Shikimic acid 3-phosphate (BioDeep_00000002690)
Secondary id: BioDeep_00001869207
human metabolite natural product
代谢物信息卡片
化学式: C7H11O8P (254.0192)
中文名称: 莽草酸-3-磷酸酯
谱图信息:
最多检出来源 Homo sapiens(lipidsearch) 26.2%
分子结构信息
SMILES: C1C(C(C(C=C1C(=O)O)OP(=O)(O)O)O)O
InChI: InChI=1S/C7H11O8P/c8-4-1-3(7(10)11)2-5(6(4)9)15-16(12,13)14/h2,4-6,8-9H,1H2,(H,10,11)(H2,12,13,14)
描述信息
Shikimic acid 3-phosphate is a member of the class of compounds known as monoalkyl phosphates. Monoalkyl phosphates are organic compounds containing a phosphate group that is linked to exactly one alkyl chain. Shikimic acid 3-phosphate is soluble (in water) and a moderately acidic compound (based on its pKa). Shikimic acid 3-phosphate can be found in a number of food items such as date, hard wheat, common sage, and peppermint, which makes shikimic acid 3-phosphate a potential biomarker for the consumption of these food products. Shikimic acid 3-phosphate exists in E.coli (prokaryote) and yeast (eukaryote).
同义名列表
11 个代谢物同义名
(3R,4S,5R)-4,5-dihydroxy-3-(phosphonooxy)cyclohex-1-ene-1-carboxylic acid; Shikimic acid 5-phosphoric acid; Shikimic acid-3-phosphoric acid; Shikimic acid 3-phosphoric acid; Shikimic acid 3-phosphate; shikimic acid-3-phosphate; 3-phosphoshikimic acid; Shikimate-3-phosphate; shikimate 3-phosphate; Shikimate 5-phosphate; 3-Phosphoshikimate
数据库引用编号
20 个数据库交叉引用编号
- ChEBI: CHEBI:17052
- KEGG: C03175
- PubChem: 121947
- PubChem: 1095
- HMDB: HMDB0301781
- Metlin: METLIN3384
- DrugBank: DB04328
- ChEMBL: CHEMBL95193
- MetaCyc: SHIKIMATE-5P
- foodb: FDB001398
- chemspider: 108789
- CAS: 114489-69-9
- CAS: 63959-45-5
- PMhub: MS000004527
- PubChem: 6057
- KNApSAcK: C00000002
- PDB-CCD: S3P
- 3DMET: B01636
- NIKKAJI: J746.034A
- LOTUS: LTS0223919
分类词条
相关代谢途径
BioCyc(0)
PlantCyc(0)
代谢反应
310 个相关的代谢反应过程信息。
Reactome(2)
- Mycobacterium tuberculosis biological processes:
CYSTA + H2O ⟶ 2OBUTA + L-Cys + ammonia
- Chorismate via Shikimate Pathway:
ATP + SKM ⟶ ADP + SKMP
BioCyc(0)
WikiPathways(0)
Plant Reactome(308)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
ATP + SKM ⟶ ADP + SKMP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
ATP + SKM ⟶ ADP + SKMP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid metabolism:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid biosynthesis:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
23 个相关的物种来源信息
- 7458 - Apidae: LTS0223919
- 7459 - Apis: LTS0223919
- 7461 - Apis cerana: 10.1371/JOURNAL.PONE.0175573
- 7461 - Apis cerana: LTS0223919
- 6656 - Arthropoda: LTS0223919
- 2 - Bacteria: LTS0223919
- 543 - Enterobacteriaceae: LTS0223919
- 561 - Escherichia: LTS0223919
- 562 - Escherichia coli: LTS0223919
- 2759 - Eukaryota: LTS0223919
- 1236 - Gammaproteobacteria: LTS0223919
- 9606 - Homo sapiens: -
- 50557 - Insecta: LTS0223919
- 4447 - Liliopsida: LTS0223919
- 3398 - Magnoliopsida: LTS0223919
- 33208 - Metazoa: LTS0223919
- 4479 - Poaceae: LTS0223919
- 35493 - Streptophyta: LTS0223919
- 58023 - Tracheophyta: LTS0223919
- 33090 - Viridiplantae: LTS0223919
- 4575 - Zea: LTS0223919
- 4577 - Zea mays: 10.1104/PP.105.4.1107
- 4577 - Zea mays: LTS0223919
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Inge Schwedt, Kerstin Schöne, Maike Eckert, Manon Pizzinato, Laura Winkler, Barbora Knotkova, Björn Richts, Jann-Louis Hau, Julia Steuber, Raul Mireles, Lianet Noda-Garcia, Günter Fritz, Carolin Mittelstädt, Robert Hertel, Fabian M Commichau. The low mutational flexibility of the EPSP synthase in Bacillus subtilis is due to a higher demand for shikimate pathway intermediates.
