Ascorbate radical (BioDeep_00000004549)
Secondary id: BioDeep_00001869752, BioDeep_00001892471
代谢物信息卡片
化学式: C6H7O6 (175.0242622)
中文名称:
谱图信息:
最多检出来源 Viridiplantae(plant) 0.33%
分子结构信息
SMILES: C(C(C1C(=O)C(=C(O1)[O])O)O)O
InChI: InChI=1S/C6H7O6/c7-1-2(8)5-3(9)4(10)6(11)12-5/h2,5,7-8,10H,1H2/t2-,5+/m0/s1
描述信息
同义名列表
数据库引用编号
6 个数据库交叉引用编号
- ChEBI: CHEBI:16504
- KEGG: C01041
- PubChem: 5483640
- Metlin: METLIN63191
- PMhub: MS000017067
- PubChem: 4283
分类词条
相关代谢途径
Reactome(0)
代谢反应
145 个相关的代谢反应过程信息。
Reactome(12)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamin C (ascorbate) metabolism:
CYB5A:heme + SHAS ⟶ CYB5A:ferriheme + VitC
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamin C (ascorbate) metabolism:
CYB5A:heme + SHAS ⟶ CYB5A:ferriheme + VitC
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamin C (ascorbate) metabolism:
CYB5A:heme + SHAS ⟶ CYB5A:ferriheme + VitC
BioCyc(4)
- ascorbate recycling (cytosolic):
H+ + NADPH + monodehydroascorbate radical ⟶ H+ + L-ascorbate + NADP+
- ascorbate glutathione cycle:
monodehydroascorbate radical ⟶ H+ + L-ascorbate + L-dehydro-ascorbate
- ascorbate recycling (cytosolic):
monodehydroascorbate radical ⟶ H+ + L-ascorbate + L-dehydro-ascorbate
- ascorbate biosynthesis:
L-gulonate ⟶ H2O + L-gulono-1,4-lactone
Plant Reactome(0)
INOH(0)
PlantCyc(127)
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + NADPH + monodehydroascorbate radical ⟶ H+ + L-ascorbate + NADP+
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + NADPH + monodehydroascorbate radical ⟶ H+ + L-ascorbate + NADP+
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate recycling (cytosolic):
NADH + monodehydroascorbate radical ⟶ H+ + L-ascorbate + NAD+
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
H+ + L-ascorbate + hydrogen peroxide ⟶ H2O + monodehydroascorbate radical
- ascorbate glutathione cycle:
NADPH + monodehydroascorbate radical ⟶ H+ + L-ascorbate + NADP+
COVID-19 Disease Map(0)
PathBank(1)
- Ascorbate Metabolism:
Ferricytochrome c + L-galactono-1,4-lactone ⟶ Ascorbic acid + Ferrocytochrome c + Hydrogen Ion
PharmGKB(0)
1 个相关的物种来源信息
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Dongfeng Jia, Huan Gao, Yanqun He, Guanglian Liao, Liting Lin, Chunhui Huang, Xiaobiao Xu. Kiwifruit Monodehydroascorbate Reductase 3 Gene Negatively Regulates the Accumulation of Ascorbic Acid in Fruit of Transgenic Tomato Plants.
International journal of molecular sciences.
2023 Dec; 24(24):. doi:
10.3390/ijms242417182
. [PMID: 38139009] - Madhu, Alok Sharma, Amandeep Kaur, Kashmir Singh, Santosh Kumar Upadhyay. Modulation in gene expression and enzyme activity suggested the roles of monodehydroascorbate reductase in development and stress response in bread wheat.
Plant science : an international journal of experimental plant biology.
2023 Oct; 338(?):111902. doi:
10.1016/j.plantsci.2023.111902
. [PMID: 37879539] - Kirti Shila Sonkar, V Mohan Murali Achary, Sibasis Sahoo, Malireddy K Reddy, Arulandu Arockiasamy. Biochemical and structural characterization of a robust and thermostable ascorbate recycling monodehydroascorbate reductase (MDHAR) from stress adapted pearl millet.
