Uridine diphosphate glucuronic acid (BioDeep_00000002809)
Secondary id: BioDeep_00000014634, BioDeep_00000400422, BioDeep_00000406184, BioDeep_00001106334
natural product human metabolite PANOMIX_OTCML-2023 Endogenous
代谢物信息卡片
化学式: C15H22N2O18P2 (580.0343)
中文名称: UDP葡萄糖醛酸, 尿苷二磷酸葡糖醛酸
谱图信息:
最多检出来源 Homo sapiens(blood) 10.75%
分子结构信息
SMILES: C1=CN(C(=O)NC1=O)C2C(C(C(O2)COP(=O)(O)OP(=O)(O)OC3C(C(C(C(O3)C(=O)O)O)O)O)O)O
InChI: InChI=1S/C15H22N2O18P2/c18-5-1-2-17(15(26)16-5)12-9(22)6(19)4(32-12)3-31-36(27,28)35-37(29,30)34-14-10(23)7(20)8(21)11(33-14)13(24)25/h1-2,4,6-12,14,19-23H,3H2,(H,24,25)(H,27,28)(H,29,30)(H,16,18,26)/t4-,6-,7+,8+,9-,10-,11+,12-,14-/m1/s1
描述信息
Uridine diphosphate glucuronic acid, also known as udpglucuronate or udp-D-glucuronic acid, is a member of the class of compounds known as pyrimidine nucleotide sugars. Pyrimidine nucleotide sugars are pyrimidine nucleotides bound to a saccharide derivative through the terminal phosphate group. Uridine diphosphate glucuronic acid is soluble (in water) and a moderately acidic compound (based on its pKa). Uridine diphosphate glucuronic acid can be synthesized from alpha-D-glucuronic acid. Uridine diphosphate glucuronic acid can also be synthesized into UDP-2,3-diacetamido-2,3-dideoxy-alpha-D-glucuronic acid. Uridine diphosphate glucuronic acid can be found in a number of food items such as parsley, chervil, black mulberry, and malabar plum, which makes uridine diphosphate glucuronic acid a potential biomarker for the consumption of these food products. Uridine diphosphate glucuronic acid can be found primarily in human liver tissue. Uridine diphosphate glucuronic acid exists in all living species, ranging from bacteria to humans. In humans, uridine diphosphate glucuronic acid is involved in several metabolic pathways, some of which include etoposide metabolism pathway, estrone metabolism, tamoxifen action pathway, and androgen and estrogen metabolism. Uridine diphosphate glucuronic acid is also involved in several metabolic disorders, some of which include porphyria variegata (PV), glycogenosis, type III. cori disease, debrancher glycogenosis, 17-beta hydroxysteroid dehydrogenase III deficiency, and hereditary coproporphyria (HCP). Uridine diphosphate glucuronic acid is made from UDP-glucose by UDP-glucose 6-dehydrogenase (EC 1.1.1.22) using NAD+ as a cofactor. It is the source of the glucuronosyl group in glucuronosyltransferase reactions .
Uridine diphosphate glucuronic acid is a nucleoside diphosphate sugar which serves as a source of glucuronic acid for polysaccharide biosynthesis. It may also be epimerized to UDP Iduronic acid, which donates Iduronic acid to polysaccharides. In animals, UDP glucuronic acid is used for formation of many glucosiduronides with various aglycones. The transfer of glucuronic acid from UDP-alpha-D-glucuronic acid onto a terminal galactose residue is done by beta1,3-glucuronosyltransferases, responsible for the completion of the protein-glycosaminoglycan linkage region of proteoglycans and of the HNK1 epitope of glycoproteins and glycolipids. In humans the enzyme galactose-beta-1,3-glucuronosyltransferase I completes the synthesis of the common linker region of glycosaminoglycans (GAGs) by transferring glucuronic acid (GlcA) onto the terminal galactose of the glycopeptide primer of proteoglycans. The GAG chains of proteoglycans regulate major biological processes such as cell proliferation and recognition, extracellular matrix deposition, and morphogenesis. (PMID:16815917).
Acquisition and generation of the data is financially supported in part by CREST/JST.
