Bialaphos (BioDeep_00000001764)

   


代谢物信息卡片


γ-(Hydroxymethylphosphinyl)-L-α-aminobutyryl-L-alanyl-L- alanine

化学式: C11H22N3O6P (323.1246)
中文名称: 双丙氨膦
谱图信息: 最多检出来源 Macaca mulatta(lipidsearch) 29.87%

分子结构信息

SMILES: CC(C(=O)NC(C)C(=O)O)NC(=O)C(CCP(=O)(C)O)N
InChI: InChI=1S/C11H22N3O6P/c1-6(9(15)14-7(2)11(17)18)13-10(16)8(12)4-5-21(3,19)20/h6-8H,4-5,12H2,1-3H3,(H,13,16)(H,14,15)(H,17,18)(H,19,20)/t6-,7-,8-/m0/s1

描述信息

A tripeptide comprising one L-phosphinothricyl and two L-alanyl units joined in sequence.
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents
D010575 - Pesticides > D006540 - Herbicides
D016573 - Agrochemicals

同义名列表

6 个代谢物同义名

Bialaphos; bilanafos; γ-(Hydroxymethylphosphinyl)-L-α-aminobutyryl-L-alanyl-L- alanine; 2-Amino-4-(methylphosphino)butyrylalanylalanine; phosphinothricin tripeptide; Bialaphos



数据库引用编号

13 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 6 CA2, GAPDH, GLUL, GZMB, UCHL1, WNT2
Peripheral membrane protein 1 HSD17B6
Endoplasmic reticulum membrane 2 SFTPD, UCHL1
Nucleus 5 CS, GAPDH, GLUL, GLYR1, GZMB
cytosol 9 CA2, GAPDH, GLUL, GLYR1, GOLPH3, GPT, GZMB, LIPE, UCHL1
trans-Golgi network 1 GOLPH3
nucleoplasm 2 GLYR1, UCHL1
Cell membrane 5 CA2, GLUL, GOLPH3, LIPE, SLC7A1
Lipid-anchor 2 GLUL, UCHL1
Early endosome membrane 1 HSD17B6
Multi-pass membrane protein 1 SLC7A1
Golgi apparatus 1 GOLPH3
Golgi membrane 1 GOLPH3
neuronal cell body 1 UCHL1
Cytoplasm, cytosol 3 GAPDH, GLUL, LIPE
Lysosome 1 SFTPD
endosome 2 GOLPH3, UEVLD
plasma membrane 6 CA2, GAPDH, GLUL, GOLPH3, KNG1, SLC7A1
Membrane 7 COL4A2, CS, GAPDH, GOLPH3, GZMB, LIPE, SLC7A1
apical plasma membrane 1 SLC7A1
basolateral plasma membrane 1 SLC7A1
caveola 1 LIPE
extracellular exosome 8 CA2, COL4A2, CS, GAPDH, GLUL, GPT, KNG1, UEVLD
Lumenal side 1 HSD17B6
endoplasmic reticulum 2 GLUL, HSD17B6
extracellular space 5 COL4A2, KNG1, SFTPD, TST, WNT2
perinuclear region of cytoplasm 1 GAPDH
mitochondrion 4 CS, GLUL, GOLPH3, TST
protein-containing complex 1 SLC7A1
intracellular membrane-bounded organelle 4 GAPDH, GOLPH3, GZMB, HSD17B6
Microsome membrane 1 HSD17B6
Secreted 3 GZMB, PRB1, WNT2
extracellular region 6 COL4A2, GZMB, KNG1, PRB1, SFTPD, WNT2
Mitochondrion matrix 2 CS, TST
mitochondrial matrix 2 CS, TST
nuclear membrane 1 GAPDH
Secreted, extracellular space, extracellular matrix 1 WNT2
multivesicular body 1 SFTPD
microtubule cytoskeleton 1 GAPDH
Wnt signalosome 1 WNT2
axon cytoplasm 1 UCHL1
apical part of cell 1 CA2
vesicle 1 GAPDH
Cytoplasm, perinuclear region 1 GAPDH
Cytoplasm, cytoskeleton 1 GAPDH
basement membrane 1 COL4A2
collagen trimer 2 COL4A2, SFTPD
mitochondrial intermembrane space 1 GOLPH3
collagen-containing extracellular matrix 3 COL4A2, KNG1, WNT2
chromatin 1 GLYR1
Chromosome 1 GLYR1
cytoskeleton 1 GAPDH
Secreted, extracellular space 1 KNG1
blood microparticle 1 KNG1
ESCRT I complex 1 UEVLD
Lipid droplet 2 GAPDH, LIPE
Membrane, caveola 1 LIPE
Golgi cisterna membrane 1 GOLPH3
cell body 1 GLUL
myelin sheath 1 CA2
basal plasma membrane 1 SLC7A1
Microsome 1 GLUL
endoplasmic reticulum lumen 2 COL4A2, KNG1
platelet alpha granule lumen 1 KNG1
endocytic vesicle 1 SFTPD
immunological synapse 1 GZMB
clathrin-coated endocytic vesicle 1 SFTPD
Golgi cisterna 1 GOLPH3
ribonucleoprotein complex 1 GAPDH
nucleosome 1 GLYR1
GAIT complex 1 GAPDH
glial cell projection 1 GLUL
Secreted, extracellular space, extracellular matrix, basement membrane 1 COL4A2
collagen type IV trimer 1 COL4A2
neuron projection terminus 1 UCHL1
Cytolytic granule 1 GZMB
cytolytic granule lumen 1 GZMB


