O-Acetylserine (BioDeep_00000001397)
Secondary id: BioDeep_00000400287
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019 Volatile Flavor Compounds
代谢物信息卡片
化学式: C5H9NO4 (147.0531554)
中文名称: O-乙酰-L-丝氨酸
谱图信息:
最多检出来源 Homo sapiens(blood) 0.25%
Last reviewed on 2024-09-27.
Cite this Page
O-Acetylserine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/o-acetylserine (retrieved
2024-11-22) (BioDeep RN: BioDeep_00000001397). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: CC(=O)OCC(C(=O)O)N
InChI: InChI=1S/C5H9NO4/c1-3(7)10-2-4(6)5(8)9/h4H,2,6H2,1H3,(H,8,9)/t4-/m0/s1
描述信息
O-Acetylserine is an α-amino acid with the chemical formula HO2CCH(NH2)CH2OC(O)CH3. It is an intermediate in the biosynthesis of the common amino acid cysteine in bacteria and plants. O-Acetylserine is biosynthesized by acetylation of the serine by the enzyme serine transacetylase. The enzyme O-acetylserine (thiol)-lyase, using sulfide sources, converts this ester into cysteine, releasing acetate. O-Acetylserine belongs to the class of organic compounds known as l-alpha-amino acids. These are alpha amino acids which have the L-configuration of the alpha-carbon atom. O-Acetylserine (OASS) is an acylated amino acid derivative. O-Acetylserine exists in all living species, ranging from bacteria to humans. Outside of the human body, O-Acetylserine has been detected, but not quantified in several different foods, such as okra, vaccinium (blueberry, cranberry, huckleberry), rapes, sparkleberries, and lingonberries. This could make O-acetylserine a potential biomarker for the consumption of these foods.
O-acetyl-l-serine, also known as L-serine, acetate (ester) or (2s)-3-acetyloxy-2-aminopropanoate, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. O-acetyl-l-serine is soluble (in water) and a moderately acidic compound (based on its pKa). O-acetyl-l-serine can be found in a number of food items such as sorrel, summer savory, purslane, and cherimoya, which makes O-acetyl-l-serine a potential biomarker for the consumption of these food products. O-acetyl-l-serine can be found primarily in blood and urine, as well as in human prostate tissue. O-acetyl-l-serine exists in all living species, ranging from bacteria to humans.
Acquisition and generation of the data is financially supported in part by CREST/JST.
O-Acetylserine (O-Acetyl-L-serine) is an intermediate in the biosynthesis of the amino acid cysteine in bacteria and plants.
同义名列表
13 个代谢物同义名
(2S)-3-(acetyloxy)-2-aminopropanoic acid; O-Acetylserine hydrobromide, (D)-isomer; O-acetyl-L-serine hydrochloride; L-Serine, acetic acid (ester); O-Acetylserine, (L)-isomer; L-Serine, acetate (ester); Serine acetate ester; O3-Acetyl-L-serine; O-Acetyl-L-serine; O-Acetyl-serine; O-Acetylserine; O-Acetyl-L-serine; O-acetyl-L-serine
数据库引用编号
29 个数据库交叉引用编号
- ChEBI: CHEBI:17981
- KEGG: C00979
- PubChem: 99478
- HMDB: HMDB0003011
- Metlin: METLIN3270
- DrugBank: DB01837
- ChEMBL: CHEMBL1234916
- Wikipedia: O-Acetylserine
- MetaCyc: ACETYLSERINE
- KNApSAcK: C00007459
- foodb: FDB031064
- chemspider: 89874
- CAS: 5147-00-2
- MoNA: PS047704
- MoNA: PS047702
- MoNA: PS047703
- MoNA: PR100272
- MoNA: PS047701
- PMhub: MS000000444
- PDB-CCD: OAS
- 3DMET: B00213
- NIKKAJI: J37.500D
- RefMet: O-Acetylserine
- medchemexpress: HY-101409
- LOTUS: LTS0013934
- LOTUS: LTS0014318
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-219
- PubChem: 4228
- KNApSAcK: 17981
分类词条
相关代谢途径
Reactome(3)
BioCyc(0)
PlantCyc(0)
代谢反应
333 个相关的代谢反应过程信息。
Reactome(4)
- Mycobacterium tuberculosis biological processes:
CYSTA + H2O ⟶ 2OBUTA + L-Cys + ammonia
- Sulfur compound metabolism:
CYSTA + H2O ⟶ 2OBUTA + L-Cys + ammonia
- Sulfur amino acid metabolism:
CYSTA + H2O ⟶ 2OBUTA + L-Cys + ammonia
- Cysteine synthesis from O-acetylserine:
OAcSer + S(2-) ⟶ CH3COO- + L-Cys
WikiPathways(0)
Plant Reactome(328)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid metabolism:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid biosynthesis:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
40 个相关的物种来源信息
- 7458 - Apidae: LTS0013934
- 7459 - Apis: LTS0013934
- 7461 - Apis cerana: 10.1371/JOURNAL.PONE.0175573
- 7461 - Apis cerana: LTS0013934
- 3701 - Arabidopsis: LTS0013934
- 3701 - Arabidopsis: LTS0014318
- 3702 - Arabidopsis thaliana: 10.1046/J.1365-313X.2003.01658.X
- 3702 - Arabidopsis thaliana: 10.1186/1752-0509-5-1
- 3702 - Arabidopsis thaliana: LTS0013934
- 3702 - Arabidopsis thaliana: LTS0014318
- 6656 - Arthropoda: LTS0013934
- 2 - Bacteria: LTS0013934
- 2 - Bacteria: LTS0014318
- 6658 - Branchiopoda: LTS0013934
- 3700 - Brassicaceae: LTS0013934
- 3700 - Brassicaceae: LTS0014318
- 6668 - Daphnia: LTS0013934
- 6669 - Daphnia pulex: 10.1038/SREP25125
- 6669 - Daphnia pulex: LTS0013934
- 77658 - Daphniidae: LTS0013934
- 2759 - Eukaryota: LTS0013934
- 2759 - Eukaryota: LTS0014318
- 9606 - Homo sapiens: -
- 50557 - Insecta: LTS0013934
- 3398 - Magnoliopsida: LTS0013934
- 3398 - Magnoliopsida: LTS0014318
- 33208 - Metazoa: LTS0013934
- 1883 - Streptomyces: LTS0013934
- 1883 - Streptomyces: LTS0014318
- 1914 - Streptomyces lavendulae: 10.1128/AAC.01226-09
- 1914 - Streptomyces lavendulae: LTS0013934
- 1914 - Streptomyces lavendulae: LTS0014318
- 2062 - Streptomycetaceae: LTS0013934
- 2062 - Streptomycetaceae: LTS0014318
- 35493 - Streptophyta: LTS0013934
- 35493 - Streptophyta: LTS0014318
- 58023 - Tracheophyta: LTS0013934
- 58023 - Tracheophyta: LTS0014318
- 33090 - Viridiplantae: LTS0013934
- 33090 - Viridiplantae: LTS0014318
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Marcela de Paiva Foletto-Felipe, Josielle Abrahão, Rita de Cássia Siqueira-Soares, Isabela de Carvalho Contesoto, Luiz Henryque Escher Grizza, Guilherme Henrique Gonçalves de Almeida, Renato Polimeni Constantin, Gisele Strieder Philippsen, Flavio Augusto Vicente Seixas, Paulo Sérgio Alves Bueno, Marco Aurélio Schüler de Oliveira, Rodrigo Polimeni Constantin, Wanderley Dantas Dos Santos, Osvaldo Ferrarese-Filho, Rogério Marchiosi. Inhibition of O-acetylserine (thiol) lyase as a promising new mechanism of action for herbicides.
