2-METHYLNAPHTHALENE (BioDeep_00000009686)

   

natural product


代谢物信息卡片


beta-Methylnaphthalene

化学式: C11H10 (142.0782)
中文名称: 2-甲基萘
谱图信息: 最多检出来源 Homo sapiens(blood) 19.02%

分子结构信息

SMILES: CC1=CC2=CC=CC=C2C=C1
InChI: InChI=1S/C11H10/c1-9-6-7-10-4-2-3-5-11(10)8-9/h2-8H,1H3

描述信息

2-methylnaphthalene, also known as 2-methylnaphthalene, lithium salt, ion(1-) or 2-methylnaphthalene, naphthalene-1-(13)c-labeled, is a member of the class of compounds known as naphthalenes. Naphthalenes are compounds containing a naphthalene moiety, which consists of two fused benzene rings. 2-methylnaphthalene can be found in corn, which makes 2-methylnaphthalene a potential biomarker for the consumption of this food product. 2-methylnaphthalene is potentially toxic compound. On February 22, 2014, NASA announced a greatly upgraded database for detecting and monitoring PAHs, including 2-methylnaphthalene, in the universe. According to NASA scientists, over 20\\% of the carbon in the universe may be associated with PAHs, possible starting materials for the formation of life. PAHs seem to have been formed shortly after the Big Bang, are abundant in the universe, and are associated with new stars and exoplanets . Acute exposure to PAHs causes irritation and inflammation of the skin and lung tissue. Some symptoms of hemolytic anemia are fatigue, lack of appetite, restlessness, and pale skin. Exposure to large amounts of 2-methylnapthalene may also cause nausea, vomiting, diarrhea, blood in the urine, and a yellow color to the skin (A10, L12).

同义名列表

4 个代谢物同义名

beta-Methylnaphthalene; 2-METHYLNAPHTHALENE; 2-Methylnaphthalene; 2-Methylnaphthalene



数据库引用编号

14 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

38 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 5 AHR, ANXA5, CAT, FDPS, GZMA
Peripheral membrane protein 1 ANXA5
Nucleus 3 AHR, DNMT3B, GZMA
cytosol 4 AHR, ANXA5, CAT, FDPS
dendrite 1 CHRNA4
nucleoplasm 3 AHR, DNMT3B, FDPS
Cell membrane 1 CHRNA4
Lipid-anchor 1 CHRNA4
Cytoplasmic granule 1 GZMA
Multi-pass membrane protein 1 CHRNA4
Synapse 1 CHRNA4
cell surface 1 CD55
Golgi apparatus 1 FUT2
Golgi membrane 2 CD55, FUT2
neuronal cell body 1 CHRNA4
postsynapse 1 CHRNA4
sarcolemma 1 ANXA5
plasma membrane 2 CD55, CHRNA4
Membrane 4 ANXA5, CAT, CHRNA4, FDPS
extracellular exosome 5 ANXA5, CAT, CD55, FUT2, SERPING1
extracellular space 2 GZMA, SERPING1
mitochondrion 1 CAT
protein-containing complex 2 AHR, CAT
intracellular membrane-bounded organelle 1 CAT
extracellular region 4 ANXA5, CAT, CD55, SERPING1
mitochondrial matrix 2 CAT, FDPS
transcription regulator complex 1 AHR
external side of plasma membrane 2 ANXA5, CHRNA4
Single-pass type II membrane protein 1 FUT2
postsynaptic membrane 1 CHRNA4
Membrane raft 1 CD55
focal adhesion 2 ANXA5, CAT
Peroxisome 2 CAT, FDPS
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
collagen-containing extracellular matrix 2 ANXA5, SERPING1
Postsynaptic cell membrane 1 CHRNA4
Zymogen granule membrane 1 ANXA5
neuron projection 1 CHRNA4
chromatin 1 AHR
blood microparticle 1 SERPING1
Lipid-anchor, GPI-anchor 1 CD55
[Isoform 3]: Secreted 1 CD55
aryl hydrocarbon receptor complex 1 AHR
Golgi cisterna membrane 1 FUT2
side of membrane 1 CD55
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 1 CAT
secretory granule membrane 1 CD55
endoplasmic reticulum lumen 1 SERPING1
platelet alpha granule lumen 1 SERPING1
transport vesicle 1 CD55
Golgi apparatus, Golgi stack membrane 1 FUT2
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 CD55
immunological synapse 1 GZMA
vesicle membrane 1 ANXA5
ficolin-1-rich granule membrane 1 CD55
[Isoform 4]: Secreted 1 CD55
acetylcholine-gated channel complex 1 CHRNA4
catalase complex 1 CAT
catalytic complex 1 DNMT3B
[Isoform 5]: Secreted 1 CD55
[Isoform 6]: Cell membrane 1 CD55
[Isoform 7]: Cell membrane 1 CD55
endothelial microparticle 1 ANXA5
[Isoform alpha]: Secreted 1 GZMA
nuclear aryl hydrocarbon receptor complex 1 AHR
cytosolic aryl hydrocarbon receptor complex 1 AHR


