24-Methylenecholesterol (BioDeep_00000010911)

 

Secondary id: BioDeep_00000863995, BioDeep_00001471032

human metabolite PANOMIX_OTCML-2023 Endogenous Marine Natural Products natural product


代谢物信息卡片


(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methyl-5-methylideneheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

化学式: C28H46O (398.3548)
中文名称:
谱图信息: 最多检出来源 Homo sapiens(lipidomics) 49.55%

分子结构信息

SMILES: C1[C@@H](CC2=CC[C@@H]3[C@H]([C@]2(C1)C)CC[C@]1([C@H]3CC[C@@H]1[C@@H](CCC(=C)C(C)C)C)C)O
InChI: InChI=1S/C28H46O/c1-18(2)19(3)7-8-20(4)24-11-12-25-23-10-9-21-17-22(29)13-15-27(21,5)26(23)14-16-28(24,25)6/h9,18,20,22-26,29H,3,7-8,10-17H2,1-2,4-6H3/t20-,22+,23+,24-,25+,26+,27+,28-/m1/s1

描述信息

24-Methylenecholesterol, also known as chalinasterol or ostreasterol, belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, 24-methylenecholesterol is considered to be a sterol lipid molecule. 24-Methylenecholesterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. 24-Methylenecholesterol is involved in the biosynthesis of steroids. 24-Methylenecholesterol is converted from 5-dehydroepisterol by 7-dehydrocholesterol reductase (EC 1.3.1.21). 24-Methylenecholesterol is converted into campesterol by delta24-sterol reductase (EC 1.3.1.72).
24-methylenecholesterol is a 3beta-sterol having the structure of cholesterol with a methylene group at C-24. It has a role as a mouse metabolite. It is a 3beta-sterol and a 3beta-hydroxy-Delta(5)-steroid. It is functionally related to a cholesterol.
24-Methylenecholesterol is a natural product found in Echinometra lucunter, Ulva fasciata, and other organisms with data available.
A 3beta-sterol having the structure of cholesterol with a methylene group at C-24.
Constituent of clams and oysters
24-Methylenecholesterol (Ostreasterol), a natural marine sterol, stimulates cholesterol acyltransferase in human macrophages. 24-Methylenecholesterol possess anti-aging effects in yeast. 24-methylenecholesterol enhances honey bee longevity and improves nurse bee physiology[1][2][3].

同义名列表

36 个代谢物同义名

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methyl-5-methylideneheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol; (1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methyl-5-methylideneheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol; (3beta,14beta,17alpha)-ergosta-5,24(28)-dien-3-ol; 5,24(28)-Cholestadien-24-methylen-3beta-ol; 24-Methylcholesta-5,24(28)-dien-3beta-ol; 24-Methylcholesta-5,24(28)-dien-3β-ol; Ergosta-5,24(28)-dien-3-ol, (3beta)-; 24-methylene-cholest-5-en-3beta-ol; (3beta)-Ergosta-5,24(28)-dien-3-ol; 24-Methylenecholest-5-en-3beta-ol; Ergosta-5,24(28)-dien-3.beta.-ol; 24-Methylene-cholest-5-en-3b-ol; ergosta-5,24(28)-dien-3 beta-ol; 24-Methylene-cholest-5-en-3β-ol; (3β)-Ergosta-5,24(28)-dien-3-ol; (3b)-Ergosta-5,24(28)-dien-3-ol; Ergosta-5,24(28)-dien-3beta-ol; 24-Methylenecholest-5-en-3β-ol; Ergosta-5, 24(28)-dien-3b-ol; Ergosta-5,24(28)-dien-3-ol #; Ergosta-5,24(28)-dien-3b-ol; INDVLXYUCBVVKW-PXBBAZSNSA-N; Ergosta-5,24(28)-dien-3β-ol; Cholesterol, 24-methylene-; Ergosta-5,24(28)-dien-3-ol; 24-Methylene cholesterol; 24-methylene-Cholesterol; 24-Methylenecholesterol; 24 Methylenecholesterol; 24Methylenecholesterol; 24-methylencholesterol; Chalinasterol; Ostreasterol; ST 28:2;O; 94R; 24-Methylenecholesterol



数据库引用编号

23 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(1)