Environmental microbiology.
2023 Oct; ?(?):. doi:
10.1111/1462-2920.16518
. [PMID: 37822042] - Leonardo Bianco de Carvalho, Pedro Luis da Costa Aguiar Alves, Fidel González-Torralva, Hugo Enrique Cruz-Hipolito, Antonia María Rojano-Delgado, Rafael De Prado, Javier Gil-Humanes, Francisco Barro, María Dolores Luque de Castro. Pool of resistance mechanisms to glyphosate in Digitaria insularis.
Journal of agricultural and food chemistry.
2012 Jan; 60(2):615-22. doi:
10.1021/jf204089d
. [PMID: 22175446] - Loredano Pollegioni, Ernst Schonbrunn, Daniel Siehl. Molecular basis of glyphosate resistance-different approaches through protein engineering.
The FEBS journal.
2011 Aug; 278(16):2753-66. doi:
10.1111/j.1742-4658.2011.08214.x
. [PMID: 21668647] - Todd A Gaines, Dale L Shaner, Sarah M Ward, Jan E Leach, Christopher Preston, Philip Westra. Mechanism of resistance of evolved glyphosate-resistant Palmer amaranth (Amaranthus palmeri).
Journal of agricultural and food chemistry.
2011 Jun; 59(11):5886-9. doi:
10.1021/jf104719k
. [PMID: 21329355] - Shiv S Kaundun, Richard P Dale, Ian A Zelaya, Giovanni Dinelli, Ilaria Marotti, Eddie McIndoe, Andrew Cairns. A novel P106L mutation in EPSPS and an unknown mechanism(s) act additively to confer resistance to glyphosate in a South African Lolium rigidum population.
Journal of agricultural and food chemistry.
2011 Apr; 59(7):3227-33. doi:
10.1021/jf104934j
. [PMID: 21405127] - Morven Mc Lean. A review of the environmental safety of the CP4 EPSPS protein.
Environmental biosafety research.
2011 Jan; 10(1):5-25. doi:
10.1051/ebr:2012001
. [PMID: 22541883] - Jinhui Zhang, Wenlu Zhang, Yang Yen, Hai Long, Guangbing Deng, Zhifen Pan, Maoqun Yu. A novel herbicide-inducible male sterility system.
Journal of the science of food and agriculture.
2010 Nov; 90(14):2526-30. doi:
10.1002/jsfa.4117
. [PMID: 20824679] - Katja Behnke, Andreas Kaiser, Ina Zimmer, Nicolas Brüggemann, Dennis Janz, Andrea Polle, Rüdiger Hampp, Robert Hänsch, Jennifer Popko, Philippe Schmitt-Kopplin, Barbara Ehlting, Heinz Rennenberg, Csengele Barta, Francesco Loreto, Jörg-Peter Schnitzler. RNAi-mediated suppression of isoprene emission in poplar transiently impacts phenolic metabolism under high temperature and high light intensities: a transcriptomic and metabolomic analysis.
Plant molecular biology.
2010 Sep; 74(1-2):61-75. doi:
10.1007/s11103-010-9654-z
. [PMID: 20526857] - Luis González-Candelas, Santiago Alamar, Paloma Sánchez-Torres, Lorenzo Zacarías, Jose F Marcos. A transcriptomic approach highlights induction of secondary metabolism in citrus fruit in response to Penicillium digitatum infection.
BMC plant biology.
2010 Aug; 10(?):194. doi:
10.1186/1471-2229-10-194
. [PMID: 20807411] - Giulia Friso, Wojciech Majeran, Mingshu Huang, Qi Sun, Klaas J van Wijk. Reconstruction of metabolic pathways, protein expression, and homeostasis machineries across maize bundle sheath and mesophyll chloroplasts: large-scale quantitative proteomics using the first maize genome assembly.
Plant physiology.
2010 Mar; 152(3):1219-50. doi:
10.1104/pp.109.152694
. [PMID: 20089766] - Malay Das, Jay R Reichman, Georg Haberer, Gerhard Welzl, Felipe F Aceituno, Michael T Mader, Lidia S Watrud, Thomas G Pfleeger, Rodrigo A Gutiérrez, Anton R Schäffner, David M Olszyk. A composite transcriptional signature differentiates responses towards closely related herbicides in Arabidopsis thaliana and Brassica napus.
Plant molecular biology.