同义名列表
68 个代谢物同义名
(2S,3S,4S,5R,6R)-6-({[({[(2R,3S,4R,5R)-5-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-3,4,5-trihydroxyoxane-2-carboxylic acid; 6-[[[5-(2,4-Dioxopyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid; alpha-delta-Glucopyranuronic acid 1->5-ester with uridine 5-(trihydrogen pyrophosphate); alpha-delta-Glucopyranuronic acid 1-p-ester with uridine 5-(trihydrogen diphosphate); alpha-D-Glucopyranuronic acid 1-p-ester with uridine 5-(trihydrogen diphosphate); a-D-Glucopyranuronic acid 1->5-ester with uridine 5-(trihydrogen pyrophosphate); Uridine 5-[3-(D-glucopyranosyloxyuronic acid) dihydrogen diphosphate]; alpha-delta-Glucopyranuronic acid ester with uridine 5-pyrophosphate; a-D-Glucopyranuronic acid ester with uridine 5-pyrophosphate; Glucopyranuronic acid 1-ester with uridine 5-pyrophosphate; Uridine[5]diphospho[1]-α-D-glucopyranosuronic acid; Uridine-5′-diphosphoglucuronic acid trisodium salt; Uridine 5-diphospho-alpha-delta-glucuronic acid; URIDINE-5-diphosphoric acid-glucuronic acid; Uridine 5-diphospho-alpha-D-glucuronic acid; Uridine 5-diphospho-alpha-delta-glucuronate; Uridine diphosphoric acid glucuronic acid; Uridine 5’-diphospho-α-D-glucuronic acid; Uridine 5-diphospho-a-D-glucuronic acid; Uridine diphospho-delta-glucuronic acid; Uridine 5-diphospho-α-D-glucuronic acid; URIDINE-5-diphosphATE-glucuronIC ACID; Uridine-diphosphate-glucuronic acid; Uridine diphosphate glucuronic acid; Uridine diphospho-D-glucuronic acid; Uridine 5’-diphosphoglucuronic acid; Uridine 5-diphospho-a-D-glucuronate; Uridine 5-diphospho-glucuronic acid; Uridine diphospho-delta-glucuronate; Uridine pyrophosphoglucuronic acid; Uridine 5-diphosphoglucuronic acid; Diphosphoglucuronic acid, uridine; Acid, uridine diphosphoglucuronic; URIDINE-5-diphosphate-glucuronate; Uridine diphosphoglucuronic acid; Uridinediphosphoglucuronic acid; Uridine diphosphate-glucuronate; Uridine diphosphate glucuronate; Uridine diphospho-D-glucuronate; Uridine pyrophosphoglucuronate; Uridine 5-diphosphoglucuronate; Uridine diphosphoglucuronate; UDP-alpha-delta-Glucuronate; UDP-alpha-D-Glucuronic acid; UDP-a-D-Galacturonic acid; UDP-delta-Glucuronic acid; UDP-α-D-glucuronate; UDP-Α-D-glucuronic acid; UDP-alpha-D-Glucuronate; UDP-a-D-Glucuronic acid; UDP-delta-Glucuronate; UDP-D-Glucuronic acid; Acid, UDP glucuronic; Glucuronic acid, UDP; UDP-a-D-Glucuronate; UDP-Α-D-glucuronate; UDP Glucuronic acid; UDP-Glucuronic acid; UDPglucuronic acid; UDP-D-Glucuronate; UDP-Glucuronate; UDP Glucuronate; UDPglucuronate; UDP-GlcUA; UDP-GlcA; UDPGA; UGA; Uridine diphosphate glucuronic acid
数据库引用编号
31 个数据库交叉引用编号
- ChEBI: CHEBI:17200
- KEGG: C00167
- PubChem: 17473
- PubChem: 390
- HMDB: HMDB0000935
- Metlin: METLIN5884
- DrugBank: DB03041
- ChEMBL: CHEMBL228057
- Wikipedia: Uridine_diphosphate_glucuronic_acid
- MeSH: Uridine Diphosphate Glucuronic Acid
- MetaCyc: UDP-D-GALACTURONATE
- MetaCyc: UDP-GLUCURONATE
- KNApSAcK: C00007237
- KNApSAcK: C00007238
- foodb: FDB031240
- chemspider: 16522
- CAS: 63700-19-6
- CAS: 2616-64-0
- MoNA: PS037108
- MoNA: PR100622
- MoNA: PS037109
- MoNA: PS037104
- MoNA: PS037107
- MoNA: PS037106
