FA 20:4;O3 (BioDeep_00000628870)

 

Secondary id: BioDeep_00000005606, BioDeep_00000005611, BioDeep_00000019524, BioDeep_00000028039, BioDeep_00001868513

LipidSearch


代谢物信息卡片


4-((1S,2S,5R)-5-hydroxy-2-((S,1E,5Z)-3-hydroxyundeca-1,5-dien-1-yl)-3-oxocyclopentyl)butanoic acid

化学式: C20H32O5 (352.225)
中文名称: 13,14-二氢-15-酮前列腺素e2
谱图信息: 最多检出来源 Homo sapiens(lipidsearch) 26.27%

分子结构信息

SMILES: C(/C=C/C=C/[C@@H](O)[C@@H](O)CCCC(O)=O)=C/CCC(=O)CCCCC
InChI: InChI=1S/C20H32O5/c1-2-3-6-9-15(21)12-13-17-16(18(22)14-19(17)23)10-7-4-5-8-11-20(24)25/h12-13,16-17,19,23H,2-11,14H2,1H3,(H,24,25)/b13-12+/t16-,17-,19-/m1/s1

描述信息

D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents
D002491 - Central Nervous System Agents > D000700 - Analgesics
D000893 - Anti-Inflammatory Agents
D018501 - Antirheumatic Agents

