatory pathway. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BA - Corticosteroids, plain C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid Same as: D02289
(+)-Syringaresinol
(+)-syringaresinol is a member of the class of compounds known as furanoid lignans. Furanoid lignans are lignans with a structure that contains either a tetrahydrofuran ring, a furan ring, or a furofuan ring system, that arises from the joining of the two phenylpropanoid units (+)-syringaresinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (+)-syringaresinol can be found in a number of food items such as radish (variety), grape wine, oat, and ginkgo nuts, which makes (+)-syringaresinol a potential biomarker for the consumption of these food products.
S-Carboxymethyl-L-cysteine
S-carboxymethylcysteine (carbocisteine) is the most frequently prescribed mucoactive agent for long-term COPD (chronic obstructive pulmonary disease) use in a number of countries. In addition to its mucoregulatory activity, carbocisteine exhibits free-radical scavenging and anti-inflammatory properties. S-Carboxymethyl-L-cysteine can be found in root vegetables and has been isolated from radish seedlings. S-carboxymethyl-L-cysteine can be detectable in urine especially after the processing of chlorinated compounds by gut microlfora. R - Respiratory system > R05 - Cough and cold preparations > R05C - Expectorants, excl. combinations with cough suppressants > R05CB - Mucolytics Acquisition and generation of the data is financially supported in part by CREST/JST. C78273 - Agent Affecting Respiratory System > C74536 - Mucolytic Agent D019141 - Respiratory System Agents > D005100 - Expectorants D000890 - Anti-Infective Agents KEIO_ID A059
Chalepin acetate
Chalepin acetate is found in herbs and spices. Chalepin acetate is a constituent of Ruta graveolens (rue)
Uridine diphosphate glucuronic acid
Uridine diphosphate glucuronic acid, also known as udpglucuronate or udp-D-glucuronic acid, is a member of the class of compounds known as pyrimidine nucleotide sugars. Pyrimidine nucleotide sugars are pyrimidine nucleotides bound to a saccharide derivative through the terminal phosphate group. Uridine diphosphate glucuronic acid is soluble (in water) and a moderately acidic compound (based on its pKa). Uridine diphosphate glucuronic acid can be synthesized from alpha-D-glucuronic acid. Uridine diphosphate glucuronic acid can also be synthesized into UDP-2,3-diacetamido-2,3-dideoxy-alpha-D-glucuronic acid. Uridine diphosphate glucuronic acid can be found in a number of food items such as parsley, chervil, black mulberry, and malabar plum, which makes uridine diphosphate glucuronic acid a potential biomarker for the consumption of these food products. Uridine diphosphate glucuronic acid can be found primarily in human liver tissue. Uridine diphosphate glucuronic acid exists in all living species, ranging from bacteria to humans. In humans, uridine diphosphate glucuronic acid is involved in several metabolic pathways, some of which include etoposide metabolism pathway, estrone metabolism, tamoxifen action pathway, and androgen and estrogen metabolism. Uridine diphosphate glucuronic acid is also involved in several metabolic disorders, some of which include porphyria variegata (PV), glycogenosis, type III. cori disease, debrancher glycogenosis, 17-beta hydroxysteroid dehydrogenase III deficiency, and hereditary coproporphyria (HCP). Uridine diphosphate glucuronic acid is made from UDP-glucose by UDP-glucose 6-dehydrogenase (EC 1.1.1.22) using NAD+ as a cofactor. It is the source of the glucuronosyl group in glucuronosyltransferase reactions . Uridine diphosphate glucuronic acid is a nucleoside diphosphate sugar which serves as a source of glucuronic acid for polysaccharide biosynthesis. It may also be epimerized to UDP Iduronic acid, which donates Iduronic acid to polysaccharides. In animals, UDP glucuronic acid is used for formation of many glucosiduronides with various aglycones. The transfer of glucuronic acid from UDP-alpha-D-glucuronic acid onto a terminal galactose residue is done by beta1,3-glucuronosyltransferases, responsible for the completion of the protein-glycosaminoglycan linkage region of proteoglycans and of the HNK1 epitope of glycoproteins and glycolipids. In humans the enzyme galactose-beta-1,3-glucuronosyltransferase I completes the synthesis of the common linker region of glycosaminoglycans (GAGs) by transferring glucuronic acid (GlcA) onto the terminal galactose of the glycopeptide primer of proteoglycans. The GAG chains of proteoglycans regulate major biological processes such as cell proliferation and recognition, extracellular matrix deposition, and morphogenesis. (PMID:16815917). Acquisition and generation of the data is financially supported in part by CREST/JST.
Nizatidine
Nizatidine is only found in individuals that have used or taken this drug. It is a histamine H2 receptor antagonist with low toxicity that inhibits gastric acid secretion. The drug is used for the treatment of duodenal ulcers. [PubChem]Nizatidine competes with histamine for binding at the H2-receptors on the gastric basolateral membrane of parietal cells. Competitive inhibition results in reduction of basal and nocturnal gastric acid secretions. The drug also decreases the gastric acid response to stimuli such as food, caffeine, insulin, betazole, or pentagastrin. A - Alimentary tract and metabolism > A02 - Drugs for acid related disorders > A02B - Drugs for peptic ulcer and gastro-oesophageal reflux disease (gord) > A02BA - H2-receptor antagonists C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent > C29702 - Histamine-2 Receptor Antagonist D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents Nizatidine is a potent and orally active histamine H2 receptor antagonist, can be used for the research of stomach?and?intestines ulcers. Nizatidine works by decreasing the secretion of gastric?acid the stomach makes and prevent ulcers from coming back after they have healed in animal models[1].
Cytidine monophosphate
Cytidine monophosphate, also known as 5-cytidylic acid and abbreviated CMP, is a nucleotide. It is an ester of phosphoric acid with the nucleoside cytidine. CMP consists of the phosphate group, the pentose sugar ribose, and the nucleobase cytosine. Cytidine monophosphate (CMP) is derived from cytidine triphosphate (CTP) with subsequent loss of two phosphates. The synthesis of the pyrimidines CTP and UTP occurs in the cytoplasm and starts with the formation of carbamoyl phosphate from glutamine and CO2. Next, aspartate undergoes a condensation reaction with carbamoyl-phosphate to form orotic acid. In a subsequent cyclization reaction, the enzyme Aspartate carbamoyltransferase forms N-carbamoyl-aspartate which is converted into dihydroorotic acid by Dihydroorotase. The latter is converted to orotate by Dihydroorotate oxidase. Orotate is covalently linked with a phosphorylated ribosyl unit with Orotate phosphoribosyltransferase (aka "PRPP transferase") catalyzing reaction, yielding orotidine monophosphate (OMP). Orotidine-5-phosphate is decarboxylated by Orotidine-5-phosphate decarboxylase to form uridine monophosphate (UMP). UMP is phosphorylated by two kinases to uridine triphosphate (UTP) via two sequential reactions with ATP. CTP is subsequently formed by amination of UTP by the catalytic activity of CTP synthetase. Cytosine monophosphate (CMP) and uridine monophosphate (UMP) have been prescribed for the treatment of neuromuscular affections in humans. Patients treated with CMP/UMP recover from altered neurological functions. Additionally, the administration of CMP/UMP appears to favour the entry of glucose in the muscle and CMP/UMP may be important in maintaining the level of hepatic glycogen constant during exercise. [PMID:18663991]. Cytidine monophosphate, also known as cmp or cytidylic acid, is a member of the class of compounds known as pyrimidine ribonucleoside monophosphates. Pyrimidine ribonucleoside monophosphates are pyrimidine ribobucleotides with monophosphate group linked to the ribose moiety. Cytidine monophosphate is soluble (in water) and a moderately acidic compound (based on its pKa). Cytidine monophosphate can be found in a number of food items such as elliotts blueberry, small-leaf linden, orange mint, and malabar spinach, which makes cytidine monophosphate a potential biomarker for the consumption of these food products. Cytidine monophosphate can be found primarily in saliva, as well as throughout all human tissues. Cytidine monophosphate exists in all living species, ranging from bacteria to humans. In humans, cytidine monophosphate is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-13:0/i-18:0/i-17:0/18:2(9z,11z)), cardiolipin biosynthesis cl(i-13:0/i-24:0/a-21:0/i-15:0), cardiolipin biosynthesis cl(i-13:0/i-22:0/i-20:0/i-15:0), and cardiolipin biosynthesis cl(i-12:0/a-17:0/i-20:0/a-21:0). Cytidine monophosphate is also involved in several metabolic disorders, some of which include beta ureidopropionase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), UMP synthase deficiency (orotic aciduria), and dihydropyrimidinase deficiency. Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Cytidine 5'-monophosphate (5'-Cytidylic acid) is a nucleotide which is used as a monomer in RNA. Cytidine 5'-monophosphate consists of the nucleobase cytosine, the pentose sugar ribose, and the phosphate group[1]. Cytidine 5'-monophosphate (5'-Cytidylic acid) is a nucleotide which is used as a monomer in RNA. Cytidine 5'-monophosphate consists of the nucleobase cytosine, the pentose sugar ribose, and the phosphate group[1].
N-Acetyl-glucosamine 1-phosphate
N-Acetyl-glucosamine 1-phosphate is an intermediate in aminosugar metabolism. It is a substrate for the enzymes phosphoglucomutase 3 [EC:5.4.2.2 and EC:5.4.2.3] and UDP-N-acteylglucosamine pyrophosphorylase 1 [EC:2.7.7.23] (KEGG). It is involved in UDP-N-acetyl-D-glucosamine biosynthesis and UDP-N-acetylgalactosamine biosynthesis (BioCyc). N-Acetyl-glucosamine 1-phosphate is an intermeiate in the Aminosugars metabolism, a substrate for the enzymes phosphoglucomutase 3 [EC:5.4.2.2 5.4.2.3] and UDP-N-acteylglucosamine pyrophosphorylase 1 [EC:2.7.7.23] (KEGG), in UDP-N-acetyl-D-glucosamine biosynthesis and UDP-N-acetylgalactosamine biosynthesis (BioCyc) [HMDB] COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
2-Thiouracil
CONFIDENCE standard compound; INTERNAL_ID 761; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 819; ORIGINAL_PRECURSOR_SCAN_NO 817 CONFIDENCE standard compound; INTERNAL_ID 761; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 814; ORIGINAL_PRECURSOR_SCAN_NO 812 CONFIDENCE standard compound; INTERNAL_ID 761; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 803; ORIGINAL_PRECURSOR_SCAN_NO 801 CONFIDENCE standard compound; INTERNAL_ID 761; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 815; ORIGINAL_PRECURSOR_SCAN_NO 813 CONFIDENCE standard compound; INTERNAL_ID 761; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 831; ORIGINAL_PRECURSOR_SCAN_NO 828 CONFIDENCE standard compound; INTERNAL_ID 761; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 817; ORIGINAL_PRECURSOR_SCAN_NO 815 D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D013956 - Antithyroid Agents C471 - Enzyme Inhibitor > C29574 - Nitric Oxide Synthase Inhibitor D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents 2-Thiouracil (Thiouracil) is an antithyroid compound. 2-Thiouracil can function as a highly specific melanoma seeker. 2-Thiouracil is a selective inhibitor of neuronal nitric oxide synthase (nNOS) with a Ki of 20 μM[1][2].
Cefdinir
Cefdinir (marketed by Abbott Laboratories under the brand name Omnicef) is a semi-synthetic, broad-spectrum antibiotic in the third generation of the cephalosporin class, proven effective for common bacterial infections of the ear, sinus, throat, and skin. It was approved by the U.S. Food and Drug Administration (FDA) in December of 1997. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DD - Third-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
Geranic acid
Geranic acid, also known as 3,7-dimethylocta-2,6-dienoate or geranate, is a member of the class of compounds known as acyclic monoterpenoids. Acyclic monoterpenoids are monoterpenes that do not contain a cycle. Thus, geranic acid is considered to be a fatty acid lipid molecule. Geranic acid is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Geranic acid, or 3,7-dimethyl-2,6-octadienoic acid, is a pheromone used by some organisms. It is a double bond isomer of nerolic acid . Geranic acid is found in cardamom. Geranic acid is present in petitgrain, lemongrass and other essential oil
Indole-3-acetamide
Indole-3-acetamide, also known as 2-(3-indolyl)acetamide or IAM, belongs to the class of organic compounds known as 3-alkylindoles. 3-Alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. Indole-3-acetamide has been detected, but not quantified, in several different foods, such as Alaska wild rhubarbs, lingonberries, butternut squash, pineapples, and agaves. Indole-3-acetamide is also found in the common pea and has been isolated from the etiolated seedlings of the black gram (Phaseolus mungo). Isolated from etiolated seedlings of the black gram (Phaseolus mungo). 1H-Indole-3-acetamide is found in many foods, some of which are elderberry, barley, american cranberry, and herbs and spices. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D007210 - Indoleacetic Acids KEIO_ID I030 Indole-3-acetamide is a biosynthesis intermediate of indole-3-acetic acid (HY-18569). Indole-3-acetic acid is the most common natural plant growth hormone of the auxin class[1].
Vecuronium
Monoquaternary homolog of pancuronium. A non-depolarizing neuromuscular blocking agent with shorter duration of action than pancuronium. Its lack of significant cardiovascular effects and lack of dependence on good kidney function for elimination as well as its short duration of action and easy reversibility provide advantages over, or alternatives to, other established neuromuscular blocking agents. [PubChem] D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents M - Musculo-skeletal system > M03 - Muscle relaxants > M03A - Muscle relaxants, peripherally acting agents D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists
Zolmitriptan
Zolmitriptan is only found in individuals that have used or taken this drug. It is a synthetic tryptamine derivative and appears as a white powder that is readily soluble in water. [Wikipedia]Zolmitriptan binds with high affinity to human 5-HT1B and 5-HT1D receptors leading to cranial blood vessel constriction. Current theories proposed to explain the etiology of migraine headache suggest that symptoms are due to local cranial vasodilatation and/or to the release of sensory neuropeptides (vasoactive intestinal peptide, substance P and calcitonin gene-related peptide) through nerve endings in the trigeminal system. The therapeutic activity of zolmitriptan for the treatment of migraine headache can most likely be attributed to the agonist effects at the 5HT1B/1D receptors on intracranial blood vessels (including the arterio-venous anastomoses) and sensory nerves of the trigeminal system which result in cranial vessel constriction and inhibition of pro-inflammatory neuropeptide release. N - Nervous system > N02 - Analgesics > N02C - Antimigraine preparations > N02CC - Selective serotonin (5ht1) agonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist D000890 - Anti-Infective Agents > D023303 - Oxazolidinones
Hydroxyhydroquinone
1,2,4-Trihydroxybenzene (Hydroxyhydroquinone), a by-product of coffee bean roasting, increases intracellular Ca2+ concentration in rat thymic lymphocytes[1]. 1,2,4-Trihydroxybenzene (Hydroxyhydroquinone), a by-product of coffee bean roasting, increases intracellular Ca2+ concentration in rat thymic lymphocytes[1].
p-Toluenesulfonic acid
p-Toluenesulfonic acid, also known as tosylate or para-toluene sulfonate, is a member of the class of compounds known as p-methylbenzenesulfonates. p-Methylbenzenesulfonates are benzenesulfonic acids (or derivative thereof) carrying a methyl group at the para- position. p-Toluenesulfonic acid is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). p-Toluenesulfonic acid (PTSA or pTsOH) or tosylic acid (TsOH) is an organic compound with the formula CH3C6H4SO3H. It is a white solid that is soluble in water, alcohols, and other polar organic solvents. The CH3C6H4SO2– group is known as the tosyl group and is often abbreviated as Ts or Tos. Most often, TsOH refers to the monohydrate, TsOH•H2O. It is a white solid that is soluble in water, alcohols, and other polar organic solvents (Wikipedia). CONFIDENCE standard compound; INTERNAL_ID 337; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2502; ORIGINAL_PRECURSOR_SCAN_NO 2501 CONFIDENCE standard compound; INTERNAL_ID 337; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2509; ORIGINAL_PRECURSOR_SCAN_NO 2508 CONFIDENCE standard compound; INTERNAL_ID 337; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2534; ORIGINAL_PRECURSOR_SCAN_NO 2533 CONFIDENCE standard compound; INTERNAL_ID 337; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2493; ORIGINAL_PRECURSOR_SCAN_NO 2492 CONFIDENCE standard compound; INTERNAL_ID 337; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2571; ORIGINAL_PRECURSOR_SCAN_NO 2570 CONFIDENCE standard compound; INTERNAL_ID 337; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2508; ORIGINAL_PRECURSOR_SCAN_NO 2507
Palatinose
Acquisition and generation of the data is financially supported in part by CREST/JST.
Trehalose 6-phosphate
Trehalose 6-phosphate is a substrate for Hexokinase (type I) and Tryptase beta-1. [HMDB]. Trehalose 6-phosphate is found in many foods, some of which are barley, cashew nut, kohlrabi, and american butterfish. Trehalose 6-phosphate is a substrate for Hexokinase (type I) and Tryptase beta-1. Trehalose 6-phosphate has been found to be a microbial metabolite in Escherichia, Mycobacterium and Saccharomyces (UniProt). KEIO_ID T065; [MS2] KO009301 D004791 - Enzyme Inhibitors KEIO_ID T065
(2E)-Decenoyl-ACP
(2E)-Decenoyl-ACP, also known as Cycloleucine or 1-Aminocyclopentanecarboxylic acid, is classified as a member of the L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. (2E)-Decenoyl-ACP is considered to be soluble (in water) and acidic Acquisition and generation of the data is financially supported in part by CREST/JST. C308 - Immunotherapeutic Agent > C574 - Immunosuppressant KEIO_ID A050
3-Methylguanine
3-Methylguanine is a methylated purine base. Methylated purine bases are known to be present in normal urine and to change under pathological conditions, in particular in the development of leukemia, tumors and immunodeficiency, by the altered turnover of nucleic acids typical of these diseases. (PMID 9069642) [HMDB] 3-Methylguanine is a methylated purine base. Methylated purine bases are known to be present in normal urine and to change under pathological conditions, in particular in the development of leukemia, tumors and immunodeficiency, by the altered turnover of nucleic acids typical of these diseases. (PMID 9069642). KEIO_ID M042
2-Phospho-D-glyceric acid
2-Phosphoglyceric acid (2PG), or 2-phosphoglycerate, is a glyceric acid which serves as the substrate in the ninth step of glycolysis. It is catalyzed by enolase into phosphoenolpyruvate (PEP), the penultimate step in the conversion of glucose to pyruvate.; 2-Phosphoglyceric acid (2PGA) is a glyceric acid which serves as the substrate in the ninth step of glycolysis. It is catalyzed by enolase into phosphoenolpyruvate (PEP), the penultimate step in the conversion of glucose to pyruvate. Enolase catalyzes the beta-elimination reaction in a stepwise manner wherein OH- is eliminated from C3 of a discrete carbanion (enolate) intermediate. This intermediate is created by removal of the proton from C2 of 2PGA by a base in the active site. (PMID: 8994873, Wikipedia). 2-Phosphoglycerate is found in rice. 2-Phospho-D-glycerate or 2PG is an intermediate in gluconeogenesis. It is a glyceric acid which serves as the substrate in the ninth step of glycolysis. 2PG is converted by enolase into phosphoenolpyruvate (PEP), the penultimate step in the conversion of glucose to pyruvate. More specifically, 2PG can be generated from Glycerate-3-phosphate via phosphoglycerate mutase or from phosphoenolpyrvate via alpha enolase. KEIO_ID P029
2-Deoxystreptamine
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents KEIO_ID D061
Paromomycin
Paromomycin is only found in individuals that have used or taken this drug. It is an oligosaccharide antibiotic produced by various streptomyces. [PubChem]Paromomycin inhibits protein synthesis by binding to 16S ribosomal RNA. Bacterial proteins are synthesized by ribosomal RNA complexes which are composed of 2 subunits, a large subunit (50s) and small (30s) subunit, which forms a 70s ribosomal subunit. tRNA binds to the top of this ribosomal structure. Paramomycin binds to the A site, which causes defective polypeptide chains to be produced. Continuous production of defective proteins eventually leads to bacterial death. A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AA - Antibiotics D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic KEIO_ID P126
Malvidin 3-glucoside
Malvidin 3-glucoside is found in alcoholic beverages. Malvidin 3-glucoside is a pigment of skins of black grapes, also in other plants. Malvidin 3-glucoside is found in red wine Pigment of skins of black grapes, also in other plants. Found in red wine. Malvidin glycoside is a biomarker for the consumption of blueberries. Acquisition and generation of the data is financially supported in part by CREST/JST.