Plant physiology and biochemistry : PPB.
2023 Nov; 204(?):108127. doi:
10.1016/j.plaphy.2023.108127
. [PMID: 37890229] - Anastasia Apodiakou, Rainer Hoefgen. New insights into the regulation of plant metabolism by O-acetyl-serine: sulfate and beyond.
Journal of experimental botany.
2023 Apr; ?(?):. doi:
10.1093/jxb/erad124
. [PMID: 37025061] - Assylay Kurmanbayeva, Aizat Bekturova, Aigerim Soltabayeva, Dinara Oshanova, Zhadyrassyn Nurbekova, Sudhakar Srivastava, Poonam Tiwari, Arvind Kumar Dubey, Moshe Sagi. Active O-acetylserine-(thiol) lyase A and B confer improved selenium resistance and degrade l-Cys and l-SeCys in Arabidopsis.
Journal of experimental botany.
2022 04; 73(8):2525-2539. doi:
10.1093/jxb/erac021
. [PMID: 35084469] - Yasuyuki Matoba, Masafumi Noda, Tomoki Yoshida, Kosuke Oda, Yuka Ezumi, Chiaki Yasutake, Hisae Izuhara-Kihara, Narandarai Danshiitsoodol, Takanori Kumagai, Masanori Sugiyama. Catalytic specificity of the Lactobacillus plantarum cystathionine γ-lyase presumed by the crystallographic analysis.
Scientific reports.
2020 09; 10(1):14886. doi:
10.1038/s41598-020-71756-7
. [PMID: 32913258] - Sunlin Chi, Yuli Qin, Weihong Xu, Yourong Chai, Deyu Feng, Yanhua Li, Tao Li, Mei Yang, Zhangmi He. Differences of Cd uptake and expression of OAS and IRT genes in two varieties of ryegrasses.
Environmental science and pollution research international.
2019 May; 26(14):13717-13724. doi:
10.1007/s11356-018-2509-x
. [PMID: 29909534] - Zhen Wang, Jie-Li Mao, Ying-Jun Zhao, Chuan-You Li, Cheng-Bin Xiang. L-Cysteine inhibits root elongation through auxin/PLETHORA and SCR/SHR pathway in Arabidopsis thaliana.
Journal of integrative plant biology.
2015 Feb; 57(2):186-97. doi:
10.1111/jipb.12213
. [PMID: 24798139] - Zongyong Tong, Can Xie, Lei Ma, Liping Liu, Yongsheng Jin, Jiangli Dong, Tao Wang. Co-expression of bacterial aspartate kinase and adenylylsulfate reductase genes substantially increases sulfur amino acid levels in transgenic alfalfa (Medicago sativa L.).
PloS one.
2014; 9(2):e88310. doi:
10.1371/journal.pone.0088310
. [PMID: 24520364] - Anna Wawrzyńska, Agata Kurzyk, Monika Mierzwińska, Danuta Płochocka, Grzegorz Wieczorek, Agnieszka Sirko. Direct targeting of Arabidopsis cysteine synthase complexes with synthetic polypeptides to selectively deregulate cysteine synthesis.
Plant science : an international journal of experimental plant biology.
2013 Jun; 207(?):148-57. doi:
10.1016/j.plantsci.2013.02.016
. [PMID: 23602110] - Hans-Michael Hubberten, Agnieszka Drozd, Bich V Tran, Holger Hesse, Rainer Hoefgen. Local and systemic regulation of sulfur homeostasis in roots of Arabidopsis thaliana.
The Plant journal : for cell and molecular biology.
2012 Nov; 72(4):625-35. doi:
10.1111/j.1365-313x.2012.05105.x
. [PMID: 22775482] - Hankuil Yi, Joseph M Jez. Assessing functional diversity in the soybean β-substituted alanine synthase enzyme family.
Phytochemistry.
2012 Nov; 83(?):15-24. doi:
10.1016/j.phytochem.2012.08.003
. [PMID: 22986002] - Dengqun Liao, Agnieszka Pajak, Steven R Karcz, B Patrick Chapman, Andrew G Sharpe, Ryan S Austin, Raju Datla, Sangeeta Dhaubhadel, Frédéric Marsolais. Transcripts of sulphur metabolic genes are co-ordinately regulated in developing seeds of common bean lacking phaseolin and major lectins.