同义名列表

473 个代谢物同义名

15R-hydroxy-12S,14R-endoperoxy-5Z,8Z,10E-eicosatrienoic acid; 15R-hydroxy-12S,14R-dioxolane-5Z,8Z,10E-eicosatrienoic acid; FA 20:4;O3; 5S,12,18S-trihydroxy-6Z,8E,14Z,16E-eicosatetraenoic acid; 10,11-dihydro-Resolvin E1; 10,11-dihydro-RvE1; 4-((1S,2S,5R)-5-hydroxy-2-((S,1E,5Z)-3-hydroxyundeca-1,5-dien-1-yl)-3-oxocyclopentyl)butanoic acid; (6R,12S)-12-D2-IsoP[5S,9S]; ent-5,12-diepi-12-D2t-IsoP; 4-((1R,2R,5R)-5-hydroxy-2-((S,1E,5Z)-3-hydroxyundeca-1,5-dien-1-yl)-3-oxocyclopentyl)butanoic acid; ent-5,12-diepi-12-D2c-IsoP; (6R,12S)-12-D2-IsoP[5R,9R]; 4-((1S,2S,5R)-5-hydroxy-2-((R,1E,5Z)-3-hydroxyundeca-1,5-dien-1-yl)-3-oxocyclopentyl)butanoic acid; (6R,12R)-12-D2-IsoP[5S,9S]; ent-5-epi-12-D2t-IsoP; 4-((1R,2R,5R)-5-hydroxy-2-((R,1E,5Z)-3-hydroxyundeca-1,5-dien-1-yl)-3-oxocyclopentyl)butanoic acid; (6R,12R)-12-D2-IsoP[5R,9R]; ent-5-epi-12-D2c-IsoP; 4-((1R,2R,5S)-5-hydroxy-2-((R,1E,5Z)-3-hydroxyundeca-1,5-dien-1-yl)-3-oxocyclopentyl)butanoic acid; (6S,12R)-12-D2-IsoP[5S,9R]; 5,12-diepi-12-D2t-IsoP; 4-((1S,2S,5S)-5-hydroxy-2-((R,1E,5Z)-3-hydroxyundeca-1,5-dien-1-yl)-3-oxocyclopentyl)butanoic acid; (6S,12R)-12-D2-IsoP[5R,9S]; 5,12-diepi-12-D2c-IsoP; 4-((1R,2R,5S)-5-hydroxy-2-((S,1E,5Z)-3-hydroxyundeca-1,5-dien-1-yl)-3-oxocyclopentyl)butanoic acid; (6S,12S)-12-D2-IsoP[5S,9R]; 5-epi-12-D2t-IsoP; 4-((1S,2S,5S)-5-hydroxy-2-((S,1E,5Z)-3-hydroxyundeca-1,5-dien-1-yl)-3-oxocyclopentyl)butanoic acid; (6S,12S)-12-D2-IsoP[5R,9S]; 5-epi-12-D2c-IsoP; (S,E)-5-hydroxy-7-((1S,2S,5R)-5-hydroxy-2-((Z)-oct-2-en-1-yl)-3-oxocyclopentyl)hept-6-enoic acid; (5S,9R)-5-D2-IsoP[8S,12S]; ent-5,8-diepi-5-D2t-IsoP; (S,E)-5-hydroxy-7-((1R,2R,5R)-5-hydroxy-2-((Z)-oct-2-en-1-yl)-3-oxocyclopentyl)hept-6-enoic acid; (5S,9R)-5-D2-IsoP[8R,12R]; ent-5,8-diepi-5-D2c-IsoP; (R,E)-5-hydroxy-7-((1S,2S,5R)-5-hydroxy-2-((Z)-oct-2-en-1-yl)-3-oxocyclopentyl)hept-6-enoic acid; (5R,9R)-5-D2-IsoP[8S,12S]; ent-8-epi-5-D2t-IsoP; (R,E)-5-hydroxy-7-((1R,2R,5R)-5-hydroxy-2-((Z)-oct-2-en-1-yl)-3-oxocyclopentyl)hept-6-enoic acid; (5R,9R)-5-D2-IsoP[8R,12R]; ent-8-epi-5-D2c-IsoP; (R,E)-5-hydroxy-7-((1R,2R,5S)-5-hydroxy-2-((Z)-oct-2-en-1-yl)-3-oxocyclopentyl)hept-6-enoic acid; (5R,9S)-5-D2-IsoP[8R,12R]; 5,8-diepi-5-D2t-IsoP; (R,E)-5-hydroxy-7-((1S,2S,5S)-5-hydroxy-2-((Z)-oct-2-en-1-yl)-3-oxocyclopentyl)hept-6-enoic acid; (5R,9S)-5-D2-IsoP[8S,12S]; 5,8-diepi-5-D2c-IsoP; (S,E)-5-hydroxy-7-((1R,2R,5S)-5-hydroxy-2-((Z)-oct-2-en-1-yl)-3-oxocyclopentyl)hept-6-enoic acid; (5S,9S)-5-D2-IsoP[8R,12R]; 8-epi-5-D2t-IsoP; (S,E)-5-hydroxy-7-((1S,2S,5S)-5-hydroxy-2-((Z)-oct-2-en-1-yl)-3-oxocyclopentyl)hept-6-enoic acid; (5S,9S)-5-D2-IsoP[8S,12S]; 8-epi-5-D2c-IsoP; (S,5Z,9E)-8-hydroxy-10-((1S,2S,5R)-5-hydroxy-3-oxo-2-pentylcyclopentyl)deca-5,9-dienoic acid; (8S,12R)-8-D2-IsoP[11S,15S]; ent-8,11-diepi-8-D2t-IsoP; (S,5Z,9E)-8-hydroxy-10-((1R,2R,5R)-5-hydroxy-3-oxo-2-pentylcyclopentyl)deca-5,9-dienoic acid; (8S,12R)-8-D2-IsoP[11R,15R]; ent-8,11-diepi-8-D2c-IsoP; (R,5Z,9E)-8-hydroxy-10-((1S,2S,5R)-5-hydroxy-3-oxo-2-pentylcyclopentyl)deca-5,9-dienoic acid; (8R,12R)-8-D2-IsoP[11S,15S]; ent-11-epi-8-D2t-IsoP; (R,5Z,9E)-8-hydroxy-10-((1R,2R,5R)-5-hydroxy-3-oxo-2-pentylcyclopentyl)deca-5,9-dienoic acid; (8R,12R)-8-D2-IsoP[11R,15R]; ent-11-epi-8-D2c-IsoP; (R,5Z,9E)-8-hydroxy-10-((1R,2R,5S)-5-hydroxy-3-oxo-2-pentylcyclopentyl)deca-5,9-dienoic acid; (8R,12S)-8-D2-IsoP[11R,15R]; 8,11-diepi-8-D2t-IsoP; (R,5Z,9E)-8-hydroxy-10-((1S,2S,5S)-5-hydroxy-3-oxo-2-pentylcyclopentyl)deca-5,9-dienoic acid; (8R,12S)-8-D2-IsoP[11S,15S]; 8,11-diepi-8-D2c-IsoP; (S,5Z,9E)-8-hydroxy-10-((1R,2R,5S)-5-hydroxy-3-oxo-2-pentylcyclopentyl)deca-5,9-dienoic acid; (8S,12S)-8-D2-IsoP[11R,15R]; 11-epi-8-D2t-IsoP; (S,5Z,9E)-8-hydroxy-10-((1S,2S,5S)-5-hydroxy-3-oxo-2-pentylcyclopentyl)deca-5,9-dienoic acid; (8S,12S)-8-D2-IsoP[11S,15S]; 11-epi-8-D2c-IsoP; (R,5Z,9E)-8-hydroxy-10-((1R,2S,3R)-3-hydroxy-5-oxo-2-pentylcyclopentyl)deca-5,9-dienoic acid; (8R,14R)-8-E2-IsoP[11R,15S]; 8-epi-8-E2c-IsoP; (R,5Z,9E)-8-hydroxy-10-((1S,2R,3R)-3-hydroxy-5-oxo-2-pentylcyclopentyl)deca-5,9-dienoic acid; (8R,14R)-8-E2-IsoP[11S,15R]; 8-epi-8-E2t-IsoP; (R,5Z,9E)-8-hydroxy-10-((1S,2S,3R)-3-hydroxy-5-oxo-2-pentylcyclopentyl)deca-5,9-dienoic acid; (8R,14R)-8-E2-IsoP[11S,15S]; 8,11-diepi-8-E2c-IsoP; (R,5Z,9E)-8-hydroxy-10-((1R,2R,3R)-3-hydroxy-5-oxo-2-pentylcyclopentyl)deca-5,9-dienoic acid; (8R,14R)-8-E2-IsoP[11R,15R]; 8,11-diepi-8-E2t-IsoP; (S,5Z,9E)-8-hydroxy-10-((1R,2S,3R)-3-hydroxy-5-oxo-2-pentylcyclopentyl)deca-5,9-dienoic acid; (8S,14R)-8-E2-IsoP[11R,15S]; 8-E2c-IsoP; (S,5Z,9E)-8-hydroxy-10-((1S,2R,3R)-3-hydroxy-5-oxo-2-pentylcyclopentyl)deca-5,9-dienoic acid; (8S,14R)-8-E2-IsoP[11S,15R]; 8-E2t-IsoP; (S,5Z,9E)-8-hydroxy-10-((1S,2S,3R)-3-hydroxy-5-oxo-2-pentylcyclopentyl)deca-5,9-dienoic acid; 11-epi-8-E2c-IsoP; (S,5Z,9E)-8-hydroxy-10-((1R,2R,3R)-3-hydroxy-5-oxo-2-pentylcyclopentyl)deca-5,9-dienoic acid; 11-epi-8-E2t-IsoP; (S,5Z,9E)-8-hydroxy-10-((1S,2R,3S)-3-hydroxy-5-oxo-2-pentylcyclopentyl)deca-5,9-dienoic acid; (8S,14S)-8-E2-IsoP[11S,15R]; ent-8-epi-8-E2c-IsoP; (S,5Z,9E)-8-hydroxy-10-((1R,2S,3S)-3-hydroxy-5-oxo-2-pentylcyclopentyl)deca-5,9-dienoic acid; (8S,14S)-8-E2-IsoP[11R,15S]; ent-8-epi-8-E2t-IsoP; (S,5Z,9E)-8-hydroxy-10-((1R,2R,3S)-3-hydroxy-5-oxo-2-pentylcyclopentyl)deca-5,9-dienoic acid; (8S,14S)-8-E2-IsoP[11R,15R]; ent-8,11-diepi-8-E2c-IsoP; (S,5Z,9E)-8-hydroxy-10-((1S,2S,3S)-3-hydroxy-5-oxo-2-pentylcyclopentyl)deca-5,9-dienoic acid; (8S,14S)-8-E2-IsoP[11S,15S]; ent-8,11-diepi-8-E2t-IsoP; (R,5Z,9E)-8-hydroxy-10-((1S,2R,3S)-3-hydroxy-5-oxo-2-pentylcyclopentyl)deca-5,9-dienoic acid; (8R,14S)-8-E2-IsoP[11S,15R]; ent-8-E2c-IsoP; (R,5Z,9E)-8-hydroxy-10-((1R,2S,3S)-3-hydroxy-5-oxo-2-pentylcyclopentyl)deca-5,9-dienoic acid; (8R,14S)-8-E2-IsoP[11R,15S]; ent-8-E2t-IsoP; (R,5Z,9E)-8-hydroxy-10-((1R,2R,3S)-3-hydroxy-5-oxo-2-pentylcyclopentyl)deca-5,9-dienoic acid; ent-11-epi-8-E2c-IsoP; (R,5Z,9E)-8-hydroxy-10-((1S,2S,3S)-3-hydroxy-5-oxo-2-pentylcyclopentyl)deca-5,9-dienoic acid; (8R,14S)-8-E2-IsoP[11S,15S]; ent-11-epi-8-E2t-IsoP; 4-((1S,2S,3S)-3-hydroxy-2-((R,1E,5Z)-3-hydroxyundeca-1,5-dien-1-yl)-5-oxocyclopentyl)butanoic acid; (8S,12R)-12-E2-IsoP[5S,9S]; ent-5-epi-12-E2t-IsoP; 4-((1R,2R,3S)-3-hydroxy-2-((R,1E,5Z)-3-hydroxyundeca-1,5-dien-1-yl)-5-oxocyclopentyl)butanoic acid; (8S,12R)-12-E2-IsoP[5R,9R]; ent-5-epi-12-E2c-IsoP; 4-((1S,2S,3S)-3-hydroxy-2-((S,1E,5Z)-3-hydroxyundeca-1,5-dien-1-yl)-5-oxocyclopentyl)butanoic acid; ent-5,12-diepi-12-E2t-IsoP; (8S,12S)-12-E2-IsoP[5S,9S]; 4-((1R,2R,3S)-3-hydroxy-2-((S,1E,5Z)-3-hydroxyundeca-1,5-dien-1-yl)-5-oxocyclopentyl)butanoic acid; (8S,12S)-12-E2-IsoP[5R,9R]; ent-5,12-diepi-12-E2c-IsoP; 4-((1R,2S,3S)-3-hydroxy-2-((R,1E,5Z)-3-hydroxyundeca-1,5-dien-1-yl)-5-oxocyclopentyl)butanoic acid; (8S,12R)-12-E2-IsoP[5R,9S]; ent-12-E2t-IsoP; 4-((1S,2R,3S)-3-hydroxy-2-((R,1E,5Z)-3-hydroxyundeca-1,5-dien-1-yl)-5-oxocyclopentyl)butanoic acid; (8S,12R)-12-E2-IsoP[5S,9R]; ent-12-E2c-IsoP; 4-((1R,2S,3S)-3-hydroxy-2-((S,1E,5Z)-3-hydroxyundeca-1,5-dien-1-yl)-5-oxocyclopentyl)butanoic acid; (8S,12S)-12-E2-IsoP[5R,9S]; ent-12-epi-12-E2t-IsoP; 4-((1S,2R,3S)-3-hydroxy-2-((S,1E,5Z)-3-hydroxyundeca-1,5-dien-1-yl)-5-oxocyclopentyl)butanoic acid; (8S,12S)-12-E2-IsoP[5S,9R]; ent-12-epi-12-E2c-IsoP; 