Biochemical and biophysical research communications.
2023 Jun; 662(?):135-141. doi:
10.1016/j.bbrc.2023.04.034
. [PMID: 37119729] - Robert J Hondal. Selenium vitaminology: The connection between selenium, vitamin C, vitamin E, and ergothioneine.
Current opinion in chemical biology.
2023 May; 75(?):102328. doi:
10.1016/j.cbpa.2023.102328
. [PMID: 37236134] - Antonella Gradogna, Laura Lagostena, Sara Beltrami, Edoardo Tosato, Cristiana Picco, Joachim Scholz-Starke, Francesca Sparla, Paolo Trost, Armando Carpaneto. Tonoplast cytochrome b561 is a transmembrane ascorbate-dependent monodehydroascorbate reductase: functional characterisation of electron currents in plant vacuoles.
The New phytologist.
2023 Feb; ?(?):. doi:
10.1111/nph.18823
. [PMID: 36806214] - Dessireé Zerpa-Catanho, Steven J Clough, Ray Ming. Characterization and analysis of the promoter region of monodehydroascorbate reductase 4 (CpMDAR4) in papaya.
Plant reproduction.
2022 12; 35(4):233-264. doi:
10.1007/s00497-022-00447-2
. [PMID: 35920937] - Tae Yoon Kim, Hara Ku, Seung-Yop Lee. Crop Enhancement of Cucumber Plants under Heat Stress by Shungite Carbon.
International journal of molecular sciences.
2020 Jul; 21(14):. doi:
10.3390/ijms21144858
. [PMID: 32659984] - Daniel Maynard, Vijay Kumar, Jens Sproï, Karl-Josef Dietz. 12-Oxophytodienoic Acid Reductase 3 (OPR3) Functions as NADPH-Dependent α,β-Ketoalkene Reductase in Detoxification and Monodehydroascorbate Reductase in Redox Homeostasis.
Plant & cell physiology.
2020 Mar; 61(3):584-595. doi:
10.1093/pcp/pcz226
. [PMID: 31834385] - Vincent Truffault, Gisèle Riqueau, Cécile Garchery, Hélène Gautier, Rebecca G Stevens. Is monodehydroascorbate reductase activity in leaf tissue critical for the maintenance of yield in tomato?.
Journal of plant physiology.
2018 Mar; 222(?):1-8. doi:
10.1016/j.jplph.2017.12.012
. [PMID: 29287283] - Paula Mariela González, Susana Puntarulo. Seasonality and toxins effects on oxidative/nitrosative metabolism in digestive glands of the bivalve Mytilus edulis platensis.
Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.
2016 10; 200(?):79-86. doi:
10.1016/j.cbpa.2016.04.011
. [PMID: 27132244] - Vincent Truffault, Noé Gest, Cécile Garchery, Alexandra Florian, Alisdair R Fernie, Hélène Gautier, Rebecca G Stevens. Reduction of MDHAR activity in cherry tomato suppresses growth and yield and MDHAR activity is correlated with sugar levels under high light.
Plant, cell & environment.
2016 06; 39(6):1279-92. doi:
10.1111/pce.12663
. [PMID: 26510400] - Ebtesam M Al-Olayan, Manal F El-Khadragy, Sawsan A Omer, Mohamed T M Shata, Rami B Kassab, Ahmed E Abdel Moneim. The Beneficial Effect of Cape Gooseberry Juice on Carbon Tetrachloride- Induced Neuronal Damage.
CNS & neurological disorders drug targets.
2016; 15(3):344-50. doi:
10.2174/1871527314666150821112051
. [PMID: 26295813] - Sandra Rodemeister, Mathieu Duquesne, Michael Adolph, Donatus Nohr, Hans K Biesalski, Klaus Unertl. Massive and long-lasting decrease in vitamin C plasma levels as a consequence of extracorporeal circulation.