Journal of experimental botany.
2012 Oct; 63(17):6283-95. doi:
10.1093/jxb/ers280
. [PMID: 23066144] - Huu Cuong Nguyen, Rainer Hoefgen, Holger Hesse. Improving the nutritive value of rice seeds: elevation of cysteine and methionine contents in rice plants by ectopic expression of a bacterial serine acetyltransferase.
Journal of experimental botany.
2012 Oct; 63(16):5991-6001. doi:
10.1093/jxb/ers253
. [PMID: 23048130] - Colette A Matthewman, Cintia G Kawashima, Dalibor Húska, Tibor Csorba, Tamas Dalmay, Stanislav Kopriva. miR395 is a general component of the sulfate assimilation regulatory network in Arabidopsis.
FEBS letters.
2012 Sep; 586(19):3242-8. doi:
10.1016/j.febslet.2012.06.044
. [PMID: 22771787] - Markus Wirtz, Katherine F M Beard, Chun Pong Lee, Achim Boltz, Markus Schwarzländer, Christopher Fuchs, Andreas J Meyer, Corinna Heeg, Lee J Sweetlove, R George Ratcliffe, Rüdiger Hell. Mitochondrial cysteine synthase complex regulates O-acetylserine biosynthesis in plants.
The Journal of biological chemistry.
2012 Aug; 287(33):27941-7. doi:
10.1074/jbc.m112.372656
. [PMID: 22730323] - Galina Brychkova, Dmitry Yarmolinsky, Yvonne Ventura, Moshe Sagi. A novel in-gel assay and an improved kinetic assay for determining in vitro sulfite reductase activity in plants.
Plant & cell physiology.
2012 Aug; 53(8):1507-16. doi:
10.1093/pcp/pcs084
. [PMID: 22685081] - Hannah Birke, Florian H Haas, Luit J De Kok, Janneke Balk, Markus Wirtz, Rüdiger Hell. Cysteine biosynthesis, in concert with a novel mechanism, contributes to sulfide detoxification in mitochondria of Arabidopsis thaliana.
The Biochemical journal.
2012 Jul; 445(2):275-83. doi:
10.1042/bj20120038
. [PMID: 22551219] - Hankuil Yi, Matthew Juergens, Joseph M Jez. Structure of soybean β-cyanoalanine synthase and the molecular basis for cyanide detoxification in plants.
The Plant cell.
2012 Jun; 24(6):2696-706. doi:
10.1105/tpc.112.098954
. [PMID: 22739827] - Hannah Birke, Stefanie J Müller, Michael Rother, Andreas D Zimmer, Sebastian N W Hoernstein, Dirk Wesenberg, Markus Wirtz, Gerd-Joachim Krauss, Ralf Reski, Rüdiger Hell. The relevance of compartmentation for cysteine synthesis in phototrophic organisms.
Protoplasma.
2012 Jun; 249 Suppl 2(?):S147-55. doi:
10.1007/s00709-012-0411-9
. [PMID: 22543690] - Hans-Michael Hubberten, Sebastian Klie, Camila Caldana, Thomas Degenkolbe, Lothar Willmitzer, Rainer Hoefgen. Additional role of O-acetylserine as a sulfur status-independent regulator during plant growth.
The Plant journal : for cell and molecular biology.
2012 May; 70(4):666-77. doi:
10.1111/j.1365-313x.2012.04905.x
. [PMID: 22243437] - Preeti Tripathi, Aradhana Mishra, Sanjay Dwivedi, Debasis Chakrabarty, Prabodh K Trivedi, Rana Pratap Singh, Rudra Deo Tripathi. Differential response of oxidative stress and thiol metabolism in contrasting rice genotypes for arsenic tolerance.
Ecotoxicology and environmental safety.
2012 May; 79(?):189-198. doi:
10.1016/j.ecoenv.2011.12.019
. [PMID: 22309938] - Cordula Kruse, Florian H Haas, Ricarda Jost, Bianca Reiser, Michael Reichelt, Markus Wirtz, Jonathan Gershenzon, Ewald Schnug, Rüdiger Hell. Improved sulfur nutrition provides the basis for enhanced production of sulfur-containing defense compounds in Arabidopsis thaliana upon inoculation with Alternaria brassicicola.
Journal of plant physiology.
2012 May; 169(7):740-3. doi:
10.1016/j.jplph.2011.12.017
. [PMID: 22342657] - Elizabeth A Savory, Cheng Zou, Bishwo N Adhikari, John P Hamilton, C Robin Buell, Shin-Han Shiu, Brad Day. Alternative splicing of a multi-drug transporter from Pseudoperonospora cubensis generates an RXLR effector protein that elicits a rapid cell death.
PloS one.
2012; 7(4):e34701. doi:
10.1371/journal.pone.0034701
. [PMID: 22496844] - Simona Carfagna, Giovanna Salbitani, Vincenza Vona, Sergio Esposito. Changes in cysteine and O-acetyl-L-serine levels in the microalga Chlorella sorokiniana in response to the S-nutritional status.
Journal of plant physiology.
2011 Dec; 168(18):2188-95. doi:
10.1016/j.jplph.2011.07.012
. [PMID: 21920629] - Celine Diaz, Miyako Kusano, Ronan Sulpice, Mitsutaka Araki, Henning Redestig, Kazuki Saito, Mark Stitt, Ryoung Shin. Determining novel functions of Arabidopsis 14-3-3 proteins in central metabolic processes.
BMC systems biology.
2011 Nov; 5(?):192. doi:
10.1186/1752-0509-5-192
. [PMID: 22104211] - Bok-Rye Lee, Anna Koprivova, Stanislav Kopriva. The key enzyme of sulfate assimilation, adenosine 5'-phosphosulfate reductase, is regulated by HY5 in Arabidopsis.
The Plant journal : for cell and molecular biology.