2010 Mar; 72(4-5):545-56. doi:
10.1007/s11103-009-9590-y
. [PMID: 20043233] - Lutz Grohmann, Claudia Brünen-Nieweler, Anne Nemeth, Hans-Ulrich Waiblinger. Collaborative trial validation studies of real-time PCR-based GMO screening methods for detection of the bar gene and the ctp2-cp4epsps construct.
Journal of agricultural and food chemistry.
2009 Oct; 57(19):8913-20. doi:
10.1021/jf901598r
. [PMID: 19807158] - Teodorico C Ramalho, Melissa S Caetano, Elaine F F da Cunha, Thais C S Souza, Marcus V J Rocha. Construction and assessment of reaction models of class I EPSP synthase: molecular docking and density functional theoretical calculations.
Journal of biomolecular structure & dynamics.
2009 Oct; 27(2):195-207. doi:
10.1080/07391102.2009.10507309
. [PMID: 19583445] - Qin Yu, Ibrahim Abdallah, Heping Han, Mechelle Owen, Stephen Powles. Distinct non-target site mechanisms endow resistance to glyphosate, ACCase and ALS-inhibiting herbicides in multiple herbicide-resistant Lolium rigidum.
Planta.
2009 Sep; 230(4):713-23. doi:
10.1007/s00425-009-0981-8
. [PMID: 19603180] - David J Levy-Booth, Robert H Gulden, Rachel G Campbell, Jeff R Powell, John N Klironomos, K Peter Pauls, Clarence J Swanton, Jack T Trevors, Kari E Dunfield. Roundup Ready soybean gene concentrations in field soil aggregate size classes.
FEMS microbiology letters.
2009 Feb; 291(2):175-9. doi:
10.1111/j.1574-6968.2008.01449.x
. [PMID: 19076230] - Vladimir Sidorov, David Duncan. Agrobacterium-mediated maize transformation: immature embryos versus callus.
Methods in molecular biology (Clifton, N.J.).
2009; 526(?):47-58. doi:
10.1007/978-1-59745-494-0_4
. [PMID: 19378003] - Anivaldo Xavier de Souza, Carlos Mauricio R Sant'Anna. 5-Enolpyruvylshikimate-3-phosphate synthase: determination of the protonation state of active site residues by the semiempirical method.
Bioorganic chemistry.
2008 Jun; 36(3):113-20. doi:
10.1016/j.bioorg.2007.12.007
. [PMID: 18325563] - Frances M Dupont. Metabolic pathways of the wheat (Triticum aestivum) endosperm amyloplast revealed by proteomics.
BMC plant biology.
2008 Apr; 8(?):39. doi:
10.1186/1471-2229-8-39
. [PMID: 18419817] - Brian J Vande Berg, Philip E Hammer, Betty L Chun, Laura C Schouten, Brian Carr, Rong Guo, Cheryl Peters, Todd K Hinson, Vadim Beilinson, Amy Shekita, Rebekah Deter, Zhixian Chen, Vladimir Samoylov, Charles T Bryant, Maria E Stauffer, Timothy Eberle, Dan J Moellenbeck, Nadine B Carozzi, Mike G Koziel, Nicholas B Duck. Characterization and plant expression of a glyphosate-tolerant enolpyruvylshikimate phosphate synthase.
Pest management science.
2008 Apr; 64(4):340-5. doi:
10.1002/ps.1507
. [PMID: 18172892] - Giuseppe Forlani, Mauro Pavan, Magdalena Gramek, Pawel Kafarski, Jacek Lipok. Biochemical bases for a widespread tolerance of cyanobacteria to the phosphonate herbicide glyphosate.
Plant & cell physiology.
2008 Mar; 49(3):443-56. doi:
10.1093/pcp/pcn021
. [PMID: 18263622] - Michael Hoff, Dae-Yeul Son, Michaela Gubesch, Kangmo Ahn, Sang-Il Lee, Stefan Vieths, Richard E Goodman, Barbara K Ballmer-Weber, Gary A Bannon. Serum testing of genetically modified soybeans with special emphasis on potential allergenicity of the heterologous protein CP4 EPSPS.
Molecular nutrition & food research.
2007 Aug; 51(8):946-55. doi:
10.1002/mnfr.200600285
. [PMID: 17639514] - Alejandro Perez-Jones, Kee-Woong Park, Nick Polge, Jed Colquhoun, Carol A Mallory-Smith. Investigating the mechanisms of glyphosate resistance in Lolium multiflorum.
Planta.
2007 Jul; 226(2):395-404. doi:
10.1007/s00425-007-0490-6
. [PMID: 17323079] - Qin Yu, Andrew Cairns, Stephen Powles. Glyphosate, paraquat and ACCase multiple herbicide resistance evolved in a Lolium rigidum biotype.