4-((1R,2R,3R)-3-hydroxy-2-((S,1E,5Z)-3-hydroxyundeca-1,5-dien-1-yl)-5-oxocyclopentyl)butanoic acid; (8R,12S)-12-E2-IsoP[5R,9R]; 5-epi-12-E2t-IsoP; 4-((1S,2S,3R)-3-hydroxy-2-((S,1E,5Z)-3-hydroxyundeca-1,5-dien-1-yl)-5-oxocyclopentyl)butanoic acid; (8R,12S)-12-E2-IsoP[5S,9S]; 5-epi-12-E2c-IsoP; 4-((1R,2R,3R)-3-hydroxy-2-((R,1E,5Z)-3-hydroxyundeca-1,5-dien-1-yl)-5-oxocyclopentyl)butanoic acid; (8R,12R)-12-E2-IsoP[5R,9R]; 5,12-diepi-12-E2t-IsoP; 4-((1S,2S,3R)-3-hydroxy-2-((R,1E,5Z)-3-hydroxyundeca-1,5-dien-1-yl)-5-oxocyclopentyl)butanoic acid; (8R,12R)-12-E2-IsoP[5S,9S]; 5,12-diepi-12-E2c-IsoP; 4-((1S,2R,3R)-3-hydroxy-2-((S,1E,5Z)-3-hydroxyundeca-1,5-dien-1-yl)-5-oxocyclopentyl)butanoic acid; (8R,12S)-12-E2-IsoP[5S,9R]; 12-E2t-IsoP; 4-((1R,2S,3R)-3-hydroxy-2-((S,1E,5Z)-3-hydroxyundeca-1,5-dien-1-yl)-5-oxocyclopentyl)butanoic acid; (8R,12S)-12-E2-IsoP[5R,9S]; 12-E2c-IsoP; 4-((1S,2R,3R)-3-hydroxy-2-((R,1E,5Z)-3-hydroxyundeca-1,5-dien-1-yl)-5-oxocyclopentyl)butanoic acid; (8R,12R)-12-E2-IsoP[5S,9R]; 12-epi-12-E2t-IsoP; 4-((1R,2S,3R)-3-hydroxy-2-((R,1E,5Z)-3-hydroxyundeca-1,5-dien-1-yl)-5-oxocyclopentyl)butanoic acid; (8R,12R)-12-E2-IsoP[5R,9S]; 12-epi-12-E2c-IsoP; (R,E)-5-hydroxy-7-((1S,2S,3S)-3-hydroxy-2-((Z)-oct-2-en-1-yl)-5-oxocyclopentyl)hept-6-enoic acid; (5R,11S)-5-E2-IsoP[8S,12S]; ent-8-epi-5-E2t-IsoP; (R,E)-5-hydroxy-7-((1R,2R,3S)-3-hydroxy-2-((Z)-oct-2-en-1-yl)-5-oxocyclopentyl)hept-6-enoic acid; (5R,11S)-5-E2-IsoP[8R,12R]; ent-8-epi-5-E2c-IsoP; (S,E)-5-hydroxy-7-((1S,2S,3S)-3-hydroxy-2-((Z)-oct-2-en-1-yl)-5-oxocyclopentyl)hept-6-enoic acid; (5S,11S)-5-E2-IsoP[8S,12S]; ent-8,5-diepi-5-E2t-IsoP; (S,E)-5-hydroxy-7-((1R,2R,3S)-3-hydroxy-2-((Z)-oct-2-en-1-yl)-5-oxocyclopentyl)hept-6-enoic acid; (5S,11S)-5-E2-IsoP[8R,12R]; ent-8,5-diepi-5-E2c-IsoP; (R,E)-5-hydroxy-7-((1R,2S,3S)-3-hydroxy-2-((Z)-oct-2-en-1-yl)-5-oxocyclopentyl)hept-6-enoic acid; (5R,11S)-5-E2-IsoP[8R,12S]; ent-5-E2t-IsoP; (R,E)-5-hydroxy-7-((1S,2R,3S)-3-hydroxy-2-((Z)-oct-2-en-1-yl)-5-oxocyclopentyl)hept-6-enoic acid; (5R,11S)-5-E2-IsoP[8S,12R]; ent-5-E2c-IsoP; (S,E)-5-hydroxy-7-((1R,2S,3S)-3-hydroxy-2-((Z)-oct-2-en-1-yl)-5-oxocyclopentyl)hept-6-enoic acid; (5S,11S)-5-E2-IsoP[8R,12S]; ent-5-epi-5-E2t-IsoP; (S,E)-5-hydroxy-7-((1S,2R,3S)-3-hydroxy-2-((Z)-oct-2-en-1-yl)-5-oxocyclopentyl)hept-6-enoic acid; (5S,11S)-5-E2-IsoP[8S,12R]; ent-5-epi-5-E2c-IsoP; (S,E)-5-hydroxy-7-((1R,2R,3R)-3-hydroxy-2-((Z)-oct-2-en-1-yl)-5-oxocyclopentyl)hept-6-enoic acid; (5S,11R)-5-E2-IsoP[8R,12R]; 8-epi-5-E2t-IsoP; (S,E)-5-hydroxy-7-((1S,2S,3R)-3-hydroxy-2-((Z)-oct-2-en-1-yl)-5-oxocyclopentyl)hept-6-enoic acid; (5S,11R)-5-E2-IsoP[8S,12S]; 8-epi-5-E2c-IsoP; (R,E)-5-hydroxy-7-((1R,2R,3R)-3-hydroxy-2-((Z)-oct-2-en-1-yl)-5-oxocyclopentyl)hept-6-enoic acid; (5R,11R)-5-E2-IsoP[8R,12R]; 8,5-diepi-5-E2t-IsoP; (R,E)-5-hydroxy-7-((1S,2S,3R)-3-hydroxy-2-((Z)-oct-2-en-1-yl)-5-oxocyclopentyl)hept-6-enoic acid; (5R,11R)-5-E2-IsoP[8S,12S]; 8,5-diepi-5-E2c-IsoP; (S,E)-5-hydroxy-7-((1R,2S,3R)-3-hydroxy-2-((Z)-oct-2-en-1-yl)-5-oxocyclopentyl)hept-6-enoic acid; (5S,11R)-5-E2-IsoP[8R,12S]; 5-E2c-IsoP; (R,E)-5-hydroxy-7-((1S,2R,3R)-3-hydroxy-2-((Z)-oct-2-en-1-yl)-5-oxocyclopentyl)hept-6-enoic acid; (5R,11R)-5-E2-IsoP[8S,12R]; 5-epi-5-E2t-IsoP; (R,E)-5-hydroxy-7-((1R,2S,3R)-3-hydroxy-2-((Z)-oct-2-en-1-yl)-5-oxocyclopentyl)hept-6-enoic acid; (5R,11R)-5-E2-IsoP[8R,12S]; 5-epi-5-E2c-IsoP; 11-oxo-9S,15S-dihydroxy-5Z,13E-prostadienoic acid-cyclo[8S,12S]; (9S,15S)-15-D2-IsoP[8S,12S]; 8-epi-15-D2c-IsoP; 11-oxo-9S,15R-dihydroxy-5Z,13E-prostadienoic acid-cyclo[8S,12S]; (9S,15R)-15-D2-IsoP[8S,12S]; 8,15-diepi-15-D2c-IsoP; 11-oxo-9R,15S-dihydroxy-5Z,13E-prostadienoic acid-cyclo[8S,12S]; (9R,15S)-15-D2-IsoP[8S,12S]; ent-8,15-diepi-15-D2t-IsoP; 11-oxo-9R,15S-dihydroxy-5Z,13E-prostadienoic acid-cyclo[8R,12R]; (9R,15S)-15-D2-IsoP[8R,12R]; ent-8,15-diepi-15-D2c-IsoP; 11-oxo-9R,15R-dihydroxy-5Z,13E-prostadienoic acid-cyclo[8R,12R]; (9R,15R)-15-D2-IsoP[8R,12R]; ent-8-epi-15-D2c-IsoP; 9-oxo-11R,15S-dihydroxy-5Z,13E-prostadienoic acid-cyclo[8S,12S]; (11R,15S)-15-E2-IsoP[8S,12S]; 8-epi-15-E2c-IsoP; 9-oxo-11R,15S-dihydroxy-5Z,13E-prostadienoic acid-cyclo[8R,12S]; (11R,15S)-15-E2-IsoP[8R,12S]; 15-E2c-IsoP; 9-oxo-11R,15R-dihydroxy-5Z,13E-prostadienoic acid-cyclo[8S,12R]; (11R,15R)-15-E2-IsoP[8S,12R]; 15-epi-15-E2t-IsoP; 9-oxo-11R,15R-dihydroxy-5Z,13E-prostadienoic acid-cyclo[8R,12S]; (11R,15R)-15-E2-IsoP[8R,12S]; 15-epi-15-E2c-IsoP; 9-oxo-11S,15S-dihydroxy-5Z,13E-prostadienoic acid-cyclo[8S,12S]; (11S,15S)-15-E2-IsoP[8S,12S]; ent-8,15-diepi-15-E2t-IsoP; 9-oxo-11S,15S-dihydroxy-5Z,13E-prostadienoic acid-cyclo[8S,12R]; (11S,15S)-15-E2-IsoP[8S,12R]; ent-15-epi-15-E2c-IsoP; 9-oxo-11S,15S-dihydroxy-5Z,13E-prostadienoic acid-cyclo[8R,12S]; (11S,15S)-15-E2-IsoP[8R,12S]; ent-15-epi-15-E2t-IsoP; 9-oxo-11S,15R-dihydroxy-5Z,13E-prostadienoic acid-cyclo[8S,12R]; (11S,15R)-15-E2-IsoP[8S,12R]; ent-15-E2c-IsoP; 9-oxo-11S,15R-dihydroxy-5Z,13E-prostadienoic acid-cyclo[8R,12S]; (11S,15R)-15-E2-IsoP[8R,12S]; ent-15-E2t-IsoP; 9-oxo-11S,15R-dihydroxy-5Z,13E-prostadienoic acid-cyclo[8R,12R]; (11S,15R)-15-E2-IsoP[8R,12R]; ent-8-epi-15-E2c-IsoP; 9S,15S-dihydroxy-11-oxo-5Z,13E-prostadienoic acid-cyclo[8S,12R]; (9S,15S)-15-D2-IsoP[8S,12R]; 15-D2t-IsoP; 9S,15R-dihydroxy-11-oxo-5Z,13E-prostadienoic acid-cyclo[8S,12R]; (9S,15R)-15-D2-IsoP[8S,12R]; 15-epi-15-D2t-IsoP; 9R,15R-dihydroxy-11-oxo-5Z,13E-prostadienoic acid-cyclo[8R,12S]; (9R,15R)-15-D2-IsoP[8R,12S]; ent-15-D2t-IsoP; 9R,15S-dihydroxy-11-oxo-5Z,13E-prostadienoic acid-cyclo[8R,12S]; (9R,15S)-15-D2-IsoP[8R,12S]; ent-15-epi-15-D2t-IsoP; 9R,15S-dihydroxy-11-oxo-5Z,13E-prostadienoic acid-cyclo[8S,12R]; (9R,15S)-15-D2-IsoP[8S,12R]; ent-15-epi-15-D2c-IsoP; 9S,15R-dihydroxy-11-oxo-5Z,13E-prostadienoic acid-cyclo[8R,12S]; (9S,15R)-15-D2-IsoP[8R,12S]; 15-epi-15-D2c-IsoP; 9S,15S-dihydroxy-11-oxo-5Z,13E-prostadienoic acid-cyclo[8R,12S]; (9S,15S)-15-D2-IsoP[8R,12S]; 15-D2c-IsoP; 9R,15R-dihydroxy-11-oxo-5Z,13E-prostadienoic acid-cyclo[8S,12R]; (9R,15R)-15-D2-IsoP[8S,12R]; ent-15-D2c-IsoP; 6S,12S-dihydroxy-8-oxo-10E,14Z-prostadienoic acid-cyclo[5S,9R]; 12-D2t-IsoP; 6S,12R-dihydroxy-8-oxo-10E,14Z-prostadienoic acid-cyclo[5S,9R]; 12-epi-12-D2t-IsoP; 6R,12R-dihydroxy-8-oxo-10E,14Z-prostadienoic acid-cyclo[5R,9S]; (6R,12R)-12-D2-IsoP[5R,9S]; ent-12-D2t-IsoP; 6R,12S-dihydroxy-8-oxo-10E,14Z-prostadienoic acid-cyclo[5R,9S]; (6R,12S)-12-D2-IsoP[5R,9S]; ent-12-epi-12-D2t-IsoP; 6R,12S-dihydroxy-8-oxo-10E,14Z-prostadienoic acid-cyclo[5S,9R]; (6R,12S)-12-D2-IsoP[5S,9R]; ent-12-epi-12-D2c-IsoP; 6S,12R-dihydroxy-8-oxo-10E,14Z-prostadienoic acid-cyclo[5R,9S]; 12-epi-12-D2c-IsoP; 6S,12S-dihydroxy-8-oxo-10E,14Z-prostadienoic acid-cyclo[5R,9S]; 12-D2c-IsoP; 6R,12R-dihydroxy-8-oxo-10E,14Z-prostadienoic acid-cyclo[5S,9R]; (6R,12R)-12-D2-IsoP[5S,9R]; ent-12-D2c-IsoP; 5R,9R-dihydroxy-11-oxo-6E,14Z-prostadienoic acid-cyclo[8R,12S]; (5R,9R)-5-D2-IsoP[8R,12S]; ent-5-D2t-IsoP; 5R,9S-dihydroxy-11-oxo-6E,14Z-prostadienoic acid-cyclo[8S,12R]; (5R,9S)-5-D2-IsoP[8S,12R]; 5-epi-5-D2t-IsoP; 5S,9R-dihydroxy-11-oxo-6E,14Z-prostadienoic acid-cyclo[8R,12S]; (5S,9R)-5-D2-IsoP[8R,12S]; ent-5-epi-5-D2t-IsoP; 5S,9R-dihydroxy-11-oxo-6E,14Z-prostadienoic acid-cyclo[8S,12R]; (5S,9R)-5-D2-IsoP[8S,12R]; ent-5-epi-5-D2c-IsoP; 5R,9S-dihydroxy-11-oxo-6E,14Z-prostadienoic acid-cyclo[8R,12S]; (5R,9S)-5-D2-IsoP[8R,12S]; 