2011 Sep; 67(6):1042-54. doi:
10.1111/j.1365-313x.2011.04656.x
. [PMID: 21623972] - Andrea Trotta, Michael Wrzaczek, Judith Scharte, Mikko Tikkanen, Grzegorz Konert, Moona Rahikainen, Maija Holmström, Hanna-Maija Hiltunen, Stephan Rips, Nina Sipari, Paula Mulo, Engelbert Weis, Antje von Schaewen, Eva-Mari Aro, Saijaliisa Kangasjärvi. Regulatory subunit B'gamma of protein phosphatase 2A prevents unnecessary defense reactions under low light in Arabidopsis.
Plant physiology.
2011 Jul; 156(3):1464-80. doi:
10.1104/pp.111.178442
. [PMID: 21571669] - Henning Redestig, Ivan G Costa. Detection and interpretation of metabolite-transcript coresponses using combined profiling data.
Bioinformatics (Oxford, England).
2011 Jul; 27(13):i357-65. doi:
10.1093/bioinformatics/btr231
. [PMID: 21685093] - Åke Västermark, Markus Sällman Almén, Martin W Simmen, Robert Fredriksson, Helgi B Schiöth. Functional specialization in nucleotide sugar transporters occurred through differentiation of the gene cluster EamA (DUF6) before the radiation of Viridiplantae.
BMC evolutionary biology.
2011 May; 11(?):123. doi:
10.1186/1471-2148-11-123
. [PMID: 21569384] - Gurjeet Kaur, Ruby Chandna, Renu Pandey, Yash Pal Abrol, Muhammad Iqbal, Altaf Ahmad. Sulfur starvation and restoration affect nitrate uptake and assimilation in rapeseed.
Protoplasma.
2011 Apr; 248(2):299-311. doi:
10.1007/s00709-010-0171-3
. [PMID: 20559852] - Prachy Dixit, Prasun K Mukherjee, V Ramachandran, Susan Eapen. Glutathione transferase from Trichoderma virens enhances cadmium tolerance without enhancing its accumulation in transgenic Nicotiana tabacum.
PloS one.
2011 Jan; 6(1):e16360. doi:
10.1371/journal.pone.0016360
. [PMID: 21283689] - Consolación Alvarez, Jorge Lozano-Juste, Luís C Romero, Irene García, Cecilia Gotor, José León. Inhibition of Arabidopsis O-acetylserine(thiol)lyase A1 by tyrosine nitration.
The Journal of biological chemistry.
2011 Jan; 286(1):578-86. doi:
10.1074/jbc.m110.147678
. [PMID: 21047785] - Raquel N Carvalho, Stephanie K Bopp, Teresa Lettieri. Transcriptomics responses in marine diatom Thalassiosira pseudonana exposed to the polycyclic aromatic hydrocarbon benzo[a]pyrene.
PloS one.
2011; 6(11):e26985. doi:
10.1371/journal.pone.0026985
. [PMID: 22073232] - Kristina L Ford, Andrew Cassin, Antony Bacic. Quantitative proteomic analysis of wheat cultivars with differing drought stress tolerance.
Frontiers in plant science.
2011; 2(?):44. doi:
10.3389/fpls.2011.00044
. [PMID: 22639595] - Carmen Espinoza, Thomas Degenkolbe, Camila Caldana, Ellen Zuther, Andrea Leisse, Lothar Willmitzer, Dirk K Hincha, Matthew A Hannah. Interaction with diurnal and circadian regulation results in dynamic metabolic and transcriptional changes during cold acclimation in Arabidopsis.
PloS one.
2010 Nov; 5(11):e14101. doi:
10.1371/journal.pone.0014101
. [PMID: 21124901] - Feng Xue, Haiyan Dong, Jinyu Wu, Zuowei Wu, Weilin Hu, Aihua Sun, Bryan Troxell, X Frank Yang, Jie Yan. Transcriptional responses of Leptospira interrogans to host innate immunity: significant changes in metabolism, oxygen tolerance, and outer membrane.
PLoS neglected tropical diseases.
2010 Oct; 4(10):e857. doi:
10.1371/journal.pntd.0000857
. [PMID: 21049008] - Yanbo Hu, Guangyu Sun. Leaf nitrogen dioxide uptake coupling apoplastic chemistry, carbon/sulfur assimilation, and plant nitrogen status.
Plant cell reports.
2010 Oct; 29(10):1069-77. doi:
10.1007/s00299-010-0898-5
. [PMID: 20628880] - Markus Wirtz, Corinna Heeg, Arman Allboje Samami, Thomas Ruppert, Rüdiger Hell. Enzymes of cysteine synthesis show extensive and conserved modifications patterns that include N(α)-terminal acetylation.
Amino acids.
2010 Oct; 39(4):1077-86. doi:
10.1007/s00726-010-0694-0
. [PMID: 20658158] - Stephan Krueger, Andrea Donath, M Carmen Lopez-Martin, Rainer Hoefgen, Cecilia Gotor, Holger Hesse. Impact of sulfur starvation on cysteine biosynthesis in T-DNA mutants deficient for compartment-specific serine-acetyltransferase.
Amino acids.
2010 Oct; 39(4):1029-42. doi:
10.1007/s00726-010-0580-9
. [PMID: 20379751] - Stephanie Troufflard, William Mullen, Tony R Larson, Ian A Graham, Alan Crozier, Anna Amtmann, Patrick Armengaud. Potassium deficiency induces the biosynthesis of oxylipins and glucosinolates in Arabidopsis thaliana.
BMC plant biology.
2010 Aug; 10(?):172. doi:
10.1186/1471-2229-10-172
. [PMID: 20701801] - Nakako Shibagaki, Arthur R Grossman. Binding of cysteine synthase to the STAS domain of sulfate transporter and its regulatory consequences.
The Journal of biological chemistry.
2010 Aug; 285(32):25094-102. doi:
10.1074/jbc.m110.126888
. [PMID: 20529854] - Corinna Hermsen, Anna Koprivova, Colette Matthewman, Dirk Wesenberg, Gerd-Joachim Krauss, Stanislav Kopriva. Regulation of sulfate assimilation in Physcomitrella patens: mosses are different!.
Planta.