文献列表

  • Kunna Li, Ying Zou, Yang Wang, Mengyue Zhou, Jing Li, Rong Tan, Shiyu Zhang, Weiwei Li, Jiang Zheng. 2-Naphthalenemethanol participates in metabolic activation of 2-methylnaphthalene. Xenobiotica; the fate of foreign compounds in biological systems. 2022 Apr; 52(4):360-369. doi: 10.1080/00498254.2022.2079022. [PMID: 35575452]
  • Vanessa Oliveira, Newton C M Gomes, Magda Santos, Adelaide Almeida, Ana I Lillebø, João Ezequiel, João Serôdio, Artur M S Silva, Mário M Q Simões, Sílvia M Rocha, Ângela Cunha. Effects of the Inoculant Strain Pseudomonas sp. SPN31 nah + and of 2-Methylnaphthalene Contamination on the Rhizosphere and Endosphere Bacterial Communities of Halimione portulacoides. Current microbiology. 2017 May; 74(5):575-583. doi: 10.1007/s00284-017-1197-y. [PMID: 28260118]
  • Zheng Li, Lovisa C Romanoff, Debra A Trinidad, Erin N Pittman, Donald Hilton, Kendra Hubbard, Hasan Carmichael, Jonathan Parker, Antonia M Calafat, Andreas Sjödin. Quantification of 21 metabolites of methylnaphthalenes and polycyclic aromatic hydrocarbons in human urine. Analytical and bioanalytical chemistry. 2014 May; 406(13):3119-29. doi: 10.1007/s00216-014-7676-0. [PMID: 24714969]
  • Meng Qiao, Weixiao Qi, Huijuan Liu, Jiuhui Qu. Occurrence, behavior and removal of typical substituted and parent polycyclic aromatic hydrocarbons in a biological wastewater treatment plant. Water research. 2014 Apr; 52(?):11-9. doi: 10.1016/j.watres.2013.12.032. [PMID: 24440761]
  • Koji Yamaguchi, Wakako Hikiji, Masahiko Takino, Kanju Saka, Makiko Hayashida, Tatsushige Fukunaga, Youkichi Ohno. Analysis of tolfenpyrad and its metabolites in plasma in a tolfenpyrad poisoning case. Journal of analytical toxicology. 2012 Sep; 36(7):529-37. doi: 10.1093/jat/bks060. [PMID: 22802573]
  • Jingke Liu, Xia Tang, Yuzong Zhang, Wei Zhao. Determination of the volatile composition in brown millet, milled millet and millet bran by gas chromatography/mass spectrometry. Molecules (Basel, Switzerland). 2012 Feb; 17(3):2271-82. doi: 10.3390/molecules17032271. [PMID: 22367023]
  • Lisette de Hoop, Aafke M Schipper, Rob S E W Leuven, Mark A J Huijbregts, Gro H Olsen, Mathijs G D Smit, A Jan Hendriks. Sensitivity of polar and temperate marine organisms to oil components. Environmental science & technology. 2011 Oct; 45(20):9017-23. doi: 10.1021/es202296a. [PMID: 21902216]
  • Amita R Oka, Craig D Phelps, Xiangyang Zhu, Diane L Saber, L Y Young. Dual biomarkers of anaerobic hydrocarbon degradation in historically contaminated groundwater. Environmental science & technology. 2011 Apr; 45(8):3407-14. doi: 10.1021/es103859t. [PMID: 21438602]
  • Yushma Bhurruth-Alcor, Therese Røst, Michael R Jorgensen, Christos Kontogiorgis, Jon Skorve, Robert G Cooper, Joseph M Sheridan, William D O Hamilton, Jonathan R Heal, Rolf K Berge, Andrew D Miller. Synthesis of novel PPARα/γ dual agonists as potential drugs for the treatment of the metabolic syndrome and diabetes type II designed using a new de novo design program PROTOBUILD. Organic & biomolecular chemistry. 2011 Feb; 9(4):1169-88. doi: 10.1039/c0ob00146e. [PMID: 21157612]
  • Mihaela Marilena Stancu, Magdalena Grifoll. Multidrug resistance in hydrocarbon-tolerant Gram-positive and Gram-negative bacteria. The Journal of general and applied microbiology. 2011; 57(1):1-18. doi: 10.2323/jgam.57.1. [PMID: 21478643]
  • Kazutoshi Shindo, Ayako Tachibana, Ayumi Tanaka, Shizuka Toba, Emi Yuki, Taro Ozaki, Takuto Kumano, Makoto Nishiyama, Norihiko Misawa, Tomohisa Kuzuyama. Production of novel antioxidative prenyl naphthalen-ols by combinational bioconversion with dioxygenase PhnA1A2A3A4 and prenyltransferase NphB or SCO7190. Bioscience, biotechnology, and biochemistry. 2011; 75(3):505-10. doi: 10.1271/bbb.100731. [PMID: 21389612]
  • Raphael T Tremblay, Sheppard A Martin, Jeffrey W Fisher. Metabolites from inhalation of aerosolized S-8 synthetic jet fuel in rats. Inhalation toxicology. 2011 Jan; 23(1):11-6. doi: 10.3109/08958378.2010.535573. [PMID: 21222558]
  • Nicolas Pichaud, Jocelyne Pellerin, Michel Fournier, Sophie Gauthier-Clerc, Pascal Rioux, Emilien Pelletier. Oxidative stress and immunologic responses following a dietary exposure to PAHs in Mya arenaria. Chemistry Central journal. 2008 Dec; 2(?):23. doi: 10.1186/1752-153x-2-23. [PMID: 19055737]
  • Wolfgang Benetka, Manfred Koranda, Sebastian Maurer-Stroh, Fritz Pittner, Frank Eisenhaber. Farnesylation or geranylgeranylation? Efficient assays for testing protein prenylation in vitro and in vivo. BMC biochemistry. 2006 Feb; 7(?):6. doi: 10.1186/1471-2091-7-6. [PMID: 16507103]
  • J C Franson, T E Hollmén, P L Flint, J B Grand, R B Lanctot. Contaminants in molting long-tailed ducks and nesting common eiders in the Beaufort Sea. Marine pollution bulletin. 2004 Mar; 48(5-6):504-13. doi: 10.1016/j.marpolbul.2003.08.027. [PMID: 14980466]
  • Alfred Steinbach, Richard Seifert, Eva Annweiler, Walter Michaelis. Hydrogen and carbon isotope fractionation during anaerobic biodegradation of aromatic hydrocarbons--a field study. Environmental science & technology. 2004 Jan; 38(2):609-16. doi: 10.1021/es034417r. [PMID: 14750739]
  • Somnath Singh, Jagdish Singh. Percutaneous absorption, biophysical, and macroscopic barrier properties of porcine skin exposed to major components of JP-8 jet fuel. Environmental toxicology and pharmacology. 2003 Jun; 14(1-2):77-85. doi: 10.1016/s1382-6689(03)00028-0. [PMID: 21782665]
  • C Bakermans, A M Hohnstock-Ashe, S Padmanabhan, P Padmanabhan, E L Madsen. Geochemical and physiological evidence for mixed aerobic and anaerobic field biodegradation of coal tar waste by subsurface microbial communities. Microbial ecology. 2002 Aug; 44(2):107-17. doi: 10.1007/s00248-002-3011-y. [PMID: 12087424]
  • Y Murata, A Denda, H Maruyama, D Nakae, M Tsutsumi, T Tsujiuchi, Y Konishi. Chronic toxicity and carcinogenicity studies of 2-methylnaphthalene in B6C3F1 mice. Fundamental and applied toxicology : official journal of the Society of Toxicology. 1997 Mar; 36(1):90-3. doi: 10.1006/faat.1996.2283. [PMID: 9073471]
  • Y Murata, Y Emi, A Denda, Y Konishi. Ultrastructural analysis of pulmonary alveolar proteinosis induced by methylnaphthalene in mice. Experimental and toxicologic pathology : official journal of the Gesellschaft fur Toxikologische Pathologie. 1992 Mar; 44(1):47-54. doi: 10.1016/s0940-2993(11)80137-5. [PMID: 1392517]
  • T Honda, M Kiyozumi, S Kojima. Alkylnaphthalene. XI. Pulmonary toxicity of naphthalene, 2-methylnaphthalene, and isopropylnaphthalenes in mice. Chemical & pharmaceutical bulletin. 1990 Nov; 38(11):3130-5. doi: 10.1248/cpb.38.3130. [PMID: 2085898]
  • A R Buckpitt, L S Bahnson, R B Franklin. Comparison of the arachidonic acid and NADPH-dependent microsomal metabolism of naphthalene and 2-methylnaphthalene and the effect of indomethacin on the bronchiolar necrosis. Biochemical pharmacology. 1986 Feb; 35(4):645-50. doi: 10.1016/0006-2952(86)90361-8. [PMID: 3081009]
  • R E Rasmussen, D H Do, T S Kim, L C Dearden. Comparative cytotoxicity of naphthalene and its monomethyl- and mononitro-derivatives in the mouse lung. Journal of applied toxicology : JAT. 1986 Feb; 6(1):13-20. doi: 10.1002/jat.2550060104. [PMID: 3958423]
  • K A Griffin, C B Johnson, R K Breger, R B Franklin. Pulmonary toxicity of 2-methylnaphthalene: lack of a relationship between toxicity, dihydrodiol formation and irreversible binding to cellular macromolecules in DBA/2J mice. Toxicology. 1983 Mar; 26(3-4):213-30. doi: 10.1016/0300-483x(83)90083-5. [PMID: 6857696]
  • R Teshima, K Nagamatsu, H Ikebuchi, Y Kido, T Terao. In vivo and in vitro metabolism of 2-methylnaphthalene in the guinea pig. Drug metabolism and disposition: the biological fate of chemicals. 1983 Mar; 11(2):152-7. doi: . [PMID: 6133721]
  • M J Melancon, D E Rickert, J J Lech. Metabolism of 2-methylnaphthalene in the rat in vivo. I. Identification of 2-naphthoylglycine. Drug metabolism and disposition: the biological fate of chemicals. 1982 Mar; 10(2):128-33. doi: . [PMID: 6124397]
  • K A Griffin, C B Johnson, R K Breger, R B Franklin. Pulmonary toxicity, hepatic, and extrahepatic metabolism of 2-methylnaphthalene in mice. Toxicology and applied pharmacology. 1981 Nov; 61(2):185-96. doi: 10.1016/0041-008x(81)90408-7. [PMID: 7324064]
  • R K Breger, R B Franklin, J J Lech. Metabolism of 2-methylnaphthalene to isomeric dihydrodiols by hepatic microsomes of rat and rainbow trout. Drug metabolism and disposition: the biological fate of chemicals. 1981 Mar; 9(2):88-93. doi: NULL. [PMID: 6113123]