UDP Xylose
Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Quercetin 3-(6'-malonyl-glucoside)
Quercetin 3-(6-malonyl-glucoside) is found in endive. Quercetin 3-(6-malonyl-glucoside) is isolated from Apocynum venetum and Salicornia europaea [CCD]. Isolated from Apocynum venetum and Salicornia europaea [CCD]. Quercetin 3-(6-malonyl-glucoside) is found in endive, lettuce, and pear. Quercetin 3-O-(6''-O-malonyl)-β-D-glucoside, a natural flavonol glycoside, possesses antioxidant activity[1].
Acteoside
The main hydroxycinnamic deriv. in olives. Acteoside is found in many foods, some of which are olive, lemon verbena, bitter gourd, and common verbena. Acteoside is found in bitter gourd. It is the main hydroxycinnamic derivative in olives Verbascoside is isolated from Acanthus mollis, acts as an ATP-competitive inhibitor of PKC, with an IC50 of 25 μM, and has antitumor, anti-inflammatory and antineuropathic pain activity. Verbascoside is isolated from Acanthus mollis, acts as an ATP-competitive inhibitor of PKC, with an IC50 of 25 μM, and has antitumor, anti-inflammatory and antineuropathic pain activity.
1-Pyrroline-5-carboxylic acid
1-Pyrroline-5-carboxylic acid (CAS: 2906-39-0) is an enamine or an imino acid that forms upon the spontaneous dehydration of L-glutamate gamma-semialdehyde in aqueous solutions. The stereoisomer (S)-1-pyrroline-5-carboxylate is an intermediate in glutamate metabolism, arginine degradation, and proline biosynthesis and degradation. It can also be converted into or be formed from three amino acids: L-glutamate, L-ornithine, and L-proline. In particular, it is synthesized via the oxidation of proline by pyrroline-5-carboxylate reductase 1 (PYCR1) (EC 1.5.1.2) or by proline dehydrogenase (PRODH) (EC 1.5.99.8). It is hydrolyzed into L-glutamate by delta-1-pyrroline-5-carboxylate dehydrogenase (ALDH4A1) (EC 1.5.1.12). It is also one of the few metabolites that can act as a precursor to other metabolites of both the urea cycle and the tricarboxylic acid (TCA) cycle. Under certain conditions, pyrroline-5-carboxylate can act as a neurotoxin and a metabotoxin. A neurotoxin causes damage to nerve cells and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of pyrroline-5-carboxylate are associated with at least five inborn errors of metabolism, including hyperprolinemia type I, hyperprolinemia type II, iminoglycinuria, prolinemia type II, and pyruvate carboxylase deficiency. Hyperprolinemia type II results in high levels of pyrroline-5-carboxylate. People with hyperprolinemia type II have signs and symptoms that vary in severity, but they are more likely than type I to have seizures or intellectual disability. Pyrroline-5-carboxylate is highly reactive and excess quantities have been shown to cause cell death and apoptosis (PMID: 15548746). (s)-1-pyrroline-5-carboxylate, also known as delta-1-pyrroline-5-carboxylate, (+-)-isomer, belongs to alpha amino acids and derivatives class of compounds. Those are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon), or a derivative thereof (s)-1-pyrroline-5-carboxylate is soluble (in water) and a moderately acidic compound (based on its pKa). (s)-1-pyrroline-5-carboxylate can be found in a number of food items such as beech nut, mango, oyster mushroom, and other bread, which makes (s)-1-pyrroline-5-carboxylate a potential biomarker for the consumption of these food products (s)-1-pyrroline-5-carboxylate may be a unique E.coli metabolite.
Geniposidic acid
Geniposidic acid is found in beverages. Geniposidic acid is a constituent of Genipa americana (genipap) Constituent of Genipa americana (genipap). Geniposidic acid is found in beverages and fruits. Geniposidic acid has radiation protection and anti-cancer activity. Geniposidic acid has radiation protection and anti-cancer activity.
5alpha-Cholestane
5alpha-Cholestane is found in potato. Cholestane is a saturated 27-carbon steroid precursor which serves as the basis for many organic molecules. (Wikipedia). Cholestane is a saturated 27-carbon steroid precursor which serves as the basis for many organic molecules. 5alpha-Cholestane is found in potato.
Lasiocarpine
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2259 Origin: Plant; SubCategory_DNP: Alkaloids derived from ornithine, Pyrrolizidine alkaloids
Echimidine
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2304 INTERNAL_ID 2304; CONFIDENCE Reference Standard (Level 1)
Glycerylphosphorylethanolamine
Glycerylphosphorylethanolamine is a membrane breakdown product resulting from the cleavage of the lipid group from glycerophosphoethanlomine fatty acids (i.e. phosphatidylethanolamine). It acts as a growth stimulant for hepatocytes. A membrane breakdown product resulting from the cleavage of the lipid group from glycerophosphoethanlomine fatty acids (i.e. phosphatidylethanolamine). It acts as a growth stimulant for hepatocytes. [HMDB]
7,7',8,8'-Tetrahydrolycopene
7,7,8,8-Tetrahydrolycopene, also known as zeta-carotene, is a carotenoid found in human serum and breast milk (PMID: 9164160). Carotenoids are isoprenoid molecules that are widespread in nature and are typically seen as pigments in fruits, flowers, birds, and crustacea. Animals are unable to synthesize carotenoids de novo and rely upon the diet as a source of these compounds. Over recent years there has been considerable interest in dietary carotenoids with respect to their potential in alleviating age-related diseases in humans. This attention has been mirrored by significant advances in cloning most of the carotenoid genes and in the genetic manipulation of crop plants with the intention of increasing levels in the diet. Studies have shown an inverse relationship between the consumption of certain fruits and vegetables and the risk of epithelial cancer. Since carotenoids are among the micronutrients found in cancer-preventive foods, detailed qualitative and quantitative determination of these compounds, particularly in fruits and vegetables and in human plasma, have recently become increasingly important (PMID: 1416048, 15003396). 7,7,8,8-Tetrahydrolycopene is found in root vegetables and is a constituent of carrot oil and many other natural products. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
Camphene
Camphene, also known as 2,2-dimethyl-3-methylenebicyclo[2.2.1]heptane or 2,2-dimethyl-3-methylenenorbornane, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. Camphene is nearly insoluble in water but very soluble in common organic solvents. It volatilizes readily at room temperature and has a pungent smell. It exists as a flammable, white solid that has a minty, citrus, eucalyptus odor. It is produced industrially by catalytic isomerization of the more common alpha-pinene. Camphene is used in the preparation of fragrances and in food additives for flavouring. In the mid-19th century it was used as a fuel for lamps, but this was limited by its explosiveness. Camphene exists in all eukaryotes, ranging from yeast to plants to humans. Camphene can be found in a number of food items such as dill, carrots, caraway, hyssop, lemon, orange, nutmeg seed, parsley, sage, thyme, turmeric and fennel, which makes camphene a potential biomarker for the consumption of these food products. It is a minor constituent of many essential oils such as turpentine, cypress oil, camphor oil, citronella oil, neroli, ginger oil, and valerian. Camphene is one of several monoterpenes that are found in cannabis plants (PMID:6991645 ). Camphene, also known as 2,2-dimethyl-3-methylenebicyclo[2.2.1]heptane or 2,2-dimethyl-3-methylenenorbornane, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Camphene is a camphor, fir needle, and herbal tasting compound and can be found in a number of food items such as cardamom, yellow bell pepper, common thyme, and coriander, which makes camphene a potential biomarker for the consumption of these food products. Camphene can be found primarily in feces and saliva. Camphene exists in all eukaryotes, ranging from yeast to humans. Camphene is a bicyclic monoterpene. It is nearly insoluble in water, but very soluble in common organic solvents. It volatilizes readily at room temperature and has a pungent smell. It is a minor constituent of many essential oils such as turpentine, cypress oil, camphor oil, citronella oil, neroli, ginger oil, and valerian. It is produced industrially by catalytic isomerization of the more common alpha-pinene. Camphene is used in the preparation of fragrances and as a food additive for flavoring. Its mid-19th century use as a fuel for lamps was limited by its explosiveness .
Isopropyl alcohol
Isopropyl alcohol, also known as isopropanol or 1-methylethanol, belongs to the class of organic compounds known as secondary alcohols. Secondary alcohols are compounds containing a secondary alcohol functional group, with the general structure HOC(R)(R) (R,R=alkyl, aryl). It is used in the manufacture of acetone and its derivatives and as a solvent. Isopropyl alcohol exists in all living species, ranging from bacteria to humans. Isopropyl alcohol is an alcohol, bitter, and musty tasting compound. Isopropyl alcohol has also been detected, but not quantified in several different foods, such as papaya, roselles, apples, sweet cherries, and allium (onion). Isopropyl alcohol is an isomer of 1-propanol and is considered as a potentially toxic compound. Topically, it is used as an antiseptic. It is a colorless liquid having disinfectant properties. Present in fruit aromas, e.g. papaya (Carica papaya). It is used as an extraction solvent in food preparation D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants D012997 - Solvents
Molybdenum
Molybdenum is a transition metal with the atomic symbol Mo, atomic number 42, and atomic weight 95.94. The pure metal is silvery white in color, fairly soft, and has one of the highest melting points of all pure elements. Physiologically, it exists as an ion in the body. It is an essential trace element, being a component of the enzymes xanthine oxidase, aldehyde oxidase, and nitrate reductase. There is a trace requirement for molybdenum in plants, and soils can be barren due to molybdenum deficiencies. Plants and animals generally have molybdenum present in amounts of a few parts per million. In animals molybdenum is a cofactor of the enzyme xanthine oxidase which is involved in the pathways of purine degradation and formation of uric acid. In some animals, adding a small amount of dietary molybdenum enhances growth. Francis Crick suggested that since molybdenum is an essential trace element that plays an important role in many enzymatic reactions, despite being less abundant than the more common elements, such as chromium and nickel, that perhaps this fact is indicative of "Panspermia." Crick theorized that if it could be shown that the elements represented in terrestrial living organisms correlate closely with those that are abundant in some class of star - molybdenum stars, for example, that this would provide evidence of such Directed Panspermia. In small quantities, molybdenum is effective at hardening steel. Molybdenum is important in plant nutrition, and is found in certain enzymes, including xanthine oxidase. Molybdenum is used to this day in high-strength alloys and in high-temperature steels. Special molybdenum-containing alloys, such as the Hastelloys, are notably heat-resistant and corrosion-resistant. Molybdenum is used in oil pipelines, aircraft and missile parts, and in filaments. Molybdenum finds use as a catalyst in the petroleum industry, especially in catalysts for removing organic sulfurs from petroleum products. It is used to form the anode in some x-ray tubes, particularly in mammography applications. And is found in some electronic applications as the conductive metal layers in thin-film transistors (TFTs). Molybdenum disulfide is a good lubricant, especially at high temperatures. And Mo-99 is used in the nuclear isotope industry. Molybdenum pigments range from red-yellow to a bright red orange and are used in paints, inks, plastics, and rubber compounds. Molybdenum is a Group 6 chemical element with the symbol Mo and atomic number 42. The free element, which is a silvery metal, has the sixth-highest melting point of any element. It readily forms hard, stable carbides, and for this reason it is often used in high-strength steel alloys. Molybdenum does not occur as a free metal on Earth, but rather in various oxidation states in minerals. Industrially, molybdenum compounds are used in high-pressure and high-temperature applications, as pigments and catalysts. Molybdenum-containing enzymes are used as catalysts by some bacteria to break the chemical bond in atmospheric molecular nitrogen, allowing biological nitrogen fixation. At least 50 molybdenum-containing enzymes are now known in bacteria and animals, though only the bacterial and cyanobacterial enzymes are involved in nitrogen fixation. Owing to the diverse functions of the remainder of the enzymes, molybdenum is a required element for life in higher organisms (eukaryotes), though not in all bacteria. [Wikipedia]. Molybdenum is found in many foods, some of which are cabbage, gooseberry, french plantain, and turnip. D018977 - Micronutrients > D014131 - Trace Elements
Dihydroxyacetone
Dihydroxyacetone, also known as 1,3-dihydroxy-2-propanone or glycerone, is a member of the class of compounds known as monosaccharides. Monosaccharides are compounds containing one carbohydrate unit not glycosidically linked to another such unit, and no set of two or more glycosidically linked carbohydrate units. Monosaccharides have the general formula CnH2nOn. Dihydroxyacetone is soluble (in water) and a very weakly acidic compound (based on its pKa). Dihydroxyacetone can be found in a number of food items such as cauliflower, green bell pepper, black cabbage, and sweet basil, which makes dihydroxyacetone a potential biomarker for the consumption of these food products. Dihydroxyacetone can be found primarily in urine, as well as in human muscle and stratum corneum tissues. Dihydroxyacetone exists in all living species, ranging from bacteria to humans. Dihydroxyacetone is primarily used as an ingredient in sunless tanning products. It is often derived from plant sources such as sugar beets and sugar cane, and by the fermentation of glycerin . Dihydroxyacetone (also known as DHA) is a ketotriose compound. Its addition to blood preservation solutions results in better maintenance of 2,3-diphosphoglycerate levels during storage. It is readily phosphorylated to dihydroxyacetone phosphate by triokinase in erythrocytes. In combination with naphthoquinones, it acts as a sunscreening agent. Dihydroxyacetone is the simplest of all ketoses and, having no chiral centre, is the only one that has no optical activity. Dihydroxyacetone is a simple non-toxic sugar. It is often derived from plant sources such as sugar beets and sugar cane, by the fermentation of glycerin. Dihydroxyacetone is a white crystalline powder which is water soluble. 1,3-Dihydroxyacetone (DHA), the main active ingredient in sunless tanning skin-care preparations and an important precursor for the synthesis of various fine chemicals, is produced on an industrial scale by microbial fermentation of glycerol over Gluconobacter oxydans[1]. 1,3-Dihydroxyacetone (DHA), the main active ingredient in sunless tanning skin-care preparations and an important precursor for the synthesis of various fine chemicals, is produced on an industrial scale by microbial fermentation of glycerol over Gluconobacter oxydans[1].
Triphosphate
Triphosphate is a salt or ester containing three phosphate groups. It is the ionic form of triphosphoric acid, a condensed form of phosphoric acid. Triphosphate is an intermediate in the biosynthesis of folate, the metabolism of purine, the metabolism of porphyrin and chlorophyll, the metabolism of pyrimidine, and the metabolism of thiamine. It is a substrate for transforming protein p21/H-Ras-1, bis(5-adenosyl)-triphosphatase, ectonucleoside triphosphate diphosphohydrolase, DNA polymerase gamma subunit 1, DNA nucleotidylexotransferase, inosine triphosphate pyrophosphatase, cob(I)yrinic acid a,c-diamide adenosyltransferase (mitochondrial), thiamine-triphosphatase, DNA-directed RNA polymerase III 32 kDa polypeptide, and 6-pyruvoyl tetrahydrobiopterin synthase. Compounds such as ATP (adenosine triphosphate) are esters of triphosphoric acid. Polyphosphates are hydrolyzed into smaller units (orthophosphates) in the gut before absorption, which may induce metabolic acidosis. The acute toxicity of polyphosphonates is low as the lowest LD50 after oral administration is > 1,000 mg/kg body weight. Polyphosphates are moderately irritating to skin and mucous membrane because of their alkalinity. No mutagenic potential was observed when TTP was tested in a Salmonella/microsome assay (Ames test) and in a chromosomal aberration assay in vitro using a Chinese hamster fibroblast cell line (Ishidate et al. 1984). Tetrasodium pyrophosphate was not mutagenic in an in vitro assay using S. cerevisiae strains and S. typhimurium strains with and without the addition of mammalian metabolic activation preparations (IPCS 1982). Reproduction studies in three generations of rats on diets with 0.5\\% TTP were performed. TTP had no effects on fertility or litter size, or on growth or survival on offspring (Hodge 1964). Triphosphoric acid, also tripolyphosphoric acid, with formula H5P3O10, is a condensed form of phosphoric acid. In polyphosphoric acids, it is the next after pyrophosphoric acid, H4P2O7, also called diphosphoric acid. Compounds such as ATP (adenosine triphosphate) are esters of triphosphoric acid. [Wikipedia]
N1-Acetylspermidine
N1-Acetylspermidine is a polyamine. In many organisms, polyamines originate from L-ornithine and methionine. Ornithine decarboxylase (EC 4.1.1.17), a key enzyme in polyamine metabolism, decarboxylates L-ornithine to yield putrescine which is then converted to higher polyamines spermidine and spermine by successive addition of aminopropyl groups derived from decarboxylated S-adenosylmethionine. Aliphatic polyamines occur ubiquitously in organisms and have important functions in the stabilization of cell membranes, biosynthesis of informing molecules, cell growth and differentiation, as well as adaptation to osmotic, ionic, pH and thermal stress. These cationic substances are implicated in multiple functions, therefore it is not surprising that intracellular levels of polyamines are regulated by different mechanisms. The inhibition of polyamine metabolism has important pharmacological and therapeutic implications for the control of physiological processes, reproduction, cancer and parasitic diseases. Recent reports have suggested the idea that parasites with an high turnover of Ornithine Decarboxilase (ODC) are resistant to Difluoromethyl ornithine (DFMO, the irreversible inhibitor of ornithine decarboxylase) because they always contain a fraction of newly synthesized and active enzyme, therefore not DFMO inhibited, sufficient to produce small amounts of putrescine rapidly converted into spermidine, which can support protozoan proliferation. DFMO has proved to be curative in trypanosomiasis, coccidiosis, and certain other protozoan infections. (PMID: 15490259). N1-Acetylspermidine is a polyamine. In many organisms, polyamines originate from L-ornithine and methionine. Ornithine decarboxylase (EC 4.1.1.17), a key enzyme in polyamine metabolism, decarboxylates L-ornithine to yield putrescine which is then converted to higher polyamines spermidine and spermine by successive addition of aminopropyl groups derived from decarboxylated S-adenosylmethionine.
Tungsten
Tungsten is a transition metal found, along with chromium, molybdenum and seaborgium, in Group VI of the Periodic Table of elements. Since its discovery in the last quarter of 18th century, tungsten-based products have been in use in a wide range of applications stretching from daily household necessities to highly specialized components of modern science and technology. As new applications and uses are discovered continuously, interest on and demand for tungsten, already an essential commodity, are projected to increase steadily in the years to come. Unavoidably, as is the case with other natural materials and/or non-renewable resources, increased demand and use of tungsten will spawn (a) increased interactions with other materials and/or non-sustainable practices, (b) a greater number of possible entry points into the natural and human environment and (c) a higher probability of deliberate or accidental releases. Currently, the existing knowledge base does not provide clear information about the behavior of tungsten-based products in the environment. The toxicological profile of tungsten, including possible effects on living organisms and exposure pathways, remains rather sketchy, narrow and fragmentary. Regulation of tungsten, both in terms of environmental and occupational safety and health, is at present limited in comparison with other metals. This pattern of environmental obscurity has been unequivocally disrupted by the events of Fallon, Nevada and the possible implication of tungsten to an acute lymphocytic leukemia (ALL) cluster. Tungsten is now the focus of scrutiny as it currently occupies the top of to do lists of various regulatory, health and environmental agencies. The occurrence of a childhood leukemia cluster in Fallon, Nevada prompted a wide investigation that involved several local, state and federal agencies led by the Centers of Disease Control (CDC). In essence, the objective of this investigation was to assess whether environmental causes were responsible for the cluster. The 16 reported leukemia cases within the time frame of 1997-2001, were well above the average for Nevada (3.0 cases/100,000 children/5 years). Several possible causes were proposed, such as jet fuel (JP-8) from a nearby military base or from a JP-8 pipeline running through the city, high levels of arsenic and other metals in the drinking water supplies, industrial pollution from a local tungsten smelting facility, and agrochemical contamination resulting from agricultural pesticide/fungicide use. Although the exact causes of leukemia are not well known, genetic and/or environmental factors may trigger the disease including ionizing and electromagnetic radiation, infectious and chemical agents. Physiologically, it exists as an ion in the body.(PMID: 16343746). Tungsten is a chemical element with the chemical symbol W and atomic number 74. Tungsten is the only metal from the third transition series that is known to occur in biomolecules, where it is used in a few species of bacteria. It is the heaviest element known to be used by any living organism. Tungsten interferes with molybdenum and copper metabolism, and is somewhat toxic to animal life. [Wikipedia]. Tungsten is found in many foods, some of which are orange bell pepper, black walnut, parsnip, and eggplant.