2010 Jul; 232(2):461-70. doi:
10.1007/s00425-010-1190-1
. [PMID: 20473684] - Bibin Paulose, Suganthi Kandasamy, Om Parkash Dhankher. Expression profiling of Crambe abyssinica under arsenate stress identifies genes and gene networks involved in arsenic metabolism and detoxification.
BMC plant biology.
2010 Jun; 10(?):108. doi:
10.1186/1471-2229-10-108
. [PMID: 20546591] - Reza Shirzadian-Khorramabad, Hai-Chun Jing, Gerja E Everts, Jos H M Schippers, Jacques Hille, Paul P Dijkwel. A mutation in the cytosolic O-acetylserine (thiol) lyase induces a genome-dependent early leaf death phenotype in Arabidopsis.
BMC plant biology.
2010 Apr; 10(?):80. doi:
10.1186/1471-2229-10-80
. [PMID: 20429919] - Hélène Zuber, Jean-Claude Davidian, Markus Wirtz, Rüdiger Hell, Maya Belghazi, Richard Thompson, Karine Gallardo. Sultr4;1 mutant seeds of Arabidopsis have an enhanced sulphate content and modified proteome suggesting metabolic adaptations to altered sulphate compartmentalization.
BMC plant biology.
2010 Apr; 10(?):78. doi:
10.1186/1471-2229-10-78
. [PMID: 20426829] - Qi-Long Qin, Xi-Ying Zhang, Xu-Min Wang, Gui-Ming Liu, Xiu-Lan Chen, Bin-Bin Xie, Hong-Yue Dang, Bai-Cheng Zhou, Jun Yu, Yu-Zhong Zhang. The complete genome of Zunongwangia profunda SM-A87 reveals its adaptation to the deep-sea environment and ecological role in sedimentary organic nitrogen degradation.
BMC genomics.
2010 Apr; 11(?):247. doi:
10.1186/1471-2164-11-247
. [PMID: 20398413] - Huixia Ning, Chunhong Zhang, Yao Yao, Deyue Yu. Overexpression of a soybean O-acetylserine (thiol) lyase-encoding gene GmOASTL4 in tobacco increases cysteine levels and enhances tolerance to cadmium stress.
Biotechnology letters.
2010 Apr; 32(4):557-64. doi:
10.1007/s10529-009-0178-z
. [PMID: 19953300] - Mutsumi Watanabe, Hans-Michael Hubberten, Kazuki Saito, Rainer Hoefgen. General regulatory patterns of plant mineral nutrient depletion as revealed by serat quadruple mutants disturbed in cysteine synthesis.
Molecular plant.
2010 Mar; 3(2):438-66. doi:
10.1093/mp/ssq009
. [PMID: 20339158] - Víctor M Rodríguez, Aurore Chételat, Paul Majcherczyk, Edward E Farmer. Chloroplastic phosphoadenosine phosphosulfate metabolism regulates basal levels of the prohormone jasmonic acid in Arabidopsis leaves.
Plant physiology.
2010 Mar; 152(3):1335-45. doi:
10.1104/pp.109.150474
. [PMID: 20053710] - Linda Tabe, Markus Wirtz, Lisa Molvig, Michel Droux, Ruediger Hell. Overexpression of serine acetlytransferase produced large increases in O-acetylserine and free cysteine in developing seeds of a grain legume.
Journal of experimental botany.
2010 Mar; 61(3):721-33. doi:
10.1093/jxb/erp338
. [PMID: 19939888] - Malgorzata Lewandowska, Anna Wawrzynska, Grzegorz Moniuszko, Jolanta Lukomska, Katarzyna Zientara, Marta Piecho, Pawel Hodurek, Igor Zhukov, Frantz Liszewska, Victoria Nikiforova, Agnieszka Sirko. A contribution to identification of novel regulators of plant response to sulfur deficiency: characteristics of a tobacco gene UP9C, its protein product and the effects of UP9C silencing.
Molecular plant.
2010 Mar; 3(2):347-60. doi:
10.1093/mp/ssq007
. [PMID: 20147370] - Ursula Scheerer, Robert Haensch, Ralf R Mendel, Stanislav Kopriva, Heinz Rennenberg, Cornelia Herschbach. Sulphur flux through the sulphate assimilation pathway is differently controlled by adenosine 5'-phosphosulphate reductase under stress and in transgenic poplar plants overexpressing gamma-ECS, SO, or APR.
Journal of experimental botany.
2010; 61(2):609-22. doi:
10.1093/jxb/erp327
. [PMID: 19923196] - Paul Francis Morris, Laura Rose Schlosser, Katherine Diane Onasch, Tom Wittenschlaeger, Ryan Austin, Nicholas Provart. Multiple horizontal gene transfer events and domain fusions have created novel regulatory and metabolic networks in the oomycete genome.
PloS one.
2009 Jul; 4(7):e6133. doi:
10.1371/journal.pone.0006133
. [PMID: 19582169] - Marzena Wielanek, Aleksandra Królicka, Katarzyna Bergier, Ewa Gajewska, Maria Skłodowska. Transformation of Nasturtium officinale, Barbarea verna and Arabis caucasica for hairy roots and glucosinolate-myrosinase system production.
Biotechnology letters.
2009 Jun; 31(6):917-21. doi:
10.1007/s10529-009-9953-0
. [PMID: 19229477] - Stephan Krueger, Annette Niehl, M Carmen Lopez Martin, Dirk Steinhauser, Andrea Donath, Tatjana Hildebrandt, Luis C Romero, Rainer Hoefgen, Cecilia Gotor, Holger Hesse. Analysis of cytosolic and plastidic serine acetyltransferase mutants and subcellular metabolite distributions suggests interplay of the cellular compartments for cysteine biosynthesis in Arabidopsis.
Plant, cell & environment.
2009 Apr; 32(4):349-67. doi:
10.1111/j.1365-3040.2008.01928.x
. [PMID: 19143986] - Guillaume Queval, Dorothée Thominet, Hélène Vanacker, Myroslawa Miginiac-Maslow, Bertrand Gakière, Graham Noctor. H2O2-activated up-regulation of glutathione in Arabidopsis involves induction of genes encoding enzymes involved in cysteine synthesis in the chloroplast.