代谢反应

286 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(1)

  • plant sterol biosynthesis: 4α-formyl-ergosta-7,24(241)-dien-3β-ol + H+ + O2 + a ferrocytochrome b5 ⟶ 4α-carboxy-ergosta-7,24(241)-dien-3β-ol + H2O + a ferricytochrome b5

WikiPathways(1)

Plant Reactome(165)

INOH(0)

PlantCyc(119)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

545 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 11 BDNF, CASP3, CASP9, DHCR24, EGFR, MME, OSBP, PTGS1, PTGS2, SOD1, TNK1
Peripheral membrane protein 5 HSD17B6, OSBP, PTGS1, PTGS2, TNK1
Endosome membrane 1 EGFR
Endoplasmic reticulum membrane 8 CYP19A1, DHCR24, DHCR7, EGFR, HSP90B1, OSBP, PTGS1, PTGS2
Nucleus 6 CASP3, CASP9, DHCR24, EGFR, HSP90B1, SOD1
cytosol 6 CASP3, CASP9, HSP90B1, NGF, OSBP, SOD1
dendrite 3 BDNF, MME, NGF
trans-Golgi network 2 MME, OSBP
nucleoplasm 3 CASP3, OSBP, SOD1
Cell membrane 2 EGFR, MME
ruffle membrane 1 EGFR
Early endosome membrane 2 EGFR, HSD17B6
Multi-pass membrane protein 2 CYP19A1, DHCR7
Golgi apparatus membrane 1 DHCR24
Synapse 1 MME
cell junction 2 EGFR, OSBP
cell surface 2 EGFR, MME
glutamatergic synapse 2 CASP3, EGFR
Golgi apparatus 3 FUT2, OSBP, PTGS1
Golgi membrane 4 DHCR24, EGFR, FUT2, OSBP
neuronal cell body 3 CASP3, MME, SOD1
smooth endoplasmic reticulum 1 HSP90B1
synaptic vesicle 3 BDNF, MME, NGF
Cytoplasm, cytosol 1 OSBP
Presynapse 1 MME
endosome 1 EGFR
plasma membrane 5 EGFR, IFNLR1, MME, OSBP, TNK1
Membrane 10 BDNF, CYP19A1, DHCR24, DHCR7, EGFR, HSP90B1, IFNLR1, MME, OSBP, TNK1
apical plasma membrane 1 EGFR
axon 3 BDNF, MME, NGF
basolateral plasma membrane 1 EGFR
brush border 1 MME
caveola 1 PTGS2
extracellular exosome 6 FUT2, HSP90B1, MME, PTGS1, SOD1, SOD2
Lumenal side 1 HSD17B6
endoplasmic reticulum 6 CYP19A1, DHCR24, DHCR7, HSD17B6, HSP90B1, PTGS2
extracellular space 5 BDNF, EGFR, NGF, PNLIP, SOD1
perinuclear region of cytoplasm 4 BDNF, EGFR, HSP90B1, OSBP
mitochondrion 3 CASP9, SOD1, SOD2
protein-containing complex 5 CASP9, EGFR, HSP90B1, PTGS2, SOD1
intracellular membrane-bounded organelle 2 HSD17B6, PTGS1
Microsome membrane 4 CYP19A1, HSD17B6, PTGS1, PTGS2
postsynaptic density 1 CASP3
Single-pass type I membrane protein 2 EGFR, IFNLR1
Secreted 3 BDNF, NGF, PNLIP
extracellular region 5 BDNF, HSP90B1, NGF, PNLIP, SOD1
Single-pass membrane protein 1 DHCR24
Mitochondrion matrix 1 SOD2
mitochondrial matrix 2 SOD1, SOD2
photoreceptor outer segment 1 PTGS1
nuclear membrane 1 EGFR
cytoplasmic vesicle 2 MME, SOD1
nucleolus 1 OSBP
axon cytoplasm 1 SOD1
midbody 1 HSP90B1
Early endosome 1 MME
Single-pass type II membrane protein 2 FUT2, MME
Cytoplasm, perinuclear region 1 OSBP
Membrane raft 2 EGFR, MME
focal adhesion 3 EGFR, HSP90B1, MME
mitochondrial nucleoid 1 SOD2
Peroxisome 1 SOD1
intracellular vesicle 1 EGFR
mitochondrial intermembrane space 1 SOD1
collagen-containing extracellular matrix 1 HSP90B1
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 2 DHCR7, PTGS2
dendrite cytoplasm 1 SOD1
receptor complex 1 EGFR
neuron projection 2 PTGS1, PTGS2
Golgi apparatus, trans-Golgi network 1 OSBP
Endomembrane system 1 PTGS1
endosome lumen 1 NGF
Melanosome 1 HSP90B1
Golgi cisterna membrane 1 FUT2
sperm plasma membrane 1 HSP90B1
basal plasma membrane 1 EGFR
synaptic membrane 1 EGFR
secretory granule membrane 1 MME
Golgi lumen 1 NGF
endoplasmic reticulum lumen 3 BDNF, HSP90B1, PTGS2
Golgi apparatus, Golgi stack membrane 1 FUT2
perinuclear endoplasmic reticulum 1 OSBP
apoptosome 1 CASP9
clathrin-coated endocytic vesicle membrane 1 EGFR
Sarcoplasmic reticulum lumen 1 HSP90B1
death-inducing signaling complex 1 CASP3
multivesicular body, internal vesicle lumen 1 EGFR
Shc-EGFR complex 1 EGFR
endocytic vesicle lumen 1 HSP90B1
endoplasmic reticulum chaperone complex 1 HSP90B1
neuron projection terminus 1 MME
[Neurotrophic factor BDNF precursor form]: Secreted 1 BDNF
caspase complex 1 CASP9
interleukin-28 receptor complex 1 IFNLR1


