Kasugamycin (BioDeep_00000002644)

   

natural product Antibiotics Chemicals and Drugs


代谢物信息卡片


2-amino-2-[(2R,3S,5S,6R)-5-amino-2-methyl-6-[(2S,3S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyoxan-3-yl]iminoacetic acid

化学式: C14H25N3O9 (379.1591)
中文名称: 春雷霉素
谱图信息: 最多检出来源 Escherichia coli(plant) 44.58%

Reviewed

Last reviewed on 2024-12-11.

Cite this Page

Kasugamycin. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/kasugamycin (retrieved 2024-12-22) (BioDeep RN: BioDeep_00000002644). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: CC1C(CC(C(O1)OC2C(C(C(C(C2O)O)O)O)O)N)N=C(C(=O)O)N
InChI: InChI=1S/C14H25N3O9/c1-3-5(17-12(16)13(23)24)2-4(15)14(25-3)26-11-9(21)7(19)6(18)8(20)10(11)22/h3-11,14,18-22H,2,15H2,1H3,(H2,16,17)(H,23,24)/t3-,4+,5+,6-,7+,8+,9-,10+,11+,14-/m1/s1

描述信息

An amino cyclitol glycoside that is isolated from Streptomyces kasugaensis and exhibits antibiotic and fungicidal properties.

Kasugamycin is an amino cyclitol glycoside that is isolated from Streptomyces kasugaensis and exhibits antibiotic and fungicidal properties. It has a role as a bacterial metabolite, a protein synthesis inhibitor and an antifungal agrochemical. It is an amino cyclitol glycoside, an aminoglycoside antibiotic, a monosaccharide derivative, a carboxamidine and an antibiotic fungicide.

Kasugamycin has been reported in Streptomyces celluloflavus and Streptomyces kasugaensis.

Kasugamycin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=6980-18-3 (retrieved 2024-12-11) (CAS RN: 6980-18-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