Molecular plant.
2009 Mar; 2(2):344-56. doi:
10.1093/mp/ssp002
. [PMID: 19825619] - Michimi Nakamura, Masato Kuramata, Isao Kasugai, Midori Abe, Shohab Youssefian. Increased thiol biosynthesis of transgenic poplar expressing a wheat O-acetylserine(thiol) lyase enhances resistance to hydrogen sulfide and sulfur dioxide toxicity.
Plant cell reports.
2009 Feb; 28(2):313-23. doi:
10.1007/s00299-008-0635-5
. [PMID: 19011861] - Karen Loizeau, Veerle De Brouwer, Bernadette Gambonnet, Agnès Yu, Jean-Pierre Renou, Dominique Van Der Straeten, Willy E Lambert, Fabrice Rébeillé, Stéphane Ravanel. A genome-wide and metabolic analysis determined the adaptive response of Arabidopsis cells to folate depletion induced by methotrexate.
Plant physiology.
2008 Dec; 148(4):2083-95. doi:
10.1104/pp.108.130336
. [PMID: 18931140] - Carlos Molina, Björn Rotter, Ralf Horres, Sripada M Udupa, Bert Besser, Luis Bellarmino, Michael Baum, Hideo Matsumura, Ryohei Terauchi, Günter Kahl, Peter Winter. SuperSAGE: the drought stress-responsive transcriptome of chickpea roots.
BMC genomics.
2008 Nov; 9(?):553. doi:
10.1186/1471-2164-9-553
. [PMID: 19025623] - Florian H Haas, Corinna Heeg, Rafael Queiroz, Andrea Bauer, Markus Wirtz, Rüdiger Hell. Mitochondrial serine acetyltransferase functions as a pacemaker of cysteine synthesis in plant cells.
Plant physiology.
2008 Oct; 148(2):1055-67. doi:
10.1104/pp.108.125237
. [PMID: 18753283] - Mutsumi Watanabe, Keiichi Mochida, Tomohiko Kato, Satoshi Tabata, Naoko Yoshimoto, Masaaki Noji, Kazuki Saito. Comparative genomics and reverse genetics analysis reveal indispensable functions of the serine acetyltransferase gene family in Arabidopsis.
The Plant cell.
2008 Sep; 20(9):2484-96. doi:
10.1105/tpc.108.060335
. [PMID: 18776059] - Hatem Rouached, Markus Wirtz, Remi Alary, Rüdiger Hell, A Bulak Arpat, Jean-Claude Davidian, Pierre Fourcroy, Pierre Berthomieu. Differential regulation of the expression of two high-affinity sulfate transporters, SULTR1.1 and SULTR1.2, in Arabidopsis.
Plant physiology.
2008 Jun; 147(2):897-911. doi:
10.1104/pp.108.118612
. [PMID: 18400935] - Frances M Dupont. Metabolic pathways of the wheat (Triticum aestivum) endosperm amyloplast revealed by proteomics.
BMC plant biology.
2008 Apr; 8(?):39. doi:
10.1186/1471-2229-8-39
. [PMID: 18419817] - Małgorzata Lewandowska, Agnieszka Sirko. Recent advances in understanding plant response to sulfur-deficiency stress.
Acta biochimica Polonica.
2008; 55(3):457-71. doi:
10.18388/abp.2008_3051
. [PMID: 18787711] - Alison M Winger, Nicolas L Taylor, Joshua L Heazlewood, David A Day, A Harvey Millar. Identification of intra- and intermolecular disulphide bonding in the plant mitochondrial proteome by diagonal gel electrophoresis.
Proteomics.
2007 Nov; 7(22):4158-70. doi:
10.1002/pmic.200700209
. [PMID: 17994621] - E Pajuelo, J A Carrasco, L C Romero, M A Chamber, C Gotor. Evaluation of the metal phytoextraction potential of crop legumes. Regulation of the expression of O-acetylserine (thiol)lyase under metal stress.
Plant biology (Stuttgart, Germany).
2007 Sep; 9(5):672-81. doi:
10.1055/s-2007-965439
. [PMID: 17853367] - Markus Wirtz, Rüdiger Hell. Dominant-negative modification reveals the regulatory function of the multimeric cysteine synthase protein complex in transgenic tobacco.
The Plant cell.
2007 Feb; 19(2):625-39. doi:
10.1105/tpc.106.043125
. [PMID: 17293569] - Ibolya Stiller, Gábor Dancs, Holger Hesse, Rainer Hoefgen, Zsófia Bánfalvi. Improving the nutritive value of tubers: elevation of cysteine and glutathione contents in the potato cultivar White Lady by marker-free transformation.
Journal of biotechnology.
2007 Feb; 128(2):335-43. doi:
10.1016/j.jbiotec.2006.10.015
. [PMID: 17116342] - Michael Rother, Gerd-Joachim Krauss, Gregor Grass, Dirk Wesenberg. Sulphate assimilation under Cd2+ stress in Physcomitrella patens--combined transcript, enzyme and metabolite profiling.
Plant, cell & environment.
2006 Sep; 29(9):1801-11. doi:
10.1111/j.1365-3040.2006.01557.x
. [PMID: 16913869] - Mario Houde, Mahdi Belcaid, François Ouellet, Jean Danyluk, Antonio F Monroy, Ani Dryanova, Patrick Gulick, Anne Bergeron, André Laroche, Matthew G Links, Luke MacCarthy, William L Crosby, Fathey Sarhan. Wheat EST resources for functional genomics of abiotic stress.
BMC genomics.
2006 Jun; 7(?):149. doi:
10.1186/1471-2164-7-149
. [PMID: 16772040] - Markus Wirtz, Rüdiger Hell. Functional analysis of the cysteine synthase protein complex from plants: structural, biochemical and regulatory properties.
Journal of plant physiology.