5-epi-5-D2c-IsoP; 5S,9S-dihydroxy-11-oxo-6E,14Z-prostadienoic acid-cyclo[8R,12S]; (5S,9S)-5-D2-IsoP[8R,12S]; 5-D2c-IsoP; 5R,9R-dihydroxy-11-oxo-6E,14Z-prostadienoic acid-cyclo[8S,12R]; (5R,9R)-5-D2-IsoP[8S,12R]; ent-5-D2c-IsoP; 8R,12S-dihydroxy-14-oxo-5Z,9E-prostadienoic acid-cyclo[11S,15R]; (8R,12S)-8-D2-IsoP[11S,15R]; 8-epi-8-D2t-IsoP; 8R,12R-dihydroxy-14-oxo-5Z,9E-prostadienoic acid-cyclo[11R,15S]; (8R,12R)-8-D2-IsoP[11R,15S]; ent-8-D2t-IsoP; 8S,12R-dihydroxy-14-oxo-5Z,9E-prostadienoic acid-cyclo[11R,15S]; (8S,12R)-8-D2-IsoP[11R,15S]; ent-8-epi-8-D2t-IsoP; 8S,12R-dihydroxy-14-oxo-5Z,9E-prostadienoic acid-cyclo[11S,15R]; (8S,12R)-8-D2-IsoP[11S,15R]; ent-8-epi-8-D2c-IsoP; 8R,12S-dihydroxy-14-oxo-5Z,9E-prostadienoic acid-cyclo[11R,15S]; (8R,12S)-8-D2-IsoP[11R,15S]; 8-epi-8-D2c-IsoP; 8R,12R-dihydroxy-14-oxo-5Z,9E-prostadienoic acid-cyclo[11S,15R]; (8R,12R)-8-D2-IsoP[11S,15R]; ent-8-D2c-IsoP; 9S,11R,15S-trihydroxy-5Z,13E,17Z-prostatrienoic acid-cyclo[8S,12R]; 8-iso-PGF3alpha; 9S,11R-dihydroxy-15-oxo-5Z,13E-prostadienoic acid-cyclo[8S,12R]; 8-iso-15-keto-PGF2alpha; 9-oxo-11R,15S-dihydroxy-5Z,13E-prostadienoic acid-cyclo[8S,12R]; 8-iso-PGE2; (5S,6E,8S,9R,11Z)-9-acetyl-8-formyl-5-hydroxyheptadeca-6,11-dienoic acid; (8S,12R)-9,10-seco-9,11-dioxo-5S-hydroxy-6E,14Z-prostadienoic acid; 5-iso-LGD2; (5R,6E,8R,9S,11Z)-9-acetyl-8-formyl-5-hydroxyheptadeca-6,11-dienoic acid; (8R,12S)-9,10-seco-9,11-dioxo-5R-hydroxy-6E,14Z-prostadienoic acid; ent-5-iso-LGD2; (5S,6E,8R,9S,11Z)-9-acetyl-8-formyl-5-hydroxyheptadeca-6,11-dienoic acid; (8R,12S)-9,10-seco-9,11-dioxo-5S-hydroxy-6E,14Z-prostadienoic acid; ent-5-epi-5-iso-LGD2; (5R,6E,8S,9R,11Z)-9-acetyl-8-formyl-5-hydroxyheptadeca-6,11-dienoic acid; (8S,12R)-9,10-seco-9,11-dioxo-5R-hydroxy-6E,14Z-prostadienoic acid; 5-epi-5-iso-LGD2; (5Z,8S,9E,11S,12R)-12-acetyl-11-formyl-8-hydroxyheptadeca-5,9-dienoic acid; (11S,15R)-12,13-seco-12,14-dioxo-8S-hydroxy-5Z,9E-prostadienoic acid; 8-iso-LGD2; (5Z,8R,9E,11R,12S)-12-acetyl-11-formyl-8-hydroxyheptadeca-5,9-dienoic acid; (11R,15S)-12,13-seco-12,14-dioxo-8R-hydroxy-5Z,9E-prostadienoic acid; ent-8-iso-LGD2; (5Z,8S,9E,11R,12S)-12-acetyl-11-formyl-8-hydroxyheptadeca-5,9-dienoic acid; (11R,15S)-12,13-seco-12,14-dioxo-8S-hydroxy-5Z,9E-prostadienoic acid; ent-8-epi-8-iso-LGD2; (5Z,8R,9E,11S,12R)-12-acetyl-11-formyl-8-hydroxyheptadeca-5,9-dienoic acid; (11S,15R)-12,13-seco-12,14-dioxo-8R-hydroxy-5Z,9E-prostadienoic acid; 8-epi-8-iso-LGD2; (5S,6R,7E,9S,11Z)-6-acetyl-5-formyl-9-hydroxyheptadeca-7,11-dienoic acid; (5S,9R)-6,7-seco-6,8-dioxo-12S-hydroxy-10E,14Z-prostadienoic acid; 12-iso-LGD2; (5R,6S,7E,9R,11Z)-6-acetyl-5-formyl-9-hydroxyheptadeca-7,11-dienoic acid; (5R,9S)-6,7-seco-6,8-dioxo-12R-hydroxy-10E,14Z-prostadienoic acid; ent-12-iso-LGD2; (5R,6S,7E,9S,11Z)-6-acetyl-5-formyl-9-hydroxyheptadeca-7,11-dienoic acid; (5R,9S)-6,7-seco-6,8-dioxo-12S-hydroxy-10E,14Z-prostadienoic acid; ent-12-epi-12-iso-LGD2; (5S,6R,7E,9R,11Z)-6-acetyl-5-formyl-9-hydroxyheptadeca-7,11-dienoic acid; (5S,9R)-6,7-seco-6,8-dioxo-12R-hydroxy-10E,14Z-prostadienoic acid; 12-epi-12-iso-LGD2; (5Z,8S,9R,10E,12S)-9-acetyl-8-formyl-12-hydroxyheptadeca-5,10-dienoic acid; (8S,12R)-9,10-seco-9,11-dioxo-15S-hydroxy-5Z,13E-prostadienoic acid; 15-iso-LGD2; (5Z,8R,9S,10E,12R)-9-acetyl-8-formyl-12-hydroxyheptadeca-5,10-dienoic acid; (8R,12S)-9,10-seco-9,11-dioxo-15R-hydroxy-5Z,13E-prostadienoic acid; ent-15-iso-LGD2; (5Z,8R,9S,10E,12S)-9-acetyl-8-formyl-12-hydroxyheptadeca-5,10-dienoic acid; (8R,12S)-9,10-seco-9,11-dioxo-15S-hydroxy-5Z,13E-prostadienoic acid; ent-15-epi-15-iso-LGD2; (5Z,8S,9R,10E,12R)-9-acetyl-8-formyl-12-hydroxyheptadeca-5,10-dienoic acid; (8S,12R)-9,10-seco-9,11-dioxo-15R-hydroxy-5Z,13E-prostadienoic acid; 15-epi-15-iso-LGD2; (5R,6E,8R,9S,11Z)-8-acetyl-9-formyl-5-hydroxyheptadeca-6,11-dienoic acid; (8R,12S)-10,11-seco-9,11-dioxo-5R-hydroxy-6E,14Z-prostadienoic acid; ent-5-iso-LGE2; (5S,6E,8R,9S,11Z)-8-acetyl-9-formyl-5-hydroxyheptadeca-6,11-dienoic acid; (8R,12S)-10,11-seco-9,11-dioxo-5S-hydroxy-6E,14Z-prostadienoic acid; ent-5-epi-5-iso-LGE2; (5R,6E,8S,9R,11Z)-8-acetyl-9-formyl-5-hydroxyheptadeca-6,11-dienoic acid; (8S,12R)-10,11-seco-9,11-dioxo-5R-hydroxy-6E,14Z-prostadienoic acid; 5-epi-5-iso-LGE2; (5Z,8R,9E,11R,12S)-11-acetyl-12-formyl-8-hydroxyheptadeca-5,9-dienoic acid; (11R,15S)-13,14-seco-12,14-dioxo-8R-hydroxy-5Z,9E-prostadienoic acid; ent-8-iso-LGE2; (5Z,8S,9E,11R,12S)-11-acetyl-12-formyl-8-hydroxyheptadeca-5,9-dienoic acid; (11R,15S)-13,14-seco-12,14-dioxo-8S-hydroxy-5Z,9E-prostadienoic acid; ent-8-epi-8-iso-LGE2; (5Z,8R,9E,11S,12R)-11-acetyl-12-formyl-8-hydroxyheptadeca-5,9-dienoic acid; (11S,15R)-13,14-seco-12,14-dioxo-8R-hydroxy-5Z,9E-prostadienoic acid; 8-epi-8-iso-LGE2; (5S,6R,7E,9S,11Z)-5-acetyl-6-formyl-9-hydroxyheptadeca-7,11-dienoic acid; (5S,9R)-7,8-seco-6,8-dioxo-12S-hydroxy-10E,14Z-prostadienoic acid; 12-iso-LGE2; (5R,6S,7E,9R,11Z)-5-acetyl-6-formyl-9-hydroxyheptadeca-7,11-dienoic acid; (5R,9S)-7,8-seco-6,8-dioxo-12R-hydroxy-10E,14Z-prostadienoic acid; ent-12-iso-LGE2; (5R,6S,7E,9S,11Z)-5-acetyl-6-formyl-9-hydroxyheptadeca-7,11-dienoic acid; (5R,9S)-7,8-seco-6,8-dioxo-12S-hydroxy-10E,14Z-prostadienoic acid; ent-12-epi-12-iso-LGE2; (5S,6R,7E,9R,11Z)-5-acetyl-6-formyl-9-hydroxyheptadeca-7,11-dienoic acid; (5S,9R)-7,8-seco-6,8-dioxo-12R-hydroxy-10E,14Z-prostadienoic acid; 12-epi-12-iso-LGE2; (5Z,8S,9R,10E,12S)-8-acetyl-9-formyl-12-hydroxyheptadeca-5,10-dienoic acid; (8S,12R)-10,11-seco-9,11-dioxo-15S-hydroxy-5Z,13E-prostadienoic acid; 15-iso-LGE2; (5Z,8R,9S,10E,12R)-8-acetyl-9-formyl-12-hydroxyheptadeca-5,10-dienoic acid; (8R,12S)-10,11-seco-9,11-dioxo-15R-hydroxy-5Z,13E-prostadienoic acid; ent-15-iso-LGE2; (5Z,8R,9S,10E,12S)-8-acetyl-9-formyl-12-hydroxyheptadeca-5,10-dienoic acid; (8R,12S)-10,11-seco-9,11-dioxo-15S-hydroxy-5Z,13E-prostadienoic acid; ent-15-epi-15-iso-LGE2; (5Z,8S,9R,10E,12R)-8-acetyl-9-formyl-12-hydroxyheptadeca-5,10-dienoic acid; (8S,12R)-10,11-seco-9,11-dioxo-15R-hydroxy-5Z,13E-prostadienoic acid; 15-epi-15-iso-LGE2; 14R,17R,18R-trihydroxy-5Z,8Z,11Z,15E-eicosatetraenoic acid; (5R,6R,7E,9E,11Z)-5,6-dihydroxy-15-oxoicosa-7,9,11-trienoic acid; 13,14-Dihydro-15-oxo-lipoxin A4; (5S,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoic acid; 15-epi-LXA4;15R-LXA4; 15-epi-lipoxin A4; 15-oxo-5S,6R-dihydroxy-7E,9E,11Z-eicosatrienoic acid; 13,14-dihydro-15-keto-Lipoxin A4; 13,14-dihydro-15-keto-LXA4; 5S,6S,15S-trihydroxy-7E,9E,11Z,13E-eicosatetraenoic acid; 5S,6S-Lipoxin A4 epi-LXA4; epi-Lipoxin A4; 5S,12R,20-trihydroxy-6Z,8E,10E,14Z-eicosatetraenoic acid; 20-hydroxy Leukotriene B4; 20-hydroxy LTB4; 9-oxo-11R,15S-dihydroxy-5E,13E-prostadienoic acid; 5-trans-Prostaglandin E2; 5-trans-PGE2; 9,15-dioxo-11R-hydroxy-13E-prostaenoic acid; 15-keto-Prostaglandin E1; 15-keto-PGE1; 9S,15S-dihydroxy-11-oxo-5Z,12E-prostadienoic acid; delta-12-Prostaglandin D2; delta-12-PGD2; 9,15-dioxo-11R-hydroxy-5Z-prostenoic acid; 13,14-dihydro-15-keto-Prostaglandin E2; 13,14-dihydro-15-keto Prostaglandin E2; 13,14-dihydro-15-keto-PGE2; 16S17S,18R-trihydroxy-5Z,8Z,11Z,14Z-eicosatetraenoic acid; 16R,17S,18R-trihydroxy-5Z,8Z,11Z,14Z-eicosatetraenoic acid; 14S,17R,18R-trihydroxy-5Z,8Z,11Z,15E-eicosatetraenoic acid; 5,14,15-trihydroxy-6,8,10,12-Eicosatetraenoic acid; Lipoxin A4