文献列表

  • Xingyu Lu, Amila A Dissanayake, Chuqiao Xiao, Jie Gao, Mouming Zhao, Muraleedharan G Nair. The edible seaweed Laminaria japonica contains cholesterol analogues that inhibit lipid peroxidation and cyclooxygenase enzymes. PloS one. 2022 ; 17(1):e0258980. doi: 10.1371/journal.pone.0258980. [PMID: 35085233]
  • Xiaohui Zhao, Banmacailang Dong, Pi Li, Wei Wei, Jun Dang, Zenggeng Liu, Yanduo Tao, Hongping Han, Yun Shao, Huilan Yue. Fatty Acid and Phytosterol Composition, and Biological Activities of Lycium ruthenicum Murr. Seed Oil. Journal of food science. 2018 Oct; 83(10):2448-2456. doi: 10.1111/1750-3841.14328. [PMID: 30178878]
  • Yuki Tsukagoshi, Hideyuki Suzuki, Hikaru Seki, Toshiya Muranaka, Kiyoshi Ohyama, Yoshinori Fujimoto. Ajuga Δ24-Sterol Reductase Catalyzes the Direct Reductive Conversion of 24-Methylenecholesterol to Campesterol. The Journal of biological chemistry. 2016 Apr; 291(15):8189-98. doi: 10.1074/jbc.m115.703470. [PMID: 26872973]
  • Maryse Vanderplanck, Romain Moerman, Pierre Rasmont, Georges Lognay, Bernard Wathelet, Ruddy Wattiez, Denis Michez. How does pollen chemistry impact development and feeding behaviour of polylectic bees?. PloS one. 2014; 9(1):e86209. doi: 10.1371/journal.pone.0086209. [PMID: 24465963]
  • Marina Lukić, Igor Lukić, Marin Krapac, Barbara Sladonja, Vlasta Piližota. Sterols and triterpene diols in olive oil as indicators of variety and degree of ripening. Food chemistry. 2013 Jan; 136(1):251-8. doi: 10.1016/j.foodchem.2012.08.005. [PMID: 23017420]
  • Kathrin Schrick, Seth Debolt, Vincent Bulone. Deciphering the molecular functions of sterols in cellulose biosynthesis. Frontiers in plant science. 2012; 3(?):84. doi: 10.3389/fpls.2012.00084. [PMID: 22639668]
  • Thomas Hartwig, Claudia Corvalan, Norman B Best, Joshua S Budka, Jia-Ying Zhu, Sunghwa Choe, Burkhard Schulz. Propiconazole is a specific and accessible brassinosteroid (BR) biosynthesis inhibitor for Arabidopsis and maize. PloS one. 2012; 7(5):e36625. doi: 10.1371/journal.pone.0036625. [PMID: 22590578]
  • Menaka C Thounaojam, Ravirajsinh N Jadeja, Umed V Ramani, Ranjitsinh V Devkar, A V Ramachandran. Sida rhomboidea. Roxb leaf extract down-regulates expression of PPARγ2 and leptin genes in high fat diet fed C57BL/6J Mice and retards in vitro 3T3L1 pre-adipocyte differentiation. International journal of molecular sciences. 2011; 12(7):4661-77. doi: 10.3390/ijms12074661. [PMID: 21845103]
  • Jinyeong Cheon, So-Young Park, Burkhard Schulz, Sunghwa Choe. Arabidopsis brassinosteroid biosynthetic mutant dwarf7-1 exhibits slower rates of cell division and shoot induction. BMC plant biology. 2010 Dec; 10(?):270. doi: 10.1186/1471-2229-10-270. [PMID: 21143877]
  • Francine Carland, Shozo Fujioka, Timothy Nelson. The sterol methyltransferases SMT1, SMT2, and SMT3 influence Arabidopsis development through nonbrassinosteroid products. Plant physiology. 2010 Jun; 153(2):741-56. doi: 10.1104/pp.109.152587. [PMID: 20421456]