GDP-4-Dehydro-6-deoxy-D-mannose
GDP-4-Dehydro-6-deoxy-D-mannose is an intermediate in the fucosylation of mammalian cells. The functional significance of these fucosylated glycans is unclear, although there is evidence that the sialyl Lex determinant participaates in leukocyte adhesion and trafficking processes. GDP-4-Dehydro-6-deoxy-D-mannose is generated by GDP-D-mannose-4,6-dehydratase (GMD). This compound is then converted by the FX protein (GDP-4-keto-6-D-deoxymannose epimerase/GDP-4-keto-6-L-galactose reductase) to GDP-L-fucose. (PMID: 11698403) [HMDB]. GDP-4-Dehydro-6-deoxy-D-mannose is found in many foods, some of which are bayberry, cherimoya, greenthread tea, and pulses. GDP-4-Dehydro-6-deoxy-D-mannose is an intermediate in the fucosylation of mammalian cells. The functional significance of these fucosylated glycans is unclear, although there is evidence that the sialyl Lex determinant participaates in leukocyte adhesion and trafficking processes. GDP-4-Dehydro-6-deoxy-D-mannose is generated by GDP-D-mannose-4,6-dehydratase (GMD). This compound is then converted by the FX protein (GDP-4-keto-6-D-deoxymannose epimerase/GDP-4-keto-6-L-galactose reductase) to GDP-L-fucose. (PMID: 11698403). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Inositol 1,3,4-trisphosphate
Inositol 1,3,4-trisphosphate (CAS: 98102-63-7), also known as Ins(1,3,4)P3 or I3S, belongs to the class of organic compounds known as inositol phosphates. Inositol phosphates are compounds containing a phosphate group attached to an inositol (or cyclohexanehexol) moiety. Within humans, inositol 1,3,4-trisphosphate participates in several enzymatic reactions. In particular, inositol 1,3,4-trisphosphate can be converted into 1D-myo-inositol 1,3,4,6-tetrakisphosphate through the action of the enzyme inositol-tetrakisphosphate 1-kinase. In addition, inositol 1,3,4-trisphosphate can be converted into inositol 1,3,4,5-tetraphosphate through its interaction with the enzyme inositol-tetrakisphosphate 1-kinase. In humans, inositol 1,3,4-trisphosphate is involved in inositol metabolism. Inositol 1,3,4-trisphosphate is a specific regulator of cellular signalling. A specific regulator of cellular signaling [HMDB]
Homocitric acid
Homocitric acid (CAS: 3562-74-1) is a normal urinary organic acid (PMID: 14708889). Homocitric acid is a citric acid analogue found as a minor metabolite in urine samples from patients with propionic acidaemia. Homocitric acid is formed by citrate synthase due to propionyl-CoA carboxylase deficiency (by the citrate synthase condensation reaction of alpha-ketoglutarate with acetyl coenzyme A and propionyl coenzyme A) (PMID: 7850997). Homocitric acid has been identified in the human placenta (PMID: 32033212). Homocitric acid is a normal urinary organic acid. (PMID: 14708889)
5-O-(1-Carboxyvinyl)-3-phosphoshikimate
myo-Inositol 1,3,4,5-tetrakisphosphate
myo-Inositol 1,3,4,5-tetrakisphosphate (CAS: 102850-29-3), also known as IP4, is a second messenger responsible for mediating Ca2+ entry through the plasma membrane and mobilizing intracellular Ca2+ by acting synergistically with inositol 1,4,5-trisphosphate (IP3). Inositol 1,4,5-trisphosphate 3-kinase (IP3K, EC 2.7.1.127) phosphorylates IP3 into IP4. Evidence shows that IP4 can activate a protein with ras- and rap-GAP activity and finally inactivate the G protein. This indicates that IP4 regulates Ca2+ influx in a GTP-dependent way, which potentially links the IP3 signalling pathway to GTP-regulated signalling mechanisms. IP4 is demonstrated to be a common regulator in Ca2+ homeostasis. IP4 can bind with a high affinity to several intracellular proteins: synaptotagmin (I and II), Gap1, Btk, and centaurin-alpha and may interact with synaptotagmin to inhibit synaptic transmission. IP4 also acts as a mediator in neuronal death in the ischemic hippocampus. IP4 production is not always associated with a modification in calcium concentration, and control of calcium mobilization is not the sole function proposed for IP4. IP4 defines an essential signalling pathway for T cell precursor responsiveness and development. In the thymus, IP4 is essential during the positive and negative selection of double-positive thymocytes, and in the control of thymocyte reactivity to antigens. IP4 is also a substrate for type I inositol-1,4,5-trisphosphate 5-phosphatase, phosphatidylinositol 4,5-bisphosphate 5-phosphatase A, and skeletal muscle and kidney enriched inositol phosphatase (PMID: 15740635, 14517551).
myo-Inositol 1,3,4,5,6-pentakisphosphate
myo-Inositol 1,3,4,5,6-pentakisphosphate, also known as Ins(1,3,4,5,6)P5 or inositol pentaphosphate, is an inositol polyphosphate of emerging significance in cellular signalling. Both Ins(1,3,4,5,6)P5 and its C-2 epimer scyllo-inositol pentakisphosphate (scyllo-InsP(5)) were synthesized from the same myo-inositol-based precursor (PMID: 16755629). InsP6, Ins(1,3,4,5,6)P5, and their close metabolic relatives are amongst the more abundant intracellular inositol polyphosphates. They are involved in chromatin organization, DNA maintenance, gene transcription, nuclear mRNA transport, membrane trafficking, and control of cell proliferation (PMID: 14992690). myo-Inositol 1,3,4,5,6-pentakisphosphate (Ins(1,3,4,5,6)P(5)), an inositol polyphosphate of emerging significance in cellular signalling, and its C-2 epimer scyllo-inositol pentakisphosphate (scyllo-InsP(5)) were synthesised from the same myo-inositol-based precursor. (PMID: 16755629)
Sodium
Na+, also known as sodium ion or na(+), is a member of the class of compounds known as homogeneous alkali metal compounds. Homogeneous alkali metal compounds are inorganic compounds containing only metal atoms,with the largest atom being a alkali metal atom. Na+ can be found in a number of food items such as nanking cherry, opium poppy, alpine sweetvetch, and salmonberry, which makes na+ a potential biomarker for the consumption of these food products. Na+ can be found primarily in blood, cerebrospinal fluid (CSF), saliva, and urine, as well as in human kidney tissue. Na+ exists in all eukaryotes, ranging from yeast to humans. In humans, na+ is involved in several metabolic pathways, some of which include eplerenone action pathway, betaxolol action pathway, furosemide action pathway, and morphine action pathway. Na+ is also involved in several metabolic disorders, some of which include diltiazem action pathway, bendroflumethiazide action pathway, dimethylthiambutene action pathway, and lidocaine (antiarrhythmic) action pathway. NA, N.A., Na, or n/a may refer to: . Sodium ions are necessary for regulation of blood and body fluids, transmission of nerve impulses, heart activity, and certain metabolic functions. Physiologically, it exists as an ion in the body. Sodium is needed by animals, which maintain high concentrations in their blood and extracellular fluids, but the ion is not needed by plants. The human requirement for sodium in the diet is less than 500 mg per day, which is typically less than a tenth as much as many diets "seasoned to taste." Most people consume far more sodium than is physiologically needed. For certain people with salt-sensitive blood pressure, this extra intake may cause a negative effect on health.
neamine
C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic
N,N'-diacetylchitobiose
N,N-diacetylchitobiose, also known as (GlcNAc)2, is classified as a member of the Acylaminosugars. Acylaminosugars are organic compounds containing a sugar linked to a chain through N-acyl group. N,N-diacetylchitobiose is considered to be soluble (in water) and acidic. N,N-diacetylchitobiose may be a unique E.coli metabolite N,N'-Diacetylchitobiose is a dimer of β(1,4) linked N-acetyl-D glucosamine. N,N'-Diacetylchitobiose is the hydrolysate of chitin and can be used as alternative carbon source by?E. coli[1].
Pentostatin
Pentostatin is only found in individuals that have used or taken this drug. It is a potent inhibitor of adenosine deaminase. The drug is effective in the treatment of many lymphoproliferative malignancies, particularly hairy-cell leukemia. It is also synergistic with some other antineoplastic agents and has immunosuppressive activity. [PubChem]Pentostatin is a potent transition state inhibitor of adenosine deaminase (ADA), the greatest activity of which is found in cells of the lymphoid system. T-cells have higher ADA activity than B-cells, and T-cell malignancies have higher activity than B-cell malignancies. The cytotoxicity that results from prevention of catabolism of adenosine or deoxyadenosine is thought to be due to elevated intracellular levels of dATP, which can block DNA synthesis through inhibition of ribonucleotide reductase. Intracellular activation results in incorporation into DNA as a false purine base. An additional cytotoxic effect is related to its incorporation into RNA. Cytotoxicity is cell cycle phase-specific (S-phase). D000970 - Antineoplastic Agents > D000903 - Antibiotics, Antineoplastic > D005573 - Formycins L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents D004791 - Enzyme Inhibitors > D058892 - Adenosine Deaminase Inhibitors C471 - Enzyme Inhibitor > C2157 - Adenosine Deaminase Inhibitor
1,3-PROPANEDIOL
1,3-Propanediol is produced in nature by the fermentation of glycerol in microorganism[1]. 1,3-Propanediol is produced in nature by the fermentation of glycerol in microorganism[1].
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate
Indole-3-glycerol phosphate, also known as c1-(3-indolyl)-glycerol 3-phosphate, is a member of the class of compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. Indole-3-glycerol phosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Indole-3-glycerol phosphate can be found in a number of food items such as german camomile, lambsquarters, other soy product, and hazelnut, which makes indole-3-glycerol phosphate a potential biomarker for the consumption of these food products. Indole-3-glycerol phosphate may be a unique E.coli metabolite. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents
7-Methylguanosine 5'-phosphate
7-methylguanosine 5-phosphate is part of the RNA degradation pathway. It is a substrate for: m7GpppX diphosphatase, and m7GpppX diphosphatase.
N-Acetyl-9-O-acetylneuraminic acid
N-Acetyl-9-O-acetylneuraminic acid (alternatively 9-O-acetyl-N-acetylneuraminic acid) is an O acetylated sialic acid identified in human colon by using high-pressure liquid chromatography and gas-liquid chromatography/mass spectrometry (PMID 3623000). It also has been suggested that 9-O-acetyl-N-acetylneuraminic acid is an essential component of the cell surface receptor of influenza C virus (PMID 3700379). 9-O-acetyl-N-acetylneuraminic acid is an O acetylated sialic acid identified in human colon by using high-pressure liquid chromatography and gas-liquid chromatography/mass spectrometry. (PMID 3623000) It also has been suggested that 9-O-acetyl-N-acetylneuraminic acid is an essential component of the cell surface receptor of influenza C virus. (PMID 3700379) [HMDB]
Androst-5-ene-3beta,17beta-diol
5-Androstenediol is a direct metabolite of the most abundant steroid produced by the human adrenal cortex, dehydroepiandrosterone (DHEA). 5-Androstenediol is less androgenic than 4-androstenediol, and stimulates the immune system. When administered to rats in vivo, 5-androstenediol has approximately 1/70 the androgenicity of DHEA, 1/185 the androgenicity of androstenedione, and 1/475 the androgenicity of testosterone (Wikipedia). Because it induces production of white blood cells and platelets, 5-androstenediol is being developed as a radiation countermeasure as Neumune (HE2100). An intermediate in testosterone biosynthesis, found in the testis or the adrenal glands. 5-Androstenediol, derived from dehydroepiandrosterone by the reduction of the 17-keto group (17-hydroxysteroid dehydrogenases), is converted to testosterone by the oxidation of the 3-beta hydroxyl group to a 3-keto group (3-fydroxysteroid dehydrogenase). Androstenediol is a term used to refer to two different steroids with molecular weights of 290.44: 4-androstenediol (4-androstene-3beta,17beta-diol) and 5-androstenediol (5-androstene-3beta,17beta-diol). 4-Androstenediol is closer to testosterone structurally, and has androgenic effects. 5-Androstenediol is a direct metabolite of the most abundant steroid produced by the human adrenal cortex, dehydroepiandrosterone (DHEA). 5-Androstenediol is less androgenic than 4-androstenediol, and stimulates the immune system. When administered to rats in vivo, 5-androstenediol has approximately 1/70 the androgenicity of DHEA, 1/185 the androgenicity of androstenedione, and 1/475 the androgenicity of testosterone (Coffey, 1988). Because it induces production of white blood cells and platelets, 5-androstenediol is being developed as a radiation countermeasure as Neumune(HE2100). D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid
Guanosine 3'-diphosphate 5'-triphosphate
This compound belongs to the family of Purine Ribonucleoside Triphosphates. These are purine ribobucleotides with triphosphate group linked to the ribose moiety.
2-Deoxy-2,3-dehydro-N-acetylneuraminic acid
D004791 - Enzyme Inhibitors
GLUFOSINATE
D010575 - Pesticides > D006540 - Herbicides D004791 - Enzyme Inhibitors D016573 - Agrochemicals
(5Z)-(15S)-11alpha-Hydroxy-9,15-dioxoprostanoate
(5Z)-(15S)-11alpha-Hydroxy-9,15-dioxoprostanoate is a precursor in producing (5Z)-(15S)-11-a-hydroxy-9,15-dioxoprosta-13-enoate in the presence of NADP+, in this reaction (5Z)-(15S)-11alpha-Hydroxy-9,15-dioxoprostanoate is oxidized. [HMDB] (5Z)-(15S)-11alpha-Hydroxy-9,15-dioxoprostanoate is a precursor in producing (5Z)-(15S)-11-a-hydroxy-9,15-dioxoprosta-13-enoate in the presence of NADP+, in this reaction (5Z)-(15S)-11alpha-Hydroxy-9,15-dioxoprostanoate is oxidized.
(N-acetylneuraminosyl(a2-6)lactosamine)
(N-acetylneuraminosyl(alpha2-6)lactosamine) is widely distributed among tissues and is involved in biological processes such as the regulation of the immune response and the progression of colon cancer. Sialylation represents one of the most frequently occurring terminations of the oligosaccharide chains of glycoproteins and glycolipids. Sialic acid is commonly found alpha,6-linked to N-acetylgalactosamine (GalNAc). The biosynthesis of the linkage is mediated by a member of the sialyltransferase family, the beta-galactoside alpha,6-sialyltransferase (EC 2.4.99.1, ST6Gal.I). Although expressed by a single gene, this enzyme shows a complex pattern of regulation which allows its tissue- and stage-specific modulation. (PMID 11425186)
.6-Sialyllactosamine is an oligosaccharide found in human milk. Oligosaccharides in human milk inhibit enteric pathogens in vitro and in vivo. (PMID:10683228)
.(N-acetylneuraminosyl(alpha2-6)lactosamine) is widely distributed among tissues and is involved in biological processes such as the regulation of the immune response and the progression of colon cancer. Sialylation represents one of the most frequently occurring terminations of the oligosaccharide chains of glycoproteins and glycolipids. Sialic acid is commonly found alpha,6-linked to N-acetylgalactosamine (GalNAc). The biosynthesis of the linkage is mediated by a member of the sialyltransferase family, the beta-galactoside alpha,6-sialyltransferase (EC 2.4.99.1, ST6Gal.I). Although expressed by a single gene, this enzyme shows a complex pattern of regulation which allows its tissue- and stage-specific modulation. (PMID 11425186)
Selenocystine
Selenocystine, also known as 3,3-diselenodialanine, belongs to the class of organic compounds known as alpha-amino acids. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxyl group (alpha carbon). More specifically, selenocystine is a diselenide consisting of two selenoamino acids that are attached together at their selenium atoms. This particular selenoamino acid is selenocysteine, the selenium analogue to cysteine (selenium being the element directly beneath sulphur in the periodic table); likewise, selenocystine is the selenium analogue to cystine. Since each constituent amino acid has a stereocentre, there are three different stereoisomers of selenocystine: D-selenocystine, L-selenocystine, and meso-selenocystine, the first two of which are optically active. Like other amino acids, L-selenocystine is the most common form within organisms; however, the D- and meso- forms have also been found (PMID: 30920149). Selenocystine is a solid that is moderately soluble in water. Due to the reactivity of selenocysteine, it is rarely encountered; rather, cells store selenium in the less reactive oxidized form of selenocystine or in a methylated form, such as selenomethionine (DOI: 10.1007/978-3-319-92405-2_3). When cells are grown in the absence of selenium, translation of selenoproteins terminates at the UGA codon, resulting in a truncated, non-functional enzyme. Unlike other amino acids present in biological proteins, selenocysteine is not coded for directly in the genetic code. Rather, the tRNA-bound seryl residue is converted to a selenocysteine residue by the pyridoxal phosphate-containing enzyme selenocysteine synthase (PMID: 17194211). Kurt Franke et al. indicated that there was evidence that selenium was in a form similar to that of cysteine, predating Thressa Stadtman’s discovery of the 21st amino acid by four decades (PMID: 26949981; J. Biol. Chem. 111:643). Selenocysteine may be denoted by the short forms Sec, U, or SeCys (Cys is used for cysteine), whereas selenocystine may be denoted by SeCys2. However, the literature sometimes uses SeCys for selenocystine and may cause confusion. Selenocystine has been found in animals, plants, and bacteria. It is being researched as treatment for cancer and for its antioxidant properties (PMID: 24763048, 24030774). Selenium, in its various forms such as selenocystine, is essential for many species, including humans, yet it is also toxic to all organisms; hence, it has come to be referred to as the “essential poison” (PMID: 26949981; 6679541). Selenocystine is a substrate for glutathione peroxidase 1. [HMDB] D000890 - Anti-Infective Agents > D000998 - Antiviral Agents L-Selenocystine is a diselenide-bridged amino acid. L-Selenocystine is a redox-active selenium compound that has both anti- and pro-oxidant actions. L-Selenocystine induces an unfolded protein response, ER stress, and large cytoplasmic vacuolization in HeLa cells and has cytostatic effects in a range of cancer cell types[1].
11-Dehydro-thromboxane B2
11-Dehydro-thromboxane B2, a stable thromboxane metabolite, is a full agonist of chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2) in human eosinophils and basophils. Given its production in the allergic lung, antagonism of the 11-dehydro- thromboxane B2/CRTH2axis may be of therapeutic relevance. (PMID 14668348)Thromboxanes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 11-Dehydro-thromboxane B2, a stable thromboxane metabolite, is a full agonist of chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2) in human eosinophils and basophils. Given its production in the allergic lung, antagonism of the 11-dehydro- thromboxane B2/CRTH2axis may be of therapeutic relevance. (PMID 14668348)
HexNAc-(Hex)3
Lacto-N-biose I
Lacto-N-biose I is a common oligosaccharide found in human milk and in numerous other tissues. Oligosaccharides are important components of glycoproteins and glycolipids and also occur as free oligosaccharides in several body fluids.(PMID: 14993226; 11925506; 11432777; 9760191; 9592127; 8608564; 7591266; 7627975; 7766648; 1490103; 3146987; 6689405) [HMDB] Lacto-N-biose I is a common oligosaccharide found in human milk and in numerous other tissues. Oligosaccharides are important components of glycoproteins and glycolipids and also occur as free oligosaccharides in several body fluids.(PMID: 14993226; 11925506; 11432777; 9760191; 9592127; 8608564; 7591266; 7627975; 7766648; 1490103; 3146987; 6689405).
