Homocitric acid (BioDeep_00000004630)
Secondary id: BioDeep_00001869336
human metabolite PANOMIX_OTCML-2023 Endogenous
代谢物信息卡片
化学式: C7H10O7 (206.0427)
中文名称:
谱图信息:
最多检出来源 Homo sapiens(blood) 35.55%
分子结构信息
SMILES: C(CC(CC(=O)O)(C(=O)O)O)C(=O)O
InChI: InChI=1S/C7H10O7/c8-4(9)1-2-7(14,6(12)13)3-5(10)11/h14H,1-3H2,(H,8,9)(H,10,11)(H,12,13)
描述信息
Homocitric acid (CAS: 3562-74-1) is a normal urinary organic acid (PMID: 14708889). Homocitric acid is a citric acid analogue found as a minor metabolite in urine samples from patients with propionic acidaemia. Homocitric acid is formed by citrate synthase due to propionyl-CoA carboxylase deficiency (by the citrate synthase condensation reaction of alpha-ketoglutarate with acetyl coenzyme A and propionyl coenzyme A) (PMID: 7850997). Homocitric acid has been identified in the human placenta (PMID: 32033212).
Homocitric acid is a normal urinary organic acid. (PMID: 14708889)
同义名列表
19 个代谢物同义名
(2R)-2-hydroxybutane-1,2,4-tricarboxylic acid; (2R)-2-Hydroxy-1,2,4-butanetricarboxylic acid; (R)-2-Hydroxybutane-1,2,4-tricarboxylic acid; (R)-2-Hydroxy-1,2,4-butanetricarboxylic acid; (2R)-2-Hydroxy-1,2,4-butanetricarboxylate; 2-Hydroxy-1,2,4-butanetricarboxylic acid; (R)-2-Hydroxybutane-1,2,4-tricarboxylate; (R)-2-Hydroxy-1,2,4-butanetricarboxylate; 2-Hydroxybutane-1,2,4-tricarboxylate; 2-Hydroxy-1,2,4-butanetricarboxylate; 3-Hydroxy-3-Carboxy-Adipic Acid; 3-Hydroxy-3-carboxyadipic acid; 3-Hydroxy-3-carboxyadipate; (±)-homocitric acid; (R)-Homocitric acid; Homocitric acid; (±)-homocitrate; (R)-Homocitrate; Homocitrate
数据库引用编号
18 个数据库交叉引用编号
- ChEBI: CHEBI:17852
- ChEBI: CHEBI:52222
- KEGG: C01251
- PubChem: 439459
- PubChem: 28371
- HMDB: HMDB0003518
- Metlin: METLIN63241
- Wikipedia: Homocitric acid
- foodb: FDB023186
- chemspider: 388564
- CAS: 13052-73-8
- CAS: 3562-74-1
- PMhub: MS000017173
- PubChem: 4471
- PDB-CCD: HCA
- 3DMET: B01423
- NIKKAJI: J593.429J
- RefMet: Homocitric acid
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
2 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(2)
- Lysine Metabolism:
Adenosine triphosphate + Aminoadipic acid + holo-[LYS2 peptidyl-carrier-protein] ⟶ Adenosine monophosphate + L-2-aminoadipyl-[LYS2 peptidyl-carrier-protein] + Pyrophosphate
- Pyruvate Metabolism:
2-Isopropylmalic acid + Coenzyme A ⟶ -Ketoisovaleric acid + Acetyl-CoA + Water
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Jason J Terpolilli, Graham A Hood, Philip S Poole. What determines the efficiency of N(2)-fixing Rhizobium-legume symbioses?.
Advances in microbial physiology.
2012; 60(?):325-89. doi:
10.1016/b978-0-12-398264-3.00005-x
. [PMID: 22633062] - Hiroshi Kouchi, Haruko Imaizumi-Anraku, Makoto Hayashi, Tsuneo Hakoyama, Tomomi Nakagawa, Yosuke Umehara, Norio Suganuma, Masayoshi Kawaguchi. How many peas in a pod? Legume genes responsible for mutualistic symbioses underground.
Plant & cell physiology.
2010 Sep; 51(9):1381-97. doi:
10.1093/pcp/pcq107
. [PMID: 20660226] - Tony Lionel Palama, Isabelle Fock, Young Hae Choi, Robert Verpoorte, Hippolyte Kodja. Biological variation of Vanilla planifolia leaf metabolome.
Phytochemistry.
2010 Apr; 71(5-6):567-73. doi:
10.1016/j.phytochem.2009.12.011
. [PMID: 20074761] - Tsuneo Hakoyama, Kaori Niimi, Hirokazu Watanabe, Ryohei Tabata, Junichi Matsubara, Shusei Sato, Yasukazu Nakamura, Satoshi Tabata, Li Jichun, Tsuyoshi Matsumoto, Kazuyuki Tatsumi, Mika Nomura, Shigeyuki Tajima, Masumi Ishizaka, Koji Yano, Haruko Imaizumi-Anraku, Masayoshi Kawaguchi, Hiroshi Kouchi, Norio Suganuma. Host plant genome overcomes the lack of a bacterial gene for symbiotic nitrogen fixation.
Nature.
2009 Nov; 462(7272):514-7. doi:
10.1038/nature08594
. [PMID: 19940927] - Dehua Zhao, Leonardo Curatti, Luis M Rubio. Evidence for nifU and nifS participation in the biosynthesis of the iron-molybdenum cofactor of nitrogenase.
The Journal of biological chemistry.
2007 Dec; 282(51):37016-25. doi:
10.1074/jbc.m708097200
. [PMID: 17959596] - Leonardo Curatti, Jose A Hernandez, Robert Y Igarashi, Basem Soboh, Dehua Zhao, Luis M Rubio. In vitro synthesis of the iron-molybdenum cofactor of nitrogenase from iron, sulfur, molybdenum, and homocitrate using purified proteins.
Proceedings of the National Academy of Sciences of the United States of America.
2007 Nov; 104(45):17626-31. doi:
10.1073/pnas.0703050104
. [PMID: 17978192] - Jinghua Qian, Ann H West, Paul F Cook. Acid-base chemical mechanism of homocitrate synthase from Saccharomyces cerevisiae.
Biochemistry.
2006 Oct; 45(39):12136-43. doi:
10.1021/bi060889h
. [PMID: 17002313] - J P van Rooyen, L J Mienie, E Erasmus, W J de Wet, M Duran, S K Wadman. Urinary excretion of homocitric acid and methylhomocitric acid in propionic acidaemia: minor metabolic products of the citrate synthase aldol condensation reaction.
Clinica chimica acta; international journal of clinical chemistry.
1994 Oct; 230(1):91-9. doi:
10.1016/0009-8981(94)90092-2
. [PMID: 7850997]