同义名列表

4 个代谢物同义名

kasugamycin; KASUAGAMYCIN; Kasugamycin; Kasugamycin



数据库引用编号

23 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 13 ACE2, CHI3L1, DAO, GLI3, MAPK9, PNPT1, PPP1R8, RIDA, RPL13, RPS2, RPS9, S100A9, TGFBRAP1
Peripheral membrane protein 3 DAO, PNPT1, S100A9
Endoplasmic reticulum membrane 2 ICMT, PNPT1
Nucleus 8 GLI3, MAPK9, PPP1R8, RIDA, RPL13, RPS2, RPS9, S100A9
cytosol 13 AACS, AMD1, DAO, GLI3, GOLPH3, MAPK9, MAT1A, PNPT1, RIDA, RPL13, RPS2, RPS9, S100A9
trans-Golgi network 1 GOLPH3
nucleoplasm 5 GLI3, MAPK9, PPP1R8, RPS2, RPS9
Cell membrane 4 ACE2, DAO, GOLPH3, S100A9
Multi-pass membrane protein 1 ICMT
Synapse 2 RPL13, RPS9
cell surface 1 ACE2
Golgi apparatus 1 GOLPH3
Golgi membrane 1 GOLPH3
Cytoplasm, cytosol 2 AACS, DAO
Lysosome 1 CHIT1
endosome 1 GOLPH3
plasma membrane 5 ACE2, DAO, GOLPH3, MAPK9, S100A9
presynaptic active zone 1 DAO
Membrane 7 ACE2, GOLPH3, ICMT, RPL13, RPS2, RPS9, TGFBRAP1
apical plasma membrane 1 ACE2
extracellular exosome 8 ACE2, CHI3L1, DAO, RIDA, RPS2, RPS9, S100A9, SPINK1
endoplasmic reticulum 3 CHI3L1, ICMT, RPL13
extracellular space 5 ACE2, CHI3L1, CHIT1, DAO, S100A9
perinuclear region of cytoplasm 1 CHI3L1
Schaffer collateral - CA1 synapse 1 MAPK9
bicellular tight junction 1 DAO
mitochondrion 4 GOLPH3, MAPK9, PNPT1, RIDA
intracellular membrane-bounded organelle 3 GLI3, GOLPH3, TGFBRAP1
Single-pass type I membrane protein 1 ACE2
Secreted 3 ACE2, DAO, SPINK1
extracellular region 5 ACE2, CHI3L1, CHIT1, DAO, S100A9
Mitochondrion matrix 1 PNPT1
mitochondrial matrix 2 PNPT1, RIDA
Extracellular side 1 DAO
Cell projection, cilium 1 ACE2
nucleolus 3 GLI3, RPL13, RPS9
Early endosome 1 TGFBRAP1
Apical cell membrane 1 ACE2
Cytoplasm, perinuclear region 1 CHI3L1
Membrane raft 1 ACE2
Cytoplasm, cytoskeleton 1 S100A9
focal adhesion 2 RPS2, RPS9
extracellular matrix 1 CHI3L1
Peroxisome 2 DAO, RIDA
Peroxisome matrix 1 DAO
peroxisomal matrix 1 DAO
Mitochondrion intermembrane space 1 PNPT1
mitochondrial intermembrane space 2 GOLPH3, PNPT1
collagen-containing extracellular matrix 1 S100A9
axoneme 1 GLI3
ciliary tip 1 GLI3
nuclear speck 3 GLI3, MAPK9, PPP1R8
ciliary base 1 GLI3
cilium 2 ACE2, GLI3
cell projection 1 DAO
cytoskeleton 1 S100A9
Secreted, extracellular space 2 CHI3L1, DAO
brush border membrane 1 ACE2
Nucleus, nucleolus 2 RPS2, RPS9
spliceosomal complex 1 PPP1R8
Golgi cisterna membrane 1 GOLPH3
secretory granule lumen 1 S100A9
endoplasmic reticulum lumen 1 ACE2
transcription repressor complex 1 GLI3
specific granule lumen 3 CHI3L1, CHIT1, DAO
tertiary granule lumen 1 CHIT1
endocytic vesicle membrane 1 ACE2
small-subunit processome 1 RPS9
Golgi cisterna 1 GOLPH3
ribonucleoprotein complex 2 RPL13, RPS9
cytosolic ribosome 3 RPL13, RPS2, RPS9
ribosome 4 PNPT1, RPL13, RPS2, RPS9
calprotectin complex 1 S100A9
catalytic complex 1 PNPT1
cytosolic large ribosomal subunit 1 RPL13
S100A9 complex 1 S100A9
GLI-SUFU complex 1 GLI3
cytosolic small ribosomal subunit 2 RPS2, RPS9
methionine adenosyltransferase complex 1 MAT1A
small ribosomal subunit 2 RPS2, RPS9
mitochondrial degradosome 1 PNPT1
CORVET complex 1 TGFBRAP1
[Processed angiotensin-converting enzyme 2]: Secreted 1 ACE2
[Isoform 2]: Apical cell membrane 1 ACE2