Disoxaril
D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C254 - Anti-Infective Agent > C281 - Antiviral Agent
Veratridine
Veratridine is a steroid. It has a role as a sodium channel modulator. It is functionally related to a cevane. A benzoate-cevane found in VERATRUM and Schoenocaulon. It activates SODIUM CHANNELS to stay open longer than normal. D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents > D014704 - Veratrum Alkaloids Veratridine (3-Veratroylveracevine) is a plant neurotoxin, a voltage-gated sodium channels (VGSCs) agonist. Veratridine inhibits the peak current of Nav1.7, with an IC50 of 18.39?μM. Veratridine regulates sodium ion channels mainly by activating sodium ion channels, preventing channel inactivation and increasing sodium ion flow[1][2].
1,3-Dichloropropene
1,3-Dichloropropene, also known as Telone or simply 1,3-D, is a colorless liquid with a sweet smell. It exists as a mixture of the geometric isomers cis-1,3-dichloropropene and trans-1,3-dichloropropene. It dissolves in water and evaporates easily. It is used mainly in farming as a pesticide, specifically as a preplant fumigant and nematicide. It widely used in the US and other countries, but in the process of being phased out in the European Union. [HMDB] 1,3-Dichloropropene, also known as Telone or simply 1,3-D, is a colorless liquid with a sweet smell. It exists as a mixture of the geometric isomers cis-1,3-dichloropropene and trans-1,3-dichloropropene. It dissolves in water and evaporates easily. It is used mainly in farming as a pesticide, specifically as a preplant fumigant and nematicide. It widely used in the US and other countries, but in the process of being phased out in the European Union. D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals
2-Propylamine
Isopropylamine, also known as 2-aminopropane or 2-propanamine, is a member of the class of compounds known as monoalkylamines. Monoalkylamines are organic compounds containing an primary aliphatic amine group. Isopropylamine is soluble (in water) and a very strong basic compound (based on its pKa). Isopropylamine is an ammoniacal and fishy tasting compound found in corn and soy bean, which makes isopropylamine a potential biomarker for the consumption of these food products. Isopropylamine (monoisopropyl amine, MIPA, 2-Propylamine) is an organic compound, an amine. It is a hygroscopic colorless liquid with ammonia-like odor. It is miscible with water and flammable. It is a valuable intermediate in chemical industry .
Carbenicillin
Carbenicillin is only found in individuals that have used or taken this drug. It is a broad-spectrum semisynthetic penicillin derivative used parenterally. It is susceptible to gastric juice and penicillinase and may damage platelet function. [PubChem]Free carbenicillin is the predominant pharmacologically active fraction of the salt. Carbenicillin exerts its antibacterial activity by interference with final cell wall synthesis of susceptible bacteria. Penicillins acylate the penicillin-sensitive transpeptidase C-terminal domain by opening the lactam ring. This inactivation of the enzyme prevents the formation of a cross-link of two linear peptidoglycan strands, inhibiting the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins; it is possible that carbenicillin interferes with an autolysin inhibitor. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CA - Penicillins with extended spectrum D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
Cefoxitin
Cefoxitin is only found in individuals that have used or taken this drug. It is a semi-synthetic, broad-spectrum cepha antibiotic for intravenous administration. It is derived from cephamycin C, which is produced by Streptomyces lactamdurans.The bactericidal action of cefoxitin results from inhibition of cell wall synthesis. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DC - Second-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002513 - Cephamycins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
Maleic imide
Maleimide can be used for production of antibody-drug conjugate (ADC) which is used in cancer research. Maleimide also be leveraged for the preparation of fluorogenic probe, which is mainly used for the specific detection of thiol analytes[1][2].
Methylarsonate
Methylarsonate is used as a contact herbicide in either the monosodium or disodium salt form. It goes by the trade names Weed-E-Rad, Ansar 170 H.C., Ansar 529 H.C., DiTac and others. Methylarsonate is considered only slightly toxic, having an oral LD50 of 2200 mg/Kg for rats. The inhalation risk is greater with LD50 Rats >20 mg. Long term studies with people exposed to organoarsenicals has shown an increased risk of skin cancer (Spiewak, 2001), lung cancer and some liver cancers, although some recent studies have shown some arsenic containing compounds (specifically Arsine trioxide) may have anticarcinogenic properties (Wang, 2001). In mammals, Methylarsonate is also an intermediate in the detoxification of inorganic arsenic. In the arsenate detoxification I pathway, arsenite reacts with S-adenosyl-L-methionine to produce methylarsonate and S-adenosyl-L-homocysteine. Arsenite methyltransferase catalyzes this reaction. Methylarsonate then reacts with 2 glutathione molecules to produce glutathione disulfide and methylarsonite. This reaction is catalyzed by methylarsonate reductase. Methylarsonate is an organic arsenic compound with adverse effects similar to those of arsenic trioxide. Arsenic is found in the environment primarily as arsenate and arsenite species. Arsenate is reduced to arsenite by arsenate reductase and can be subsequently methylated to Methylarsonate. This is then reduced and methylated to Dimethylarsinate, which can excreted and is considerably less toxic to the organism than any of the previous intermediate compounds. Methylarsonate was formerly included in some vitamin and mineral preparations. It was once used to treat tuberculosis, chorea, and other affections in which the cacodylates were used. Methylarsonate is used as a contact herbicide in either the monosodium or disodium salt form. It goes by the trade names Weed-E-Rad, Ansar 170 H.C., Ansar 529 H.C., DiTac and others. Methylarsonate is considered only slightly toxic, having an oral LD50 of 2200 mg/Kg for rats. The inhalation risk is greater with LD50 Rats >20 mg. Long term studies with people exposed to organoarsenicals has shown an increased risk of skin cancer (Spiewak, 2001), lung cancer and some liver cancers, although some recent studies have shown some arsenic containing compounds (specifically Arsine trioxide) may have anticarcinogenic properties (Wang, 2001). In mammals, Methylarsonate is also an intermediate in the detoxification of inorganic arsenic. D010575 - Pesticides > D006540 - Herbicides D009676 - Noxae > D013723 - Teratogens D016573 - Agrochemicals
Diacetylmonoxime
D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002801 - Cholinesterase Reactivators D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D002863 - Chromogenic Compounds D004793 - Enzyme Reactivators D004791 - Enzyme Inhibitors D004396 - Coloring Agents
Thiotepa
N,NN-triethylenethiophosphoramide (ThioTEPA) is a cancer chemotherapeutic member of the alkylating agent group, now in use for over 50 years. It is a stable derivative of N,N,N- triethylenephosphoramide (TEPA). It is mostly used to treat breast cancer, ovarian cancer and bladder cancer. It is also used as conditioning for Bone marrow transplantation. Its main toxicity is myelosuppression. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents > L01AC - Ethylene imines C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000970 - Antineoplastic Agents > D019653 - Myeloablative Agonists D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D009676 - Noxae > D000477 - Alkylating Agents
Phosphoramide mustard
Phosphoramide mustard is a metabolite of cyclophosphamide. Cyclophosphamide (trade names Endoxan, Cytoxan, Neosar, Procytox, Revimmune), also known as cytophosphane, is a nitrogen mustard alkylating agent, from the oxazophorines group. An alkylating agent adds an alkyl group (CnH2n+1) to DNA. It attaches the alkyl group to the guanine base of DNA, at the number 7 nitrogen atom of the imidazole ring. It is used to treat various types of cancer and some autoimmune disorders. (Wikipedia) D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D009588 - Nitrogen Mustard Compounds D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D010752 - Phosphoramide Mustards
Isosorbide Mononitrate
Isosorbide mononitrate (ISMN), sold under the names Imdur and Monoket, among others, is an organic nitrate used principally in the prophylactic treatment of angina pectoris (ischemic chest pain). ISMN is an active metabolite of isosorbide dinitrate and exerts qualitatively similar effects. Like other organic nitrates, ISMN acts as a prodrug for its active metabolite, nitric oxide, which mediates the therapeutic action of ISMN. Nitric oxide works on both arteries and veins, but predominantly veins. Nitric oxide functions by relaxing veins and reducing the central venous pressure, thereby causing venous pooling and a decrease in the venous return to the heart, thus decreasing cardiac preload (PMID: 31643263). The net effect when administering ISMN is therefore a reduced workload for the heart and an improvement in the oxygen supply/demand balance of the myocardium. ISMN is not subject to first pass metabolism in the human liver. Detectable metabolites include isosorbide, sorbitol, and 2-glucuronide of mononitrate, which are pharmacologically inactive (PMID: 1449102). Research on ISMN as a cervical ripener to reduce time at hospital to birth is supportive (PMID: 23983763). Isosorbide mononitrate is only found in individuals who have consumed or used this drug. C - Cardiovascular system > C01 - Cardiac therapy > C01D - Vasodilators used in cardiac diseases > C01DA - Organic nitrates C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D002317 - Cardiovascular Agents > D020030 - Nitric Oxide Donors D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents
Midodrine
Midodrine is only found in individuals that have used or taken this drug. It is an ethanolamine derivative that is an adrenergic alpha agonist. It is used as a vasoconstrictor agent in the treatment of hypotension. [PubChem]Midodrine forms an active metabolite, desglymidodrine, that is an alpha1-agonist, and exerts its actions via activation of the alpha-adrenergic receptors of the arteriolar and venous vasculature, producing an increase in vascular tone and elevation of blood pressure. Desglymidodrine does not stimulate cardiac beta-adrenergic receptors. C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents Midodrine is an α1-receptor agonist, for the treatment of dysautonomia and orthostatic hypotension.
Chlorphenesin
Chlorphenesin is only found in individuals that have used or taken this drug. It is a centrally acting muscle relaxant. Its mode of action is unknown. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1203)The mechanism of action of chlorphenesin is not well defined, and its effects are measured mainly by subjective responses. It is known that chlorphenesin acts in the central nervous system (CNS) rather than directly on skeletal muscle. D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D002491 - Central Nervous System Agents
MELARSOPROL
P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01C - Agents against leishmaniasis and trypanosomiasis > P01CD - Arsenic compounds D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent
Quinupristin
Quinupristin/dalfopristin is a combination of two antibiotics used to treat infections by staphylococci and by vancomycin-resistant Enterococcus faecium. Dalfopristin inhibits the early phase of protein synthesis in the bacterial ribosome and quinupristin inhibits the late phase of protein synthesis. The combination of the two components acts synergistically and is more effective in vitro than each component alone. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D025361 - Streptogramins Quinupristin is a streptogramin antibiotic. Quinupristin blocks peptide bond synthesis to prevent the extension of polypeptide chains and promote the detachment of incomplete protein chains in the bacterial ribosomal subunits[1] [2].
Dalfopristin
Dalfopristin is a combination of two antibiotics (Dalfopristin and quinupristin) used to treat infections by staphylococci and by vancomycin-resistant Enterococcus faecium. It is not effective against Enterococcus faecalis infections. Dalfopristin inhibits the early phase of protein synthesis in the bacterial ribosome and quinupristin inhibits the late phase of protein synthesis. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D025361 - Streptogramins
Dienestrol
Dienestrol is a synthetic, non-steroidal estrogen. It is an estrogen receptor agonist. Estrogens work partly by increasing a normal clear discharge from the vagina and making the vulva and urethra healthy. Using or applying an estrogen relieves or lessens: dryness and soreness in the vagina, itching, redness, or soreness of the vulva. Conditions that are treated with vaginal estrogens include a genital skin condition (vulvar atrophy), inflammation of the vagina (atrophic vaginitis), and inflammation of the urethra (atrophic urethritis). G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CC - Estrogens, combinations with other drugs G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CB - Synthetic estrogens, plain D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen
Zanamivir
Zanamivir is only found in individuals that have used or taken this drug. It is a guanido-neuraminic acid that is used to inhibit neuraminidase. [PubChem]The proposed mechanism of action of zanamivir is via inhibition of influenza virus neuraminidase with the possibility of alteration of virus particle aggregation and release. By binding and inhibiting the neuraminidase protein, the drug renders the influenza virus unable to escape its host cell and infect others. J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AH - Neuraminidase inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C254 - Anti-Infective Agent > C281 - Antiviral Agent D004791 - Enzyme Inhibitors
Cefmetazole
Cefmetazole is only found in individuals that have used or taken this drug. It is a semisynthetic cephamycin antibiotic with a broad spectrum of activity against both gram-positive and gram-negative microorganisms. It has a high rate of efficacy in many types of infection and to date no severe side effects have been noted. [PubChem]The bactericidal activity of cefmetazole results from the inhibition of cell wall synthesis via affinity for penicillin-binding proteins (PBPs). J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DC - Second-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002513 - Cephamycins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
Cortisone acetate
Cortisone acetate is a steroid hormone that has both glucocoriticoid and mineral corticoid activities. Corticosteroids are used to provide relief for inflamed areas of the body. They lessen swelling, redness, itching, and allergic reactions. They are often used as part of the treatment for a number of different diseases, such as severe allergies or skin problems, asthma, or arthritis. Endogenous glucocorticoids and some synthetic corticoids have high affinity to the protein transcortin (also called CBG, corticosteroid-binding protein), whereas all of them bind albumin. Glucocorticoids also bind to the cytosolic glucocorticoid receptor. C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D000893 - Anti-Inflammatory Agents Cortisone acetate (Cortisone 21-acetate), an oxidized metabolite of Cortisol (a Glucocorticoid). Cortisone acetate acts as an immunosuppressant and anti-inflammatory agent. Cortisone acetate can partially intervene in binding of Glucocorticoid to Glucocorticoid-receptor at high concentrations[1][3][4].
Ethyl tiglate
Ethyl tiglate, also known as ethyl tiglic acid or fema 2460, belongs to the class of organic compounds known as fatty acid esters. These are carboxylic ester derivatives of a fatty acid. Ethyl tiglate is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Flavouring ingredient
Pleuromulin
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Pleuromutilin (Drosophilin B) inhibits bacterial protein synthesis by binding to the 50S ribosomal subunit of bacteria.
ibogaine
An organic heteropentacyclic compound that is ibogamine in which the indole hydrogen para to the indole nitrogen has been replaced by a methoxy group. D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens
beta-Caryophyllene
beta-Caryophyllene, also known as caryophyllene or (−)-β-caryophyllene, is a natural bicyclic sesquiterpene that is a constituent of many essential oils including that of Syzygium aromaticum (cloves), Cannabis sativa, rosemary, and hops. It is usually found as a mixture with isocaryophyllene (the cis double bond isomer) and α-humulene (obsolete name: α-caryophyllene), a ring-opened isomer. beta-Caryophyllene is notable for having both a cyclobutane ring and a trans-double bond in a nine-membered ring, both rarities in nature (Wikipedia). beta-Caryophyllene is a sweet and dry tasting compound that can be found in a number of food items such as allspice, fig, pot marjoram, and roman camomile, which makes beta-caryophyllene a potential biomarker for the consumption of these food products. beta-Caryophyllene can be found in feces and saliva. (-)-Caryophyllene. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=87-44-5 (retrieved 2024-08-07) (CAS RN: 87-44-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). β-Caryophyllene is a CB2 receptor agonist. β-Caryophyllene is a CB2 receptor agonist.
beta-Cubebene
Beta-cubebene, also known as (-)-B-cubebene, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Beta-cubebene is a citrus and fruity tasting compound and can be found in a number of food items such as sweet basil, roman camomile, pot marjoram, and sweet bay, which makes beta-cubebene a potential biomarker for the consumption of these food products. Beta-cubebene can be found primarily in saliva. Piper cubeba, cubeb or tailed pepper is a plant in genus Piper, cultivated for its fruit and essential oil. It is mostly grown in Java and Sumatra, hence sometimes called Java pepper. The fruits are gathered before they are ripe, and carefully dried. Commercial cubebs consist of the dried berries, similar in appearance to black pepper, but with stalks attached – the "tails" in "tailed pepper". The dried pericarp is wrinkled, and its color ranges from grayish brown to black. The seed is hard, white and oily. The odor of cubebs is described as agreeable and aromatic and the taste as pungent, acrid, slightly bitter and persistent. It has been described as tasting like allspice, or like a cross between allspice and black pepper . beta-Cubebene belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units.
(+)-alpha-Carene
(+)-alpha-Carene is found in herbs and spices. (+)-alpha-Carene is widespread plant product, found especially in turpentine oils (from Pinus species) and oil of galbanu Isolated from root oil of Kaempferia galanga. (-)-alpha-Carene is found in many foods, some of which are pummelo, cumin, herbs and spices, and sweet orange.
Swertiaperennin
2-O-methylswertianin is a member of the class of xanthones that is swertianin in which the hydroxy group at position 2 has been replaced by a methoxy group. It has a role as a plant metabolite. It is a member of xanthones, an aromatic ether and a polyphenol. It is functionally related to a swertianin. 1,8-Dihydroxy-2,6-dimethoxy-9H-xanthen-9-one is a natural product found in Gentiana orbicularis, Swertia japonica, and other organisms with data available. A member of the class of xanthones that is swertianin in which the hydroxy group at position 2 has been replaced by a methoxy group.
Norswertianin
Norswertianin is a member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 2, 6 and 8. It has a role as a plant metabolite. It is a member of xanthones and a polyphenol. Norswertianin is a natural product found in Swertia japonica, Swertia ciliata, and other organisms with data available. A member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 2, 6 and 8.
1,3,5-Trihydroxyxanthone
A member of the class of xanthones that is xanthone substituted by hydroxy groups at positions 1, 3 and 5. It has been isolated from Anaxagorea luzonensis.
Swainsonine
Swainsonine is an indolizidine alkaloid isolated from the plant Swainsona canescens with three hydroxy substituents at positions 1, 2 and 8. It has a role as an antineoplastic agent, an immunological adjuvant, an EC 3.2.1.114 (mannosyl-oligosaccharide 1,3-1,6-alpha-mannosidase) inhibitor and a plant metabolite. An indolizidine alkaloid from the plant Swainsona canescens that is a potent alpha-mannosidase inhibitor. Swainsonine also exhibits antimetastatic, antiproliferative, and immunomodulatory activity. Swainsonine is a natural product found in Slafractonia leguminicola, Astragalus whitneyi, and other organisms with data available. Swainsonine is a plant toxin found in locoweed (families Fabaceae, Oxytropis, Astragalus and Swainsona) and some fungi (Metarhizium anisopliae, Rizoctonia leguminicola). It has been known to cause a potentially lethal central nervous system condition in livestock known as locoism and is a significant cause of economic losses in livestock industries. Along with slaframine, the other biologially active compound of R. leguminicola, it may contribute to a condition called "slobbers syndrome" in livestock that has ingested contaminated feed. (L1248, A3092) An indolizidine alkaloid from the plant Swainsona canescens that is a potent alpha-mannosidase inhibitor. Swainsonine also exhibits antimetastatic, antiproliferative, and immunomodulatory activity. An indolizidine alkaloid isolated from the plant Swainsona canescens with three hydroxy substituents at positions 1, 2 and 8. C308 - Immunotherapeutic Agent > C129820 - Antineoplastic Immunomodulating Agent > C2117 - Carbohydrate Processing Inhibitor C26170 - Protective Agent > C2459 - Chemoprotective Agent > C2080 - Cytoprotective Agent C471 - Enzyme Inhibitor > C2119 - Golgi Alpha-Mannosidase II Inhibitor C274 - Antineoplastic Agent > C2196 - Antimetastatic Agent D000970 - Antineoplastic Agents D007155 - Immunologic Factors D004791 - Enzyme Inhibitors
Arborinine
Arborinine is found in herbs and spices. Arborinine is an alkaloid from Ruta graveolens (rue
Indolo[2,1-b]quinazoline-6,12-dione
Tryptanthrin is an indole quinazoline that could be an alkaloid from indigo-bearing plants. Tryptanthrin is a potent and orally active cellular Leukotriene (LT) biosynthesis inhibitor. Tryptanthrin has anticancer activity. Tryptanthrin suppresses the expression levels of NOS1, COX-2, and NF-κB and regulates the expression levels of IL-2, IL-10, and TNF-α[1][2]. Tryptanthrin is an indole quinazoline that could be an alkaloid from indigo-bearing plants. Tryptanthrin is a potent and orally active cellular Leukotriene (LT) biosynthesis inhibitor. Tryptanthrin has anticancer activity. Tryptanthrin suppresses the expression levels of NOS1, COX-2, and NF-κB and regulates the expression levels of IL-2, IL-10, and TNF-α[1][2].