数据库引用编号

346 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(3)

BioCyc(0)

PlantCyc(0)

代谢反应

1 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(1)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 5 ALB, HPGD, PTGS1, PTGS2, TNK1
Golgi apparatus, trans-Golgi network membrane 1 LRBA
Peripheral membrane protein 5 AP1S2, ERVW-1, PTGS1, PTGS2, TNK1
Endoplasmic reticulum membrane 4 CD4, LRBA, PTGS1, PTGS2
Nucleus 2 ALB, CIITA
cytosol 7 ALB, AP1S2, CIITA, GOLPH3, HBB, HPGD, LRBA
trans-Golgi network 1 GOLPH3
centrosome 1 ALB
nucleoplasm 2 CIITA, HPGD
Cell membrane 5 CD4, GOLPH3, LRBA, SLC7A1, TNF
Cytoplasmic side 1 AP1S2
Multi-pass membrane protein 2 SLC7A1, TPRA1
cell surface 2 CIITA, TNF
Golgi apparatus 5 ALB, AP1S2, GOLPH3, LRBA, PTGS1
Golgi membrane 3 AP1S2, GOLPH3, INS
lysosomal membrane 2 AP1S2, LRBA
neuronal cell body 1 TNF
endosome 1 GOLPH3
plasma membrane 10 CD4, ERVW-1, GOLPH3, IFNLR1, LRBA, REN, SLC7A1, TNF, TNK1, TPRA1
Membrane 8 GOLPH3, HBB, IFNLR1, LRBA, REN, SLC7A1, TNK1, TPRA1
apical plasma membrane 1 SLC7A1
basolateral plasma membrane 2 HPGD, SLC7A1
caveola 1 PTGS2
extracellular exosome 4 ALB, HBB, HPGD, PTGS1
Lysosome membrane 1 LRBA
endoplasmic reticulum 2 ALB, PTGS2
extracellular space 7 ALB, HBB, IL2, IL6, INS, REN, TNF
mitochondrion 1 GOLPH3
protein-containing complex 3 ALB, PTGS2, SLC7A1
intracellular membrane-bounded organelle 3 AP1S2, GOLPH3, PTGS1
Microsome membrane 2 PTGS1, PTGS2
Single-pass type I membrane protein 3 CD4, ERVW-1, IFNLR1
Secreted 5 ALB, IL2, IL6, INS, REN
extracellular region 7 ALB, HBB, IL2, IL6, INS, REN, TNF
Single-pass membrane protein 1 LRBA
anchoring junction 1 ALB
photoreceptor outer segment 1 PTGS1
external side of plasma membrane 2 CD4, TNF
Early endosome 2 AP1S2, CD4
Membrane, clathrin-coated pit 1 AP1S2
apical part of cell 1 REN
clathrin-coated pit 1 AP1S2
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Membrane raft 2 CD4, TNF
Nucleus, PML body 1 CIITA
PML body 1 CIITA
mitochondrial intermembrane space 1 GOLPH3
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
neuron projection 2 PTGS1, PTGS2
ciliary basal body 1 ALB
phagocytic cup 1 TNF
centriole 1 ALB
spindle pole 1 ALB
blood microparticle 2 ALB, HBB
Endomembrane system 2 AP1S2, PTGS1
endosome lumen 1 INS
Cytoplasmic vesicle membrane 1 AP1S2
Golgi cisterna membrane 1 GOLPH3
basal plasma membrane 1 SLC7A1
trans-Golgi network membrane 1 AP1S2
ficolin-1-rich granule lumen 1 HBB
secretory granule lumen 1 INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 5 ALB, CD4, IL6, INS, PTGS2
platelet alpha granule lumen 1 ALB
tertiary granule lumen 1 HBB
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
Golgi cisterna 1 GOLPH3
clathrin-coated endocytic vesicle membrane 1 CD4
[Transmembrane protein]: Cell membrane 1 ERVW-1
[Surface protein]: Cell membrane 1 ERVW-1
AP-type membrane coat adaptor complex 1 AP1S2
membrane coat 1 AP1S2
AP-1 adaptor complex 1 AP1S2
hemoglobin complex 1 HBB
endocytic vesicle lumen 1 HBB
haptoglobin-hemoglobin complex 1 HBB
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
T cell receptor complex 1 CD4
interleukin-6 receptor complex 1 IL6
ciliary transition fiber 1 ALB
interleukin-28 receptor complex 1 IFNLR1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF
[Syncytin-1]: Virion 1 ERVW-1