文献列表

  • Guo-Qing Song, Xue Han, Andrew T Wiersma, Xiaojuan Zong, Halima E Awale, James D Kelly. Induction of competent cells for Agrobacterium tumefaciens-mediated stable transformation of common bean (Phaseolus vulgaris L.). PloS one. 2020; 15(3):e0229909. doi: 10.1371/journal.pone.0229909. [PMID: 32134988]
  • Bastien Christ, Ramon Hochstrasser, Luzia Guyer, Rita Francisco, Sylvain Aubry, Stefan Hörtensteiner, Jing-Ke Weng. Non-specific activities of the major herbicide-resistance gene BAR. Nature plants. 2017 Dec; 3(12):937-945. doi: 10.1038/s41477-017-0061-1. [PMID: 29180815]
  • L Cai, D F Sun, G L Sun. Optimization of a biolistic transformation system for transfer of antifreeze gene KN2 and the bar herbicide resistance gene in common wheat. Genetics and molecular research : GMR. 2014 Apr; 13(2):3474-85. doi: 10.4238/2014.april.30.8. [PMID: 24841792]
  • Chun-Yu Zhang, Hong-Yu Li, Bin Liu. [A comparison study of hpt and bar as selection marker gene of transgenic rice]. Yi chuan = Hereditas. 2012 Dec; 34(12):1599-606. doi: 10.3724/sp.j.1005.2012.01599. [PMID: 23262108]
  • Tonya L Strange, Joseph F Petolino. Targeting DNA to a previously integrated transgenic locus using zinc finger nucleases. Methods in molecular biology (Clifton, N.J.). 2012; 847(?):391-7. doi: 10.1007/978-1-61779-558-9_31. [PMID: 22351024]
  • Shangxin Song, Guanghong Zhou, Feng Gao, Wei Zhang, Liangyan Qiu, Sifa Dai, Xinglian Xu, Hongmei Xiao. Degradation of transgene DNA in genetically modified herbicide-tolerant rice during food processing. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2011 Dec; 49(12):3174-82. doi: 10.1016/j.fct.2011.08.003. [PMID: 21871942]
  • Naoki Yoshioka, Migiwa Asano, Azumi Kuse, Takao Mitsuhashi, Yasushi Nagasaki, Yasuhiro Ueno. Rapid determination of glyphosate, glufosinate, bialaphos, and their major metabolites in serum by liquid chromatography-tandem mass spectrometry using hydrophilic interaction chromatography. Journal of chromatography. A. 2011 Jun; 1218(23):3675-80. doi: 10.1016/j.chroma.2011.04.021. [PMID: 21530973]
  • Shinya Nakamura, Shoji Mano, Yuji Tanaka, Masato Ohnishi, Chihiro Nakamori, Masami Araki, Tomoko Niwa, Mikio Nishimura, Hironori Kaminaka, Tsuyoshi Nakagawa, Yutaka Sato, Sumie Ishiguro. Gateway binary vectors with the bialaphos resistance gene, bar, as a selection marker for plant transformation. Bioscience, biotechnology, and biochemistry. 2010; 74(6):1315-9. doi: 10.1271/bbb.100184. [PMID: 20530878]
  • Mariko Takayama, Hiroshi Sekiguchi, Yasushi Hori, Manami Fujisawa, Yasuo Hirose. [Analysis of bialaphos and its active metabolite L-glufosinate in biological specimens by HPLC]. Chudoku kenkyu : Chudoku Kenkyukai jun kikanshi = The Japanese journal of toxicology. 2009 Jun; 22(2):113-20. doi: . [PMID: 19601540]
  • Jingyi Li, Amy M Brunner, Richard Meilan, Steven H Strauss. Stability of transgenes in trees: expression of two reporter genes in poplar over three field seasons. Tree physiology. 2009 Feb; 29(2):299-312. doi: 10.1093/treephys/tpn028. [PMID: 19203955]
  • Sonia, Raman Saini, Rana P Singh, Pawan K Jaiwal. Agrobacterium tumefaciens mediated transfer of Phaseolus vulgaris alpha-amylase inhibitor-1 gene into mungbean Vigna radiata (L.) Wilczek using bar as selectable marker. Plant cell reports. 2007 Feb; 26(2):187-98. doi: 10.1007/s00299-006-0224-4. [PMID: 16983450]
  • Hua-Zhong Wang, Li-Ping Xing, Pei-Du Chen. [Transformation of powdery mildew resistance-related genes of wheat]. Yi chuan = Hereditas. 2007 Feb; 29(2):243-9. doi: 10.1360/yc-007-0243. [PMID: 17369184]
  • Caixia Gao, Li Jiang, Marianne Folling, Liebao Han, Klaus Kristian Nielsen. Generation of large numbers of transgenic Kentucky bluegrass (Poa pratensis L.) plants following biolistic gene transfer. Plant cell reports. 2006 Feb; 25(1):19-25. doi: 10.1007/s00299-005-0005-5. [PMID: 16328388]