Calcein AM
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes > D005452 - Fluoresceins D000970 - Antineoplastic Agents
Methyl-tert-butyl ether
Methyl-tert-butyl ether, also known as tert-butyl methyl ether, methyl t-butyl ether or MTBE, is classified as a member of the dialkyl ethers. Dialkyl ethers are organic compounds containing the dialkyl ether functional group, with the formula ROR, where R and R are alkyl groups. Methyl-tert-butyl ether is considered to be soluble (in water) and basic. It is used as a gasoline additive. Exposure may occur by breathing air contaminated with auto exhaust or gasoline fumes while refueling autos. Respiratory irritation, dizziness, and disorientation have been reported by some motorists and occupationally exposed workers. Acute (short-term) exposure of humans to methyl tert-butyl ether also has occurred during its use as a medical treatment to dissolve cholesterol gallstones. Chronic (long-term) inhalation exposure to methyl-tert-butyl ether has resulted in central nervous system (CNS) effects, respiratory irritation, liver and kidney effects, and decreased body weight gain in animals. United States Environmental Protection Agency has not classified methyl-tert-butyl ether with respect to potential carcinogenicity. (ChemoSummarizer) D004785 - Environmental Pollutants > D000393 - Air Pollutants D009676 - Noxae > D002273 - Carcinogens
Flucloxacillin
Flucloxacillin is only found in individuals that have used or taken this drug. It is an antibiotic analog of cloxacillin.By binding to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, flucloxacillin inhibits the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins; it is possible that flucloxacillin interferes with an autolysin inhibitor. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CF - Beta-lactamase resistant penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic Same as: D04196
dTDP-D-desosamine
dTDP 1-ester with 2,6-dideoxy-L-erythro-hexopyranos-3-ulose
Telithromycin
Telithromycin, a semi-synthetic erythromycin derivative, belongs to a new chemical class of antibiotics called ketolides. Ketolides have been recently added to the macrolide-lincosamide-streptogramin class of antibiotics. Similar to the macrolide antibiotics, telithromycin prevents bacterial growth by interfering with bacterial protein synthesis. Telithromycin binds to the 50S subunit of the 70S bacterial ribosome and blocks further peptide elongation. Binding occurs simultaneously at to two domains of 23S RNA of the 50S ribosomal subunit, domain II and V, where older macrolides bind only to one. It is used to treat mild to moderate respiratory infections. Same as: D01078
undecylprodigiosin
A member of the class of tripyrroles that is 1H-pyrrole substituted by (4-methoxy-1H,5H-[2,2-bipyrrol]-5-ylidene)methyl and undecyl groups at positions 2 and 5, respectively. It is a pigment produced by Stveptomyces coelicolor. D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents
Rifamycin
A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AA - Antibiotics J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04A - Drugs for treatment of tuberculosis > J04AB - Antibiotics D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06A - Antibiotics for topical use A member of the class of rifamycins that exhibits antibiotic and antitubercular properties. S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AA - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D012294 - Rifamycins C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent S - Sensory organs > S02 - Otologicals > S02A - Antiinfectives > S02AA - Antiinfectives Same as: D02549
Rhodomycinone
A carboxylic ester that is the methyl ester of (1R,2R,4S)-2-ethyl-2,4,5,7,12-pentahydroxy-6,11-dioxo-1,2,3,4,6,11-hexahydrotetracene-1-carboxylic acid.
Tazarotene
Tazarotene is only found in individuals that have used or taken this drug. It is a prescription topical retinoid sold as a cream or gel. This medication is approved for treatment of psoriasis, acne, and sun damaged skin (photodamage). [Wikipedia]Although the exact mechanism of tazarotene action is not known, studies have shown that the active form of the drug (tazarotenic acid) binds to all three members of the retinoic acid receptor (RAR) family: RARa, RARb, and RARg, but shows relative selectivity for RARb, and RARg and may modify gene expression. It also has affinity for RXR receptors. C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C804 - Retinoic Acid Agent D - Dermatologicals > D05 - Antipsoriatics > D05A - Antipsoriatics for topical use C308 - Immunotherapeutic Agent > C129820 - Antineoplastic Immunomodulating Agent D003879 - Dermatologic Agents > D007641 - Keratolytic Agents D009676 - Noxae > D013723 - Teratogens Same as: D01132
Cyclothiazide
As a diuretic, cyclothiazide inhibits active chloride reabsorption at the early distal tubule via the Na-Cl cotransporter, resulting in an increase in the excretion of sodium, chloride, and water. Thiazides like cyclothiazide also inhibit sodium ion transport across the renal tubular epithelium through binding to the thiazide sensitive sodium-chloride transporter. This results in an increase in potassium excretion via the sodium-potassium exchange mechanism. The antihypertensive mechanism of cyclothiazide is less well understood although it may be mediated through its action on carbonic anhydrases in the smooth muscle or through its action on the large-conductance calcium-activated potassium (KCa) channel, also found in the smooth muscle. Cyclothiazide is indicated as adjunctive therapy in edema associated with congestive heart failure, hepatic cirrhosis, and corticosteroid and estrogen therapy. It is also indicated in the management of hypertension either as the sole therapeutic agent or to enhance the effectiveness of other antihypertensive drugs in the more severe forms of hypertension. C - Cardiovascular system > C03 - Diuretics > C03A - Low-ceiling diuretics, thiazides > C03AA - Thiazides, plain C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49185 - Thiazide Diuretic D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D004232 - Diuretics Same as: D01256 Cyclothiazide, a positive allosteric modulator of AMPA receptors, is used frequently to block the desensitization of both native and heterologously expressed AMPA receptors. Cyclothiazide is known to produce a fast inhibition of AMPA receptor desensitization and a much slower potentiation of the AMPA current[1].
Nocodazole
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents Same as: D05197
2-METHYLNAPHTHALENE
2-methylnaphthalene, also known as 2-methylnaphthalene, lithium salt, ion(1-) or 2-methylnaphthalene, naphthalene-1-(13)c-labeled, is a member of the class of compounds known as naphthalenes. Naphthalenes are compounds containing a naphthalene moiety, which consists of two fused benzene rings. 2-methylnaphthalene can be found in corn, which makes 2-methylnaphthalene a potential biomarker for the consumption of this food product. 2-methylnaphthalene is potentially toxic compound. On February 22, 2014, NASA announced a greatly upgraded database for detecting and monitoring PAHs, including 2-methylnaphthalene, in the universe. According to NASA scientists, over 20\\% of the carbon in the universe may be associated with PAHs, possible starting materials for the formation of life. PAHs seem to have been formed shortly after the Big Bang, are abundant in the universe, and are associated with new stars and exoplanets . Acute exposure to PAHs causes irritation and inflammation of the skin and lung tissue. Some symptoms of hemolytic anemia are fatigue, lack of appetite, restlessness, and pale skin. Exposure to large amounts of 2-methylnapthalene may also cause nausea, vomiting, diarrhea, blood in the urine, and a yellow color to the skin (A10, L12).
Org 4333
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
Pentachloronitrobenzene
D016573 - Agrochemicals D010575 - Pesticides
4-{[(5,5,8,8-Tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)carbonyl]amino}benzoic acid
CONFIDENCE standard compound; INTERNAL_ID 333; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10139; ORIGINAL_PRECURSOR_SCAN_NO 10138 INTERNAL_ID 333; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10139; ORIGINAL_PRECURSOR_SCAN_NO 10138 CONFIDENCE standard compound; INTERNAL_ID 333; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10159; ORIGINAL_PRECURSOR_SCAN_NO 10156 CONFIDENCE standard compound; INTERNAL_ID 333; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10167; ORIGINAL_PRECURSOR_SCAN_NO 10165 CONFIDENCE standard compound; INTERNAL_ID 333; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10197; ORIGINAL_PRECURSOR_SCAN_NO 10194 CONFIDENCE standard compound; INTERNAL_ID 333; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10187; ORIGINAL_PRECURSOR_SCAN_NO 10186 CONFIDENCE standard compound; INTERNAL_ID 333; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10123; ORIGINAL_PRECURSOR_SCAN_NO 10122 CONFIDENCE standard compound; INTERNAL_ID 333; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5493; ORIGINAL_PRECURSOR_SCAN_NO 5489 CONFIDENCE standard compound; INTERNAL_ID 333; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5465; ORIGINAL_PRECURSOR_SCAN_NO 5461 CONFIDENCE standard compound; INTERNAL_ID 333; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5482; ORIGINAL_PRECURSOR_SCAN_NO 5480 CONFIDENCE standard compound; INTERNAL_ID 333; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5469; ORIGINAL_PRECURSOR_SCAN_NO 5467 CONFIDENCE standard compound; INTERNAL_ID 333; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5500; ORIGINAL_PRECURSOR_SCAN_NO 5495 CONFIDENCE standard compound; INTERNAL_ID 333; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5570; ORIGINAL_PRECURSOR_SCAN_NO 5568 D009676 - Noxae > D013723 - Teratogens D000970 - Antineoplastic Agents
1-Pyrroline
Pyrrolines, also known under the name dihydropyrroles, are three different heterocyclic organic chemical compounds which differ in the position of the double bond. Pyrrolines are formally derived from the aromate pyrrole by hydrogenation. 1-Pyrroline is a cyclic imine while 2-pyrroline and 3-pyrroline are cyclic amines. Present in clam and squid. Flavouring agent for fish products and other foods. 3,4-Dihydro-2H-pyrrole is found in many foods, some of which are garden onion (variety), breadnut tree seed, chinese bayberry, and kiwi.
Coelichelin
A tetrapeptide hydroxamate siderophore that is isolated from Streptomyces coelicolor.
24-Methylenecholesterol
24-Methylenecholesterol, also known as chalinasterol or ostreasterol, belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, 24-methylenecholesterol is considered to be a sterol lipid molecule. 24-Methylenecholesterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. 24-Methylenecholesterol is involved in the biosynthesis of steroids. 24-Methylenecholesterol is converted from 5-dehydroepisterol by 7-dehydrocholesterol reductase (EC 1.3.1.21). 24-Methylenecholesterol is converted into campesterol by delta24-sterol reductase (EC 1.3.1.72). 24-methylenecholesterol is a 3beta-sterol having the structure of cholesterol with a methylene group at C-24. It has a role as a mouse metabolite. It is a 3beta-sterol and a 3beta-hydroxy-Delta(5)-steroid. It is functionally related to a cholesterol. 24-Methylenecholesterol is a natural product found in Echinometra lucunter, Ulva fasciata, and other organisms with data available. A 3beta-sterol having the structure of cholesterol with a methylene group at C-24. Constituent of clams and oysters 24-Methylenecholesterol (Ostreasterol), a natural marine sterol, stimulates cholesterol acyltransferase in human macrophages. 24-Methylenecholesterol possess anti-aging effects in yeast. 24-methylenecholesterol enhances honey bee longevity and improves nurse bee physiology[1][2][3].
Pyrrolysine
A N(6)-acyl-L-lysine having a (2R,3R)-3-methyl-3,4-dihydro-2H-pyrrol-2-ylcarboxy group at the N(6)-position.
Aminopropylcadaverine
Aminopropylcadaverine,a polyamine, is the final product of aminopropylcadaverine biosynthesis pathway. Polyamines are important for cell growth and are believed to be involved in many processes including DNA, RNA, and protein synthesis, as well as membrane integrity and resistance to stress, to name a few. Cadaverine and aminopropylcadaverine are alternative polyamines that can at least partially substitute for purtrescine and spermidine, the primary polyamines found in E. coli. Lysine is decarboxylated to form cadaverine which is then converted to aminopropylcadaverine by the aminopropyltransferase, SpeE. [HMDB] Aminopropylcadaverine,a polyamine, is the final product of aminopropylcadaverine biosynthesis pathway. Polyamines are important for cell growth and are believed to be involved in many processes including DNA, RNA, and protein synthesis, as well as membrane integrity and resistance to stress, to name a few. Cadaverine and aminopropylcadaverine are alternative polyamines that can at least partially substitute for purtrescine and spermidine, the primary polyamines found in E. coli. Lysine is decarboxylated to form cadaverine which is then converted to aminopropylcadaverine by the aminopropyltransferase, SpeE.
N,N-Diethylglycine
An N-alkyl glycine that is glycine in which the amino group is replaced by a diethylnitrilo group.
Bufadienolide
D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides
alpha-Bergamotene
Constituent of oils of carrot (Daucus carota), bergamot (Citrus bergamia), also lime (Citrus aurantifolia), citron (Citrus medica) and cottonseed oil (Gossypium hirsutum). alpha-Bergamotene is found in many foods, some of which are fats and oils, sweet basil, sweet orange, and lemon. alpha-Bergamotene is found in carrot. alpha-Bergamotene is a constituent of oils of carrot (Daucus carota), bergamot (Citrus bergamia), also lime (Citrus aurantifolia), citron (Citrus medica) and cottonseed oil (Gossypium hirsutum).
Pyropheophorbide a
Pyropheophorbide-a (Ppa) is a promising photosensitizer for tumor photodynamic therapy (PDT)[1].
Glufosinate
D010575 - Pesticides > D006540 - Herbicides D004791 - Enzyme Inhibitors D016573 - Agrochemicals
Pinene
Pinene (is a bicyclic monoterpene chemical compound. There are two structural isomers of pinene found in nature: alpha-pinene and beta-pinene. As the name suggests, both forms are important constituents of pine resin; they are also found in the resins of many other conifers, as well as in non-coniferous plants. Both isomers are used by many insects in their chemical communication system.
β-Pinene
An isomer of pinene with an exocyclic double bond. It is a component of essential oils from many plants.
Widely distributed in plants, usually associated with a-Pinene
1-Pyrroline-5-carboxylic acid
A 1-pyrrolinecarboxylic acid that is 1-pyrroline in which one of the hydrogens at position 5 is replaced by a carboxy group. The stereoisomer (S)-1-pyrroline-5-carboxylate (also referred to as L-P5C) is an intermediate metabolite in the biosynthesis and degradation of proline and arginine.[4][5][6] In prokaryotic proline biosynthesis, GSA is synthesized from γ-glutamyl phosphate by the enzyme γ-glutamyl phosphate reductase. In most eukaryotes, GSA is synthesised from the amino acid glutamate by the bifunctional enzyme 1-pyrroline-5-carboxylate synthase (P5CS). The human P5CS is encoded by the ALDH18A1 gene.[7][8] The enzyme pyrroline-5-carboxylate reductase converts P5C into proline. In proline degradation, the enzyme proline dehydrogenase produces P5C from proline, and the enzyme 1-pyrroline-5-carboxylate dehydrogenase converts GSA to glutamate. In many prokaryotes, proline dehydrogenase and P5C dehydrogenase form a bifunctional enzyme that prevents the release of P5C during proline degradation. 1-Pyrroline-5-carboxylic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2906-39-0 (retrieved 2024-07-09) (CAS RN: 2906-39-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
ST 19:2;O3
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones A 17beta-hydroxy steroid that is testosterone bearing an additional hydroxy substituent at the 6beta-position. C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1740 - Aromatase Inhibitor C471 - Enzyme Inhibitor > C129825 - Antineoplastic Enzyme Inhibitor C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist
UNII:EU52DFC4WJ
N-Methyl-DL-aspartic acid is a glutamate analogue and a?NMDA?receptor?agonist and can be used for neurological diseases research[1][2].
Neochlorogenic_acid
Trans-5-O-caffeoyl-D-quinic acid is a cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 5-hydroxy group of quinic acid. It has a role as a plant metabolite. It is a cyclitol carboxylic acid and a cinnamate ester. It is functionally related to a (-)-quinic acid and a trans-caffeic acid. It is a conjugate acid of a trans-5-O-caffeoyl-D-quinate. Neochlorogenic acid is a natural product found in Eupatorium perfoliatum, Centaurea bracteata, and other organisms with data available. See also: Lonicera japonica flower (part of); Stevia rebaudiuna Leaf (has part); Moringa oleifera leaf (part of). A cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 5-hydroxy group of quinic acid. Neochlorogenic acid is a natural polyphenolic compound found in dried fruits and other plants. Neochlorogenic acid inhibits the production of TNF-α and IL-1β. Neochlorogenic acid suppresses iNOS and COX-2 protein expression. Neochlorogenic acid also inhibits phosphorylated NF-κB p65 and p38 MAPK activation. Neochlorogenic acid is a natural polyphenolic compound found in dried fruits and other plants. Neochlorogenic acid inhibits the production of TNF-α and IL-1β. Neochlorogenic acid suppresses iNOS and COX-2 protein expression. Neochlorogenic acid also inhibits phosphorylated NF-κB p65 and p38 MAPK activation.
Daminozide
Succinic acid 2,2-dimethylhydrazide appears as odorless white crystals or powder. (NTP, 1992) Daminozide is a straight-chain fatty acid. Daminozide — also known as Alar, Kylar, B-NINE, DMASA, SADH, or B 995 — is a plant growth regulator, a chemical sprayed on fruit to regulate their growth, make their harvest easier, and keep apples from falling off the trees before they are ripe. This makes sure they are red and firm for storage. Alar was first approved for use in the U.S. in 1963, it was primarily used on apples until 1989 when it was voluntarily withdrawn by the manufacturer after the U.S. Environmental Protection Agency proposed banning it based on unacceptably high cancer risks to consumers. D006133 - Growth Substances > D010937 - Plant Growth Regulators D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals Daminozide, a plant growth regulator, is a selective inhibitor of the human KDM2/7 histone demethylases, with IC50s of 0.55, 1.5 and 2.1 μM for PHF8, KDM2A, and KIAA1718, respectively. Daminozide has >100-fold selectivity for KDM2/7 subfamily versus other demethylase subfamily members tested[1][2].
Khellin
Khellin is a furanochrome in which the basic tricyclic skeleton is substituted at positions 4 and 9 with methoxy groups and at position 7 with a methyl group. A major constituent of the plant Ammi visnaga it is a herbal folk medicine used for various illnesses, its main effect being as a vasodilator. It has a role as a vasodilator agent, a bronchodilator agent, an anti-asthmatic agent and a cardiovascular drug. It is an organic heterotricyclic compound, an oxacycle and a furanochromone. It is functionally related to a 5H-furo[3,2-g]chromen-5-one. Khellin is a natural product found in Ammi visnaga, Annona muricata, and other organisms with data available. A vasodilator that also has bronchodilatory action. It has been employed in the treatment of angina pectoris, in the treatment of asthma, and in conjunction with ultraviolet light A, has been tried in the treatment of vitiligo. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1024) See also: Visnaga daucoides fruit (part of). D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Khellin is a furochromone that can be isolated from Ammi visnuga L.. Khellin is an EGFR inhibitor with an IC50 of 0.15 μM. Khelline has anti-proliferative activity in vitro. Khellin has antispasmodic and coronary vasodilator effects[1][2]. Khellin is a furochromone that can be isolated from Ammi visnuga L.. Khellin is an EGFR inhibitor with an IC50 of 0.15 μM. Khelline has anti-proliferative activity in vitro. Khellin has antispasmodic and coronary vasodilator effects[1][2].
Visnagin
Visnagin is a furanochromone that is furo[3,2-g]chromen-5-one which is substituted at positions 4 and 7 by methoxy and methyl groups, respectively. Found in the toothpick-plant, Ammi visnaga. It has a role as a phytotoxin, an EC 1.1.1.37 (malate dehydrogenase) inhibitor, a vasodilator agent, an antihypertensive agent, an anti-inflammatory agent and a plant metabolite. It is a furanochromone, an aromatic ether and a polyketide. It is functionally related to a 5H-furo[3,2-g]chromen-5-one. Visnagin is a natural product found in Ammi visnaga, Musineon divaricatum, and Actaea dahurica with data available. A furanochromone that is furo[3,2-g]chromen-5-one which is substituted at positions 4 and 7 by methoxy and methyl groups, respectively. Found in the toothpick-plant, Ammi visnaga. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Visnagin, an antioxidant furanocoumarin derivative, possess anti-inflammatory and analgesic properties. Visnagin has substantial potential to prevent Cerulein induced acute pancreatitis (AP). Visnagin possess promising vasodilator effects in vascular smooth muscles[1][2]. Visnagin, an antioxidant furanocoumarin derivative, possess anti-inflammatory and analgesic properties. Visnagin has substantial potential to prevent Cerulein induced acute pancreatitis (AP). Visnagin possess promising vasodilator effects in vascular smooth muscles[1][2].