文献列表

  • Mahitab Morsy Hussein, Eman Mahmoud Fouda, Yasmine Shehab, Enas Samir Nabih, Ahmed Mohamed Osman, Sally Raafat Ishak. Association between arachidonate lipoxygenase 15,c.-292 C > T gene polymorphism and non-cystic fibrosis bronchiectasis in children: a pilot study on the effects on airway lipoxin A4 and disease phenotype. Italian journal of pediatrics. 2024 Apr; 50(1):90. doi: 10.1186/s13052-024-01654-5. [PMID: 38685084]
  • Hongtao Tie, Ge Kuang, Xia Gong, Lidan Zhang, Zizuo Zhao, Shengwang Wu, Wenya Huang, Xiahong Chen, Yinglin Yuan, Zhenhan Li, Hongzhong Li, Li Zhang, Jingyuan Wan, Bin Wang. LXA4 protected mice from renal ischemia/reperfusion injury by promoting IRG1/Nrf2 and IRAK-M-TRAF6 signal pathways. Clinical immunology (Orlando, Fla.). 2024 04; 261(?):110167. doi: 10.1016/j.clim.2024.110167. [PMID: 38453127]
  • Ali Cekici, Selin Sahinkaya, M Fatih Donmez, Emrah Turkmen, Nur Balci, Hilal Toygar. Sirtuin6 and Lipoxin A4 levels are decreased in severe periodontitis. Clinical oral investigations. 2023 Oct; ?(?):. doi: 10.1007/s00784-023-05330-6. [PMID: 37851128]
  • Sufang Jiang, Qian Wan, Xueji Wang, Lichao Di, Xuze Li, Rongtian Kang, Sha Li, Lining Huang. LXA4 attenuates perioperative neurocognitive disorders by suppressing neuroinflammation and oxidative stress. International immunopharmacology. 2023 Aug; 123(?):110788. doi: 10.1016/j.intimp.2023.110788. [PMID: 37591120]
  • Jiucheng He, Thang L Pham, Azucena H Kakazu, Abhilash Ponnath, Khanh V Do, Haydee E P Bazan. Lipoxin A4 (LXA4) Reduces Alkali-Induced Corneal Inflammation and Neovascularization and Upregulates a Repair Transcriptome. Biomolecules. 2023 May; 13(5):. doi: 10.3390/biom13050831. [PMID: 37238701]
  • Runzhen Chen, Jiannan Li, Jinying Zhou, Ying Wang, Xiaoxiao Zhao, Nan Li, Weida Liu, Chen Liu, Peng Zhou, Yi Chen, Shaodi Yan, Li Song, Hongbing Yan, Hanjun Zhao. Prognostic impacts of Lipoxin A4 in patients with acute myocardial infarction: A prospective cohort study. Pharmacological research. 2023 01; 187(?):106618. doi: 10.1016/j.phrs.2022.106618. [PMID: 36549409]
  • Xiaomei Huang, Junqun Liao, Fan Feng, Siyu Chen, E Liao, Dong Li, Xiaoyu Dai, Jing Dong, Yong Shao. Combined Application of Exosomes and FPR2 Agonist LXA4 in Controlling Fetal Membrane Inflammation and Promoting Fetal Membrane Tissue Repair. Reproductive sciences (Thousand Oaks, Calif.). 2022 Dec; ?(?):. doi: 10.1007/s43032-022-01148-x. [PMID: 36525236]
  • Rafaella A Gonçalves, Felipe K Sudo, Mychael V Lourenco, Claudia Drummond, Naima Assunção, Bart Vanderborght, Danielle D P Ferreira, Felipe C Ribeiro, Fabricio A Pamplona, Fernanda Tovar-Moll, Paulo Mattos, Sergio T Ferreira, Fernanda G De Felice. Cerebrospinal fluid irisin and lipoxin A4 are reduced in elderly Brazilian individuals with depression: Insight into shared mechanisms between depression and dementia. Alzheimer's & dementia : the journal of the Alzheimer's Association. 2022 Dec; ?(?):. doi: 10.1002/alz.12893. [PMID: 36465055]
  • Fabricio A Pamplona, Gabriela Vitória, Felipe K Sudo, Felipe C Ribeiro, Alinny R Isaac, Carolina A Moraes, Mariana G Chauvet, Pitia Flores Ledur, Karina Karmirian, Isis M Ornelas, Luciana M Leo, Bruna Paulsen, Gabriel Coutinho, Claudia Drummond, Naima Assunção, Bart Vanderborght, Claudio A Canetti, Hugo C Castro-Faria-Neto, Paulo Mattos, Sergio T Ferreira, Stevens K Rehen, Fernando A Bozza, Mychael V Lourenco, Fernanda Tovar-Moll. Age-linked suppression of lipoxin A4 associates with cognitive deficits in mice and humans. Translational psychiatry. 2022 10; 12(1):439. doi: 10.1038/s41398-022-02208-1. [PMID: 36216800]
  • Yasmine F Ibrahim, Somaia Hassan Hammady, Rehab A Rifaai, Shaimaa Waz, Mohamed Abdellah Ibrahim, Heba M Hafez. Dose-dependent ameliorating effect of lipoxin A4 on gentamicin-induced nephrotoxicity in rats: The role of TNFα, TGF-β, ICAM-1, and JNK signaling. Chemico-biological interactions. 2022 Oct; 366(?):110139. doi: 10.1016/j.cbi.2022.110139. [PMID: 36057361]
  • Jianbo Zhang, Na Hao, Wei Li, Qianwei Chen, Zhi Chen, Hua Feng, Yao Wu, Xia Shi. Simvastatin upregulates lipoxin A4 and accelerates neuroinflammation resolution after intracerebral hemorrhage. Current neurovascular research. 2022 Sep; ?(?):. doi: 10.2174/1567202619666220913124627. [PMID: 36100985]
  • C Frank Lee, Carla E Brown, Alexander J Nielsen, Changmo Kim, Izhar Livne-Bar, Philip J Parsons, Christophe Boldron, François Autelitano, Donald F Weaver, Jeremy M Sivak, Mark A Reed. A Stereocontrolled Total Synthesis of Lipoxin B4 and its Biological Activity as a Pro-Resolving Lipid Mediator of Neuroinflammation. Chemistry (Weinheim an der Bergstrasse, Germany). 2022 Jun; 28(35):e202200360. doi: 10.1002/chem.202200360. [PMID: 35491534]
  • Gaozhen Jia, Xingjie Wang, Wenbo Wu, Yu Zhang, Shaoan Chen, Jing Zhao, Wei Zhao, Weiguo Li, Xiaowen Sun, Bangmin Han. LXA4 enhances prostate cancer progression by facilitating M2 macrophage polarization via inhibition of METTL3. International immunopharmacology. 2022 Jun; 107(?):108586. doi: 10.1016/j.intimp.2022.108586. [PMID: 35228032]
  • Undurti N Das. Essential Fatty Acids and Their Metabolites in the Pathobiology of Inflammation and Its Resolution. Biomolecules. 2021 12; 11(12):. doi: 10.3390/biom11121873. [PMID: 34944517]
  • Qijun Wang, Fubi Jin, Jinghong Zhang, Zheng Li, Dan Yu. Lipoxin A4 promotes adipogenic differentiation and browning of mouse embryonic fibroblasts. In vitro cellular & developmental biology. Animal. 2021 Dec; 57(10):953-961. doi: 10.1007/s11626-021-00617-y. [PMID: 34811702]
  • Tiange Dong, Priyal Dave, EunJeong Yoo, Brandon Ebright, Kabir Ahluwalia, Eugene Zhou, Isaac Asante, Malika Salimova, Hua Pei, Tracey Lin, Andrew Mead, Zeyang Li, Mark Humayun, Nicos A Petasis, Alan L Epstein, Stan G Louie. NAP1051, a Lipoxin A4 Biomimetic Analogue, Demonstrates Antitumor Activity Against the Tumor Microenvironment. Molecular cancer therapeutics. 2021 12; 20(12):2384-2397. doi: 10.1158/1535-7163.mct-21-0414. [PMID: 34607931]
  • Luiza Oliveira Perucci, Kelerson Mauro de Castro Pinto, Sirlaine Pio Gomes da Silva, Eura Martins Lage, Patrícia Gonçalves Teixeira, Alexandre Simões Barbosa, Patrícia Nessralla Alpoim, Lirlândia Pires de Sousa, André Talvani, Luci Maria SantAna Dusse. Longitudinal assessment of leukotriene B4, lipoxin A4, and resolvin D1 plasma levels in pregnant women with risk factors for preeclampsia. Clinical biochemistry. 2021 Dec; 98(?):24-28. doi: 10.1016/j.clinbiochem.2021.09.002. [PMID: 34492288]
  • Fabio M Gomes, Miles D W Tyner, Ana Beatriz F Barletta, Banhisikha Saha, Lampouguin Yenkoidiok-Douti, Gaspar E Canepa, Alvaro Molina-Cruz, Carolina Barillas-Mury. Double peroxidase and histone acetyltransferase AgTip60 maintain innate immune memory in primed mosquitoes. Proceedings of the National Academy of Sciences of the United States of America. 2021 11; 118(44):. doi: 10.1073/pnas.2114242118. [PMID: 34711682]
  • Habil Yücel, Alper Tunga Özdemir. Low LXA4, RvD1 and RvE1 levels may be an indicator of the development of hypertension. Prostaglandins, leukotrienes, and essential fatty acids. 2021 11; 174(?):102365. doi: 10.1016/j.plefa.2021.102365. [PMID: 34740030]
  • Thang L Pham, Jiucheng He, Azucena H Kakazu, Jorgelina Calandria, Khanh V Do, Robert Nshimiyimana, Ting F Lam, Nicos A Petasis, Haydee E P Bazan, Nicolas G Bazan. ELV-N32 and RvD6 isomer decrease pro-inflammatory cytokines, senescence programming, ACE2 and SARS-CoV-2-spike protein RBD binding in injured cornea. Scientific reports. 2021 06; 11(1):12787. doi: 10.1038/s41598-021-92293-x. [PMID: 34140611]
  • Claudio Derada Troletti, Gaby Enzmann, Valerio Chiurchiù, Alwin Kamermans, Silvia Martina Tietz, Paul C Norris, Neda Haghayegh Jahromi, Alessandro Leuti, Susanne M A van der Pol, Marijn Schouten, Charles N Serhan, Helga E de Vries, Britta Engelhardt, Gijs Kooij. Pro-resolving lipid mediator lipoxin A4 attenuates neuro-inflammation by modulating T cell responses and modifies the spinal cord lipidome. Cell reports. 2021 06; 35(9):109201. doi: 10.1016/j.celrep.2021.109201. [PMID: 34077725]
  • Anne-Sophie Archambault, Younes Zaid, Volatiana Rakotoarivelo, Caroline Turcotte, Étienne Doré, Isabelle Dubuc, Cyril Martin, Olivier Flamand, Youssef Amar, Amine Cheikh, Hakima Fares, Amine El Hassani, Youssef Tijani, Andréanne Côté, Michel Laviolette, Éric Boilard, Louis Flamand, Nicolas Flamand. High levels of eicosanoids and docosanoids in the lungs of intubated COVID-19 patients. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2021 06; 35(6):e21666. doi: 10.1096/fj.202100540r. [PMID: 34033145]
  • Shenzhi Zhao, Zhangye Xu. Lipoxin A4 inhibits the development of endometriosis in a mouse model by suppressing local estradiol synthesis. Prostaglandins & other lipid mediators. 2021 04; 153(?):106521. doi: 10.1016/j.prostaglandins.2020.106521. [PMID: 33279654]
  • Jinyu Li, Qi Sun, Chenying Zheng, Chunxiao Bai, Chuyin Liu, Xueqian Zhao, Peiying Deng, Limin Chai, Yusong Jia. Lipoxin A4-Mediated p38 MAPK Signaling Pathway Protects Mice Against Collagen-Induced Arthritis. Biochemical genetics. 2021 Feb; 59(1):346-365. doi: 10.1007/s10528-020-10016-9. [PMID: 33221976]
  • J M Thornton, J M Walker, P Y Kadiyam Sundarasivarao, B W Spur, A Rodriguez, K Yin. Lipoxin A4 promotes reduction and antibiotic efficacy against Pseudomonas aeruginosa biofilm. Prostaglandins & other lipid mediators. 2021 02; 152(?):106505. doi: 10.1016/j.prostaglandins.2020.106505. [PMID: 33152529]
  • Jie Zhao, Wenjing Geng, Kefei Wan, Kailei Guo, Fengjun Xi, Xiangqun Xu, Xiujuan Xiong, Xu Huang, Jiayi Liu, Xiaodong Kuang. Lipoxin A4 promotes autophagy and inhibits overactivation of macrophage inflammasome activity induced by Pg LPS. The Journal of international medical research. 2021 Feb; 49(2):300060520981259. doi: 10.1177/0300060520981259. [PMID: 33528285]
  • Chang Hoon Lee. Role of specialized pro-resolving lipid mediators and their receptors in virus infection: a promising therapeutic strategy for SARS-CoV-2 cytokine storm. Archives of pharmacal research. 2021 Jan; 44(1):84-98. doi: 10.1007/s12272-020-01299-y. [PMID: 33398691]
  • Irundika H K Dias, Helen R Griffiths. Current and Future Directions for Targeting Lipoxin A4 in Alzheimer's Disease. Journal of Alzheimer's disease : JAD. 2021; 81(1):87-90. doi: 10.3233/jad-210121. [PMID: 33720904]
  • Xiuzhe Wang, Zhijuan Miao, Xiaofeng Xu, Marianne Schultzberg, Yuwu Zhao. Reduced Levels of Plasma Lipoxin A4 Are Associated with Post-Stroke Cognitive Impairment. Journal of Alzheimer's disease : JAD. 2021; 79(2):607-613. doi: 10.3233/jad-201050. [PMID: 33337374]
  • Chaojin Chen, Rongzong Qiu, Jing Yang, Qian Zhang, Guoliang Sun, Xiaofeng Gao, Ziqing Hei, Haocong Ji. Lipoxin A4 Restores Septic Renal Function via Blocking Crosstalk Between Inflammation and Premature Senescence. Frontiers in immunology. 2021; 12(?):637753. doi: 10.3389/fimmu.2021.637753. [PMID: 33936050]
  • Alejandro Cruz, Àngels González-Lafont, José M Lluch. Deciphering the Molecular Details of the Lipoxin Formation Mechanism in the 5(S),15(S)-DiHpETE Biosynthetic Pathway Catalyzed by Reticulocyte 15-Lipoxygenase-1. The journal of physical chemistry. B. 2020 12; 124(50):11406-11418. doi: 10.1021/acs.jpcb.0c09147. [PMID: 33274949]
  • Jin-Jin Zhu, Bin-Yuan Yu, Chang-Chang Fu, Min-Zhi He, Jiang-Hu Zhu, Bin-Wen Chen, Yi-Hui Zheng, Shang-Qin Chen, Xiao-Qin Fu, Pei-Jun Li, Zhen-Lang Lin. LXA4 protects against hypoxic-ischemic damage in neonatal rats by reducing the inflammatory response via the IκB/NF-κB pathway. International immunopharmacology. 2020 Dec; 89(Pt B):107095. doi: 10.1016/j.intimp.2020.107095. [PMID: 33096360]