2006 Feb; 163(3):273-86. doi:
10.1016/j.jplph.2005.11.013
. [PMID: 16386330] - Adam Wawrzynski, Edyta Kopera, Anna Wawrzynska, Jolanta Kaminska, Wojciech Bal, Agnieszka Sirko. Effects of simultaneous expression of heterologous genes involved in phytochelatin biosynthesis on thiol content and cadmium accumulation in tobacco plants.
Journal of experimental botany.
2006; 57(10):2173-82. doi:
10.1093/jxb/erj176
. [PMID: 16720610] - Wendy Ann Peer, Mehrzad Mahmoudian, John L Freeman, Brett Lahner, Elizabeth L Richards, Roger D Reeves, Angus S Murphy, David E Salt. Assessment of plants from the Brassicaceae family as genetic models for the study of nickel and zinc hyperaccumulation.
The New phytologist.
2006; 172(2):248-60. doi:
10.1111/j.1469-8137.2006.01820.x
. [PMID: 16995913] - Eric R Bonner, Rebecca E Cahoon, Sarah M Knapke, Joseph M Jez. Molecular basis of cysteine biosynthesis in plants: structural and functional analysis of O-acetylserine sulfhydrylase from Arabidopsis thaliana.
The Journal of biological chemistry.
2005 Nov; 280(46):38803-13. doi:
10.1074/jbc.m505313200
. [PMID: 16166087] - Erika Fediuc, S Herman Lips, László Erdei. O-acetylserine (thiol) lyase activity in Phragmites and Typha plants under cadmium and NaCl stress conditions and the involvement of ABA in the stress response.
Journal of plant physiology.
2005 Aug; 162(8):865-72. doi:
10.1016/j.jplph.2004.11.015
. [PMID: 16146312] - Masami Yokota Hirai, Marion Klein, Yuuta Fujikawa, Mitsuru Yano, Dayan B Goodenowe, Yasuyo Yamazaki, Shigehiko Kanaya, Yukiko Nakamura, Masahiko Kitayama, Hideyuki Suzuki, Nozomu Sakurai, Daisuke Shibata, Jim Tokuhisa, Michael Reichelt, Jonathan Gershenzon, Jutta Papenbrock, Kazuki Saito. Elucidation of gene-to-gene and metabolite-to-gene networks in arabidopsis by integration of metabolomics and transcriptomics.
The Journal of biological chemistry.
2005 Jul; 280(27):25590-5. doi:
10.1074/jbc.m502332200
. [PMID: 15866872] - Laura Hopkins, Saroj Parmar, Anna Błaszczyk, Holger Hesse, Rainer Hoefgen, Malcolm J Hawkesford. O-acetylserine and the regulation of expression of genes encoding components for sulfate uptake and assimilation in potato.
Plant physiology.
2005 May; 138(1):433-40. doi:
10.1104/pp.104.057521
. [PMID: 15805476] - Anja Riemenschneider, Victoria Nikiforova, Rainer Hoefgen, Luit J De Kok, Jutta Papenbrock. Impact of elevated H(2)S on metabolite levels, activity of enzymes and expression of genes involved in cysteine metabolism.
Plant physiology and biochemistry : PPB.
2005 May; 43(5):473-83. doi:
10.1016/j.plaphy.2005.04.001
. [PMID: 15914014] - Victoria J Nikiforova, Joachim Kopka, Vladimir Tolstikov, Oliver Fiehn, Laura Hopkins, Malcolm J Hawkesford, Holger Hesse, Rainer Hoefgen. Systems rebalancing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of Arabidopsis plants.
Plant physiology.
2005 May; 138(1):304-18. doi:
10.1104/pp.104.053793
. [PMID: 15834012] - Anja Riemenschneider, Kerstin Riedel, Rainer Hoefgen, Jutta Papenbrock, Holger Hesse. Impact of reduced O-acetylserine(thiol)lyase isoform contents on potato plant metabolism.
Plant physiology.
2005 Mar; 137(3):892-900. doi:
10.1104/pp.104.057125
. [PMID: 15728339] - Frantz Liszewska, Dali Gaganidze, Agnieszka Sirko. Isolation of Nicotiana plumbaginifolia cDNAs encoding isoforms of serine acetyltransferase and O-acetylserine (thiol) lyase in a yeast two-hybrid system with Escherichia coli cysE and cysK genes as baits.
Acta biochimica Polonica.
2005; 52(1):117-28. doi:
055201117
. [PMID: 15827611] - Peter Buchner, C Elisabeth E Stuiver, Sue Westerman, Markus Wirtz, Rüdiger Hell, Malcolm J Hawkesford, Luit J De Kok. Regulation of sulfate uptake and expression of sulfate transporter genes in Brassica oleracea as affected by atmospheric H(2)S and pedospheric sulfate nutrition.
Plant physiology.
2004 Oct; 136(2):3396-408. doi:
10.1104/pp.104.046441
. [PMID: 15377780] - Naoko Ohkama-Ohtsu, Ichiro Kasajima, Toru Fujiwara, Satoshi Naito. Isolation and characterization of an Arabidopsis mutant that overaccumulates O-Acetyl-L-Ser.
Plant physiology.
2004 Oct; 136(2):3209-22. doi:
10.1104/pp.104.047068
. [PMID: 15466229] - Stanislav Kopriva, Heinz Rennenberg. Control of sulphate assimilation and glutathione synthesis: interaction with N and C metabolism.
Journal of experimental botany.
2004 Aug; 55(404):1831-42. doi:
10.1093/jxb/erh203
. [PMID: 15286142] - Pasquale Chiaiese, Naoko Ohkama-Ohtsu, Lisa Molvig, Robert Godfree, Hugh Dove, Charles Hocart, Toru Fujiwara, T J V Higgins, Linda M Tabe. Sulphur and nitrogen nutrition influence the response of chickpea seeds to an added, transgenic sink for organic sulphur.
Journal of experimental botany.