文献列表

  • Kenneth B Johnson, Todd N Temple, Achala N Kc. Acidifying spray suspensions of oxytetracycline and kasugamycin enhances their effectiveness for fire blight control in apple and pear. Phytopathology. 2023 Aug; ?(?):. doi: 10.1094/phyto-04-23-0122-r. [PMID: 37530490]
  • Saedah R Al-Mhyawi, Muhammed Abdel-Hamied Abdel-Tawab, Rasha M El Nashar. A novel electrochemical hybrid platform for sensitive determination of the aminoglycoside antibiotic Kasugamycin residues in vegetables. Food chemistry. 2023 Jun; 411(?):135506. doi: 10.1016/j.foodchem.2023.135506. [PMID: 36682169]
  • Xinyue Jiang, Shilong Jiang, Hongke Huang, Dongxue Li, Rui Yang, Yuanyou Yang, Delu Wang, Baoan Song, Zhuo Chen. Multi-Omics Analysis Reveals that the Antimicrobial Kasugamycin Potential Targets Nitrate Reductase in Didymella segeticola to Achieve Control of Tea Leaf Spot. Phytopathology. 2022 Sep; 112(9):1894-1906. doi: 10.1094/phyto-11-21-0457-r. [PMID: 35322715]
  • Suchitra Kamle, Bing Ma, Chuan Hua He, Bedia Akosman, Yang Zhou, Chang-Min Lee, Wafik S El-Deiry, Kelsey Huntington, Olin Liang, Jason T Machan, Min-Jong Kang, Hyeon Jun Shin, Emiko Mizoguchi, Chun Geun Lee, Jack A Elias. Chitinase 3-like-1 is a therapeutic target that mediates the effects of aging in COVID-19. JCI insight. 2021 11; 6(21):. doi: 10.1172/jci.insight.148749. [PMID: 34747367]
  • Tianbo Liu, Yabing Gu, Zhicheng Zhou, Zhenghua Liu, Huaqun Yin, Chong Qin, Tuyong Yi, Jiemeng Tao. Ecological strategies of biological and chemical control agents on wildfire disease of tobacco (Nicotiana tabacum L.). BMC microbiology. 2021 06; 21(1):184. doi: 10.1186/s12866-021-02237-8. [PMID: 34139992]
  • Suzanne M Slack, Kellie J Walters, Cory A Outwater, George W Sundin. Effect of Kasugamycin, Oxytetracycline, and Streptomycin on In-orchard Population Dynamics of Erwinia amylovora on Apple Flower Stigmas. Plant disease. 2021 Jun; 105(6):1843-1850. doi: 10.1094/pdis-07-20-1469-re. [PMID: 33044145]
  • Wenxi Li, Xuefang Dai, Entang Pu, Haitao Bian, Zilei Chen, Xueyan Zhang, Zhixiang Guo, Peng Li, Huidong Li, Yanhua Yong, Chenchen Wang, Yan Zhang, Lijun Han. HLB-MCX-Based Solid-Phase Extraction Combined with Liquid Chromatography-Tandem Mass Spectrometry for the Simultaneous Determination of Four Agricultural Antibiotics (Kasugamycin, Validamycin A, Ningnanmycin, and Polyoxin B) Residues in Plant-Origin Foods. Journal of agricultural and food chemistry. 2020 Nov; 68(47):14025-14037. doi: 10.1021/acs.jafc.0c04620. [PMID: 33190501]
  • Yixin Ge, Jae Hoon Lee, Baishi Hu, Youfu Zhao. Loss-of-Function Mutations in the Dpp and Opp Permeases Render Erwinia amylovora Resistant to Kasugamycin and Blasticidin S. Molecular plant-microbe interactions : MPMI. 2018 08; 31(8):823-832. doi: 10.1094/mpmi-01-18-0007-r. [PMID: 29474798]
  • K A Nguyen, H Förster, J E Adaskaveg. Efficacy of Copper and New Bactericides for Managing Olive Knot in California. Plant disease. 2018 May; 102(5):892-898. doi: 10.1094/pdis-08-17-1162-re. [PMID: 30673378]
  • Chen Fan, Mingcheng Guo, You Liang, Hongqiang Dong, Guanglong Ding, Wenbing Zhang, Gang Tang, Jiale Yang, Dandan Kong, Yongsong Cao. Pectin-conjugated silica microcapsules as dual-responsive carriers for increasing the stability and antimicrobial efficacy of kasugamycin. Carbohydrate polymers. 2017 Sep; 172(?):322-331. doi: 10.1016/j.carbpol.2017.05.050. [PMID: 28606541]
  • Anthony L Shiver, Hendrik Osadnik, George Kritikos, Bo Li, Nevan Krogan, Athanasios Typas, Carol A Gross. A Chemical-Genomic Screen of Neglected Antibiotics Reveals Illicit Transport of Kasugamycin and Blasticidin S. PLoS genetics. 2016 06; 12(6):e1006124. doi: 10.1371/journal.pgen.1006124. [PMID: 27355376]
  • Shirin Ghods, Ian M Sims, M Fata Moradali, Bernd H A Rehm. Bactericidal Compounds Controlling Growth of the Plant Pathogen Pseudomonas syringae pv. actinidiae, Which Forms Biofilms Composed of a Novel Exopolysaccharide. Applied and environmental microbiology. 2015 Jun; 81(12):4026-36. doi: 10.1128/aem.00194-15. [PMID: 25841017]