Nutrition (Burbank, Los Angeles County, Calif.).
2014 Jun; 30(6):673-8. doi:
10.1016/j.nut.2013.10.026
. [PMID: 24631388] - Hao Feng, Wei Liu, Qiong Zhang, Xiaojie Wang, Xiaodong Wang, Xiaoyuan Duan, Feng Li, Lili Huang, Zhensheng Kang. TaMDHAR4, a monodehydroascorbate reductase gene participates in the interactions between wheat and Puccinia striiformis f. sp. tritici.
Plant physiology and biochemistry : PPB.
2014 Mar; 76(?):7-16. doi:
10.1016/j.plaphy.2013.12.015
. [PMID: 24448320] - Kou-Gi Shyu, Chao-Chien Chang, Yu-Chieh Yeh, Joen-Rong Sheu, Duen-Suey Chou. Mechanisms of ascorbyl radical formation in human platelet-rich plasma.
BioMed research international.
2014; 2014(?):614506. doi:
10.1155/2014/614506
. [PMID: 24696859] - Vasileios Fotopoulos, Angelos K Kanellis. Altered apoplastic ascorbate redox state in tobacco plants via ascorbate oxidase overexpression results in delayed dark-induced senescence in detached leaves.
Plant physiology and biochemistry : PPB.
2013 Dec; 73(?):154-60. doi:
10.1016/j.plaphy.2013.09.002
. [PMID: 24100076] - Paula Mariela González, María Belén Aguiar, Gabriela Malanga, Susana Puntarulo. Electronic paramagnetic resonance (EPR) for the study of ascorbyl radical and lipid radicals in marine organisms.
Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.
2013 Aug; 165(4):439-47. doi:
10.1016/j.cbpa.2013.02.021
. [PMID: 23485428] - Xiu-Lan Wang, Wan-Xue Huo, Ren-Jie Lu, Serguleng Han, Chun-Xia Bao. [Study on effects and mechanism of traditional Mongolian medicine wuweifengshi capsule on adjuvant arthritis in rats].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2013 Apr; 38(8):1258-62. doi:
NULL
. [PMID: 23944047] - S Delemasure, N Blaes, C Richard, R Couture, M Bader, P Dutartre, J-P Girolami, J-L Connat, L Rochette. Antioxidant/oxidant status and cardiac function in bradykinin B(1)- and B(2)-receptor null mice.
Physiological research.
2013; 62(5):511-7. doi:
10.33549/physiolres.932496
. [PMID: 24020815] - Magdalina Kalinowska, Douglas A Bazdar, Michael M Lederman, Nicholas Funderburg, Scott F Sieg. Decreased IL-7 responsiveness is related to oxidative stress in HIV disease.
PloS one.
2013; 8(3):e58764. doi:
10.1371/journal.pone.0058764
. [PMID: 23505558] - Gabriela Malanga, María Belen Aguiar, Hugo D Martinez, Susana Puntarulo. New insights on dimethylaminoethanol (DMAE) features as a free radical scavenger.
Drug metabolism letters.
2012 Mar; 6(1):54-9. doi:
10.2174/187231212800229282
. [PMID: 22300295] - Andrea Galatro, Elizabeth Robello, Susana Puntarulo. Soybean ferritin: isolation, characterization, and free radical generation.
Journal of integrative plant biology.
2012 Jan; 54(1):45-54. doi:
10.1111/j.1744-7909.2011.01091.x
. [PMID: 22112169] - Yew Lee, Chan Ho Park, A Ram Kim, Soo Chul Chang, Soo-Hwan Kim, Woo Sung Lee, Seong-Ki Kim. The effect of ascorbic acid and dehydroascorbic acid on the root gravitropic response in Arabidopsis thaliana.
Plant physiology and biochemistry : PPB.
2011 Aug; 49(8):909-16. doi:
10.1016/j.plaphy.2011.05.013
. [PMID: 21696975] - Evangelia Vlachodimitropoulou, Richard J Naftalin, Paul A Sharp. Quercetin is a substrate for the transmembrane oxidoreductase Dcytb.
Free radical biology & medicine.
2010 May; 48(10):1366-9. doi:
10.1016/j.freeradbiomed.2010.02.021
. [PMID: 20184953] - Shigekiyo Matsumoto, Chihiro Shingu, Hironori Koga, Seigo Hidaka, Koji Goto, Satoshi Hagiwara, Hideo Iwasaka, Takayuki Noguchi, Isao Yokoi. The impact of oxidative stress levels on the clinical effectiveness of sivelestat in treating acute lung injury: an electron spin resonance study.
The Journal of trauma.
2010 Apr; 68(4):796-801. doi:
10.1097/ta.0b013e3181bb80d4
. [PMID: 20065874] - Andrea Seccon, Daniela W Rosa, Rilton A Freitas, Maique W Biavatti, Tania B Creczynski-Pasa. Antioxidant activity and low cytotoxicity of extracts and isolated compounds from Araucaria angustifolia dead bark.
Redox report : communications in free radical research.
2010; 15(6):234-42. doi:
10.1179/135100010x12826446921789
. [PMID: 21208522] - Lili Lv, Wei Huang, Xiao Yu, Haiyong Ren, Rong Sun. [Comparative research of different Bupleurum chinense composition to influence of hepatotoxicity of rats and oxidative damage mechanism].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2009 Sep; 34(18):2364-8. doi:
NULL
. [PMID: 20030090] - Totsapol Jirasomprasert, Noppawan P Morales, Lie M G Limenta, Srisuporn Sirijaroonwong, Paveena Yamanont, Prapin Wilairat, Suthat Fucharoen, Udom Chantharaksri. Pharmaco/ferrokinetic-related pro-oxidant activity of deferiprone in beta-thalassemia.
Free radical research.
2009 May; 43(5):485-91. doi:
10.1080/10715760902870611
. [PMID: 19353420] - J C Marty, S Bendhadra, S Amoureux, J-C Guilland, C Vergely, L Rochette, C Girard. [Oxidative stress is exacerbated in diabetic patients during cardiopulmonary bypass].
Annales de cardiologie et d'angeiologie.
2008 Jun; 57(3):155-60. doi:
10.1016/j.ancard.2008.02.017
. [PMID: 18571621] - Dan Su, James M May, Mark J Koury, Han Asard. Human erythrocyte membranes contain a cytochrome b561 that may be involved in extracellular ascorbate recycling.
The Journal of biological chemistry.
2006 Dec; 281(52):39852-9. doi:
10.1074/jbc.m606543200
. [PMID: 17068337] - Gabriela Malanga, Maria Susana Estevez, Jorge Calvo, Susana Puntarulo. Oxidative stress in limpets exposed to different environmental conditions in the Beagle Channel.
Aquatic toxicology (Amsterdam, Netherlands).
2004 Sep; 69(4):299-309. doi:
10.1016/j.aquatox.2004.05.008
. [PMID: 15312715] - Terhi Ahola, Vineta Fellman, Ingemar Kjellmer, Kari O Raivio, Risto Lapatto. Plasma 8-isoprostane is increased in preterm infants who develop bronchopulmonary dysplasia or periventricular leukomalacia.
Pediatric research.
2004 Jul; 56(1):88-93. doi:
10.1203/01.pdr.0000130478.05324.9d
. [PMID: 15128912] - M Pokorski, B Gonet. Capacity of ascorbyl palmitate to produce the ascorbyl radical in vitro: an electron spin resonance investigation.
Physiological research.
2004; 53(3):311-6. doi:
. [PMID: 15209539]
- Matthias Schneider, Andreas M Niess, Fabian Rozario, Cornelia Angres, Karja Tschositsch, Ines Golly, Nicole Battenfeld, Michael Schäffer, Hinnak Northoff, Hands-H Dickhuth, Elvira Fehrenbach, Wolfgang E Trommer, Hans K Biesalski. Vitamin E supplementation does not increase the vitamin C radical concentration at rest and after exhaustive exercise in healthy male subjects.
European journal of nutrition.
2003 Aug; 42(4):195-200. doi:
10.1007/s00394-003-0414-6
. [PMID: 12923650] - Donald R Ort, Neil R Baker. A photoprotective role for O(2) as an alternative electron sink in photosynthesis?.
Current opinion in plant biology.
2002 Jun; 5(3):193-8. doi:
10.1016/s1369-5266(02)00259-5
. [PMID: 11960735] - J Fodor, E Hideg, A Kecskés, Z Király. In vivo detection of tobacco mosaic virus-induced local and systemic oxidative burst by electron paramagnetic resonance spectroscopy.
Plant & cell physiology.
2001 Jul; 42(7):775-9. doi:
10.1093/pcp/pce096
. [PMID: 11479386] - K Nakagawa. Effect of chemotherapy on ascorbate and ascorbyl radical in cerebrospinal fluid and serum of acute lymphoblastic leukemia.
Cellular and molecular biology (Noisy-le-Grand, France).
2000 Dec; 46(8):1375-81. doi:
. [PMID: 11156482]
- T Kawano, R Pinontoan, N Uozumi, Y Morimitsu, C Miyake, K Asada, S Muto. Phenylethylamine-induced generation of reactive oxygen species and ascorbate free radicals in tobacco suspension culture: mechanism for oxidative burst mediating Ca2+ influx.
Plant & cell physiology.
2000 Nov; 41(11):1259-66. doi:
10.1093/pcp/pcd053
. [PMID: 11092911] - M M VanDuijn, K Tijssen, J VanSteveninck, P J Van Den Broek, J Van Der Zee. Erythrocytes reduce extracellular ascorbate free radicals using intracellular ascorbate as an electron donor.
The Journal of biological chemistry.
2000 Sep; 275(36):27720-5. doi:
10.1074/jbc.m910281199
. [PMID: 10871632] - F Dalloz, P Maingon, Y Cottin, F Briot, J C Horiot, L Rochette. Effects of combined irradiation and doxorubicin treatment on cardiac function and antioxidant defenses in the rat.
Free radical biology & medicine.
1999 Apr; 26(7-8):785-800. doi:
10.1016/s0891-5849(98)00259-7
. [PMID: 10232821] - J P Fabisiak, V A Tyurin, Y Y Tyurina, G G Borisenko, A Korotaeva, B R Pitt, J S Lazo, V E Kagan. Redox regulation of copper-metallothionein.
Archives of biochemistry and biophysics.
1999 Mar; 363(1):171-81. doi:
10.1006/abbi.1998.1077
. [PMID: 10049512] - C H Foyer, P M Mullineaux. The presence of dehydroascorbate and dehydroascorbate reductase in plant tissues.
FEBS letters.
1998 Apr; 425(3):528-9. doi:
10.1016/s0014-5793(98)00281-6
. [PMID: 9563527] - S Morell, H Follmann, M de Tullio, I Häberlein. Dehydroascorbate reduction: the phantom remaining.
FEBS letters.
1998 Apr; 425(3):530-1. doi:
10.1016/s0014-5793(98)00282-8
. [PMID: 9563528] - A Mouithys-Mickalad, C Deby, G Deby-Dupont, M Lamy. An electron spin resonance (ESR) study on the mechanism of ascorbyl radical production by metal-binding proteins.
Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine.
1998 Apr; 11(2):81-8. doi:
10.1023/a:1009265625781
. [PMID: 9542060] - K Satoh, Y Ida, S Kimura, K Taguchi, M Numaguchi, K Gomi, M Kochi, H Sakagami. Chelating effect of human serum proteins on metal-catalyzed ascorbate radical generation.
Anticancer research.
1997 Nov; 17(6D):4377-80. doi:
NULL
. [PMID: 9494536] - R Bågenholm, U A Nilsson, I Kjellmer. Formation of free radicals in hypoxic ischemic brain damage in the neonatal rat, assessed by an endogenous spin trap and lipid peroxidation.
Brain research.
1997 Oct; 773(1-2):132-8. doi:
10.1016/s0006-8993(97)00776-2
. [PMID: 9409714] - H Sakagami, K Satoh, K Sugaya, M Iida, N Hirota, K Matsumoto, S Kimura, K Gomi, S Taguchi, S Kato, M Takeda. Effect of the type of serum in the medium on sodium ascorbate-induced cytotoxicity.
Anticancer research.
1996 Jul; 16(4A):1937-41. doi:
NULL
. [PMID: 8712724] - K D Asmus, R V Bensasson, J L Bernier, R Houssin, E J Land. One-electron oxidation of ergothioneine and analogues investigated by pulse radiolysis: redox reaction involving ergothioneine and vitamin C.
The Biochemical journal.
1996 Apr; 315 ( Pt 2)(?):625-9. doi:
10.1042/bj3150625
. [PMID: 8615839] - M Benderitter, F Hadj-Saad, M Lhuissier, V Maupoil, J C Guilland, L Rochette. Effects of exhaustive exercise and vitamin B6 deficiency on free radical oxidative process in male trained rats.
Free radical biology & medicine.
1996; 21(4):541-9. doi:
10.1016/0891-5849(96)00047-0
. [PMID: 8886806] - V A Roginsky, H B Stegmann. Ascorbyl radical as natural indicator of oxidative stress: quantitative regularities.
Free radical biology & medicine.
1994 Aug; 17(2):93-103. doi:
10.1016/0891-5849(94)90107-4
. [PMID: 7959177] - W W Wells, D P Xu. Dehydroascorbate reduction.
Journal of bioenergetics and biomembranes.
1994 Aug; 26(4):369-77. doi:
10.1007/bf00762777
. [PMID: 7844111] - S Pietri, J R Séguin, P D d'Arbigny, M Culcasi. Ascorbyl free radical: a noninvasive marker of oxidative stress in human open-heart surgery.
Free radical biology & medicine.
1994 Apr; 16(4):523-8. doi:
10.1016/0891-5849(94)90131-7
. [PMID: 8005538] - D A Stoyanovsky, G Salama, V E Kagan. Ascorbate/iron activates Ca(2+)-release channels of skeletal sarcoplasmic reticulum vesicles reconstituted in lipid bilayers.
Archives of biochemistry and biophysics.
1994 Jan; 308(1):214-21. doi:
10.1006/abbi.1994.1030
. [PMID: 8311455] - E J Diliberto, A J Daniels, O H Viveros. Multicompartmental secretion of ascorbate and its dual role in dopamine beta-hydroxylation.
The American journal of clinical nutrition.
1991 12; 54(6 Suppl):1163S-1172S. doi:
10.1093/ajcn/54.6.1163s
. [PMID: 1962565] - K R Dhariwal, C D Black, M Levine. Semidehydroascorbic acid as an intermediate in norepinephrine biosynthesis in chromaffin granules.
The Journal of biological chemistry.
1991 Jul; 266(20):12908-14. doi:
. [PMID: 1649168]
- H J Harwood, Y J Greene, P W Stacpoole. Inhibition of human leukocyte 3-hydroxy-3-methylglutaryl coenzyme A reductase activity by ascorbic acid. An effect mediated by the free radical monodehydroascorbate.
The Journal of biological chemistry.
1986 Jun; 261(16):7127-35. doi:
. [PMID: 3711081]