2004 Aug; 55(404):1889-901. doi:
10.1093/jxb/erh198
. [PMID: 15234997] - John L Freeman, Michael W Persans, Ken Nieman, Carrie Albrecht, Wendy Peer, Ingrid J Pickering, David E Salt. Increased glutathione biosynthesis plays a role in nickel tolerance in thlaspi nickel hyperaccumulators.
The Plant cell.
2004 Aug; 16(8):2176-91. doi:
10.1105/tpc.104.023036
. [PMID: 15269333] - Meriel G Jones, Jill Hughes, Angela Tregova, Jonothan Milne, A Brian Tomsett, Hamish A Collin. Biosynthesis of the flavour precursors of onion and garlic.
Journal of experimental botany.
2004 Aug; 55(404):1903-18. doi:
10.1093/jxb/erh138
. [PMID: 15234988] - Agnieszka Sirko, Anna Błaszczyk, Frantz Liszewska. Overproduction of SAT and/or OASTL in transgenic plants: a survey of effects.
Journal of experimental botany.
2004 Aug; 55(404):1881-8. doi:
10.1093/jxb/erh151
. [PMID: 15208350] - Markus Wirtz, Michel Droux, Rüdiger Hell. O-acetylserine (thiol) lyase: an enigmatic enzyme of plant cysteine biosynthesis revisited in Arabidopsis thaliana.
Journal of experimental botany.
2004 Aug; 55(404):1785-98. doi:
10.1093/jxb/erh201
. [PMID: 15258168] - Danielle R Ellis, Thomas G Sors, Dennis G Brunk, Carrie Albrecht, Cindy Orser, Brett Lahner, Karl V Wood, Hugh H Harris, Ingrid J Pickering, David E Salt. Production of Se-methylselenocysteine in transgenic plants expressing selenocysteine methyltransferase.
BMC plant biology.
2004 Jan; 4(?):1. doi:
10.1186/1471-2229-4-1
. [PMID: 15005814] - Holger Hesse, Nadine Trachsel, Marianne Suter, Stanislav Kopriva, Peter von Ballmoos, Heinz Rennenberg, Christian Brunold. Effect of glucose on assimilatory sulphate reduction in Arabidopsis thaliana roots.
Journal of experimental botany.
2003 Jul; 54(388):1701-9. doi:
10.1093/jxb/erg177
. [PMID: 12754263] - Jonathan R Howarth, José R Domínguez-Solís, Gloria Gutiérrez-Alcalá, John L Wray, Luis C Romero, Cecilia Gotor. The serine acetyltransferase gene family in Arabidopsis thaliana and the regulation of its expression by cadmium.
Plant molecular biology.
2003 Mar; 51(4):589-98. doi:
10.1023/a:1022349623951
. [PMID: 12650624] - Masami Yokota Hirai, Toru Fujiwara, Motoko Awazuhara, Tomoko Kimura, Masaaki Noji, Kazuki Saito. Global expression profiling of sulfur-starved Arabidopsis by DNA macroarray reveals the role of O-acetyl-l-serine as a general regulator of gene expression in response to sulfur nutrition.
The Plant journal : for cell and molecular biology.
2003 Feb; 33(4):651-63. doi:
10.1046/j.1365-313x.2003.01658.x
. [PMID: 12609039] - Eric D Brenner, Dennis W Stevenson, Richard W McCombie, Manpreet S Katari, Stephen A Rudd, Klaus F X Mayer, Peter M Palenchar, Suzan J Runko, Richard W Twigg, Guangwei Dai, Rob A Martienssen, Phillip N Benfey, Gloria M Coruzzi. Expressed sequence tag analysis in Cycas, the most primitive living seed plant.
Genome biology.
2003; 4(12):R78. doi:
10.1186/gb-2003-4-12-r78
. [PMID: 14659015] - M Wirtz, R Hell. Production of cysteine for bacterial and plant biotechnology: application of cysteine feedback-insensitive isoforms of serine acetyltransferase.
Amino acids.
2003; 24(1-2):195-203. doi:
10.1007/s00726-002-0313-9
. [PMID: 12624753] - George Tsakraklides, Melinda Martin, Radhika Chalam, Mitchell C Tarczynski, Ahlert Schmidt, Thomas Leustek. Sulfate reduction is increased in transgenic Arabidopsis thaliana expressing 5'-adenylylsulfate reductase from Pseudomonas aeruginosa.
The Plant journal : for cell and molecular biology.
2002 Dec; 32(6):879-89. doi:
10.1046/j.1365-313x.2002.01477.x
. [PMID: 12492831] - Naoko Ohkama, Kentaro Takei, Hitoshi Sakakibara, Hiroaki Hayashi, Tadakatsu Yoneyama, Toru Fujiwara. Regulation of sulfur-responsive gene expression by exogenously applied cytokinins in Arabidopsis thaliana.
Plant & cell physiology.
2002 Dec; 43(12):1493-501. doi:
10.1093/pcp/pcf183
. [PMID: 12514246] - Stanislav Kopriva, Marianne Suter, Peter von Ballmoos, Holger Hesse, Urs Krähenbühl, Heinz Rennenberg, Christian Brunold. Interaction of sulfate assimilation with carbon and nitrogen metabolism in Lemna minor.
Plant physiology.
2002 Nov; 130(3):1406-13. doi:
10.1104/pp.007773
. [PMID: 12428005] - Oliver Berkowitz, Markus Wirtz, Alexander Wolf, Jürgen Kuhlmann, Rüdiger Hell. Use of biomolecular interaction analysis to elucidate the regulatory mechanism of the cysteine synthase complex from Arabidopsis thaliana.
The Journal of biological chemistry.
2002 Aug; 277(34):30629-34. doi:
10.1074/jbc.m111632200
. [PMID: 12063244] - Alexandra Kutz, Axel Müller, Peter Hennig, Werner M Kaiser, Markus Piotrowski, Elmar W Weiler. A role for nitrilase 3 in the regulation of root morphology in sulphur-starving Arabidopsis thaliana.
The Plant journal : for cell and molecular biology.
2002 Apr; 30(1):95-106. doi:
10.1046/j.1365-313x.2002.01271.x
. [PMID: 11967096]