  • Renuka Shanmugalingam, XiaoSuo Wang, Penelope Motum, Ian Fulcher, Gaksoo Lee, Roshika Kumar, Annemarie Hennessy, Angela Makris. The 15-Epilipoxin-A4 Pathway with Prophylactic Aspirin in Preventing Preeclampsia: A Longitudinal Cohort Study. The Journal of clinical endocrinology and metabolism. 2020 12; 105(12):. doi: 10.1210/clinem/dgaa642. [PMID: 32930782]
  • Rabia Bilge Özgül Özdemir, Özgül Soysal Gündüz, Alper Tunga Özdemir, Özgür Akgül. Low levels of pro-resolving lipid mediators lipoxin-A4, resolvin-D1 and resolvin-E1 in patients with rheumatoid arthritis. Immunology letters. 2020 11; 227(?):34-40. doi: 10.1016/j.imlet.2020.08.006. [PMID: 32818598]
  • Willem Abma, Malin Noreby, Craig E Wheelock, Sven-Erik Dahlén, Mikael Adner, Jesper Säfholm. Lipoxin A4 reduces house dust mite and TNFα-induced hyperreactivity in the mouse trachea. Prostaglandins & other lipid mediators. 2020 08; 149(?):106428. doi: 10.1016/j.prostaglandins.2020.106428. [PMID: 32070748]
  • M Szczuko, J Palma, A Drozd, E Stachowska, W Marlicz, S Malgorzewicz, A Debska-Slizien, P Rutkowski, M Kaczkan. Lipoxin (LTX A4 5S, 6R, 15R) levels drastically decrease after 5 years of hemodialysis treatment. Journal of physiology and pharmacology : an official journal of the Polish Physiological Society. 2020 Jun; 71(3):. doi: 10.26402/jpp.2020.3.10. [PMID: 33077691]
  • X H Hu, H L Situ, J P Chen, R H Yu. Lipoxin A4 alleviates lung injury in sepsis rats through p38/MAPK signaling pathway. Journal of biological regulators and homeostatic agents. 2020 May; 34(3):807-814. doi: 10.23812/20-108-a-20. [PMID: 32657110]
  • Lucy V Norling, Mauro Perretti. Proresolving lipid mediators enhance PMN-mediated bacterial clearance. Proceedings of the National Academy of Sciences of the United States of America. 2020 04; 117(17):9148-9150. doi: 10.1073/pnas.2004241117. [PMID: 32300015]
  • Dominika Maciejewska, Arleta Drozd, Karolina Skonieczna-Żydecka, Marta Skórka-Majewicz, Karolina Dec, Karolina Jakubczyk, Anna Pilutin, Ewa Stachowska. Eicosanoids in Nonalcoholic Fatty Liver Disease (NAFLD) Progression. Do Serum Eicosanoids Profile Correspond with Liver Eicosanoids Content during NAFLD Development and Progression?. Molecules (Basel, Switzerland). 2020 Apr; 25(9):. doi: 10.3390/molecules25092026. [PMID: 32349225]
  • Kumari Asha, Natalie Balfe, Neelam Sharma-Walia. Concurrent Control of the Kaposi's Sarcoma-Associated Herpesvirus Life Cycle through Chromatin Modulation and Host Hedgehog Signaling: a New Prospect for the Therapeutic Potential of Lipoxin A4. Journal of virology. 2020 04; 94(9):. doi: 10.1128/jvi.02177-19. [PMID: 32102879]
  • Meriem Sekheri, Driss El Kebir, Natalie Edner, János G Filep. 15-Epi-LXA4 and 17-epi-RvD1 restore TLR9-mediated impaired neutrophil phagocytosis and accelerate resolution of lung inflammation. Proceedings of the National Academy of Sciences of the United States of America. 2020 04; 117(14):7971-7980. doi: 10.1073/pnas.1920193117. [PMID: 32205444]
  • Aura María Gil-Villa, Angela M Alvarez, Manuela Velásquez-Berrío, Mauricio Rojas-López, Angela P Cadavid J. Role of aspirin-triggered lipoxin A4, aspirin, and salicylic acid in the modulation of the oxidative and inflammatory responses induced by plasma from women with pre-eclampsia. American journal of reproductive immunology (New York, N.Y. : 1989). 2020 02; 83(2):e13207. doi: 10.1111/aji.13207. [PMID: 31696583]
  • Ting Zhang, Hua Hao, Zi-Qin Zhou, Tao Zeng, Jia-Min Zhang, Xiao-Yan Zhou. Lipoxin A4 inhibited the activation of hepatic stellate cells -T6 cells by modulating profibrotic cytokines and NF-κB signaling pathway. Prostaglandins & other lipid mediators. 2020 02; 146(?):106380. doi: 10.1016/j.prostaglandins.2019.106380. [PMID: 31698141]
  • Haojing Liu, Fangxiong Cheng, Qiang Xu, Wei Huang, Sumei Wang, Rui Sun, Duyun Ye, Dongxin Zhang. Lipoxin A4 suppresses angiotensin II type 1 receptor autoantibody in preeclampsia via modulating caspase-1. Cell death & disease. 2020 01; 11(1):78. doi: 10.1038/s41419-020-2281-y. [PMID: 32001671]
  • Jian Liu, Lei Peng, Jie Li. The Lipoxin A4 Receptor Agonist BML-111 Alleviates Inflammatory Injury and Oxidative Stress in Spinal Cord Injury. Medical science monitor : international medical journal of experimental and clinical research. 2020 Jan; 26(?):e919883. doi: 10.12659/msm.919883. [PMID: 31971927]
  • Qi Wang, Guang-Xiao Xu, Qi-Hang Tai, Yan Wang. Lipoxin A4 Reduces Ventilator-Induced Lung Injury in Rats with Large-Volume Mechanical Ventilation. Mediators of inflammation. 2020; 2020(?):6705985. doi: 10.1155/2020/6705985. [PMID: 33299377]
  • Bochra Tourki, Vasundhara Kain, Amanda B Pullen, Paul C Norris, Nirav Patel, Pankaj Arora, Xavier Leroy, Charles N Serhan, Ganesh V Halade. Lack of resolution sensor drives age-related cardiometabolic and cardiorenal defects and impedes inflammation-resolution in heart failure. Molecular metabolism. 2020 01; 31(?):138-149. doi: 10.1016/j.molmet.2019.10.008. [PMID: 31918915]
  • Alexander Queck, Annika F Fink, Evelyn Sirait-Fischer, Sabrina Rüschenbaum, Dominique Thomas, Ryan G Snodgrass, Gerd Geisslinger, Hideo A Baba, Jonel Trebicka, Stefan Zeuzem, Andreas Weigert, Christian M Lange, Bernhard Brüne. Alox12/15 Deficiency Exacerbates, While Lipoxin A4 Ameliorates Hepatic Inflammation in Murine Alcoholic Hepatitis. Frontiers in immunology. 2020; 11(?):1447. doi: 10.3389/fimmu.2020.01447. [PMID: 32760397]
  • Kristin Grotle Nore, Marthe Jøntvedt Jørgensen, Anne Ma Dyrhol-Riise, Synne Jenum, Kristian Tonby. Elevated Levels of Anti-Inflammatory Eicosanoids and Monocyte Heterogeneity in Mycobacterium tuberculosis Infection and Disease. Frontiers in immunology. 2020; 11(?):579849. doi: 10.3389/fimmu.2020.579849. [PMID: 33304347]
  • Siresha Bathina, Undurti N Das. PUFAs, BDNF and lipoxin A4 inhibit chemical-induced cytotoxicity of RIN5F cells in vitro and streptozotocin-induced type 2 diabetes mellitus in vivo. Lipids in health and disease. 2019 Dec; 18(1):214. doi: 10.1186/s12944-019-1164-7. [PMID: 31823816]
  • Songjuan Dai, Maobi Zhu, Rongfeng Wu, Dianchao Lin, Zhixiong Huang, Lulu Ren, Sijing Huang, Lei Cheng, Qionghua Chen. Lipoxin A4 Suppresses IL-1β-Induced Cyclooxygenase-2 Expression Through Inhibition of p38 MAPK Activation in Endometriosis. Reproductive sciences (Thousand Oaks, Calif.). 2019 12; 26(12):1640-1649. doi: 10.1177/1933719119828115. [PMID: 30773096]
  • Vanêssa Gomes Fraga, Carolina Antunes Magalhães, Cristina de Mello Gomide Loures, Leonardo Cruz de Souza, Henrique Cerqueira Guimarães, Danielle Alves Gomes Zauli, Maria das Graças Carvalho, Cláudia Natália Ferreira, Paulo Caramelli, Lirlândia Pires de Sousa, Karina Braga Gomes. Inflammatory and Pro-resolving Mediators in Frontotemporal Dementia and Alzheimer's Disease. Neuroscience. 2019 11; 421(?):123-135. doi: 10.1016/j.neuroscience.2019.09.008. [PMID: 31654714]
  • Stephanie G Dakin, Romain A Colas, Kim Wheway, Bridget Watkins, Louise Appleton, Jonathan Rees, Stephen Gwilym, Christopher Little, Jesmond Dalli, Andrew J Carr. Proresolving Mediators LXB4 and RvE1 Regulate Inflammation in Stromal Cells from Patients with Shoulder Tendon Tears. The American journal of pathology. 2019 11; 189(11):2258-2268. doi: 10.1016/j.ajpath.2019.07.011. [PMID: 31437425]
  • Ying Xiong, Zhixiu Song, Yun Gu, Yuhang Qin, Jiangfei Wei, Jinlu Lu, Yan Zhu. Effect of chiropractic manipulation on disrupted epithelium barrier and its mechanism of specialized pro-resolving mediators in a spleen-deficiency murine model. Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan. 2019 10; 39(5):678-684. doi: . [PMID: 32186117]
  • Dorothy K Hatsukami, Xianghua Luo, Alisa K Heskin, Mei Kuen Tang, Steven G Carmella, Joni Jensen, Jason D Robinson, Ryan Vandrey, David J Drobes, Andrew A Strasser, Mustafa al'Absi, Scott Leischow, Paul M Cinciripini, Joseph Koopmeiners, Joshua Ikuemonisan, Neal L Benowitz, Eric C Donny, Stephen S Hecht. Effects of immediate versus gradual nicotine reduction in cigarettes on biomarkers of biological effects. Addiction (Abingdon, England). 2019 10; 114(10):1824-1833. doi: 10.1111/add.14695. [PMID: 31140663]
  • Yijian Chen, Yongliang Zheng, Liuyan Xin, Sisi Zhong, Aifei Liu, Wenhong Lai, Liping Liu, Chuanming Lin, Changfeng Liao, Junquan Zeng, Liqun Zhang. 15-epi-lipoxin A4 inhibits TNF-α-induced tissue factor expression via the PI3K/AKT/ NF-κB axis in human umbilical vein endothelial cells. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2019 Sep; 117(?):109099. doi: 10.1016/j.biopha.2019.109099. [PMID: 31200255]
  • Ziyang Lu, Huan Zhang, Xue Zhang, Yuan Gao, Zheng Qin Yin. Lipoxin A4 delays the progression of retinal degeneration via the inhibition of microglial overactivation. Biochemical and biophysical research communications. 2019 08; 516(3):900-906. doi: 10.1016/j.bbrc.2019.06.137. [PMID: 31272712]
  • Shenzhi Zhao, Tingting Liao, Tong Zhou, Xianping Huang, Huiqiu Xiang, Jiajia Chen, Zhangye Xu. Formyl-peptide receptor 2 suppresses proliferation, migration and invasion in human extravillous trophoblastic cells. Prostaglandins & other lipid mediators. 2019 08; 143(?):106342. doi: 10.1016/j.prostaglandins.2019.106342. [PMID: 31176799]
  • Elçin Latife Kurtoğlu, Başak Kayhan, Mehmet Gül, Burçak Kayhan, Meral Akdoğan Kayhan, Zeynal Mete Karaca, Elif Yeşilada, Sezai Yılmaz. A bioactive product lipoxin A4 attenuates liver fibrosis in an experimental model by regulating immune response and modulating the expression of regeneration genes. The Turkish journal of gastroenterology : the official journal of Turkish Society of Gastroenterology. 2019 Aug; 30(8):745-757. doi: 10.5152/tjg.2019.18276. [PMID: 31418419]
  • Qiuping Wu, Lei Chong, Youyou Shao, Shangqin Chen, Changchong Li. Lipoxin A4 reduces hyperoxia-induced lung injury in neonatal rats through PINK1 signaling pathway. International immunopharmacology. 2019 Aug; 73(?):414-423. doi: 10.1016/j.intimp.2019.05.046. [PMID: 31152979]
  • Stephanie G Dakin, Romain A Colas, Julia Newton, Stephen Gwilym, Natasha Jones, Hamish A B Reid, Simon Wood, Louise Appleton, Kim Wheway, Bridget Watkins, Jesmond Dalli, Andrew J Carr. 15-Epi-LXA4 and MaR1 counter inflammation in stromal cells from patients with Achilles tendinopathy and rupture. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2019 07; 33(7):8043-8054. doi: 10.1096/fj.201900196r. [PMID: 30916999]
  • Xing-Yun Lin, Li-Li Gao, Ming Wu, Tong Zhao, Dong-Lin Shen. [Protective effect of early intervention with lipoxin A4 on septic mice]. Zhongguo dang dai er ke za zhi = Chinese journal of contemporary pediatrics. 2019 Jun; 21(6):601-606. doi: . [PMID: 31208517]
  • Yihua Bai, Jiaping Wang, Zhenkun He, Min Yang, Luohua Li, Hongying Jiang. Mesenchymal Stem Cells Reverse Diabetic Nephropathy Disease via Lipoxin A4 by Targeting Transforming Growth Factor β (TGF-β)/smad Pathway and Pro-Inflammatory Cytokines. Medical science monitor : international medical journal of experimental and clinical research. 2019 Apr; 25(?):3069-3076. doi: 10.12659/msm.914860. [PMID: 31023998]
  • Undurti N Das. Vitamin C for Type 2 Diabetes Mellitus and Hypertension. Archives of medical research. 2019 02; 50(2):11-14. doi: 10.1016/j.arcmed.2019.05.004. [PMID: 31349946]
  • Zhaohui Liu, Min Qu, Qiang Yang, Yulin Chang. Lipoxin A4 ameliorates renal ischaemia-reperfusion-induced acute lung injury in rats. Clinical and experimental pharmacology & physiology. 2019 01; 46(1):65-74. doi: 10.1111/1440-1681.13023. [PMID: 30118542]
  • Suhui Yu, Jianming Xie, Yukai Xiang, Shengjie Dai, Dinglai Yu, Hongwei Sun, Bicheng Chen, Mengtao Zhou. Downregulation of TNF-α/TNF-R1 Signals by AT-Lipoxin A4 May Be a Significant Mechanism of Attenuation in SAP-Associated Lung Injury. Mediators of inflammation. 2019; 2019(?):9019404. doi: 10.1155/2019/9019404. [PMID: 31097921]