Dihydrobrassicasterol
24-epicampesterol is a 3beta-sterol, a member of phytosterols, an ergostanoid, a 3beta-hydroxy-Delta(5)-steroid and a C28-steroid. 22,23-Dihydrobrassicasterol is a natural product found in Euphorbia fischeriana, Sambucus chinensis, and other organisms with data available. Occurs in Physalis peruviana (Cape gooseberry). Dihydrobrassicasterol is found in many foods, some of which are watermelon, muskmelon, fruits, and cucumber. Dihydrobrassicasterol is found in cucumber. Dihydrobrassicasterol occurs in Physalis peruviana (Cape gooseberry
alpha-Carene
Carene is a colorless liquid with a sweet, turpentine-like odor. Floats on water. (USCG, 1999) Car-3-ene is a monoterpene. It derives from a hydride of a carane. 3-Carene is a natural product found in Nepeta nepetella, Xylopia aromatica, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of). alpha-Carene is found in allspice. alpha-Carene is a flavouring ingredient.Carene, or delta-3-carene, is a bicyclic monoterpene which occurs naturally as a constituent of turpentine, with a content as high as 42\\% depending on the source. Carene has a sweet and pungent odor. It is not soluble in water, but miscible with fats and oils Flavouring ingredient
2-Phosphoglyceric acid
2-Phosphoglyceric acid (2PGA) is a glyceric acid which serves as the substrate in the ninth step of glycolysis. It is catalyzed by enolase into phosphoenolpyruvate (PEP), the penultimate step in the conversion of glucose to pyruvate. Enolase catalyzes the beta-elimination reaction in a stepwise manner wherein OH- is eliminated from C3 of a discrete carbanion (enolate) intermediate. This intermediate is created by removal of the proton from C2 of 2PGA by a base in the active site. (PMID: 8994873, Wikipedia) [HMDB] 2-Phosphoglyceric acid (2PGA) is a glyceric acid which serves as the substrate in the ninth step of glycolysis. It is catalyzed by enolase into phosphoenolpyruvate (PEP), the penultimate step in the conversion of glucose to pyruvate. Enolase catalyzes the beta-elimination reaction in a stepwise manner wherein OH- is eliminated from C3 of a discrete carbanion (enolate) intermediate. This intermediate is created by removal of the proton from C2 of 2PGA by a base in the active site (PMID: 8994873, Wikipedia). 2-Phosphoglyceric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2553-59-5 (retrieved 2024-11-04) (CAS RN: 2553-59-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
UDP-D-Xylose
Uridine diphosphate xylose is important intermediate in the Nucleotide sugars metabolism and chondroitin sulfate biosynthesis (KEGG); The decarboxylation product of UDPglucuronic acid, which is used for formation of the xylosides of seryl hydroxyl groups in mucoprotein synthesis.; Uridine is a molecule (known as a nucleoside) that is formed when uracil is attached to a ribose ring (also known as a ribofuranose) via a ?-N1-glycosidic bond. Udp-xylose is found in soy bean. Uridine diphosphate xylose is important intermediate in the Nucleotide sugars metabolism and chondroitin sulfate biosynthesis (KEGG). The decarboxylation product of UDPglucuronic acid, which is used for formation of the xylosides of seryl hydroxyl groups in mucoprotein synthesis. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
sn-glycero-3-Phosphoethanolamine
Sn-glycero-3-phosphoethanolamine is a substrate for: Lysoplasmalogenase. Glycerophosphoethanolamine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1190-00-7 (retrieved 2024-07-25) (CAS RN: 1190-00-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
13,14-Dihydro-15-keto-PGE2
13,14-dihydro-15-keto-PGE2 is one of the prostaglandin E2 metabolites. (PMID 7190512) Human fetal lung in vitro has the competence to self-differentiate, as early as 12 weeks gestation and presence of high levels in fetal lung of the inactive metabolite 13,14-dihydro-15-keto-PGE2 relative to PGE2 suggests that active prostaglandin catabolism may be one of the mechanisms to retard this stage of maturation in vivo by limiting PGE2 availability. (PMID 8835315)Dinoprostone is a naturally occurring prostaglandin E2 (PGE2) and the most common and most biologically active of the mammalian prostaglandins. It has important effects in labour and also stimulates osteoblasts to release factors which stimulate bone resorption by osteoclasts (a type of bone cell that removes bone tissue by removing the bones mineralized matrix). PGE2 has been shown to increase vasodilation and cAMP production, to enhance the effects of bradykinin and histamine, to induce uterine contractions and to activate platelet aggregation. PGE2 is also responsible for maintaining the open passageway of the fetal ductus arteriosus; decreasing T-cell proliferation and lymphocyte migration and activating the secretion of IL-1alpha and IL-2. PGE2 exhibits both pro- and anti-inflammatory effects, particularly on dendritic cells (DC). Depending on the nature of maturation signals, PGE2 has different and sometimes opposite effects on DC biology. PGE2 exerts an inhibitory action, reducing the maturation of DC and their ability to present antigen. PGE2 has also been shown to stimulate DC and promote IL-12 production when given in combination with TNF-alpha. PGE2 is an environmentally bioactive substance. Its action is prolonged and sustained by other factors especially IL-10. It modulates the activities of professional DC by acting on their differentiation, maturation and their ability to secrete cytokines. PGE2 is a potent inducer of IL-10 in bone marrow-derived DC (BM-DC), and PGE2-induced IL-10 is a key regulator of the BM-DC pro-inflammatory phenotype. (PMID: 16978535)Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 13,14-dihydro-15-keto-PGE2 is one of the prostaglandin E2 metabolites. (PMID 7190512) Human fetal lung in vitro has the competence to self-differentiate, as early as 12 weeks gestation and presence of high levels in fetal lung of the inactive metabolite 13,14-dihydro-15-keto-PGE2 relative to PGE2 suggests that active prostaglandin catabolism may be one of the mechanisms to retard this stage of maturation in vivo by limiting PGE2 availability. (PMID 8835315)
beta-Farnesene
A mixture with 1,3,6,10-Farnesatetraene
Uridine diphosphate-N-acetylgalactosamine
Uridine diphosphate-N-acetylgalactosamine (UDP-GalNAc) is a sugar donor metabolite, transferring N-acetylgalactosamine (GalNAc, an O-glycan) from UDP-GalNAc to serine and threonine residues, forming an alpha-anomeric linkage in a reaction catalyzed by enzymes known as UDP-N-acetylgalactosamine: polypeptide N-acetylgalactosaminyltransferases. The addition of GalNAc to serine or threonine represents the first committed step in mucin biosynthesis. O-Glycans impart unique structural features to mucin glycoproteins and numerous membrane receptors, and resistance to thermal change and proteolytic attack in a number of diverse proteins. O-Linked carbohydrate side chains function as ligands for receptors, lymphocyte and leukocyte homing, and as signals for protein sorting (PMID: 12634319). Animal studies suggest that overactivity of the hexosamine pathway, resulting in increased UDP-hexosamines (i.e. UDP-GalNAc) is an important mechanism by which hyperglycemia causes insulin resistance. However, to date, human studies concerning the role of the hexosamine pathway in hyperglycemia-induced insulin resistance are scarce and restricted to measurements of glutamine fructose-6-phosphate amidotransferase (GFAT) enzyme activity. Both positive and negative correlations between GFAT activity in human muscle tissue from patients with type 2 DM and glucose disposal rate have been reported (PMID: 12414889). Uridine diphosphate-N-acetylgalactosamine (UDP-GalNAc) is a sugar donor metabolite, transferring N-acetylgalactosamine (GalNAc, an O-glycan) from UDP-GalNAc to serine and threonine residues, forming an alpha anomeric linkage in a reaction catalyzed by enzymes known as UDP-N-acetylgalactosamine: polypeptide N-acetylgalactosaminyltransferases; addition of GalNAc to serine or threonine represents the first committed step in mucin biosynthesis. O-glycans impart unique structural features to mucin glycoproteins and numerous membrane receptors, and resistance to thermal change and proteolytic attack in a number of diverse proteins. O-linked carbohydrate side chains function as ligands for receptors; lymphocyte and leukocyte homing and as signals for protein sorting. (PMID: 12634319)
(1S,2R,3S,6S,7S,8S)-1,8,9,10,11,11-Hexachlorotetracyclo[6.2.1.13,6.02,7]dodeca-4,9-diene
D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals
Bicyclo[7.2.0]undec-4-ene, 4,11,11-trimethyl-8-methylene-, (1R,4E,9S)-
Androst-5-ene-3beta,17beta-diol
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents
4alpha-Phorbol
Acetamiprid
D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids D016573 - Agrochemicals Acetamiprid is a neonicotinoid insecticide used worldwide. Acetamiprid is a nicotinic acetylcholine receptor (nAChR) agonist, and is shown to be associated with neuromuscular and reproductive disorders[1][2].
[(1S,2R,3S,4S,6R,7R,14R)-4-Ethenyl-3-hydroxy-2,4,7,14-tetramethyl-9-oxo-6-tricyclo[5.4.3.01,8]tetradecanyl] 2-hydroxyacetate
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Pleuromutilin (Drosophilin B) inhibits bacterial protein synthesis by binding to the 50S ribosomal subunit of bacteria.
Bufadienolide
D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides
Ppack
N-Methyl-DL-aspartic acid
N-Methyl-DL-aspartic acid is a glutamate analogue and a?NMDA?receptor?agonist and can be used for neurological diseases research[1][2].
Proscillaridin
D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides D002317 - Cardiovascular Agents D004791 - Enzyme Inhibitors
Thiacloprid
D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids D016573 - Agrochemicals
Verbascoside
Inosine
G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06B - Chemotherapeutics for topical use > D06BB - Antivirals COVID info from COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials S - Sensory organs > S01 - Ophthalmologicals Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3].
Indolelactic acid
Indolelactic acid (Indole-3-lactic acid) is a tryptophan (Trp) catabolite in Azotobacter vinelandii cultures. Indolelactic acid has anti-inflammation and potential anti-viral activity[1][3][4].
Bellidin
Bellidin is a member of the class of xanthones that is xanthone which is substituted by hydroxy groups at positions 1, 3, 5, and 8. A natural product found particularly in Iris nigricans and Gentiana campestris. It has a role as a metabolite, an EC 3.1.1.7 (acetylcholinesterase) inhibitor, a mutagen, an antioxidant and a radical scavenger. It is a member of xanthones and a tetrol. It is functionally related to a xanthone. 1,3,5,8-Tetrahydroxyxanthone is a natural product found in Gentiana orbicularis, Swertia teres, and other organisms with data available. A member of the class of xanthones that is xanthone which is substituted by hydroxy groups at positions 1, 3, 5, and 8. A natural product found particularly in Iris nigricans and Gentiana campestris.
Geniposidic_acid
Geniposidic acid is a terpene glycoside. Geniposidic acid is a natural product found in Avicennia officinalis, Gardenia jasminoides, and other organisms with data available. Geniposidic acid has radiation protection and anti-cancer activity. Geniposidic acid has radiation protection and anti-cancer activity.
Dihydroxyacetone
A ketotriose consisting of acetone bearing hydroxy substituents at positions 1 and 3. The simplest member of the class of ketoses and the parent of the class of glycerones. 1,3-Dihydroxyacetone (DHA), the main active ingredient in sunless tanning skin-care preparations and an important precursor for the synthesis of various fine chemicals, is produced on an industrial scale by microbial fermentation of glycerol over Gluconobacter oxydans[1]. 1,3-Dihydroxyacetone (DHA), the main active ingredient in sunless tanning skin-care preparations and an important precursor for the synthesis of various fine chemicals, is produced on an industrial scale by microbial fermentation of glycerol over Gluconobacter oxydans[1].
afzelechin
Afzelechin is a flavan-3ol, a type of flavonoids. It can be found in Bergenia ligulata (aka Paashaanbhed in Ayurveda traditional Indian medicine).; Afzelechin-(4alpha?8)-afzelechin (molecular formula : C30H26O10, molar mass : 546.52 g/mol, exact mass : 546.152597, CAS number : 101339-37-1, Pubchem CID : 12395) is a B type proanthocyanidin. Ent-epiafzelechin-3-O-p-hydroxybenzoate-(4??8,2??O?7)-epiafzelechin) is an A-type proanthocyanidin found in apricots (Prunus armeniaca).
Afzelin
Afzelin is a glycosyloxyflavone that is kaempferol attached to an alpha-L-rhamnosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite, an antibacterial agent and an anti-inflammatory agent. It is a glycosyloxyflavone, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a kaempferol. It is a conjugate acid of an afzelin(1-). Afzelin is a natural product found in Premna odorata, Vicia tenuifolia, and other organisms with data available. A glycosyloxyflavone that is kaempferol attached to an alpha-L-rhamnosyl residue at position 3 via a glycosidic linkage. Acquisition and generation of the data is financially supported in part by CREST/JST. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1]. Afzelin (Kaempferol-3-O-rhamnoside)It is a flavonol glycoside that has anti-inflammatory, anti-oxidative stress response, anti-apoptotic, and anti-cardiac cytotoxic effects. AfzelinIt can reduce mitochondrial damage, enhance mitochondrial biosynthesis, and reduce mitochondria-related proteins. Parkinand PTENinduced putative kinase 1 (putative kinase 1)s level. AfzelinCan be improved D-galactosamine(GalN)/LPSSurvival rate of mice treated with doxorubicin prophylaxis (HY-15142A)Induced cardiotoxicity and scopolamine (HY-N0296)-induced neurological injury. AfzelinAlso inhibits asthma and allergies caused by ovalbumin[1][2][3][4]. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1].
zeta-Carotene
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE is 10 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE is 5 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan.
Cucurbitacin B
Cucurbitacin B belongs to a class of highly oxidized tetracyclic triterpenoids and is oral active. Cucurbitacin B inhibits tumor cell growth, migration and invasion and cycle arrest, but induces cell apoptosis. Cucurbitacin B has potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective activity[1][2][3][4][5]. Cucurbitacin B belongs to a class of highly oxidized tetracyclic triterpenoids and is oral active. Cucurbitacin B inhibits tumor cell growth, migration and invasion and cycle arrest, but induces cell apoptosis. Cucurbitacin B has potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective activity[1][2][3][4][5].
Lasiocarpine
Lasiocarpine appears as colorless plates or beige crystalline solid. (NTP, 1992) Lasiocarpine is a natural product found in Heliotropium arbainense, Heliotropium suaveolens, and other organisms with data available. See also: Comfrey Leaf (part of); Comfrey Root (part of).
Carene
(+)-car-3-ene is a car-3-ene (3,7,7-trimethylbicyclo[4.1.0]hept-3-ene) that has S configuration at position 1 and R configuration at position 6. It is an enantiomer of a (-)-car-3-ene. (+)-3-Carene is a natural product found in Molopospermum peloponnesiacum, Kippistia suaedifolia, and other organisms with data available.
Syringaresinol
(+)-syringaresinol is the (7alpha,7alpha,8alpha,8alpha)-stereoisomer of syringaresinol. It has a role as an antineoplastic agent. It is an enantiomer of a (-)-syringaresinol. (+)-Syringaresinol is a natural product found in Dracaena draco, Diospyros eriantha, and other organisms with data available. See also: Acai fruit pulp (part of). The (7alpha,7alpha,8alpha,8alpha)-stereoisomer of syringaresinol.
4Y6E3F2U66
Tryptanthrine is an organonitrogen heterocyclic compound, an organic heterotetracyclic compound and an alkaloid antibiotic. Indolo[2,1-b]quinazoline-6,12-dione is a natural product found in Isatis tinctoria, Cissus discolor, and other organisms with data available. Tryptanthrin is an indole quinazoline that could be an alkaloid from indigo-bearing plants. Tryptanthrin is a potent and orally active cellular Leukotriene (LT) biosynthesis inhibitor. Tryptanthrin has anticancer activity. Tryptanthrin suppresses the expression levels of NOS1, COX-2, and NF-κB and regulates the expression levels of IL-2, IL-10, and TNF-α[1][2]. Tryptanthrin is an indole quinazoline that could be an alkaloid from indigo-bearing plants. Tryptanthrin is a potent and orally active cellular Leukotriene (LT) biosynthesis inhibitor. Tryptanthrin has anticancer activity. Tryptanthrin suppresses the expression levels of NOS1, COX-2, and NF-κB and regulates the expression levels of IL-2, IL-10, and TNF-α[1][2].
MEGxp0_000167
Quercetin 3-O-(6-O-malonyl-beta-D-glucoside) is a quercetin O-glucoside that is quercetin attached to a 6-O-malonyl-beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite and a metabolite. It is a quercetin O-glucoside, a malonate ester, a beta-D-glucoside, a monosaccharide derivative and a tetrahydroxyflavone. Quercetin 3-O-malonylglucoside is a natural product found in Rubus glaucus, Smyrnium olusatrum, and other organisms with data available. See also: Moringa oleifera leaf (part of). A quercetin O-glucoside that is quercetin attached to a 6-O-malonyl-beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. Quercetin 3-O-(6''-O-malonyl)-β-D-glucoside, a natural flavonol glycoside, possesses antioxidant activity[1].
Erythromycin
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01F - Macrolides, lincosamides and streptogramins > J01FA - Macrolides D - Dermatologicals > D10 - Anti-acne preparations > D10A - Anti-acne preparations for topical use > D10AF - Antiinfectives for treatment of acne S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AA - Antibiotics D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic D005765 - Gastrointestinal Agents Origin: Microbe CONFIDENCE standard compound; INTERNAL_ID 1054 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.021 CONFIDENCE standard compound; INTERNAL_ID 4074 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2341; CONFIDENCE confident structure CONFIDENCE standard compound; EAWAG_UCHEM_ID 189 Erythromycin is a macrolide antibiotic produced by actinomycete?Streptomyces erythreus?with a broad spectrum of antimicrobial activity. Erythromycin binds to bacterial 50S ribosomal subunits and inhibits?RNA-dependent protein synthesis?by blockage of transpeptidation and/or translocation reactions, without affecting synthesis of nucleic acid[1][2]. Erythromycin also exhibits antitumor and neuroprotective effect in different fields of research[3][4]. Erythromycin is a macrolide antibiotic produced by actinomycete?Streptomyces erythreus?with a broad spectrum of antimicrobial activity. Erythromycin binds to bacterial 50S ribosomal subunits and inhibits?RNA-dependent protein synthesis?by blockage of transpeptidation and/or translocation reactions, without affecting synthesis of nucleic acid[1][2]. Erythromycin also exhibits antitumor and neuroprotective effect in different fields of research[3][4].
doxepin
D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AA - Non-selective monoamine reuptake inhibitors D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent > C94727 - Tricyclic Antidepressant D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists CONFIDENCE standard compound; INTERNAL_ID 1532
Clothianidin
An N-nitro compound consisting of 2-nitroguanidine having a (2-chloro-1,3-thiazol-5-yl)methyl group at position 1 and a methyl group at position 3. D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 2933
Methoxyfenozide
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 2935 EAWAG_UCHEM_ID 2935; CONFIDENCE standard compound
amantadine
N - Nervous system > N04 - Anti-parkinson drugs > N04B - Dopaminergic agents > N04BB - Adamantane derivatives D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent D002491 - Central Nervous System Agents > D000700 - Analgesics D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C254 - Anti-Infective Agent > C281 - Antiviral Agent C93038 - Cation Channel Blocker Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 2670 INTERNAL_ID 2670; CONFIDENCE standard compound CONFIDENCE standard compound; INTERNAL_ID 4147 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3124
etodolac
M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AB - Acetic acid derivatives and related substances D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D004791 - Enzyme Inhibitors > D016861 - Cyclooxygenase Inhibitors > D052246 - Cyclooxygenase 2 Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D006133 - Growth Substances > D010937 - Plant Growth Regulators > D007210 - Indoleacetic Acids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3308
Protopine
Annotation level-1 D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists relative retention time with respect to 9-anthracene Carboxylic Acid is 0.601 D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics relative retention time with respect to 9-anthracene Carboxylic Acid is 0.596 IPB_RECORD: 1441; CONFIDENCE confident structure Protopine (Corydinine), an isoquinoline alkaloid, is a specific reversible and competitive inhibitor of acetylcholinesterase. Protopine exhibits anti-inflammation, anti-microbial, anti-angiogenic and anti-tumour activity[1][2]. Protopine (Corydinine), an isoquinoline alkaloid, is a specific reversible and competitive inhibitor of acetylcholinesterase. Protopine exhibits anti-inflammation, anti-microbial, anti-angiogenic and anti-tumour activity[1][2].