  • Wilfried Rozhon, Juliane Mayerhofer, Elena Petutschnig, Shozo Fujioka, Claudia Jonak. ASKtheta, a group-III Arabidopsis GSK3, functions in the brassinosteroid signalling pathway. The Plant journal : for cell and molecular biology. 2010 Apr; 62(2):215-23. doi: 10.1111/j.1365-313x.2010.04145.x. [PMID: 20128883]
  • Ammar Cherif, Khaled Belkacemi, Habib Kallel, Paul Angers, Joseph Arul, Sadok Boukhchina. Phytosterols, unsaturated fatty acid composition and accumulation in the almond kernel during harvesting period: importance for development regulation. Comptes rendus biologies. 2009 Dec; 332(12):1069-77. doi: 10.1016/j.crvi.2009.09.012. [PMID: 19931844]
  • Yong-Hui Li, Yi-Fang Yang, Kun Li, Li-Li Jin, Nian-Yun Yang, De-Yun Kong. 5 alpha-reductase and aromatase inhibitory constituents from Brassica rapa L. pollen. Chemical & pharmaceutical bulletin. 2009 Apr; 57(4):401-4. doi: 10.1248/cpb.57.401. [PMID: 19336936]
  • Li Wang, Zhen Wang, Yunyuan Xu, Se-Hwan Joo, Seong-Ki Kim, Zhen Xue, Zhihong Xu, Zhiyong Wang, Kang Chong. OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice. The Plant journal : for cell and molecular biology. 2009 Feb; 57(3):498-510. doi: 10.1111/j.1365-313x.2008.03707.x. [PMID: 18980660]
  • Uemerson S da Cunha, José D Vendramim, Waldireny C Rocha, Paulo C Vieira. [Bioactivity of Trichilia pallida Swartz (Meliaceae) derived molecules on Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae)]. Neotropical entomology. 2008 Nov; 37(6):709-15. doi: 10.1590/s1519-566x2008000600013. [PMID: 19169560]
  • Matthew R Miller, Peter D Nichols, Chris G Carter. The digestibility and accumulation of dietary phytosterols in Atlantic salmon (Salmo salar L.) smolt fed diets with replacement plant oils. Lipids. 2008 Jun; 43(6):549-57. doi: 10.1007/s11745-008-3175-4. [PMID: 18408959]
  • Duo Li, Yonghua Zhang, Andrew J Sinclair. Seasonal variations of lipid content and composition in Perna viridis. Lipids. 2007 Aug; 42(8):739-47. doi: 10.1007/s11745-007-3078-9. [PMID: 17576610]
  • Bhaskara Reddy Madina, Lokendra Kumar Sharma, Pankaj Chaturvedi, Rajender Singh Sangwan, Rakesh Tuli. Purification and physico-kinetic characterization of 3beta-hydroxy specific sterol glucosyltransferase from Withania somnifera (L) and its stress response. Biochimica et biophysica acta. 2007 Mar; 1774(3):392-402. doi: 10.1016/j.bbapap.2006.12.009. [PMID: 17293176]
  • Ryo Yamamoto, Shozo Fujioka, Kuninori Iwamoto, Taku Demura, Suguru Takatsuto, Shigeo Yoshida, Hiroo Fukuda. Co-regulation of brassinosteroid biosynthesis-related genes during xylem cell differentiation. Plant & cell physiology. 2007 Jan; 48(1):74-83. doi: 10.1093/pcp/pcl039. [PMID: 17132633]