Planta.
2007 Jan; 225(2):499-513. doi:
10.1007/s00425-006-0364-3
. [PMID: 16906433] - Danial Kahrizi, Ali Hatef Salmanian, Afsoon Afshari, Ahmad Moieni, Amir Mousavi. Simultaneous substitution of Gly96 to Ala and Ala183 to Thr in 5-enolpyruvylshikimate-3-phosphate synthase gene of E. coli (k12) and transformation of rapeseed (Brassica napus L.) in order to make tolerance to glyphosate.
Plant cell reports.
2007 Jan; 26(1):95-104. doi:
10.1007/s00299-006-0208-4
. [PMID: 16874527] - Yun-Chia Sophia Chen, Christopher Hubmeier, Minhtien Tran, Amy Martens, R Eric Cerny, R Doug Sammons, Claire CaJacob. Expression of CP4 EPSPS in microspores and tapetum cells of cotton (Gossypium hirsutum) is critical for male reproductive development in response to late-stage glyphosate applications.
Plant biotechnology journal.
2006 Sep; 4(5):477-87. doi:
10.1111/j.1467-7652.2006.00203.x
. [PMID: 17309724] - Fu-Yong Zhao, Yun-Feng Li, Peilin Xu. Agrobacterium-mediated transformation of cotton (Gossypium hirsutum L. cv. Zhongmian 35) using glyphosate as a selectable marker.
Biotechnology letters.
2006 Aug; 28(15):1199-207. doi:
10.1007/s10529-006-9078-7
. [PMID: 16799756] - Yinghui Dan, Hua Yan, Tichafa Munyikwa, Jimmy Dong, Yanling Zhang, Charles L Armstrong. MicroTom--a high-throughput model transformation system for functional genomics.
Plant cell reports.
2006 May; 25(5):432-41. doi:
10.1007/s00299-005-0084-3
. [PMID: 16341726] - Yi-Cheng Sun, Yan Li, Hai Zhang, Hai-Qin Yan, David N Dowling, Yi-Ping Wang. Reconstitution of the enzyme AroA and its glyphosate tolerance by fragment complementation.
FEBS letters.
2006 Feb; 580(5):1521-7. doi:
10.1016/j.febslet.2006.01.075
. [PMID: 16469313] - Min Zhou, Honglin Xu, Xiaoli Wei, Zhiqiang Ye, Liping Wei, Weimin Gong, Yongqin Wang, Zhen Zhu. Identification of a glyphosate-resistant mutant of rice 5-enolpyruvylshikimate 3-phosphate synthase using a directed evolution strategy.
Plant physiology.
2006 Jan; 140(1):184-95. doi:
10.1104/pp.105.068577
. [PMID: 16361526] - Ying Chen, Yuan Wang, Yiqiang Ge, Baoliang Xu. Degradation of endogenous and exogenous genes of roundup-ready soybean during food processing.
Journal of agricultural and food chemistry.
2005 Dec; 53(26):10239-43. doi:
10.1021/jf0519820
. [PMID: 16366721] - Clifford H Koger, Dale L Shaner, L Jason Krutz, Timothy W Walker, Nathan Buehring, W Brien Henry, Walter E Thomas, John W Wilcut. Rice (Oryza sativa) response to drift rates of glyphosate.
Pest management science.
2005 Dec; 61(12):1161-7. doi:
10.1002/ps.1113
. [PMID: 16189844] - Jin Zhao, Su-Qin Gao, Yun-Biao Fei, Ling-Bo Wei. [Construction and expression of vector with aroA-in gene and its transformation in tobacco].
Yi chuan xue bao = Acta genetica Sinica.
2004 Nov; 31(11):1294-301. doi:
"
. [PMID: 15651683] - Ranjana Sharma, Trevor W Alexander, S Jacob John, Robert J Forster, Tim A McAllister. Relative stability of transgene DNA fragments from GM rapeseed in mixed ruminal cultures.
The British journal of nutrition.
2004 May; 91(5):673-81. doi:
10.1079/bjn20041100
. [PMID: 15137918] - Janet C Obert, William P Ridley, Ronald W Schneider, Susan G Riordan, Margaret A Nemeth, William A Trujillo, Matthew L Breeze, Roy Sorbet, James D Astwood. The composition of grain and forage from glyphosate tolerant wheat MON 71800 is equivalent to that of conventional wheat (Triticum aestivum L.).
Journal of agricultural and food chemistry.
2004 Mar; 52(5):1375-84. doi:
10.1021/jf035218u
. [PMID: 14995149] - Efstratia Papanikou, Jeffrey E Brotherton, Jack M Widholm. Length of time in tissue culture can affect the selected glyphosate resistance mechanism.
Planta.
2004 Feb; 218(4):589-98. doi:
10.1007/s00425-003-1130-4
. [PMID: 14566562] - He-Yong Wang, Yun-Feng Li, Long-Xu Xie, Peilin Xu. Expression of a bacterial aroA mutant, aroA-M1, encoding 5-enolpyruvylshikimate-3-phosphate synthase for the production of glyphosate-resistant tobacco plants.
Journal of plant research.
2003 Dec; 116(6):455-60. doi:
10.1007/s10265-003-0120-8
. [PMID: 12955571] - R Eric Cerny, Youlin Qi, Carrie M Aydt, Shihshieh Huang, Jennifer J Listello, Brandon J Fabbri, Timothy W Conner, Lyle Crossland, Jintai Huang. RNA-binding protein-mediated translational repression of transgene expression in plants.
Plant molecular biology.
2003 May; 52(2):357-69. doi:
10.1023/a:1023953130574
. [PMID: 12856942] - Haruyo Okunuki, Hiroshi Akiyama, Reiko Teshima, Akihiro Hino, Yukihiro Goda, Jun-ichi Sawada, Masatake Toyoda, Tamio Maitani. Determination of enzymatic activity of 5-enolpyruvylshikimate-3-phosphate synthase by LC/MS.
Shokuhin eiseigaku zasshi. Journal of the Food Hygienic Society of Japan.
2003 Apr; 44(2):77-82. doi:
10.3358/shokueishi.44.77
. [PMID: 12846153] - Hyun Sung Chang, Nam Hee Kim, Myong Jin Park, Si Kyu Lim, Sung Chull Kim, Ji Young Kim, Jung Ae Kim, Hye Young Oh, Chu Hee Lee, Keun Huh, Tae Cheon Jeong, Doo Hyun Nam. The 5-enolpyruvylshikimate-3-phosphate synthase of glyphosate-tolerant soybean expressed in Escherichia coli shows no severe allergenicity.
Molecules and cells.
2003 Feb; 15(1):20-6. doi:
"
. [PMID: 12661756] - Trevor W Alexander, Ranjana Sharma, Erasmus K Okine, Walter T Dixon, Robert J Forster, Kim Stanford, Tim A McAllister. Impact of feed processing and mixed ruminal culture on the fate of recombinant EPSP synthase and endogenous canola plant DNA.
FEMS microbiology letters.
2002 Sep; 214(2):263-9. doi:
10.1111/j.1574-6968.2002.tb11357.x
. [PMID: 12351241] - Scott R Baerson, Damian J Rodriguez, Minhtien Tran, Yongmei Feng, Nancy A Biest, Gerald M Dill. Glyphosate-resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase.
Plant physiology.
2002 Jul; 129(3):1265-75. doi:
10.1104/pp.001560
. [PMID: 12114580] - Wendy A Pline, John W Wilcut, Stephen O Duke, Keith L Edmisten, Randy Wells. Tolerance and accumulation of shikimic acid in response to glyphosate applications in glyphosate-resistant and nonglyphosate-resistant cotton (Gossypium hirsutum L.).
Journal of agricultural and food chemistry.
2002 Jan; 50(3):506-12. doi:
10.1021/jf0110699
. [PMID: 11804521] - G N Ye, P T Hajdukiewicz, D Broyles, D Rodriguez, C W Xu, N Nehra, J M Staub. Plastid-expressed 5-enolpyruvylshikimate-3-phosphate synthase genes provide high level glyphosate tolerance in tobacco.
The Plant journal : for cell and molecular biology.
2001 Feb; 25(3):261-70. doi:
10.1046/j.1365-313x.2001.00958.x
. [PMID: 11208018] - S R Padgette, Q K Huynh, S Aykent, R D Sammons, J A Sikorski, G M Kishore. Identification of the reactive cysteines of Escherichia coli 5-enolpyruvylshikimate-3-phosphate synthase and their nonessentiality for enzymatic catalysis.
The Journal of biological chemistry.
1988 Feb; 263(4):1798-802. doi:
10.1016/s0021-9258(19)77947-2
. [PMID: 3276677] - Q K Huynh, G M Kishore, G S Bild. 5-Enolpyruvyl shikimate 3-phosphate synthase from Escherichia coli. Identification of Lys-22 as a potential active site residue.
The Journal of biological chemistry.
1988 Jan; 263(2):735-9. doi:
. [PMID: 3121621]