Spectinomycin
A pyranobenzodioxin and antibiotic that is active against gram-negative bacteria and used (as its dihydrochloride pentahydrate) to treat gonorrhea. It is produced by the bacterium Streptomyces spectabilis. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic relative retention time with respect to 9-anthracene Carboxylic Acid is 0.046 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.045
terfenadine
R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist Terfenadine ((±)-Terfenadine) is a potent open-channel blocker of hERG with an IC50 of 204 nM[1]. Terfenadine, an H1 histamine receptor antagonist, acts as a potent apoptosis inducer in melanoma cells through modulation of Ca2+ homeostasis. Terfenadine induces ROS-dependent apoptosis, simultaneously activates Caspase-4, -2, -9[2].
Vecuronium
D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents M - Musculo-skeletal system > M03 - Muscle relaxants > M03A - Muscle relaxants, peripherally acting agents D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists
Geniposidic acid
Geniposidic acid has radiation protection and anti-cancer activity. Geniposidic acid has radiation protection and anti-cancer activity.
Swertiamarin
Annotation level-1 Swertiamarin, a secoiridoid glycoside found in genera of Enicostemma littorale, confers anti-hyperglycemic and anti-hyperlipidemic effects[1]. Swertiamarin, a secoiridoid glycoside found in genera of Enicostemma littorale, confers anti-hyperglycemic and anti-hyperlipidemic effects[1].
Atractylenolide III
Annotation level-1 Atractylenolide-III is the main component of Atractylodes rhizome and has the activity of inducing apoptosis in lung cancer cells. Atractylenolide-III is the main component of Atractylodes rhizome and has the activity of inducing apoptosis in lung cancer cells.
Cytidine
MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; UHDGCWIWMRVCDJ_STSL_0155_Cytidine_8000fmol_180506_S2_LC02_MS02_107; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.051 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053 Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3]. Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3]. Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3].
Inosine
G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06B - Chemotherapeutics for topical use > D06BB - Antivirals Formula(Parent): C10H12N4O5; Bottle Name:Inosine; PRIME Parent Name:Inosine; PRIME in-house No.:0256, Purines COVID info from COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials S - Sensory organs > S01 - Ophthalmologicals Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; UGQMRVRMYYASKQ_STSL_0164_Inosine_2000fmol_180430_S2_LC02_MS02_125; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053 Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3].
Cortisone acetate
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D000893 - Anti-Inflammatory Agents Cortisone acetate (Cortisone 21-acetate), an oxidized metabolite of Cortisol (a Glucocorticoid). Cortisone acetate acts as an immunosuppressant and anti-inflammatory agent. Cortisone acetate can partially intervene in binding of Glucocorticoid to Glucocorticoid-receptor at high concentrations[1][3][4].
Tazarotene
C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C804 - Retinoic Acid Agent D - Dermatologicals > D05 - Antipsoriatics > D05A - Antipsoriatics for topical use C308 - Immunotherapeutic Agent > C129820 - Antineoplastic Immunomodulating Agent D003879 - Dermatologic Agents > D007641 - Keratolytic Agents D009676 - Noxae > D013723 - Teratogens Same as: D01132
cefdinir
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DD - Third-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams A cephalosporin compound having 7beta-2-(2-amino-thiazol-4-yl)-2-[(Z)-hydroxyimino]-acetylamino- and 3-vinyl side groups. C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic It is used as a food additive .
Zolmitriptan
N - Nervous system > N02 - Analgesics > N02C - Antimigraine preparations > N02CC - Selective serotonin (5ht1) agonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist D000890 - Anti-Infective Agents > D023303 - Oxazolidinones
rimantadine
J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AC - Cyclic amines D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C254 - Anti-Infective Agent > C281 - Antiviral Agent
Valdecoxib
M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AH - Coxibs D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D004791 - Enzyme Inhibitors > D016861 - Cyclooxygenase Inhibitors > D052246 - Cyclooxygenase 2 Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents
Ureidopropionic acid
A beta-alanine derivative that is propionic acid bearing a ureido group at position 3. Ureidopropionic acid, also known as 3-ureidopropionate or N-carbamoyl-beta-alanine, is a member of the class of compounds known as ureas. Ureas are compounds containing two amine groups joined by a carbonyl (C=O) functional group. Ureidopropionic acid is soluble (in water) and a weakly acidic compound (based on its pKa). Ureidopropionic acid can be found in a number of food items such as brussel sprouts, cascade huckleberry, common sage, and atlantic herring, which makes ureidopropionic acid a potential biomarker for the consumption of these food products. Ureidopropionic acid can be found primarily in blood, cerebrospinal fluid (CSF), feces, and urine. In humans, ureidopropionic acid is involved in a couple of metabolic pathways, which include beta-alanine metabolism and pyrimidine metabolism. Ureidopropionic acid is also involved in several metabolic disorders, some of which include MNGIE (mitochondrial neurogastrointestinal encephalopathy), dihydropyrimidinase deficiency, UMP synthase deficiency (orotic aciduria), and gaba-transaminase deficiency. Ureidopropionic acid (3-Ureidopropionic acid) is an intermediate in the metabolism of uracil.
dethiobiotin
A hexanoic acid having a 5-methyl-2-oxoimidazolidin-4-yl group at the 6-position. D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D050258 - Mitosis Modulators > D008934 - Mitogens D-Desthiobiotin is a biotin derivative used in affinity chromatography and protein chromatography. D-Desthiobiotin also can be used for protein and cell labeling, detection and isolation[1].
N-Acetyl-L-leucine
The N-acetyl derivative of L-leucine. N-Acetyl-L-leucine is an endogenous metabolite.
Cycloleucine
C308 - Immunotherapeutic Agent > C574 - Immunosuppressant
O-Acetyl-L-serine
An acetyl-L-serine where the acetyl group is attached to the side-chain oxygen. It is an intermediate in the biosynthesis of the amino acid cysteine in bacteria. O-Acetylserine (O-Acetyl-L-serine) is an intermediate in the biosynthesis of the amino acid cysteine in bacteria and plants. O-Acetyl-L-serine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=5147-00-2 (retrieved 2024-09-27) (CAS RN: 5147-00-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Penicillin G
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CE - Beta-lactamase sensitive penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AA - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
Cafestol
Cafestol is an organic heteropentacyclic compound and furan diterpenoid with formula C20H28O3 obtained from the unsaponifiable fraction of coffee oil (a lipid fraction obtained from coffee beans by organic solvent extraction). It has a role as a plant metabolite, an apoptosis inducer, a hypoglycemic agent, an angiogenesis inhibitor, an antineoplastic agent, an antioxidant and an anti-inflammatory agent. It is an organic heteropentacyclic compound, a tertiary alcohol, a diterpenoid, a member of furans and a primary alcohol. Cafestol is a natural product found in Coffea arabica, Diplospora dubia, and other organisms with data available. An organic heteropentacyclic compound and furan diterpenoid with formula C20H28O3 obtained from the unsaponifiable fraction of coffee oil (a lipid fraction obtained from coffee beans by organic solvent extraction). Cafestol, one of the major components of coffee, is a coffee-specific diterpene from. Cafestol is a ERK inhibitor for AP-1-targeted activity against PGE2 production and the mRNA expression of cyclooxygenase (COX)-2 in LPS-activated RAW264.7 cells. Cafestol has strong inhibitory activity on PGE2 production by suppressing the NF-kB activation pathway. Cafestol contributes to its beneficial effects through various biological activities such as chemopreventive, antitumorigenic, hepatoprotective, antioxidative and antiinflammatory effects[1]. Cafestol, one of the major components of coffee, is a coffee-specific diterpene from. Cafestol is a ERK inhibitor for AP-1-targeted activity against PGE2 production and the mRNA expression of cyclooxygenase (COX)-2 in LPS-activated RAW264.7 cells. Cafestol has strong inhibitory activity on PGE2 production by suppressing the NF-kB activation pathway. Cafestol contributes to its beneficial effects through various biological activities such as chemopreventive, antitumorigenic, hepatoprotective, antioxidative and antiinflammatory effects[1]. Cafestol, one of the major components of coffee, is a coffee-specific diterpene from. Cafestol is a ERK inhibitor for AP-1-targeted activity against PGE2 production and the mRNA expression of cyclooxygenase (COX)-2 in LPS-activated RAW264.7 cells. Cafestol has strong inhibitory activity on PGE2 production by suppressing the NF-kB activation pathway. Cafestol contributes to its beneficial effects through various biological activities such as chemopreventive, antitumorigenic, hepatoprotective, antioxidative and antiinflammatory effects[1].
isopropanol
D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants D012997 - Solvents
Selenocystine
D000890 - Anti-Infective Agents > D000998 - Antiviral Agents
Carbocysteine
R - Respiratory system > R05 - Cough and cold preparations > R05C - Expectorants, excl. combinations with cough suppressants > R05CB - Mucolytics C78273 - Agent Affecting Respiratory System > C74536 - Mucolytic Agent D019141 - Respiratory System Agents > D005100 - Expectorants D000890 - Anti-Infective Agents
(E)-Cefixime
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DD - Third-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams A third-generation cephalosporin antibiotic bearing vinyl and (2Z)-2-(2-amino-1,3-thiazol-4-yl)-2-[(carboxymethoxy)imino]acetamido groups at positions 3 and 7, respectively, of the cephem skeleton. It is used in the treatment of gonorrhoea, tonsilitis, pharyngitis, bronchitis, and urinary tract infections. C254 - Anti-Infective Agent > C258 - Antibiotic > C61101 - Glycopeptide Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
indole-3-acetamide
A member of the class of indoles that is acetamide substituted by a 1H-indol-3-yl group at position 2. It is an intermediate in the production of plant hormone indole acetic acid (IAA). D006133 - Growth Substances > D010937 - Plant Growth Regulators > D007210 - Indoleacetic Acids Indole-3-acetamide is a biosynthesis intermediate of indole-3-acetic acid (HY-18569). Indole-3-acetic acid is the most common natural plant growth hormone of the auxin class[1].
N-Formylmethionine
A L-methionine derivative in which one of the hydrogens attached to the nitrogen is replaced by a formyl group. For-Met-OH is an endogenous metabolite.
sumatriptan
N - Nervous system > N02 - Analgesics > N02C - Antimigraine preparations > N02CC - Selective serotonin (5ht1) agonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents Sumatriptan (GR 43175) is an orally active 5-HT1 receptor agonist with IC50s of 7.3 nm, 9.3nm and 17.8 nm for 5-HT1D, 5-HT1B and 5-HT1F receptors, respectively. Sumatriptan can be used for migraine headache research[1][2][3][4].
Visnagin
D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Visnagin, an antioxidant furanocoumarin derivative, possess anti-inflammatory and analgesic properties. Visnagin has substantial potential to prevent Cerulein induced acute pancreatitis (AP). Visnagin possess promising vasodilator effects in vascular smooth muscles[1][2]. Visnagin, an antioxidant furanocoumarin derivative, possess anti-inflammatory and analgesic properties. Visnagin has substantial potential to prevent Cerulein induced acute pancreatitis (AP). Visnagin possess promising vasodilator effects in vascular smooth muscles[1][2].
Cholestane
AFLATOXIN M1
A member of the class of aflatoxins that is aflatoxin B1 in which the hydrogen at position 9a is replaced by a hydroxy group. D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D000348 - Aflatoxins CONFIDENCE Reference Standard (Level 1)
Thiamethoxam
D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids D016573 - Agrochemicals
cyclothiazide
C - Cardiovascular system > C03 - Diuretics > C03A - Low-ceiling diuretics, thiazides > C03AA - Thiazides, plain C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49185 - Thiazide Diuretic D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D004232 - Diuretics Same as: D01256 Cyclothiazide, a positive allosteric modulator of AMPA receptors, is used frequently to block the desensitization of both native and heterologously expressed AMPA receptors. Cyclothiazide is known to produce a fast inhibition of AMPA receptor desensitization and a much slower potentiation of the AMPA current[1].
PENTOSTATIN
A member of the class of coformycins that is coformycin in which the hydroxy group at position 2 is replaced with a hydrogen. It is a drug used for the treatment of hairy cell leukaemia. D000970 - Antineoplastic Agents > D000903 - Antibiotics, Antineoplastic > D005573 - Formycins L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents D004791 - Enzyme Inhibitors > D058892 - Adenosine Deaminase Inhibitors C471 - Enzyme Inhibitor > C2157 - Adenosine Deaminase Inhibitor
Vincamin
C - Cardiovascular system > C04 - Peripheral vasodilators > C04A - Peripheral vasodilators D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000970 - Antineoplastic Agents > D014748 - Vinca Alkaloids CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2327 Vincamine?is a monoterpenoid indole alkaloid extracted from the?Madagascar periwinkle. Vincamine?is a peripheral?vasodilator?and exerts a selective vasoregulator action on the brain microcapilar circulation[1]. Vincamine?is a?GPR40?agonist and acts as a β-cell protector by ameliorating β-cell dysfunction and promoting glucose-stimulated insulin secretion (GSIS).?Vincamine?improves glucose homeostasis?in vivo, and has the potential for the type 2 diabetes mellitus (T2DM) research[2]. Vincamine?is a monoterpenoid indole alkaloid extracted from the?Madagascar periwinkle. Vincamine?is a peripheral?vasodilator?and exerts a selective vasoregulator action on the brain microcapilar circulation[1]. Vincamine?is a?GPR40?agonist and acts as a β-cell protector by ameliorating β-cell dysfunction and promoting glucose-stimulated insulin secretion (GSIS).?Vincamine?improves glucose homeostasis?in vivo, and has the potential for the type 2 diabetes mellitus (T2DM) research[2].
Protirelin
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C76367 - Thyrotropin-Releasing Hormone Analogue V - Various > V04 - Diagnostic agents > V04C - Other diagnostic agents > V04CJ - Tests for thyreoidea function A tripeptide composed of L-pyroglutamyl, L-histidyl and L-prolinamide residues joined in sequence. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Protirelin is a highly conserved neuropeptide that exerts the hormonal control of thyroid-stimulating hormone (TSH) levels as well as neuromodulatory functions.
acetazolamide
S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EC - Carbonic anhydrase inhibitors D004791 - Enzyme Inhibitors > D002257 - Carbonic Anhydrase Inhibitors D002491 - Central Nervous System Agents > D000927 - Anticonvulsants C471 - Enzyme Inhibitor > C29577 - Carbonic Anhydrase Inhibitor D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic D045283 - Natriuretic Agents > D004232 - Diuretics CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2118; ORIGINAL_PRECURSOR_SCAN_NO 2116 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2116; ORIGINAL_PRECURSOR_SCAN_NO 2114 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2122; ORIGINAL_PRECURSOR_SCAN_NO 2121 INTERNAL_ID 366; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2122; ORIGINAL_PRECURSOR_SCAN_NO 2121 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2106; ORIGINAL_PRECURSOR_SCAN_NO 2104 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2172; ORIGINAL_PRECURSOR_SCAN_NO 2170 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2116; ORIGINAL_PRECURSOR_SCAN_NO 2112 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4436; ORIGINAL_PRECURSOR_SCAN_NO 4434 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4453; ORIGINAL_PRECURSOR_SCAN_NO 4450 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4473; ORIGINAL_PRECURSOR_SCAN_NO 4469 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4469; ORIGINAL_PRECURSOR_SCAN_NO 4466 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4488; ORIGINAL_PRECURSOR_SCAN_NO 4483 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4487; ORIGINAL_PRECURSOR_SCAN_NO 4484
FA 20:4;O3
D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents
FA 20:4;O4
D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides
Prostaglandin B1
A member of the class of prostaglandins B that is prosta-8(12),13-dien-1-oic acid carrying oxo and hydroxy substituents at positions 9 and 15 respectively (the 13E,15S-stereoisomer).
ST 23:5;O6
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D000893 - Anti-Inflammatory Agents Cortisone acetate (Cortisone 21-acetate), an oxidized metabolite of Cortisol (a Glucocorticoid). Cortisone acetate acts as an immunosuppressant and anti-inflammatory agent. Cortisone acetate can partially intervene in binding of Glucocorticoid to Glucocorticoid-receptor at high concentrations[1][3][4].
N,N-Diacetylchitobiose
The N,N-diacetylated derivative of chitobiose, but with no stereodesignation for the anomeric carbon atom. N,N'-Diacetylchitobiose is a dimer of β(1,4) linked N-acetyl-D glucosamine. N,N'-Diacetylchitobiose is the hydrolysate of chitin and can be used as alternative carbon source by?E. coli[1].
Quinupristin
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D025361 - Streptogramins C254 - Anti-Infective Agent > C258 - Antibiotic Quinupristin is a streptogramin antibiotic. Quinupristin blocks peptide bond synthesis to prevent the extension of polypeptide chains and promote the detachment of incomplete protein chains in the bacterial ribosomal subunits[1] [2].
Medrysone
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BA - Corticosteroids, plain C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid Same as: D02289
Flucloxacillin
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CF - Beta-lactamase resistant penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
Atractylenolide I
Atractylenolide I is a sesquiterpene derived from the rhizome of Atractylodes macrocephala, possesses diverse bioactivities, such as neuroprotective, anti-allergic, anti-inflammatory and anticancer properties. Atractylenolide I reduces protein levels of phosphorylated JAK2 and STAT3 in A375 cells, and acts as a TLR4-antagonizing agent. Atractylenolide I is a sesquiterpene derived from the rhizome of Atractylodes macrocephala, possesses diverse bioactivities, such as neuroprotective, anti-allergic, anti-inflammatory and anticancer properties. Atractylenolide I reduces protein levels of phosphorylated JAK2 and STAT3 in A375 cells, and acts as a TLR4-antagonizing agent.
Atractylenolide-III
Atractylenolide-III is the main component of Atractylodes rhizome and has the activity of inducing apoptosis in lung cancer cells. Atractylenolide-III is the main component of Atractylodes rhizome and has the activity of inducing apoptosis in lung cancer cells.
α-Pinene
A pinene that is bicyclo[3.1.1]hept-2-ene substituted by methyl groups at positions 2, 6 and 6 respectively. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1].
Myrcene
Myrcene (β-Myrcene), an aromatic volatile compound, suppresses TNFα-induced NF-κB activity. Myrcene has anti-invasive effect[1][2]. Myrcene (β-Myrcene), an aromatic volatile compound, suppresses TNFα-induced NF-κB activity. Myrcene has anti-invasive effect[1][2].
SCM 3B
soyasaponin Bb is a soyasaponin isolated from Phaseolus vulgaris, acting as an aldose reductase differential inhibitor (ARDI)[1]. soyasaponin Bb is a soyasaponin isolated from Phaseolus vulgaris, acting as an aldose reductase differential inhibitor (ARDI)[1].
Farnesene
Isol. (without stereochemical distinction) from oil of Cymbopogon nardus (citronella), Cananga odorata (ylang ylang) and others (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2]. (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2].
Nonacosane
Nonacosane, isolated from Baphia massaiensis, exhibits weak activities against E. coli, B. subtilis, P. aeruginosa and S. aureus[1]. Nonacosane, isolated from Baphia massaiensis, exhibits weak activities against E. coli, B. subtilis, P. aeruginosa and S. aureus[1].
CHEBI:19809
118-65-0
D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents β-Caryophyllene is a CB2 receptor agonist. β-Caryophyllene is a CB2 receptor agonist.
LS-2530
2-Methoxy-4-vinylphenol (2M4VP), a naturally Germination inhibitor, exerts potent anti-inflammatory effects[1][2]. 2-Methoxy-4-vinylphenol (2M4VP), a naturally Germination inhibitor, exerts potent anti-inflammatory effects[1][2].