  • Jérôme Muchembled, Anissa Lounès-Hadj Sahraoui, Anne Grandmougin-Ferjani, Michel Sancholle. Changes in lipid composition of Blumeria graminis f.sp. tritici conidia produced on wheat leaves treated with heptanoyl salicylic acid. Phytochemistry. 2006 Jun; 67(11):1104-9. doi: 10.1016/j.phytochem.2006.02.025. [PMID: 16647727]
  • Liqun Du, B W Poovaiah. Ca2+/calmodulin is critical for brassinosteroid biosynthesis and plant growth. Nature. 2005 Sep; 437(7059):741-5. doi: 10.1038/nature03973. [PMID: 16193053]
  • Louise A Copeman, Christopher C Parrish. Lipid [corrected] classes, fatty acids, and sterols in seafood from Gilbert Bay, southern labrador. Journal of agricultural and food chemistry. 2004 Jul; 52(15):4872-81. doi: 10.1021/jf034820h. [PMID: 15264928]
  • Thy T Truong, Philip J Marriott, Nichola A Porter, Rhys Leeming. Application of comprehensive two-dimensional gas chromatography to the quantification of overlapping faecal sterols. Journal of chromatography. A. 2003 Nov; 1019(1-2):197-210. doi: 10.1016/s0021-9673(03)00766-0. [PMID: 14650615]
  • Karen J Murphy, Neil J Mann, Andrew J Sinclair. Fatty acid and sterol composition of frozen and freeze-dried New Zealand Green Lipped Mussel (Perna canaliculus) from three sites in New Zealand. Asia Pacific journal of clinical nutrition. 2003; 12(1):50-60. doi: ". [PMID: 12737011]
  • Charles F Phleger, Matthew M Nelson, Ben D Mooney, Peter D Nichols. Interannual and between species comparison of the lipids, fatty acids and sterols of Antarctic krill from the US AMLR Elephant Island survey area. Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology. 2002 Apr; 131(4):733-47. doi: 10.1016/s1096-4959(02)00021-0. [PMID: 11923086]
  • L Schultz, L H Kerckhoffs, U Klahre, T Yokota, J B Reid. Molecular characterization of the brassinosteroid-deficient lkb mutant in pea. Plant molecular biology. 2001 Nov; 47(4):491-8. doi: 10.1023/a:1011894812794. [PMID: 11669574]
  • C F Phleger, M M Nelson, B D Mooney, P D Nichols. Interannual variations in the lipids of the Antarctic pteropods Clione limacina and Clio pyramidata. Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology. 2001 Mar; 128(3):553-64. doi: 10.1016/s1096-4959(00)00356-0. [PMID: 11250551]
  • S Choe, B P Dilkes, B D Gregory, A S Ross, H Yuan, T Noguchi, S Fujioka, S Takatsuto, A Tanaka, S Yoshida, F E Tax, K A Feldmann. The Arabidopsis dwarf1 mutant is defective in the conversion of 24-methylenecholesterol to campesterol in brassinosteroid biosynthesis. Plant physiology. 1999 Mar; 119(3):897-907. doi: 10.1104/pp.119.3.897. [PMID: 10069828]
  • W R Nes, J M Joseph, J R Landrey, S Behzadan, R L Conner. Steric effects at C-20 and C-24 on the metabolism of sterols by Tetrahymena pyriformis. Journal of lipid research. 1981 Jul; 22(5):770-7. doi: 10.1016/s0022-2275(20)37348-x. [PMID: 6793681]
  • . . . . doi: . [PMID: 9761794]
  • . . . . doi: . [PMID: 12215500]