  • Takahiro Gondo, Shin-ichi Tsuruta, Ryo Akashi, Osamu Kawamura, Franz Hoffmann. Green, herbicide-resistant plants by particle inflow gun-mediated gene transfer to diploid bahiagrass (Paspalum notatum). Journal of plant physiology. 2005 Dec; 162(12):1367-75. doi: 10.1016/j.jplph.2005.03.005. [PMID: 16425455]
  • Bronwyn R Frame, Huixia Shou, Rachel K Chikwamba, Zhanyuan Zhang, Chengbin Xiang, Tina M Fonger, Sue Ellen K Pegg, Baochun Li, Dan S Nettleton, Deqing Pei, Kan Wang. Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant physiology. 2002 May; 129(1):13-22. doi: 10.1104/pp.000653. [PMID: 12011333]
  • T Ohtake, H Yasuda, H Takahashi, T Goto, K Suzuki, K Yonemura, A Hishida. Decreased plasma and cerebrospinal fluid glutamine concentrations in a patient with bialaphos poisoning. Human & experimental toxicology. 2001 Aug; 20(8):429-34. doi: 10.1191/096032701682692973. [PMID: 11727795]
  • K Sato, J Y Jin, T Takeuchi, T Miwa, K Suenami, Y Takekoshi, S Kanno. Integrated pulsed amperometric detection of glufosinate, bialaphos and glyphosate at gold electrodes in anion-exchange chromatography. Journal of chromatography. A. 2001 Jun; 919(2):313-20. doi: 10.1016/s0021-9673(01)00843-3. [PMID: 11442037]
  • N S Al-Kaff, M M Kreike, S N Covey, R Pitcher, A M Page, P J Dale. Plants rendered herbicide-susceptible by cauliflower mosaic virus-elicited suppression of a 35S promoter-regulated transgene. Nature biotechnology. 2000 Sep; 18(9):995-9. doi: 10.1038/79501. [PMID: 10973223]
  • S P Kumpatla, T C Hall. Longevity of 5-azacytidine-mediated gene expression and re-establishment of silencing in transgenic rice. Plant molecular biology. 1998 Dec; 38(6):1113-22. doi: 10.1023/a:1006071018039. [PMID: 9869417]
  • S P Kumpatla, W Teng, W G Buchholz, T C Hall. Epigenetic transcriptional silencing and 5-azacytidine-mediated reactivation of a complex transgene in rice. Plant physiology. 1997 Oct; 115(2):361-73. doi: 10.1104/pp.115.2.361. [PMID: 9342860]
  • A Podbielski, B Pohl, M Woischnik, C Körner, K H Schmidt, E Rozdzinski, B A Leonard. Molecular characterization of group A streptococcal (GAS) oligopeptide permease (opp) and its effect on cysteine protease production. Molecular microbiology. 1996 Sep; 21(5):1087-99. doi: 10.1046/j.1365-2958.1996.661421.x. [PMID: 8885277]
  • R D Hall, T Riksen-Bruinsma, G J Weyens, I J Rosquin, P N Denys, I J Evans, J E Lathouwers, M P Lefèbvre, J M Dunwell, A van Tunen, F A Krens. A high efficiency technique for the generation of transgenic sugar beets from stomatal guard cells. Nature biotechnology. 1996 Sep; 14(9):1133-8. doi: 10.1038/nbt0996-1133. [PMID: 9631066]
  • I Takimoto, A H Christensen, P H Quail, H Uchimiya, S Toki. Non-systemic expression of a stress-responsive maize polyubiquitin gene (Ubi-1) in transgenic rice plants. Plant molecular biology. 1994 Nov; 26(3):1007-12. doi: 10.1007/bf00028868. [PMID: 7999991]
  • K D'Halluin, M De Block, J Denecke, J Janssens, J Leemans, A Reynaerts, J Botterman. The bar gene as selectable and screenable marker in plant engineering. Methods in enzymology. 1992; 216(?):415-26. doi: 10.1016/0076-6879(92)16038-l. [PMID: 1479912]
  • J Botterman, V Gosselé, C Thoen, M Lauwereys. Characterization of phosphinothricin acetyltransferase and C-terminal enzymatically active fusion proteins. Gene. 1991 Jun; 102(1):33-7. doi: 10.1016/0378-1119(91)90534-i. [PMID: 1864506]
  • A Suzuki, M Kawana. Rapid and simple method for identification of glufosinate-ammonium using paper chromatography. Bulletin of environmental contamination and toxicology. 1989 Jul; 43(1):17-21. doi: 10.1007/bf01702232. [PMID: 2758135]
  • M Cornelissen, M Vandewiele. Both RNA level and translation efficiency are reduced by anti-sense RNA in transgenic tobacco. Nucleic acids research. 1989 Feb; 17(3):833-43. doi: 10.1093/nar/17.3.833. [PMID: 2466237]