Tryptanthrin
Tryptanthrin is an indole quinazoline that could be an alkaloid from indigo-bearing plants. Tryptanthrin is a potent and orally active cellular Leukotriene (LT) biosynthesis inhibitor. Tryptanthrin has anticancer activity. Tryptanthrin suppresses the expression levels of NOS1, COX-2, and NF-κB and regulates the expression levels of IL-2, IL-10, and TNF-α[1][2]. Tryptanthrin is an indole quinazoline that could be an alkaloid from indigo-bearing plants. Tryptanthrin is a potent and orally active cellular Leukotriene (LT) biosynthesis inhibitor. Tryptanthrin has anticancer activity. Tryptanthrin suppresses the expression levels of NOS1, COX-2, and NF-κB and regulates the expression levels of IL-2, IL-10, and TNF-α[1][2].
elatericin A
Cucurbitacin D is an active component in Trichosanthes kirilowii, disrupts interactions between Hsp90 and two co-chaperones, Cdc37 and p23. Cucurbitacin D prevents Hsp90 client (Her2, Raf, Cdk6, pAkt) maturation without induction of the heat shock response. Anti-cancer activity[1]. Cucurbitacin D is an active component in Trichosanthes kirilowii, disrupts interactions between Hsp90 and two co-chaperones, Cdc37 and p23. Cucurbitacin D prevents Hsp90 client (Her2, Raf, Cdk6, pAkt) maturation without induction of the heat shock response. Anti-cancer activity[1].
c0264
1,2,4-Trihydroxybenzene (Hydroxyhydroquinone), a by-product of coffee bean roasting, increases intracellular Ca2+ concentration in rat thymic lymphocytes[1]. 1,2,4-Trihydroxybenzene (Hydroxyhydroquinone), a by-product of coffee bean roasting, increases intracellular Ca2+ concentration in rat thymic lymphocytes[1].
Eskel
D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Khellin is a furochromone that can be isolated from Ammi visnuga L.. Khellin is an EGFR inhibitor with an IC50 of 0.15 μM. Khelline has anti-proliferative activity in vitro. Khellin has antispasmodic and coronary vasodilator effects[1][2]. Khellin is a furochromone that can be isolated from Ammi visnuga L.. Khellin is an EGFR inhibitor with an IC50 of 0.15 μM. Khelline has anti-proliferative activity in vitro. Khellin has antispasmodic and coronary vasodilator effects[1][2].
480-66-0
Phloracetophenone (2,4,6-trihydroxyacetophenone) is the aglycone part of acetophenone glycoside obtained from Curcuma comosa Roxb, with cholesterol-lowering activity. Phloracetophenone enhances cholesterol 7α-hydroxylase (CYP7A1) activity[1]. Phloracetophenone stimulats bile secretion mediated through Mrp2[2]. Phloracetophenone (2,4,6-trihydroxyacetophenone) is the aglycone part of acetophenone glycoside obtained from Curcuma comosa Roxb, with cholesterol-lowering activity. Phloracetophenone enhances cholesterol 7α-hydroxylase (CYP7A1) activity[1]. Phloracetophenone stimulats bile secretion mediated through Mrp2[2].
Soleal
1,3-Dihydroxyacetone (DHA), the main active ingredient in sunless tanning skin-care preparations and an important precursor for the synthesis of various fine chemicals, is produced on an industrial scale by microbial fermentation of glycerol over Gluconobacter oxydans[1]. 1,3-Dihydroxyacetone (DHA), the main active ingredient in sunless tanning skin-care preparations and an important precursor for the synthesis of various fine chemicals, is produced on an industrial scale by microbial fermentation of glycerol over Gluconobacter oxydans[1].
Ostreasterol
24-Methylenecholesterol (Ostreasterol), a natural marine sterol, stimulates cholesterol acyltransferase in human macrophages. 24-Methylenecholesterol possess anti-aging effects in yeast. 24-methylenecholesterol enhances honey bee longevity and improves nurse bee physiology[1][2][3].
Bellidofolin
Bellidifolin is a xanthone isolated from the stems of Swertia punicea, with hepatoprotective, hypoglycemic, anti-oxidation, anti-inflammatory and antitumor activities[1][2][3]. Bellidifolin also acts as a viral protein R (Vpr) inhibitor[4]. Bellidifolin is a xanthone isolated from the stems of Swertia punicea, with hepatoprotective, hypoglycemic, anti-oxidation, anti-inflammatory and antitumor activities[1][2][3]. Bellidifolin also acts as a viral protein R (Vpr) inhibitor[4].
Tulipane
D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents Tulipalin A (α-Methylene butyrolactone) is a glycoside. Tulipalin A is a causative allergen that induces Allergic contact dermatitides[1]. Tulipalin A (α-Methylene butyrolactone) at low dose affects the functionality of immune cells, such as Jurkat T cells[2]. Tulipalin A (α-Methylene butyrolactone) is a glycoside. Tulipalin A is a causative allergen that induces Allergic contact dermatitides[1]. Tulipalin A (α-Methylene butyrolactone) at low dose affects the functionality of immune cells, such as Jurkat T cells[2].
11-Dehydro-thromboxane B2
A thromboxane obtained by formal oxidation of the hemiacetal hydroxy function of thromboxane B2.
11beta-Chloromethylestradiol
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
Dacarbazine
L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents D009676 - Noxae > D000477 - Alkylating Agents D000970 - Antineoplastic Agents Dacarbazine appears as white to ivory microcrystals or off-white crystalline solid. (NTP, 1992) (E)-dacarbazine is a dacarbazine in which the N=N double bond adopts a trans-configuration. An antineoplastic agent. It has significant activity against melanomas. (from Martindale, The Extra Pharmacopoeia, 31st ed, p564). Dacarbazine with Oblimersen is in clinical trials for the treatment of malignant melanoma. Dacarbazine is an Alkylating Drug. The mechanism of action of dacarbazine is as an Alkylating Activity. Dacarbazine (also known as DTIC) is an intravenously administered alkylating agent used in the therapy of Hodgkin disease and malignant melanoma. Dacarbazine therapy has been associated with serum enzyme elevations during therapy and occasional cases of severe and distinctive acute hepatic failure, probably caused by acute sinusoidal obstruction syndrome. Dacarbazine is a triazene derivative with antineoplastic activity. Dacarbazine alkylates and cross-links DNA during all phases of the cell cycle, resulting in disruption of DNA function, cell cycle arrest, and apoptosis. (NCI04) An antineoplastic agent. It has significant activity against melanomas. (from Martindale, The Extra Pharmacopoeia, 31st ed, p564) C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent
Cuc B
Cucurbitacin B is a cucurbitacin in which a lanostane skeleton is multi-substituted with hydroxy, methyl and oxo substituents, with unsaturation at positions 5 and 23; a hydroxy function at C-25 is acetylated. It is a cucurbitacin, a secondary alpha-hydroxy ketone and a tertiary alpha-hydroxy ketone. It derives from a hydride of a lanostane. Cucurbitacin B is a natural product found in Begonia plebeja, Trichosanthes miyagii, and other organisms with data available. A cucurbitacin in which a lanostane skeleton is multi-substituted with hydroxy, methyl and oxo substituents, with unsaturation at positions 5 and 23; a hydroxy function at C-25 is acetylated. Cucurbitacin B belongs to a class of highly oxidized tetracyclic triterpenoids and is oral active. Cucurbitacin B inhibits tumor cell growth, migration and invasion and cycle arrest, but induces cell apoptosis. Cucurbitacin B has potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective activity[1][2][3][4][5]. Cucurbitacin B belongs to a class of highly oxidized tetracyclic triterpenoids and is oral active. Cucurbitacin B inhibits tumor cell growth, migration and invasion and cycle arrest, but induces cell apoptosis. Cucurbitacin B has potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective activity[1][2][3][4][5].
Bellidifolin
Bellidifolin is a member of the xanthone family that is bellidin substituted with a methyl group at O-3. A natural product found particularly in Swertia chirata and Gentianella campestris. It has a role as an EC 3.1.1.7 (acetylcholinesterase) inhibitor, a hypoglycemic agent and a metabolite. It is a member of xanthones and a polyphenol. It is functionally related to a bellidin. Bellidifolin is a natural product found in Gentiana orbicularis, Gentianella amarella, and other organisms with data available. A member of the xanthone family that is bellidin substituted with a methyl group at O-3. A natural product found particularly in Swertia chirata and Gentianella campestris. Bellidifolin is a xanthone isolated from the stems of Swertia punicea, with hepatoprotective, hypoglycemic, anti-oxidation, anti-inflammatory and antitumor activities[1][2][3]. Bellidifolin also acts as a viral protein R (Vpr) inhibitor[4]. Bellidifolin is a xanthone isolated from the stems of Swertia punicea, with hepatoprotective, hypoglycemic, anti-oxidation, anti-inflammatory and antitumor activities[1][2][3]. Bellidifolin also acts as a viral protein R (Vpr) inhibitor[4].
Cucurbitacin_D
Cucurbitacin D is a cucurbitacin in which a lanostane skeleton is multi-substituted with hydroxy, methyl and oxo substituents, with unsaturation at positions 5 and 23. It is a cucurbitacin, a secondary alpha-hydroxy ketone and a tertiary alpha-hydroxy ketone. It derives from a hydride of a lanostane. Cucurbitacin D is a natural product found in Elaeocarpus chinensis, Elaeocarpus hainanensis, and other organisms with data available. A cucurbitacin in which a lanostane skeleton is multi-substituted with hydroxy, methyl and oxo substituents, with unsaturation at positions 5 and 23. Cucurbitacin D is an active component in Trichosanthes kirilowii, disrupts interactions between Hsp90 and two co-chaperones, Cdc37 and p23. Cucurbitacin D prevents Hsp90 client (Her2, Raf, Cdk6, pAkt) maturation without induction of the heat shock response. Anti-cancer activity[1]. Cucurbitacin D is an active component in Trichosanthes kirilowii, disrupts interactions between Hsp90 and two co-chaperones, Cdc37 and p23. Cucurbitacin D prevents Hsp90 client (Her2, Raf, Cdk6, pAkt) maturation without induction of the heat shock response. Anti-cancer activity[1].
canthinone
Canthin-6-one is an indole alkaloid that is 6H-indolo[3,2,1-de][1,5]naphthyridine substituted by an oxo group at position 6. It has a role as a metabolite and an antimycobacterial drug. It is an indole alkaloid, an organic heterotetracyclic compound and an enone. Canthin-6-one is a natural product found in Zanthoxylum mayu, Zanthoxylum ovalifolium, and other organisms with data available. An indole alkaloid that is 6H-indolo[3,2,1-de][1,5]naphthyridine substituted by an oxo group at position 6. D016573 - Agrochemicals D010575 - Pesticides Canthin-6-one displays a wide range of biological activities, such as antimycobacterial activity[1]. Canthin-6-one displays a wide range of biological activities, such as antimycobacterial activity[1].
Tulipalin_A
Alpha-methylene gamma-butyrolactone is a butan-4-olide having a methylene group at the 3-position. It has a role as a gastrointestinal drug and an anti-ulcer drug. alpha-Methylene-gamma-butyrolactone is a natural product found in Tulipa agenensis, Tulipa humilis, and other organisms with data available. D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents Tulipalin A (α-Methylene butyrolactone) is a glycoside. Tulipalin A is a causative allergen that induces Allergic contact dermatitides[1]. Tulipalin A (α-Methylene butyrolactone) at low dose affects the functionality of immune cells, such as Jurkat T cells[2]. Tulipalin A (α-Methylene butyrolactone) is a glycoside. Tulipalin A is a causative allergen that induces Allergic contact dermatitides[1]. Tulipalin A (α-Methylene butyrolactone) at low dose affects the functionality of immune cells, such as Jurkat T cells[2].
Lactopicrin
Lactucopicrin is an azulenofuran, a cyclic terpene ketone, an enone, a member of phenols, a sesquiterpene lactone and a primary alcohol. It has a role as a plant metabolite, a sedative and an antimalarial. It is functionally related to a 4-hydroxyphenylacetic acid and a lactucin. Lactupicrin is a natural product found in Cichorium endivia, Cichorium spinosum, and other organisms with data available. Lactupicrin (Lactucopicrin) is a characteristic bitter sesquiterpene lactone that can relieve pain. Lactupicrin exhibits atheroprotective effect[1][2]. Lactupicrin (Lactucopicrin) is a characteristic bitter sesquiterpene lactone that can relieve pain. Lactupicrin exhibits atheroprotective effect[1][2].
thiouracil
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D013956 - Antithyroid Agents A nucleobase analogue that is uracil in which the oxo group at C-2 is replaced by a thioxo group. C471 - Enzyme Inhibitor > C29574 - Nitric Oxide Synthase Inhibitor D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents 2-Thiouracil (Thiouracil) is an antithyroid compound. 2-Thiouracil can function as a highly specific melanoma seeker. 2-Thiouracil is a selective inhibitor of neuronal nitric oxide synthase (nNOS) with a Ki of 20 μM[1][2].
Dienestrol
G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CC - Estrogens, combinations with other drugs G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CB - Synthetic estrogens, plain D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen
(+)-Camphene
A monoterpene with a bicyclic skeleton that is bicyclo[2.2.1]heptane substituted by geminal methyl groups at position 2 and a methylidene group at position 3. It is a widespread natural product found in many essential oils.
4,4-Diphenylmethane diisocyanate
COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
trans-1,3-Dichloropropene
D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals
ethionamide
J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04A - Drugs for treatment of tuberculosis > J04AD - Thiocarbamide derivatives D000963 - Antimetabolites > D000960 - Hypolipidemic Agents > D054872 - Fatty Acid Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Ethionamide (2-ethylthioisonicotinamide) is a second-line anti-tuberculosis antibiotic.
thiotepa
L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents > L01AC - Ethylene imines C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000970 - Antineoplastic Agents > D019653 - Myeloablative Agonists D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D009676 - Noxae > D000477 - Alkylating Agents
Carbenicillin
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CA - Penicillins with extended spectrum D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic A penicillin antibiotic having a 6beta-2-carboxy-2-phenylacetamido side-chain.
Isosorbide Mononitrate
C - Cardiovascular system > C01 - Cardiac therapy > C01D - Vasodilators used in cardiac diseases > C01DA - Organic nitrates C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D002317 - Cardiovascular Agents > D020030 - Nitric Oxide Donors D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents
Cefoxitin
A semisynthetic cephamycin antibiotic which, in addition to the methoxy group at the 7alpha position, has 2-thienylacetamido and carbamoyloxymethyl side-groups. It is resistant to beta-lactamase. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DC - Second-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002513 - Cephamycins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
chlorphenesin
D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D002491 - Central Nervous System Agents
GUANFACINE
C - Cardiovascular system > C02 - Antihypertensives > C02A - Antiadrenergic agents, centrally acting > C02AC - Imidazoline receptor agonists C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents
5-Cytidylic acid
COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Cytidine 5'-monophosphate (5'-Cytidylic acid) is a nucleotide which is used as a monomer in RNA. Cytidine 5'-monophosphate consists of the nucleobase cytosine, the pentose sugar ribose, and the phosphate group[1]. Cytidine 5'-monophosphate (5'-Cytidylic acid) is a nucleotide which is used as a monomer in RNA. Cytidine 5'-monophosphate consists of the nucleobase cytosine, the pentose sugar ribose, and the phosphate group[1].
Methylarsonic acid
D010575 - Pesticides > D006540 - Herbicides D009676 - Noxae > D013723 - Teratogens D016573 - Agrochemicals
Zanamivir
J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AH - Neuraminidase inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C254 - Anti-Infective Agent > C281 - Antiviral Agent D004791 - Enzyme Inhibitors
Cefmetazole
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DC - Second-generation cephalosporins A cephalosporin antibiotic containg an N(1)-methyltetrazol-5-ylthiomethyl side-chain at C-3 of the parent cephem bicyclic structure. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002513 - Cephamycins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
midodrine
C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents Midodrine is an α1-receptor agonist, for the treatment of dysautonomia and orthostatic hypotension.
Paromomycin
An amino cyclitol glycoside that is the 1-O-(2-amino-2-deoxy-alpha-D-glucopyranoside) and the 3-O-(2,6-diamino-2,6-dideoxy-beta-L-idopyranosyl)-beta-D-ribofuranoside of 4,6-diamino-2,3-dihydroxycyclohexane (the 1R,2R,3S,4R,6S diastereoisomer). It is obtained from various Streptomyces species. A broad-spectrum antibiotic, it is used (generally as the sulfate salt) for the treatment of acute and chronic intestinal protozoal infections, but is not effective for extraintestinal protozoal infections. It is also used as a therapeutic against visceral leishmaniasis. A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AA - Antibiotics D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic
1,2,4-BENZENETRIOL
A benzenetriol carrying hydroxy groups at positions 1, 2 and 4. 1,2,4-Trihydroxybenzene (Hydroxyhydroquinone), a by-product of coffee bean roasting, increases intracellular Ca2+ concentration in rat thymic lymphocytes[1]. 1,2,4-Trihydroxybenzene (Hydroxyhydroquinone), a by-product of coffee bean roasting, increases intracellular Ca2+ concentration in rat thymic lymphocytes[1].
Vecuronium
A 5alpha-androstane compound having 3alpha-acetoxy-, 17beta-acetoxy-, 2beta-piperidino- and 16beta-N-methylpiperidinium substituents. D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents M - Musculo-skeletal system > M03 - Muscle relaxants > M03A - Muscle relaxants, peripherally acting agents D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists
Arbaclofen
C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant (R)-Baclofen (Arbaclofen) is a selective GABAB receptor agonist[1].
Indole-3-lactic Acid
Indolelactic acid (Indole-3-lactic acid) is a tryptophan (Trp) catabolite in Azotobacter vinelandii cultures. Indolelactic acid has anti-inflammation and potential anti-viral activity[1][3][4].
Phosphoramide mustard
D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D009588 - Nitrogen Mustard Compounds D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D010752 - Phosphoramide Mustards
Thymidine-5-diphosphate
A thymidine phosphate having a diphosphate group at the 5-position. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents
2-Phospho-D-glyceric acid
A 2-phosphoglyceric acid in which the glyceric acid moiety has D (R) configuration.
N-Acetylglucosamine-1-phosphate
A N-acetyl-D-glucosamine 1-phosphate that is 2-deoxy-D-glucopyranose 1-(dihydrogen phosphate) substituted by an acetamido group at position 2. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
3-Methylguanine
A 3-methylguanine that is 3,7-dihydro-6H-purin-6-one substituted by an amino group at position 2 and a methyl group at position 3.
DISOXARIL
D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C254 - Anti-Infective Agent > C281 - Antiviral Agent
GDP-4-Keto-6-deoxymannose
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
N-acetyl-2,3-didehydro-2-deoxyneuraminic acid
D004791 - Enzyme Inhibitors
NITRILOTRIACETIC ACID
D064449 - Sequestering Agents > D002614 - Chelating Agents
Floxacillin
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CF - Beta-lactamase resistant penicillins A penicillin compound having a 6beta-[3-(2-chloro-6-fluorophenyl)-5-methyl-1,2-oxazole-4-carboxamido] side-chain. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic Same as: D04196
Methyl tert-butyl ether
An ether having methyl and tert-butyl as the two alkyl components. D004785 - Environmental Pollutants > D000393 - Air Pollutants D009676 - Noxae > D002273 - Carcinogens
Acetyl-L-tryptophan
A N-acetyl-L-amino acid that is the N-acetyl derivative of L-tryptophan. D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors N-Acetyl-L-tryptophan is an endogenous metabolite.
Aminopropylcadaverine
A polyazaalkane that is the 1,4,11-triaza derivative of undecane.
N-PHENYL-1-NAPHTHYLAMINE
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes D009676 - Noxae > D002273 - Carcinogens
m-3-g hydrate
D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants
Calcein AM
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes > D005452 - Fluoresceins D000970 - Antineoplastic Agents
N-[(2S,3R,4R,5S,6R)-2,5-dihydroxy-6-(hydroxymethyl)-4-{[(2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]acetamide
[5-(6-Aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphono hydrogen phosphate
1-C-(Indol-3-yl)glycerol 3-phosphate
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents