trans-beta-Farnesene (BioDeep_00000001010)
Main id: BioDeep_00000019564
human metabolite PANOMIX_OTCML-2023 Endogenous
代谢物信息卡片
化学式: C15H24 (204.18779039999998)
中文名称: trans-β-Farnesene
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: C=CC(=C)CC/C=C(\C)/CC/C=C(\C)/C
InChI: InChI=1S/C15H24/c1-6-14(4)10-8-12-15(5)11-7-9-13(2)3/h6,9,12H,1,4,7-8,10-11H2,2-3,5H3/b15-12+
描述信息
Trans-beta-farnesene is a beta-farnesene in which the double bond at position 6-7 has E configuration. It is the major or sole alarm pheromone in most species of aphid. It has a role as an alarm pheromone and a metabolite.
beta-Farnesene is a natural product found in Nepeta nepetella, Eupatorium capillifolium, and other organisms with data available.
trans-beta-Farnesene, also known as (E)-β-Farnesene or (E)-7,11-Dimethyl-3-methylenedodeca-1,6,10-triene, is classified as a member of the Sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. trans-beta-Farnesene is a hydrocarbon lipid molecule.
(E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2].
(E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2].
同义名列表
48 个代谢物同义名
TRANS-.BETA.-FARNESENE (CONSTITUENT OF CHAMOMILE) [DSC]; 1,6,10-Dodecatriene, 7,11-dimethyl-3-methylene-, (6E)-; 1,6,10-Dodecatriene, 7,11-dimethyl-3-methylene-, (E)-; (6E)-7,11-dimethyl-3-methylidenedodeca-1,6,10-triene; (6E)-7,11-dimethyl-3-methylene-dodeca-1,6,10-triene; trans-7,11-Dimethyl-3-methylene-1,6,10-dodecatriene; (E)-7,11-dimethyl-3-methylene-dodeca-1,6,10-triene; (6E)-7,11-dimethyl-3-methylenedodeca-1,6,10-triene; (6E)-7,11-Dimethyl-3-methylene-1,6,10-dodecatriene; (E)-7,11-Dimethyl-3-methylenedodeca-1,6,10-triene; (E)-7,11-DIMETHYL-3-METHYLENE-1,6,10-DODECATRIENE; 1,6,10-Dodecatriene, 7,11-dimethyl-3-methylene-; 7,11-Dimethyl-3-methylene-1,6E,10-dodecatriene; 7,11-Dimethyl-3-methylene-1,6,10-dodecatriene; 7,11-Dimethyl-3-methylenedodeca-1,6,10-triene; trans-beta-Farnesene, analytical standard; JSNRRGGBADWTMC-UHFFFAOYSA-N; .BETA.-FARNESENE, (6E)-; (Z,E)-.beta.-Farnesene; TRANS-.BETA.-FARNESENE; FARNESENE, TRANS-BETA-; trans- beta -Farnesene; .BETA.-FARNESENE [MI]; beta-trans-farnesene; trans-beta-Farnesene; (E)-.beta.-Farnesene; (6E)-beta-farnesene; FARNESENE, .BETA.-; (E)-beta-farnesene; trans-β-Farnesene; b-trans-Farnesene; (E)-beta-Famesene; Β-trans-farnesene; trans-B-farnesene; (E)-|A-Farnesene; .beta.-Farnesene; E-beta-farnesene; trans--Farnesene; (E)-β-Farnesene; (e)-b-Farnesene; UNII-E5STW643HU; I(2)-farnesene; beta-Farnesene; Tox21_303792; b-farnesene; Β-farnesene; E5STW643HU; β-Farnesene
数据库引用编号
17 个数据库交叉引用编号
- ChEBI: CHEBI:10418
- ChEBI: CHEBI:39241
- KEGG: C09666
- PubChem: 5281517
- HMDB: HMDB0062763
- Metlin: METLIN64095
- LipidMAPS: LMFA11000040
- MeSH: beta-farnesene
- ChemIDplus: 0018794848
- MetaCyc: CPD-8239
- KNApSAcK: C00003131
- CAS: 18794-84-8
- CAS: 77129-48-7
- medchemexpress: HY-N7364
- PubChem: 11856
- 3DMET: B03179
- NIKKAJI: J10.900B
分类词条
相关代谢途径
Reactome(0)
PlantCyc(0)
代谢反应
56 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(2)
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E)-β-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E)-β-farnesene + diphosphate
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(53)
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E)-β-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E)-β-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E)-β-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (Z,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E,E)-α-farnesene + diphosphate
- farnesene biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ (E)-β-farnesene + diphosphate
COVID-19 Disease Map(0)
PathBank(1)
- Farnesene Biosynthesis:
Geranyl-PP + Isopentenyl pyrophosphate ⟶ Farnesyl pyrophosphate + Pyrophosphate
PharmGKB(0)
165 个相关的物种来源信息
- 260130 - Acca sellowiana: 10.1016/S0031-9422(00)97781-1
- 13329 - Achillea millefolium: 10.1080/10412905.1992.9698109
- 133233 - Achillea ptarmica: 10.1055/S-2006-960180
- 694329 - Achyrospermum africanum: 10.1080/10412905.1994.9698414
- 4465 - Acorus calamus: 10.1055/S-0028-1097281
- 8496 - Alligator mississippiensis: 10.1021/NP020073R
- 97723 - Alpinia zerumbet: 10.1080/10412905.1993.9698218
- 4214 - Ambrosia trifida: 10.1016/0031-9422(93)85405-G
- 48027 - Anthriscus sylvestris: 10.1248/YAKUSHI1947.99.6_602
- 59523 - Antidorcas marsupialis: 10.1016/S0040-4039(01)85855-X
- 35608 - Artemisia annua:
- 259893 - Artemisia argyi Lévl.et Vant.: -
- 72329 - Artemisia herba-alba: 10.1016/0031-9422(88)83114-5
- 669136 - Artemisia pontica: 10.1055/S-0028-1097498
- 4220 - Artemisia vulgaris: 10.1007/BF00600857
- 1550272 - Asarum megacalyx: 10.1515/ZNC-1988-5-604
- 41067 - Aspergillus candidus: 10.1016/S0045-6535(99)00015-6
- 385370 - Aster scaber: 10.1021/JF00034A033
- 109086 - Athamanta macedonica: 10.1080/10412905.1995.9698532
- 196008 - Bedfordia arborescens: 10.1016/S0031-9422(00)82383-3
- 557624 - Blumea axillaris: 10.1016/S0031-9422(00)80757-8
- 119169 - Blumea mollis: 10.1016/S0031-9422(00)80757-8
- 85954 - Callitropsis nootkatensis: 10.1016/S0031-9422(00)85326-1
- 3426 - Canella winterana: 10.1080/10412905.1998.9700906
- 3483 - Cannabis sativa: 10.1016/S0021-9673(01)90672-7
- 347529 - Centaurea solstitialis: 10.1021/JF00071A004
- 48106 - Centella asiatica:
- 48093 - Chengiopanax sciadophylloides: 10.1248/YAKUSHI1947.109.3_188
- 558547 - Citrus deliciosa:
- 170989 - Citrus hystrix: 10.1016/J.PHYTOCHEM.2009.07.031
- 37334 - Citrus maxima: 10.1016/J.PHYTOCHEM.2009.07.031
- 85571 - Citrus reticulata:
- 2708762 - Cleistopholis patens: 10.1055/S-2006-962450
- 260635 - Condea emoryi: 10.1021/NP50034A039
- 72917 - Conyza canadensis: 10.1016/0031-9422(88)80461-8
- 212787 - Conyza sumatrensis: 10.1080/10412905.1995.9698470
- 765399 - Croton jacobinensis: 10.1021/JO00200A028
- 136209 - Curcuma aromatica: 10.3390/FOODS8020053
- 136216 - Curcuma kwangsiensis S.G.Lee et C.F.Liang: -
- 136218 - Curcuma phaeocaulis Val.: -
- 136221 - Curcuma wenyujin Y.H.Chen et C.Ling: -
- 136224 - Curcuma zedoaria: 10.1016/S0031-9422(00)80683-4
- 405131 - Curio talinoides: 10.1016/S0031-9422(00)98481-4
- 399145 - Cylindrocolea recurvifolia: 10.1016/0031-9422(95)00938-8
- 1593394 - Dasystenella acanthina: 10.1021/NP030201R
- 4039 - Daucus carota: 10.1002/(SICI)1099-1026(199909/10)14:5<268::AID-FFJ823>3.0.CO;2-Z
- 1079072 - Dipteryx lacunifera: 10.1016/S0031-9422(00)86884-3
- 557636 - Duhaldea cuspidata: 10.1016/0031-9422(82)80034-4
- 125690 - Epaltes australis: 10.1016/S0031-9422(00)91485-7
- 72917 - Erigeron canadensis: 10.1016/0031-9422(88)80461-8
- 72930 - Erigeron philadelphicus: 10.1016/S0031-9422(00)81585-X
- 1211466 - Erigeron sumatrensis: 10.1080/10412905.1995.9698470
- 477864 - Eryngium foetidum: 10.1080/10412905.1997.9700731
- 188493 - Etlingera elatior: 10.1080/10412905.1993.9698218
- 102771 - Eupatorium capillifolium: 10.1080/10412905.1998.9700844
- 3494 - Ficus carica: 10.1021/JF00071A013
- 95763 - Frullania: 10.1016/0031-9422(88)80444-8
- 642351 - Frullania pycnantha: 10.1016/S0031-9422(02)00542-3
- 642367 - Frullania spinifera: 10.1016/S0031-9422(02)00542-3
- 5314 - Ganoderma: -
- 5315 - Ganoderma lucidum: 10.1016/J.PHYTOCHEM.2005.10.025
- 586115 - Gaultheria mucronata: 10.1055/S-2007-969372
- 3635 - Gossypium hirsutum: 10.1021/JF60200A011
- 662482 - Grindelia camporum: 10.1016/0031-9422(82)80036-8
- 1114741 - Grindelia hirsutula: 10.1016/0031-9422(82)80036-8
- 4397 - Hamamelis virginiana: 10.1055/S-2006-957420
- 110723 - Hedychium spicatum: 10.1002/FFJ.2730100310
- 112358 - Helichrysum cephaloideum: 10.1016/S0031-9422(00)81569-1
- 1442645 - Helichrysum chrysargyrum: 10.1016/0031-9422(79)83026-5
- 379243 - Helichrysum cymosum: 10.1016/S0031-9422(00)91472-9
- 46415 - Heptapleurum arboricola: 10.1016/S0031-9422(00)85517-X
- 379244 - Hippia frutescens: 10.1080/10412905.1997.9700816
- 9606 - Homo sapiens: -
- 16752 - Houttuynia cordata: 10.1248/CPB.54.936
- 3486 - Humulus lupulus:
- 4049 - Hydrocotyle sibthorpioides: 10.1016/0031-9422(82)85264-3
- 124778 - Illicium verum Hook.f.: -
- 382010 - Isocoma tenuisecta: 10.1016/0031-9422(79)80205-8
- 51240 - Juglans regia: 10.1021/JF00071A013
- 123599 - Larix gmelinii: 10.1007/BF00576230
- 193048 - Larix gmelinii var. gmelinii: 10.1007/BF00576230
- 408997 - Lefebvrea grantii: 10.1080/10412905.1995.9698468
- 2126591 - Ligularia amplexicaulis: 10.1016/S0031-9422(00)83943-6
- 2291702 - Marrubium parviflorum: 10.1080/10412905.1999.9701138
- 53166 - Marrubium peregrinum: 10.1002/(SICI)1099-1026(199909/10)14:5<290::AID-FFJ828>3.0.CO;2-4
- 98504 - Matricaria chamomilla:
- 883867 - Matricaria discoidea:
- 56017 - Matricaria matricarioides:
- 38860 - Mentha suaveolens: 10.1055/S-0028-1097962
- 1898725 - Microglossa pyrifolia: 10.1002/(SICI)1099-1026(199903/04)14:2<82::AID-FFJ780>3.0.CO;2-Z
- 306398 - Micromeria sinaica: 10.3109/13880209109082877
- 260607 - Monardella hypoleuca: 10.1021/NP50034A038
- 2006539 - Mosla cavaleriei: 10.1080/10412905.1995.9698478
- 516065 - Mosla chinensis: 10.1002/CJOC.201180379
- 39347 - Nepeta cataria: 10.1080/10412905.1993.9698195
- 1000421 - Nepeta nepetella: 10.1055/S-2007-969632
- 4087 - Nicotiana alata: 10.1016/J.PHYTOCHEM.2006.05.038
- 204144 - Ocimum gratissimum: 10.1007/BF01959201
- 39351 - Origanum laevigatum: 10.1080/10412905.1992.9698095
- 452416 - Origanum onites: 10.1016/0305-1978(93)90031-L
- 39352 - Origanum vulgare: 10.1016/0305-1978(93)90031-L
- 35924 - Paeonia lactiflora: 10.1016/S0031-9422(00)94541-2
- 84099 - Paleosuchus palpebrosus: 10.1021/NP0600797
- 38658 - Paleosuchus trigonatus: 10.1021/NP0600797
- 4054 - Panax ginseng: 10.1007/978-3-662-03331-9_2
- 158596 - Pelargonium endlicherianum: 10.1055/S-2006-960872
- 48386 - Perilla frutescens: 10.1021/JF00023A054
- 488003 - Persicaria minor: 10.3390/MOLECULES191119220
- 1155347 - Persicaria mitis: 10.3390/MOLECULES191119220
- 4043 - Petroselinum crispum: 10.1080/10412905.1995.9698532
- 408992 - Peucedanum zenkeri: 10.1080/10412905.1995.9698468
- 542674 - Phyla dulcis: 10.1016/S0031-9422(96)00691-7
- 1936778 - Picradeniopsis multiflora: 10.1016/0031-9422(80)85130-2
- 271192 - Pimpinella anisum: 10.1016/S0031-9422(98)00022-3
- 88728 - Pinus koraiensis: 10.1007/BF00568368
- 71641 - Pinus merkusii: 10.1016/0031-9422(93)85408-J
- 71647 - Pinus pinaster: 10.1016/0031-9422(82)83091-4
- 130381 - Piper arboreum: 10.1016/S0031-9422(97)00762-0
- 511543 - Piper guineense: 10.1021/JF00083A001
- 13216 - Piper nigrum: 10.3390/MOLECULES24234244
- 33090 - Plants: -
- 597401 - Ptychopetalum olacoides: 10.1055/S-2006-962688
- 1620166 - Pycnanthemum floridanum: 10.1080/10412905.1994.9698442
- 399159 - Radula javanica: 10.1016/0031-9422(91)84147-K
- 588660 - Radula kojana: 10.1016/0031-9422(91)84129-G
- 362630 - Rhaponticum carthamoides: 10.1016/J.PHYTOCHEM.2008.12.018
- 49605 - Rhododendron groenlandicum: 10.1007/BF00579758
- 105903 - Rhododendron mucronulatum: 10.1007/BF01386197
- 1707457 - Roldana aschenborniana: 10.1016/0031-9422(89)80199-2
- 904558 - Rugelia nudicaulis: 10.1016/S0031-9422(82)85037-1
- 38868 - Salvia officinalis: 10.1016/S0031-9422(00)84802-5
- 1132405 - Salvia tomentosa: 10.1016/S0031-9422(00)84802-5
- 453088 - Santalum spicatum: 10.3390/MOLECULES22060940
- 46945 - Sassafras albidum: 10.1055/S-2006-959379
- 2185271 - Senecio erosus: 10.1016/S0031-9422(00)98481-4
- 58524 - Senecio inaequidens: 10.1016/S0031-9422(00)83942-4
- 121549 - Senecio lividus: 10.1016/S0031-9422(00)84168-0
- 1892283 - Senecio lydenburgensis: 10.1016/0031-9422(82)83165-8
- 121550 - Senecio nebrodensis: 10.1016/S0031-9422(00)84168-0
- 1892294 - Senecio sandersonii: 10.1016/S0031-9422(00)98481-4
- 121554 - Senecio squalidus: 10.1016/S0031-9422(00)84168-0
- 155254 - Sideritis montana: 10.1076/1388-0209(200004)3821-1FT106
- 155267 - Sideritis tragoriganum: 10.1016/S0031-9422(00)80325-8
- 176613 - Smallanthus uvedalia: 10.1016/0031-9422(88)80463-1
- 317816 - Solanum agrimonifolium: 10.1080/10412905.1995.9698562
- 317816 - Solanum agrimoniifolium: 10.1080/10412905.1995.9698562
- 62890 - Solanum habrochaites: 10.1080/10412905.1995.9698562
- 471149 - Solidago nemoralis: 10.1016/S0031-9422(00)83939-4
- 1223618 - Solidago odora: 10.1016/S0031-9422(00)83939-4
- 55670 - Stevia rebaudiana: 10.1002/FFJ.2730010103
- 1745167 - Symphyopappus reticulatus: 10.1016/S0031-9422(00)98550-9
- 547782 - Symphyotrichum undulatum: 10.1021/JF00034A033
- 152001 - Tephroseris palustris: 10.1016/S0031-9422(00)98481-4
- 1209851 - Teucrium cyprium: 10.1016/0378-8741(91)90062-I
- 1209865 - Teucrium kotschyanum: 10.1016/0378-8741(91)90062-I
- 1854046 - Teucrium sandrasicum: 10.1080/10412905.1997.9700774
- 489417 - Tordylium apulum: 10.1080/10412905.1993.9698167
- 79184 - Torilis arvensis: 10.1016/0031-6865(94)00053-X
- 57577 - Trifolium pratense: 10.1021/JF00122A019
- 3438 - Umbellularia californica: 10.1016/0031-9422(74)85146-0
- 174970 - Uvaria chamae: 10.1055/S-2006-962016
- 3972 - Viscum album: 10.1002/PTR.2464
- 54477 - Vitex agnus-castus:
- 4577 - Zea mays: 10.1021/JF00125A044
- 94328 - Zingiber officinale: 10.1016/S0031-9422(00)84581-1
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Dalila Touhami, Adedayo O Mofikoya, Robbie D Girling, Ben Langford, Pawel K Misztal, Christian Pfrang. Atmospheric Degradation of Ecologically Important Biogenic Volatiles: Investigating the Ozonolysis of (E)-β-Ocimene, Isomers of α and β-Farnesene, α-Terpinene and 6-Methyl-5-Hepten-2-One, and Their Gas-Phase Products.
Journal of chemical ecology.
2024 Jan; ?(?):. doi:
10.1007/s10886-023-01467-6
. [PMID: 38195852] - Mansureh Ghavam. Phytochemical analysis and antibacterial/antifungal activity of the essential oil of Phlomis olivieri Benth in Iran.
Inflammopharmacology.
2023 Mar; ?(?):. doi:
10.1007/s10787-023-01170-8
. [PMID: 36884188] - Liliane Sena Pinheiro, Valter Viana Andrade-Neto, Marcio Mantuano-Barradas, Elisa Cavalcante Pereira, Rodrigo Cesar Fernandes Barbosa, Marcia Cristina Campos de Oliveira, Rubem Figueiredo Sadok Menna-Barreto, Edézio Ferreira Cunha-Júnior, Eduardo Caio Torres-Santos. Biological effects of trans, trans-farnesol in Leishmania amazonensis.
Frontiers in cellular and infection microbiology.
2023; 13(?):1221246. doi:
10.3389/fcimb.2023.1221246
. [PMID: 38035328] - Cuicui Yu, Shixi Gao, Mei Rong, Mengjun Xiao, Yanhong Xu, Jianhe Wei. Identification and characterization of novel sesquiterpene synthases TPS9 and TPS12 from Aquilaria sinensis.
PeerJ.
2023; 11(?):e15818. doi:
10.7717/peerj.15818
. [PMID: 37663295] - Azize Demirpolat. Chemical Composition of Essential Oils of Seven Polygonum Species from Turkey: A Chemotaxonomic Approach.
Molecules (Basel, Switzerland).
2022 Dec; 27(24):. doi:
10.3390/molecules27249053
. [PMID: 36558187] - Bing Wang, Wanying Dong, Huimin Li, Chiara D'Onofrio, Penghua Bai, Ruipeng Chen, Lulu Yang, Jinan Wu, Xiaoqing Wang, Bo Wang, Dong Ai, Wolfgang Knoll, Paolo Pelosi, Guirong Wang. Molecular basis of (E)-β-farnesene-mediated aphid location in the predator Eupeodes corollae.
Current biology : CB.
2022 03; 32(5):951-962.e7. doi:
10.1016/j.cub.2021.12.054
. [PMID: 35065682] - Xuan Song, Yao-Guo Qin, Yue Yin, Zheng-Xi Li. Identification and Behavioral Assays of Alarm Pheromone in the Vetch Aphid Megoura viciae.
Journal of chemical ecology.
2021 Sep; 47(8-9):740-746. doi:
10.1007/s10886-021-01297-4
. [PMID: 34347235] - Mojtaba Hosseini, Mohsen Mehrparvar, Sharon E Zytynska, Eduardo Hatano, Wolfgang W Weisser. Aphid alarm pheromone alters larval behaviour of the predatory gall midge, Aphidoletes aphidimyza and decreases intraguild predation by anthocorid bug, Orius laevigatus.
Bulletin of entomological research.
2021 Aug; 111(4):445-453. doi:
10.1017/s0007485321000122
. [PMID: 33663631] - Jinjin Li, Hao Hu, Yu Chen, Jing Xie, Jiawen Li, Tuo Zeng, Manqun Wang, Jing Luo, Riru Zheng, Maarten A Jongsma, Caiyun Wang. Tissue specificity of (E)-β-farnesene and germacrene D accumulation in pyrethrum flowers.
Phytochemistry.
2021 Jul; 187(?):112768. doi:
10.1016/j.phytochem.2021.112768
. [PMID: 33932787] - Jiahui Liu, Xiaojing Zhao, Yidi Zhan, Kang Wang, Frederic Francis, Yong Liu. New slow release mixture of (E)-β-farnesene with methyl salicylate to enhance aphid biocontrol efficacy in wheat ecosystem.
Pest management science.
2021 Jul; 77(7):3341-3348. doi:
10.1002/ps.6378
. [PMID: 33773020] - Tianqiong Shi, Yawen Li, Li Zhu, Yangyang Tong, Junjie Yang, Yunming Fang, Meng Wang, Jieze Zhang, Yu Jiang, Sheng Yang. Engineering the oleaginous yeast Yarrowia lipolytica for β-farnesene overproduction.
Biotechnology journal.
2021 Jul; 16(7):e2100097. doi:
10.1002/biot.202100097
. [PMID: 33938153] - Qiang Wang, Peng Xu, Felipe Andreazza, Yahui Liu, Yoshiko Nomura, Phil Duran, Lan Jiang, Mengli Chen, Genki Takamatsu, Makoto Ihara, Kazuhiko Matsuda, Rufus Isaacs, Eugenio E Oliveira, Yuzhe Du, Ke Dong. Identification of multiple odorant receptors essential for pyrethrum repellency in Drosophila melanogaster.
PLoS genetics.
2021 07; 17(7):e1009677. doi:
10.1371/journal.pgen.1009677
. [PMID: 34237075] - Zenab Aly Torky, Ashaimaa Y Moussa, Eman A Abdelghffar, Usama K Abdel-Hameed, Omayma A Eldahshan. Chemical profiling, antiviral and antiproliferative activities of the essential oil of Phlomis aurea Decne grown in Egypt.
Food & function.
2021 May; 12(10):4630-4643. doi:
10.1039/d0fo03417g
. [PMID: 33912870] - Qian Wang, Jing-Tao Liu, Yong-Jun Zhang, Ju-Lian Chen, Xian-Chun Li, Pei Liang, Xi-Wu Gao, Jing-Jiang Zhou, Shao-Hua Gu. Coordinative mediation of the response to alarm pheromones by three odorant binding proteins in the green peach aphid Myzus persicae.
Insect biochemistry and molecular biology.
2021 03; 130(?):103528. doi:
10.1016/j.ibmb.2021.103528
. [PMID: 33482303] - Cheng-Xian Sun, Zheng-Xi Li. Biosynthesis of aphid alarm pheromone is modulated in response to starvation stress under regulation by the insulin, glycolysis and isoprenoid pathways.
Journal of insect physiology.
2021 01; 128(?):104174. doi:
10.1016/j.jinsphys.2020.104174
. [PMID: 33242454] - Mahpara Qadir, Antim Kumar Maurya, Vijai Kant Agnihotri, Wajaht A Shah. Volatile composition, antibacterial and antioxidant activities of artemisia tournefortiana Reichb. from Kashmir, India.
Natural product research.
2021 Jan; 35(1):152-156. doi:
10.1080/14786419.2019.1613990
. [PMID: 31135230] - Karoliny C R Almeida, Bruna B Silva, Cassia C F Alves, Tatiana M Vieira, Antônio E M Crotti, João M Souza, Carlos H G Martins, Arthur B Ribeiro, Iara S Squarisi, Denise C Tavares, Laura Dos S Bernabé, Lizandra G Magalhães, Mayker L D Miranda. Biological properties and chemical composition of essential oil from Nectandra megapotamica (Spreng.) Mez. leaves (Lauraceae).
Natural product research.
2020 Nov; 34(21):3149-3153. doi:
10.1080/14786419.2019.1608539
. [PMID: 31084218] - T Soumya, P R Jayasree, M Deepak, P R Manish Kumar. Chemical composition, antioxidant and antiproliferative activities of essential oil from rhizome and leaves of Curcuma mutabilis Škorničk., M. Sabu & Prasanthk., endemic to Western Ghats of India.
Natural product research.
2020 Aug; 34(16):2336-2340. doi:
10.1080/14786419.2018.1533826
. [PMID: 30724591] - Yao-Guo Qin, Zhao-Kai Yang, Dun-Lun Song, Qian Wang, Shao-Hua Gu, Wen-Hao Li, Hong-Xia Duan, Jing-Jiang Zhou, Xin-Ling Yang. Bioactivities of synthetic salicylate-substituted carboxyl (E)-β-Farnesene derivatives as ecofriendly agrochemicals and their binding mechanism with potential targets in aphid olfactory system.
Pest management science.
2020 Jul; 76(7):2465-2472. doi:
10.1002/ps.5787
. [PMID: 32061021] - Jieyang Jin, Shangrui Zhang, Mingyue Zhao, Tingting Jing, Na Zhang, Jingming Wang, Bin Wu, Chuankui Song. Scenarios of Genes-to-Terpenoids Network Led to the Identification of a Novel α/β-Farnesene/β-Ocimene Synthase in Camellia sinensis.
International journal of molecular sciences.
2020 Jan; 21(2):. doi:
10.3390/ijms21020655
. [PMID: 31963919] - C-X Sun, Z-X Li. Production of alarm pheromone starts at embryo stage and is modulated by rearing conditions and farnesyl diphosphate synthase genes in the bird cherry-oat aphid Rhopalosiphum padi.
Bulletin of entomological research.
2019 Dec; 109(6):821-830. doi:
10.1017/s0007485319000154
. [PMID: 30968805] - Jinjin Li, Hao Hu, Jing Mao, Lu Yu, Geert Stoopen, Manqun Wang, Roland Mumm, Norbert C A de Ruijter, Marcel Dicke, Maarten A Jongsma, Caiyun Wang. Defense of pyrethrum flowers: repelling herbivores and recruiting carnivores by producing aphid alarm pheromone.
The New phytologist.
2019 08; 223(3):1607-1620. doi:
10.1111/nph.15869
. [PMID: 31087371] - Y-J Cheng, Z-X Li. Spatiotemporal expression profiling of the farnesyl diphosphate synthase genes in aphids and analysis of their associations with the biosynthesis of alarm pheromone.
Bulletin of entomological research.
2019 Jun; 109(3):398-407. doi:
10.1017/s0007485318000706
. [PMID: 30269691] - Lorena C Pena, Gustavo H Jungklaus, Daiani C Savi, Lisandra Ferreira-Maba, André Servienski, Beatriz H L N S Maia, Vinicius Annies, Lygia V Galli-Terasawa, Chirlei Glienke, Vanessa Kava. Muscodor brasiliensis sp. nov. produces volatile organic compounds with activity against Penicillium digitatum.
Microbiological research.
2019 Apr; 221(?):28-35. doi:
10.1016/j.micres.2019.01.002
. [PMID: 30825939] - Xuemin Wang, Yuhao Gao, Zhihong Chen, Jindong Li, Jianping Huang, Jiangbo Cao, Miaomiao Cui, Liping Ban. (E)-β-farnesene synthase gene affects aphid behavior in transgenic Medicago sativa.
Pest management science.
2019 Mar; 75(3):622-631. doi:
10.1002/ps.5153
. [PMID: 30051587] - Hadjer Fodil, Madani Sarri, Noui Hendel, Filippo Maggi, Djamel Sarri. Essential oil composition of aerial parts from Algerian Anacyclus monanthos subsp. cyrtolepidioides (Pomel) Humphries.
Natural product research.
2019 Jan; 33(2):292-295. doi:
10.1080/14786419.2018.1443094
. [PMID: 29495887] - Elina Mäntylä, Sven Kleier, Carita Lindstedt, Silke Kipper, Monika Hilker. Insectivorous Birds Are Attracted by Plant Traits Induced by Insect Egg Deposition.
Journal of chemical ecology.
2018 Dec; 44(12):1127-1138. doi:
10.1007/s10886-018-1034-1
. [PMID: 30417204] - Z-J Sun, Z-X Li. The terpenoid backbone biosynthesis pathway directly affects the biosynthesis of alarm pheromone in the aphid.
Insect molecular biology.
2018 12; 27(6):824-834. doi:
10.1111/imb.12521
. [PMID: 30039630] - Mehdi Sharifi-Rad, Jolanta Nazaruk, Letizia Polito, Maria Flaviana Bezerra Morais-Braga, Janaína Esmeraldo Rocha, Henrique Douglas Melo Coutinho, Bahare Salehi, Giulia Tabanelli, Chiara Montanari, María Del Mar Contreras, Zubaida Yousaf, William N Setzer, Deepa R Verma, Miquel Martorell, Antoni Sureda, Javad Sharifi-Rad. Matricaria genus as a source of antimicrobial agents: From farm to pharmacy and food applications.
Microbiological research.
2018 Oct; 215(?):76-88. doi:
10.1016/j.micres.2018.06.010
. [PMID: 30172312] - Raju Sripathi, Dharani Jayagopal, Subban Ravi. A study on the seasonal variation of the essential oil composition from Plectranthus hadiensis and its antibacterial activity.
Natural product research.
2018 Apr; 32(7):871-874. doi:
10.1080/14786419.2017.1363748
. [PMID: 28783957] - Wen-Nee Tan, Jia-Qin Lim, Fatin Afiqah, Nik Nur Syazni Nik Mohamed Kamal, Fatin Athirah Abdul Aziz, Woei-Yenn Tong, Chean-Ring Leong, Jun-Wei Lim. Chemical composition and cytotoxic activity of Garcinia atroviridis Griff. ex T. Anders. essential oils in combination with tamoxifen.
Natural product research.
2018 Apr; 32(7):854-858. doi:
10.1080/14786419.2017.1361951
. [PMID: 28782393] - Umberto Salvagnin, Mickael Malnoy, Gunda Thöming, Marco Tasin, Silvia Carlin, Stefan Martens, Urska Vrhovsek, Sergio Angeli, Gianfranco Anfora. Adjusting the scent ratio: using genetically modified Vitis vinifera plants to manipulate European grapevine moth behaviour.
Plant biotechnology journal.
2018 01; 16(1):264-271. doi:
10.1111/pbi.12767
. [PMID: 28574666] - Jia Fan, Wenxin Xue, Hongxia Duan, Xin Jiang, Yong Zhang, Wenjuan Yu, Shanshan Jiang, Jingrun Sun, Julian Chen. Identification of an intraspecific alarm pheromone and two conserved odorant-binding proteins associated with (E)-β-farnesene perception in aphid Rhopalosiphum padi.
Journal of insect physiology.
2017 08; 101(?):151-160. doi:
10.1016/j.jinsphys.2017.07.014
. [PMID: 28778653] - Z-Q Li, S Zhang, X-M Cai, J-Y Luo, S-L Dong, J-J Cui, Z-M Chen. Three odorant binding proteins may regulate the behavioural response of Chrysopa pallens to plant volatiles and the aphid alarm pheromone (E)-β-farnesene.
Insect molecular biology.
2017 06; 26(3):255-265. doi:
10.1111/imb.12295
. [PMID: 28247518] - Ruibin Zhang, Bing Wang, Gerarda Grossi, Patrizia Falabella, Yang Liu, Shanchun Yan, Jian Lu, Jinghui Xi, Guirong Wang. Molecular Basis of Alarm Pheromone Detection in Aphids.
Current biology : CB.
2017 Jan; 27(1):55-61. doi:
10.1016/j.cub.2016.10.013
. [PMID: 27916525] - Marimuthu Govindarajan, Giovanni Benelli. Artemisia absinthium-borne compounds as novel larvicides: effectiveness against six mosquito vectors and acute toxicity on non-target aquatic organisms.
Parasitology research.
2016 Dec; 115(12):4649-4661. doi:
10.1007/s00436-016-5257-1
. [PMID: 27630101] - Adam L Meadows, Kristy M Hawkins, Yoseph Tsegaye, Eugene Antipov, Youngnyun Kim, Lauren Raetz, Robert H Dahl, Anna Tai, Tina Mahatdejkul-Meadows, Lan Xu, Lishan Zhao, Madhukar S Dasika, Abhishek Murarka, Jacob Lenihan, Diana Eng, Joshua S Leng, Chi-Li Liu, Jared W Wenger, Hanxiao Jiang, Lily Chao, Patrick Westfall, Jefferson Lai, Savita Ganesan, Peter Jackson, Robert Mans, Darren Platt, Christopher D Reeves, Poonam R Saija, Gale Wichmann, Victor F Holmes, Kirsten Benjamin, Paul W Hill, Timothy S Gardner, Annie E Tsong. Rewriting yeast central carbon metabolism for industrial isoprenoid production.
Nature.
2016 Sep; 537(7622):694-697. doi:
10.1038/nature19769
. [PMID: 27654918] - Fang-Jing Lin, Emilie Bosquée, Ying-Jie Liu, Ju-Lian Chen, Liu Yong, Frédéric Francis. Impact of aphid alarm pheromone release on virus transmission efficiency: When pest control strategy could induce higher virus dispersion.
Journal of virological methods.
2016 09; 235(?):34-40. doi:
10.1016/j.jviromet.2016.05.009
. [PMID: 27185564] - Ying Jie Liu, Bao Jie Chi, Fang Jing Lin, Olivier Maigret, Lu Fei Zheng, Yong Liu. [Ecological functions of E-β-farnesene on aphids and their natural enemies in potato field.].
Ying yong sheng tai xue bao = The journal of applied ecology.
2016 Aug; 27(8):2623-2628. doi:
10.13287/j.1001-9332.201608.005
. [PMID: 29733151] - Yaoguo Qin, Jingpeng Zhang, Dunlun Song, Hongxia Duan, Wenhao Li, Xinling Yang. Novel (E)-β-Farnesene Analogues Containing 2-Nitroiminohexahydro-1,3,5-triazine: Synthesis and Biological Activity Evaluation.
Molecules (Basel, Switzerland).
2016 Jun; 21(7):. doi:
10.3390/molecules21070825
. [PMID: 27347912] - Qi Fang, Yao-Hua Zhang, Yao-Long Shi, Jin-Hua Zhang, Jian-Xu Zhang. Individuality and Transgenerational Inheritance of Social Dominance and Sex Pheromones in Isogenic Male Mice.
Journal of experimental zoology. Part B, Molecular and developmental evolution.
2016 06; 326(4):225-36. doi:
10.1002/jez.b.22681
. [PMID: 27283352] - Zongyou Lv, Fangyuan Zhang, Qifang Pan, Xueqing Fu, Weimin Jiang, Qian Shen, Tingxiang Yan, Pu Shi, Xu Lu, Xiaofen Sun, Kexuan Tang. Branch Pathway Blocking in Artemisia annua is a Useful Method for Obtaining High Yield Artemisinin.
Plant & cell physiology.
2016 Mar; 57(3):588-602. doi:
10.1093/pcp/pcw014
. [PMID: 26858285] - Rosany Lopes Martins, Ranggel Carvalho Simões, Érica de Menezes Rabelo, Ana Luzia Ferreira Farias, Alex Bruno Lobato Rodrigues, Ryan da Silva Ramos, João Batista Fernandes, Lourivaldo da Silva Santos, Sheylla Susan Moreira da Silva de Almeida. Chemical Composition, an Antioxidant, Cytotoxic and Microbiological Activity of the Essential Oil from the Leaves of Aeollanthus suaveolens Mart. ex Spreng.
PloS one.
2016; 11(12):e0166684. doi:
10.1371/journal.pone.0166684
. [PMID: 27907002] - Katharine V Harrison, Evan L Preisser. Dropping Behavior in the Pea Aphid (Hemiptera: Aphididae): How Does Environmental Context Affect Antipredator Responses?.
Journal of insect science (Online).
2016; 16(1):. doi:
10.1093/jisesa/iew066
. [PMID: 27638950] - Filippo Maggi, Fabrizio Papa, Stefano Dall'Acqua, Marcello Nicoletti. Chemical analysis of essential oils from different parts of Ferula communis L. growing in central Italy.
Natural product research.
2016; 30(7):806-13. doi:
10.1080/14786419.2015.1071365
. [PMID: 26299522] - Jia Fan, Yong Zhang, Frédéric Francis, Dengfa Cheng, Jingrun Sun, Julian Chen. Orco mediates olfactory behaviors and winged morph differentiation induced by alarm pheromone in the grain aphid, Sitobion avenae.
Insect biochemistry and molecular biology.
2015 Sep; 64(?):16-24. doi:
10.1016/j.ibmb.2015.07.006
. [PMID: 26187252] - Prabodh Satyal, Samon Shrestha, William N Setzer. Composition and Bioactivities of an (E)-β-Farnesene Chemotype of Chamomile (Matricaria chamomilla) Essential Oil from Nepal.
Natural product communications.
2015 Aug; 10(8):1453-7. doi:
. [PMID: 26434140]
- Toby J A Bruce, Gudbjorg I Aradottir, Lesley E Smart, Janet L Martin, John C Caulfield, Angela Doherty, Caroline A Sparks, Christine M Woodcock, Michael A Birkett, Johnathan A Napier, Huw D Jones, John A Pickett. The first crop plant genetically engineered to release an insect pheromone for defence.
Scientific reports.
2015 Jun; 5(?):11183. doi:
10.1038/srep11183
. [PMID: 26108150] - Yuechong Yue, Rangcai Yu, Yanping Fan. Transcriptome profiling provides new insights into the formation of floral scent in Hedychium coronarium.
BMC genomics.
2015 Jun; 16(?):470. doi:
10.1186/s12864-015-1653-7
. [PMID: 26084652] - Christoph Joachim, Wolfgang W Weisser. Does the Aphid Alarm Pheromone (E)-β-farnesene Act as a Kairomone under Field Conditions?.
Journal of chemical ecology.
2015 Mar; 41(3):267-75. doi:
10.1007/s10886-015-0555-0
. [PMID: 25779875] - Varnika Bhatia, Jaya Maisnam, Ajay Jain, Krishan Kumar Sharma, Ramcharan Bhattacharya. Aphid-repellent pheromone E-β-farnesene is generated in transgenic Arabidopsis thaliana over-expressing farnesyl diphosphate synthase2.
Annals of botany.
2015 Mar; 115(4):581-91. doi:
10.1093/aob/mcu250
. [PMID: 25538111] - Kevin W George, Jorge Alonso-Gutierrez, Jay D Keasling, Taek Soon Lee. Isoprenoid drugs, biofuels, and chemicals--artemisinin, farnesene, and beyond.
Advances in biochemical engineering/biotechnology.
2015; 148(?):355-89. doi:
10.1007/10_2014_288
. [PMID: 25577395] - Shiv Shankar Verma, Rakesh Kumar Sinha, Anajna Jajoo. (E)-β-farnesene gene reduces Lipaphis erysimi colonization in transgenic Brassica juncea lines.
Plant signaling & behavior.
2015; 10(7):e1042636. doi:
10.1080/15592324.2015.1042636
. [PMID: 26251882] - Simona Casiglia, Maurizio Bruno, Federica Senatore, Felice Senatore. Composition of the Essential Oil of Allium neapolitanum Cirillo Growing Wild in Sicily and its Activity on Microorganisms Affecting Historical Art Crafts.
Journal of oleo science.
2015; 64(12):1315-20. doi:
10.5650/jos.ess15188
. [PMID: 26632947] - Yuechong Yue, Rangcai Yu, Yanping Fan. Characterization of two monoterpene synthases involved in floral scent formation in Hedychium coronarium.
Planta.
2014 Oct; 240(4):745-62. doi:
10.1007/s00425-014-2127-x
. [PMID: 25056927] - Tania Jogesh, Joseph C H Wong, Margaret C Stanley, May R Berenbaum. Impact of reassociation with a coevolved herbivore on oviposition deterrence in a hostplant.
Oecologia.
2014 Sep; 176(1):117-27. doi:
10.1007/s00442-014-2999-2
. [PMID: 24989119] - Chengcheng Liu, Yang Liu, Mengbo Guo, Depan Cao, Shuanglin Dong, Guirong Wang. Narrow tuning of an odorant receptor to plant volatiles in Spodoptera exigua (Hübner).
Insect molecular biology.
2014 Aug; 23(4):487-96. doi:
10.1111/imb.12096
. [PMID: 24779920] - Vincent O Nyasembe, David P Tchouassi, Hillary K Kirwa, Woodbridge A Foster, Peter E A Teal, Christian Borgemeister, Baldwyn Torto. Development and assessment of plant-based synthetic odor baits for surveillance and control of malaria vectors.
PloS one.
2014; 9(2):e89818. doi:
10.1371/journal.pone.0089818
. [PMID: 24587059] - Christoph Joachim, Wolfgang W Weisser. Real-time monitoring of (E)-β-farnesene emission in colonies of the pea aphid, Acyrthosiphon pisum, under lacewing and ladybird predation.
Journal of chemical ecology.
2013 Oct; 39(10):1254-62. doi:
10.1007/s10886-013-0348-2
. [PMID: 24158268] - Laura Vázquez-Araújo, Raquel Rodríguez-Solana, Sandra M Cortés-Diéguez, José M Domínguez. Use of hydrodistillation and headspace solid-phase microextraction to characterize the volatile composition of different hop cultivars.
Journal of the science of food and agriculture.
2013 Aug; 93(10):2568-74. doi:
10.1002/jsfa.6078
. [PMID: 23483584] - Samia Afoulous, Hicham Ferhout, Emmanuel Guy Raoelison, Alexis Valentin, Béatrice Moukarzel, François Couderc, Jalloul Bouajila. Chemical composition and anticancer, antiinflammatory, antioxidant and antimalarial activities of leaves essential oil of Cedrelopsis grevei.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2013 Jun; 56(?):352-62. doi:
10.1016/j.fct.2013.02.008
. [PMID: 23459148] - Juan A Faraldos, Veronica Gonzalez, Amang Li, Fanglei Yu, Mustafa Köksal, David W Christianson, Rudolf K Allemann. Probing the mechanism of 1,4-conjugate elimination reactions catalyzed by terpene synthases.
Journal of the American Chemical Society.
2012 Dec; 134(51):20844-8. doi:
10.1021/ja311022s
. [PMID: 23214943] - Tao Zhong, Jiao Yin, Sisi Deng, Kebin Li, Yazhong Cao. Fluorescence competition assay for the assessment of green leaf volatiles and trans-β-farnesene bound to three odorant-binding proteins in the wheat aphid Sitobion avenae (Fabricius).
Journal of insect physiology.
2012 Jun; 58(6):771-81. doi:
10.1016/j.jinsphys.2012.01.011
. [PMID: 22306433] - Xiudao Yu, Huw D Jones, Youzhi Ma, Genping Wang, Zhaoshi Xu, Baoming Zhang, Yongjun Zhang, Guangwei Ren, John A Pickett, Lanqin Xia. (E)-β-farnesene synthase genes affect aphid (Myzus persicae) infestation in tobacco (Nicotiana tabacum).
Functional & integrative genomics.
2012 Mar; 12(1):207-13. doi:
10.1007/s10142-011-0244-1
. [PMID: 21847661] - Ozgür Devrim Can, Umide Demir Özkay, Hülya Tuba Kıyan, Betül Demirci. Psychopharmacological profile of Chamomile (Matricaria recutita L.) essential oil in mice.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2012 Feb; 19(3-4):306-10. doi:
10.1016/j.phymed.2011.10.001
. [PMID: 22070986] - C Pande, G Tewari, C Singh, S Singh. Chemical composition of the essential oil from the flowering aerial parts of Bupleurum hamiltonii Balak from Uttarakhand, India.
Natural product research.
2012; 26(15):1442-5. doi:
10.1080/14786419.2011.602636
. [PMID: 22007844] - Mohammadreza Mozdianfard, Maryam Akhbari, Hossein Batooli. Comparative study on the antioxidant activities of the different extracts and the composition of the oil extracted by n-hexane from Iranian Vitex pseudo-negundo.
Natural product research.
2012; 26(23):2162-7. doi:
10.1080/14786419.2011.643308
. [PMID: 22250599] - Xiaofeng Zhuang, Tobias G Köllner, Nan Zhao, Guanglin Li, Yifan Jiang, Liucun Zhu, Jianxin Ma, Jörg Degenhardt, Feng Chen. Dynamic evolution of herbivore-induced sesquiterpene biosynthesis in sorghum and related grass crops.
The Plant journal : for cell and molecular biology.
2012 Jan; 69(1):70-80. doi:
10.1111/j.1365-313x.2011.04771.x
. [PMID: 21880075] - S Mabrouk, A Elaissi, H Ben Jannet, F Harzallah-Skhiri. Chemical composition of essential oils from leaves, stems, flower heads and roots of Conyza bonariensis L. from Tunisia.
Natural product research.
2011 Jan; 25(1):77-84. doi:
10.1080/14786419.2010.513685
. [PMID: 21240765] - Grit Kunert, Carolina Reinhold, Jonathan Gershenzon. Constitutive emission of the aphid alarm pheromone, (E)-β-farnesene, from plants does not serve as a direct defense against aphids.
BMC ecology.
2010 Nov; 10(?):23. doi:
10.1186/1472-6785-10-23
. [PMID: 21092302] - Martin de Vos, Wing Yin Cheng, Holly E Summers, Robert A Raguso, Georg Jander. Alarm pheromone habituation in Myzus persicae has fitness consequences and causes extensive gene expression changes.
Proceedings of the National Academy of Sciences of the United States of America.
2010 Aug; 107(33):14673-8. doi:
10.1073/pnas.1001539107
. [PMID: 20679203] - Marziyeh Tolouee, Soheil Alinezhad, Reza Saberi, Ali Eslamifar, Seyed Javad Zad, Kamkar Jaimand, Jaleh Taeb, Mohammad-Bagher Rezaee, Masanobu Kawachi, Masoomeh Shams-Ghahfarokhi, Mehdi Razzaghi-Abyaneh. Effect of Matricaria chamomilla L. flower essential oil on the growth and ultrastructure of Aspergillus niger van Tieghem.
International journal of food microbiology.
2010 May; 139(3):127-33. doi:
10.1016/j.ijfoodmicro.2010.03.032
. [PMID: 20385420] - Cengiz Sarikurkcu, Kadir Arisoy, Bektas Tepe, Ahmet Cakir, Gulsah Abali, Ebru Mete. Studies on the antioxidant activity of essential oil and different solvent extracts of Vitexagnuscastus L. fruits from Turkey.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2009 Oct; 47(10):2479-83. doi:
10.1016/j.fct.2009.07.005
. [PMID: 19595732] - Tobias G Köllner, Jonathan Gershenzon, Jörg Degenhardt. Molecular and biochemical evolution of maize terpene synthase 10, an enzyme of indirect defense.
Phytochemistry.
2009 Jun; 70(9):1139-1145. doi:
10.1016/j.phytochem.2009.06.011
. [PMID: 19646721] - James D Blande, Katariina Turunen, Jarmo K Holopainen. Pine weevil feeding on Norway spruce bark has a stronger impact on needle VOC emissions than enhanced ultraviolet-B radiation.
Environmental pollution (Barking, Essex : 1987).
2009 Jan; 157(1):174-80. doi:
10.1016/j.envpol.2008.07.007
. [PMID: 18775595] - F J Verheggen, M C Mescher, E Haubruge, C M Moraes, E G Schwartzberg. Emission of alarm pheromone in aphids: a non-contagious phenomenon.
Journal of chemical ecology.
2008 Sep; 34(9):1146-8. doi:
10.1007/s10886-008-9528-x
. [PMID: 18704587] - Eduardo Hatano, Grit Kunert, Stefan Bartram, Wilhelm Boland, Jonathan Gershenzon, Wolfgang W Weisser. Do aphid colonies amplify their emission of alarm pheromone?.
Journal of chemical ecology.
2008 Sep; 34(9):1149-52. doi:
10.1007/s10886-008-9527-y
. [PMID: 18704588] - Katayoun Morteza-Semnani, Majid Saeedi, Mohammad Akbarzadeh. Essential oil composition of Teucrium scordium L.
Acta pharmaceutica (Zagreb, Croatia).
2007 Dec; 57(4):499-504. doi:
10.2478/v10007-007-0040-6
. [PMID: 18165193] - Thomas E Goodwin, Mindy S Eggert, Sam J House, Margaret E Weddell, Bruce A Schulte, L E L Rasmussen. Insect pheromones and precursors in female African elephant urine.
Journal of chemical ecology.
2006 Aug; 32(8):1849-53. doi:
10.1007/s10886-006-9094-z
. [PMID: 16758337] - Frédéric Francis, Georges Lognay, Eric Haubruge. Olfactory responses to aphid and host plant volatile releases: (E)-beta-farnesene an effective kairomone for the predator Adalia bipunctata.
Journal of chemical ecology.
2004 Apr; 30(4):741-55. doi:
10.1023/b:joec.0000028429.13413.a2
. [PMID: 15260221] - S P Foster, S Young, M S Williamson, I Duce, I Denholm, G J Devine. Analogous pleiotropic effects of insecticide resistance genotypes in peach-potato aphids and houseflies.
Heredity.
2003 Aug; 91(2):98-106. doi:
10.1038/sj.hdy.6800285
. [PMID: 12886275] - Diane M Martin, Jonathan Gershenzon, Jörg Bohlmann. Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce.
Plant physiology.
2003 Jul; 132(3):1586-99. doi:
10.1104/pp.103.021196
. [PMID: 12857838] - Jing-qing Lu, Jun Li. [Chemical constituents in volatile oil from the flos of Dendranthema indicum var. aromaticum var. nov].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2002 Aug; 27(8):598-9. doi:
. [PMID: 12776497]
- E A Schmelz, H T Alborn, J H Tumlinson. The influence of intact-plant and excised-leaf bioassay designs on volicitin- and jasmonic acid-induced sesquiterpene volatile release in Zea mays.
Planta.
2001 Dec; 214(2):171-9. doi:
10.1007/s004250100603
. [PMID: 11800380] - J Crock, M Wildung, R Croteau. Isolation and bacterial expression of a sesquiterpene synthase cDNA clone from peppermint (Mentha x piperita, L.) that produces the aphid alarm pheromone (E)-beta-farnesene.
Proceedings of the National Academy of Sciences of the United States of America.
1997 Nov; 94(24):12833-8. doi:
10.1073/pnas.94.24.12833
. [PMID: 9371761] - B Jemiolo, T M Xie, M Novotny. Socio-sexual olfactory preference in female mice: attractiveness of synthetic chemosignals.
Physiology & behavior.
1991 Dec; 50(6):1119-22. doi:
10.1016/0031-9384(91)90570-e
. [PMID: 1798765] - M Novotny, S Harvey, B Jemiolo. Chemistry of male dominance in the house mouse, Mus domesticus.
Experientia.
1990 Jan; 46(1):109-13. doi:
10.1007/bf01955433
. [PMID: 2298278] - . .
.
. doi:
. [PMID: 16418295]
- . .
.
. doi:
. [PMID: 12481088]
- . .
.
. doi:
. [PMID: 9442047]