  • Yao Liu, Yan Sun, Guanglong Ding, Qianqian Geng, Juanli Zhu, Mingcheng Guo, Yongheng Duan, Baitao Wang, Yongsong Cao. Synthesis, characterization, and application of microbe-triggered controlled-release kasugamycin-pectin conjugate. Journal of agricultural and food chemistry. 2015 May; 63(17):4263-8. doi: 10.1021/jf5055062. [PMID: 25876441]
  • Atsushi Yoshii, Tsutomu Omatsu, Yukie Katayama, Satoshi Koyama, Tetsuya Mizutani, Hiromitsu Moriyama, Toshiyuki Fukuhara. Two types of genetic carrier, the IncP genomic island and the novel IncP-1β plasmid, for the aac(2')-IIa gene that confers kasugamycin resistance in Acidovorax avenae ssp. avenae. Molecular plant pathology. 2015 Apr; 16(3):288-300. doi: 10.1111/mpp.12182. [PMID: 25131295]
  • Yanfei Tao, Dongmei Chen, Huan Yu, Lingli Huang, Zhaoying Liu, Xiaoqin Cao, Caixia Yan, Yuanhu Pan, Zhenli Liu, Zonghui Yuan. Simultaneous determination of 15 aminoglycoside(s) residues in animal derived foods by automated solid-phase extraction and liquid chromatography-tandem mass spectrometry. Food chemistry. 2012 Nov; 135(2):676-83. doi: 10.1016/j.foodchem.2012.04.086. [PMID: 22868145]
  • Lei Lu, Shancang Zhao, Ligang Deng, Yebing Chen, Xue Liu, Dapeng Li. Residues and dynamics of kasugamycin in chilli and soil. Bulletin of environmental contamination and toxicology. 2012 Sep; 89(3):649-53. doi: 10.1007/s00128-012-0746-0. [PMID: 22820656]
  • Atsushi Yoshii, Hiromitsu Moriyama, Toshiyuki Fukuhara. The novel kasugamycin 2'-N-acetyltransferase gene aac(2')-IIa, carried by the IncP island, confers kasugamycin resistance to rice-pathogenic bacteria. Applied and environmental microbiology. 2012 Aug; 78(16):5555-64. doi: 10.1128/aem.01155-12. [PMID: 22660700]
  • Bruce C Campbell, Kathleen L Chan, Jong H Kim. Chemosensitization as a means to augment commercial antifungal agents. Frontiers in microbiology. 2012; 3(?):79. doi: 10.3389/fmicb.2012.00079. [PMID: 22393330]
  • Erika Yashiro, Patricia S McManus. Effect of streptomycin treatment on bacterial community structure in the apple phyllosphere. PloS one. 2012; 7(5):e37131. doi: 10.1371/journal.pone.0037131. [PMID: 22629357]
  • Susanna Kp Lau, Gilman Km Wong, Alan Kl Tsang, Jade Ll Teng, Rachel Yy Fan, Herman Tse, Kwok-Yung Yuen, Patrick Cy Woo. Virulence determinants, drug resistance and mobile genetic elements of Laribacter hongkongensis: a genome-wide analysis. Cell & bioscience. 2011 Apr; 1(1):17. doi: 10.1186/2045-3701-1-17. [PMID: 21711902]
  • Gayle C McGhee, George W Sundin. Evaluation of kasugamycin for fire blight management, effect on nontarget bacteria, and assessment of kasugamycin resistance potential in Erwinia amylovora. Phytopathology. 2011 Feb; 101(2):192-204. doi: 10.1094/phyto-04-10-0128. [PMID: 20923369]
  • E Böszörményi, T Ersek, A Fodor, A M Fodor, L Sz Földes, M Hevesi, J S Hogan, Z Katona, M G Klein, A Kormány, S Pekár, A Szentirmai, F Sztaricskai, R A J Taylor. Isolation and activity of Xenorhabdus antimicrobial compounds against the plant pathogens Erwinia amylovora and Phytophthora nicotianae. Journal of applied microbiology. 2009 Sep; 107(3):746-59. doi: 10.1111/j.1365-2672.2009.04249.x. [PMID: 19320949]
  • Andrea L Manuell, Joel Quispe, Stephen P Mayfield. Structure of the chloroplast ribosome: novel domains for translation regulation. PLoS biology. 2007 Aug; 5(8):e209. doi: 10.1371/journal.pbio.0050209. [PMID: 17683199]
  • O Pruvost, P Roumagnac, C Gaube, F Chiroleu, L Gagnevin. New media for the semiselective isolation and enumeration of Xanthomonas campestris pv. mangiferaeindicae, the causal agent of mango bacterial black spot. Journal of applied microbiology. 2005; 99(4):803-15. doi: 10.1111/j.1365-2672.2005.02681.x. [PMID: 16162231]
  • T TAKEUCHI, M ISHIZUKA, H TAKAYAMA, K KUREHA, M HAMADA, H UMEZAWA. PHARMACOLOGY OF KASUGAMYCIN AND THE EFFECT ON PSEUDOMONAS INFECTION. The Journal of antibiotics. 1965 Mar; 18(?):107-10. doi: NULL. [PMID: 14326082]