  • Abigail R Green, Cody Freedman, Jennyfer Tena, Benjamin E Tourdot, Benjamin Liu, Michael Holinstat, Theodore R Holman. 5 S,15 S-Dihydroperoxyeicosatetraenoic Acid (5,15-diHpETE) as a Lipoxin Intermediate: Reactivity and Kinetics with Human Leukocyte 5-Lipoxygenase, Platelet 12-Lipoxygenase, and Reticulocyte 15-Lipoxygenase-1. Biochemistry. 2018 12; 57(48):6726-6734. doi: 10.1021/acs.biochem.8b00889. [PMID: 30407793]
  • Nina Kim, Katie L Lannan, Thomas H Thatcher, Stephen J Pollock, Collynn F Woeller, Richard P Phipps. Lipoxin B4 Enhances Human Memory B Cell Antibody Production via Upregulating Cyclooxygenase-2 Expression. Journal of immunology (Baltimore, Md. : 1950). 2018 12; 201(11):3343-3351. doi: 10.4049/jimmunol.1700503. [PMID: 30348736]
  • I Massimi, F M Pulcinelli, V P Piscitelli, L Alemanno, T Maltese, M L Guarino, R Marci, G O Canny, L Frati, M Mallozzi, A Frega, D Caserta. Non-steroidal anti-inflammatory drugs increase MRP4 expression in an endometriotic epithelial cell line in a PPARa dependent manner. European review for medical and pharmacological sciences. 2018 12; 22(23):8487-8496. doi: 10.26355/eurrev_201812_16549. [PMID: 30556891]
  • Federica Frigerio, Giulia Pasqualini, Ilaria Craparotta, Sergio Marchini, Erwin A van Vliet, Patrick Foerch, Catherine Vandenplas, Karin Leclercq, Eleonora Aronica, Luca Porcu, Kimberly Pistorius, Romain A Colas, Trond V Hansen, Mauro Perretti, Rafal M Kaminski, Jesmond Dalli, Annamaria Vezzani. n-3 Docosapentaenoic acid-derived protectin D1 promotes resolution of neuroinflammation and arrests epileptogenesis. Brain : a journal of neurology. 2018 11; 141(11):3130-3143. doi: 10.1093/brain/awy247. [PMID: 30307467]
  • Kumiko Okada, Tetsuya Hosooka, Masakazu Shinohara, Wataru Ogawa. Modulation of lipid mediator profile may contribute to amelioration of chronic inflammation in adipose tissue of obese mice by pioglitazone. Biochemical and biophysical research communications. 2018 10; 505(1):29-35. doi: 10.1016/j.bbrc.2018.09.081. [PMID: 30236987]
  • Paul C Norris, Charles N Serhan. Metabololipidomic profiling of functional immunoresolvent clusters and eicosanoids in mammalian tissues. Biochemical and biophysical research communications. 2018 10; 504(3):553-561. doi: 10.1016/j.bbrc.2018.03.037. [PMID: 29524409]
  • Catherine A Loynes, Jou A Lee, Anne L Robertson, Michael Jg Steel, Felix Ellett, Yi Feng, Bruce D Levy, Moira K B Whyte, Stephen A Renshaw. PGE2 production at sites of tissue injury promotes an anti-inflammatory neutrophil phenotype and determines the outcome of inflammation resolution in vivo. Science advances. 2018 09; 4(9):eaar8320. doi: 10.1126/sciadv.aar8320. [PMID: 30191175]
  • Wei-Wei Jiang, Li-Li Gao, Ming Wu, Tong Zhao, Dong-Ling Shen. [Effect of lipoxin A4 on the expression of Toll-like receptor 4 and TNF receptor-associated factor 6 in the liver of obese rats with sepsis]. Zhongguo dang dai er ke za zhi = Chinese journal of contemporary pediatrics. 2018 Jul; 20(7):578-584. doi: NULL. [PMID: 30022762]
  • Fen Xu, Xiaoyan Zhou, Jian Hao, Hua Dai, Jian Zhang, Yuanqiao He, Hua Hao. Lipoxin A4 and its analog suppress hepatocarcinoma cell epithelial-mesenchymal transition, migration and metastasis via regulating integrin-linked kinase axis. Prostaglandins & other lipid mediators. 2018 07; 137(?):9-19. doi: 10.1016/j.prostaglandins.2018.05.007. [PMID: 29787808]
  • Jun-Zhi Zhang, Zhan-Li Liu, Yao-Xian Zhang, Hai-Jiu Lin, Zhong-Jun Zhang. Lipoxin A4 Ameliorates Lipopolysaccharide-Induced A549 Cell Injury through Upregulation of N-myc Downstream-Regulated Gene-1. Chinese medical journal. 2018 Jun; 131(11):1342-1348. doi: 10.4103/0366-6999.232788. [PMID: 29786049]
  • Eoin P Brennan, Muthukumar Mohan, Aaron McClelland, Christos Tikellis, Mark Ziemann, Antony Kaspi, Stephen P Gray, Raelene Pickering, Sih Min Tan, Syed Tasadaque Ali-Shah, Patrick J Guiry, Assam El-Osta, Karin Jandeleit-Dahm, Mark E Cooper, Catherine Godson, Phillip Kantharidis. Lipoxins Regulate the Early Growth Response-1 Network and Reverse Diabetic Kidney Disease. Journal of the American Society of Nephrology : JASN. 2018 05; 29(5):1437-1448. doi: 10.1681/asn.2017101112. [PMID: 29490938]
  • Jonas Schnittert, Marcel A Heinrich, Praneeth R Kuninty, Gert Storm, Jai Prakash. Reprogramming tumor stroma using an endogenous lipid lipoxin A4 to treat pancreatic cancer. Cancer letters. 2018 04; 420(?):247-258. doi: 10.1016/j.canlet.2018.01.072. [PMID: 29408203]
  • Yan-Ping Guo, Hong-Kun Jiang, Hong Jiang, Hong-Yu Tian, Lei Li. Lipoxin A4 may attenuate the progression of obesity-related glomerulopathy by inhibiting NF-κB and ERK/p38 MAPK-dependent inflammation. Life sciences. 2018 Apr; 198(?):112-118. doi: 10.1016/j.lfs.2018.02.039. [PMID: 29499280]
  • Tatiana A Pádua, Natalia D Torres, André L P Candéa, Maria Fernanda Souza Costa, Johnatas D Silva, João Luiz Silva-Filho, Fabio T M Costa, Patricia R M Rocco, Mariana C Souza, Maria G Henriques. Therapeutic effect of Lipoxin A4  in malaria-induced acute lung injury. Journal of leukocyte biology. 2018 04; 103(4):657-670. doi: 10.1002/jlb.3a1016-435rrr. [PMID: 29345368]
  • Madhur P Motwani, Romain A Colas, Marc J George, Julia D Flint, Jesmond Dalli, Angela Richard-Loendt, Roel Ph De Maeyer, Charles N Serhan, Derek W Gilroy. Pro-resolving mediators promote resolution in a human skin model of UV-killed Escherichia coli-driven acute inflammation. JCI insight. 2018 03; 3(6):. doi: 10.1172/jci.insight.94463. [PMID: 29563331]
  • Kok-Onn Lee, Edmund Feng Tian, Martin Hui Cai, Hong Wang, Yiong-Huak Chan, Meng-Kwoon Sim. Bioavailability of Orally Administered Des-Aspartate-Angiotensin I in Human Subjects. Drugs in R&D. 2018 Mar; 18(1):51-54. doi: 10.1007/s40268-017-0218-4. [PMID: 29168127]
  • Alpdogan Kantarci, Nurgul Aytan, Iro Palaska, Danielle Stephens, Leah Crabtree, Claudia Benincasa, Bruce G Jenkins, Isabel Carreras, Alpaslan Dedeoglu. Combined administration of resolvin E1 and lipoxin A4 resolves inflammation in a murine model of Alzheimer's disease. Experimental neurology. 2018 02; 300(?):111-120. doi: 10.1016/j.expneurol.2017.11.005. [PMID: 29126887]
  • Naveen K V Gundala, Vegi G M Naidu, Undurti N Das. Amelioration of streptozotocin-induced type 2 diabetes mellitus in Wistar rats by arachidonic acid. Biochemical and biophysical research communications. 2018 01; 496(1):105-113. doi: 10.1016/j.bbrc.2018.01.007. [PMID: 29309791]
  • Osk U U Anuforo, Stefania P Bjarnarson, Hulda S Jonasdottir, Martin Giera, Ingibjorg Hardardottir, Jona Freysdottir. Natural killer cells play an essential role in resolution of antigen-induced inflammation in mice. Molecular immunology. 2018 01; 93(?):1-8. doi: 10.1016/j.molimm.2017.10.019. [PMID: 29112834]
  • Kelli L Hvorecny, Emily Dolben, Sophie Moreau-Marquis, Thomas H Hampton, Tamer B Shabaneh, Becca A Flitter, Christopher D Bahl, Jennifer M Bomberger, Bruce D Levy, Bruce A Stanton, Deborah A Hogan, Dean R Madden. An epoxide hydrolase secreted by Pseudomonas aeruginosa decreases mucociliary transport and hinders bacterial clearance from the lung. American journal of physiology. Lung cellular and molecular physiology. 2018 01; 314(1):L150-L156. doi: 10.1152/ajplung.00383.2017. [PMID: 28982736]
  • Fatih Dilek, Deniz Özçeker, Eray Metin Güler, Emin Özkaya, Mebrure Yazıcı, Zeynep Tamay, Abdurrahim Koçyiğit, Nermin Güler. Plasma lipoxin A4 levels in childhood chronic spontaneous urticaria. The Turkish journal of pediatrics. 2018; 60(5):527-534. doi: 10.24953/turkjped.2018.05.009. [PMID: 30968635]
  • Izhar Livne-Bar, Jessica Wei, Hsin-Hua Liu, Samih Alqawlaq, Gah-Jone Won, Alessandra Tuccitto, Karsten Gronert, John G Flanagan, Jeremy M Sivak. Astrocyte-derived lipoxins A4 and B4 promote neuroprotection from acute and chronic injury. The Journal of clinical investigation. 2017 12; 127(12):4403-4414. doi: 10.1172/jci77398. [PMID: 29106385]
  • Marcelo H Petri, Andrés Laguna-Fernandez, Hildur Arnardottir, Craig E Wheelock, Mauro Perretti, Göran K Hansson, Magnus Bäck. Aspirin-triggered lipoxin A4 inhibits atherosclerosis progression in apolipoprotein E-/- mice. British journal of pharmacology. 2017 Nov; 174(22):4043-4054. doi: 10.1111/bph.13707. [PMID: 28071789]
  • L Habouri, F E El Mansouri, Y Ouhaddi, B Lussier, J-P Pelletier, J Martel-Pelletier, M Benderdour, H Fahmi. Deletion of 12/15-lipoxygenase accelerates the development of aging-associated and instability-induced osteoarthritis. Osteoarthritis and cartilage. 2017 10; 25(10):1719-1728. doi: 10.1016/j.joca.2017.07.001. [PMID: 28694081]
  • Marian Goicoechea, Maria Dolores Sanchez-Niño, Alberto Ortiz, Soledad García de Vinuesa, Borja Quiroga, Carmen Bernis, Enrique Morales, Gema Fernández-Juarez, Patricia de Sequera, Ursula Verdalles, Eduardo Verde, José Luño. Low dose aspirin increases 15-epi-lipoxin A4 levels in diabetic chronic kidney disease patients. Prostaglandins, leukotrienes, and essential fatty acids. 2017 Oct; 125(?):8-13. doi: 10.1016/j.plefa.2017.08.009. [PMID: 28987723]
  • Stephanie G Dakin, Lucy Ly, Romain A Colas, Udo Oppermann, Kim Wheway, Bridget Watkins, Jesmond Dalli, Andrew J Carr. Increased 15-PGDH expression leads to dysregulated resolution responses in stromal cells from patients with chronic tendinopathy. Scientific reports. 2017 09; 7(1):11009. doi: 10.1038/s41598-017-11188-y. [PMID: 28887458]
  • Ajit Singh Mahla, Ravjibhai K Chaudhari, Atul Kumar Verma, Amit Kumar Singh, Sanjay Kumar Singh, Gyanendra Singh, Mihir Sarkar, Narayan Dutta, Harendra Kumar, Narayanan Krishnaswamy. Effect of dietary supplementation of omega-3 polyunsaturated fatty acid (PUFA) rich fish oil on reproductive performance of the goat (Capra hircus). Theriogenology. 2017 Sep; 99(?):79-89. doi: 10.1016/j.theriogenology.2017.05.023. [PMID: 28708503]
  • Vasundhara Kain, Fei Liu, Veronika Kozlovskaya, Kevin A Ingle, Subhashini Bolisetty, Anupam Agarwal, Santosh Khedkar, Sumanth D Prabhu, Eugenia Kharlampieva, Ganesh V Halade. Resolution Agonist 15-epi-Lipoxin A4 Programs Early Activation of Resolving Phase in Post-Myocardial Infarction Healing. Scientific reports. 2017 08; 7(1):9999. doi: 10.1038/s41598-017-10441-8. [PMID: 28855632]
  • Juan P Cata, Jose F Velasquez, Maria F Ramirez, Jean-Nicolas Vauthey, Vijaya Gottumukkala, Claudius Conrad, Bradford J Kim, Thomas Aloia. Inflammation and pro-resolution inflammation after hepatobiliary surgery. World journal of surgical oncology. 2017 Aug; 15(1):152. doi: 10.1186/s12957-017-1220-6. [PMID: 28807031]
  • Paul C Norris, Stephania Libreros, Nan Chiang, Charles N Serhan. A cluster of immunoresolvents links coagulation to innate host defense in human blood. Science signaling. 2017 Aug; 10(490):. doi: 10.1126/scisignal.aan1471. [PMID: 28765512]
  • Veronika Fedirko, Gail McKeown-Eyssen, Charles N Serhan, Elizabeth L Barry, Robert S Sandler, Jane C Figueiredo, Dennis J Ahnen, Robert S Bresalier, Douglas J Robertson, Carlton W Anderson, John A Baron. Plasma lipoxin A4 and resolvin D1 are not associated with reduced adenoma risk in a randomized trial of aspirin to prevent colon adenomas. Molecular carcinogenesis. 2017 08; 56(8):1977-1983. doi: 10.1002/mc.22629. [PMID: 28218420]
  • Yunbo Ke, Noureddine Zebda, Olga Oskolkova, Taras Afonyushkin, Evgeny Berdyshev, Yufeng Tian, Fanyong Meng, Nicolene Sarich, Valery N Bochkov, Ji Ming Wang, Anna A Birukova, Konstantin G Birukov. Anti-Inflammatory Effects of OxPAPC Involve Endothelial Cell-Mediated Generation of LXA4. Circulation research. 2017 Jul; 121(3):244-257. doi: 10.1161/circresaha.116.310308. [PMID: 28522438]
  • Mahim I Qureshi, Michele Greco, Panagiotis A Vorkas, Elaine Holmes, Alun H Davies. Application of Metabolic Profiling to Abdominal Aortic Aneurysm Research. Journal of proteome research. 2017 07; 16(7):2325-2332. doi: 10.1021/acs.jproteome.6b00894. [PMID: 28287739]