- MoNA: PS037102
- PMhub: MS000005694
- PubChem: 3467
- PDB-CCD: UGA
- 3DMET: B01177
- NIKKAJI: J247.699A
- RefMet: UDP-glucuronic acid
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
602 个相关的代谢反应过程信息。
Reactome(28)
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Porphyrin metabolism:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme degradation:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Glucuronidation:
BIL + UDP-GlcA ⟶ BMG + UDP
- Metabolism of proteins:
EIF5A2 + NAD + SPM ⟶ 1,3-diaminopropane + H+ + H0ZKZ7 + NADH
- Post-translational protein modification:
EIF5A2 + NAD + SPM ⟶ 1,3-diaminopropane + H+ + H0ZKZ7 + NADH
- O-linked glycosylation:
PAPS ⟶ PAP
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O ⟶ CH3COO-
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O ⟶ CH3COO-
- A tetrasaccharide linker sequence is required for GAG synthesis:
UDP-Xyl ⟶ UDP
- HS-GAG biosynthesis:
H2O ⟶ CH3COO-
- Chondroitin sulfate/dermatan sulfate metabolism:
PAPS + chondroitin(3)-core proteins ⟶ C4S-PG + PAP
- Chondroitin sulfate biosynthesis:
PAPS + chondroitin(3)-core proteins ⟶ C4S-PG + PAP
- Chondroitin sulfate biosynthesis:
Q8IG72 + UDP-GlcA ⟶ Q8IG72 + UDP
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + SAH ⟶ Ade-Rib + HCYS
- Glucuronidation:
G1P + UTP ⟶ PPi + UDP-Glc
- Formation of the active cofactor, UDP-glucuronate:
G1P + UTP ⟶ PPi + UDP-Glc
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + SAH ⟶ Ade-Rib + HCYS
- Glucuronidation:
G1P + UTP ⟶ PPi + UDP-Glc
- Formation of the active cofactor, UDP-glucuronate:
G1P + UTP ⟶ PPi + UDP-Glc
- Formation of the active cofactor, UDP-glucuronate:
G1P + UTP ⟶ PPi + UDP-Glc
BioCyc(2)
- galactose degradation III:
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- colanic acid building blocks biosynthesis:
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
WikiPathways(4)
- Ascorbate and aldarate metabolism:
L-xylo-Hexulonolactone ⟶ L-Ascorbate
- Valproic acid pathway:
3-Hydroxyvalproic acid CoA ⟶ Propionyl-CoA
- Colanic acid building blocks biosynthesis:
alpha-D-Galactose ⟶ Alpha-D-Galactose-1-Phosphate
- Metabolic pathways of fibroblasts:
Pyruvate ⟶ Lactic acid
Plant Reactome(462)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- UDP-D-GlcA biosynthesis:
ATP + GlcA ⟶ ADP + D-glucuronate 1-phosphate
- UDPXyl biosynthesis:
H2O + NAD + UDP-Glc ⟶ NADH + UDP-GlcA
- Galactose degradation II:
ATP + Gal ⟶ ADP + Gal1P
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
ATP + GlcA ⟶ ADP + D-glucuronate 1-phosphate
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
ATP + beta-D-glucose ⟶ ADP + H+ + beta-D-glucose-6-phosphate
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
PPi + UDP-Glc ⟶ G1P + UTP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
PPi + UDP-Glc ⟶ G1P + UTP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
ATP + GlcA ⟶ ADP + D-glucuronate 1-phosphate
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
PPi + UDP-Glc ⟶ G1P + UTP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
PPi + UDP-Glc ⟶ G1P + UTP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
ATP + GlcA ⟶ ADP + D-glucuronate 1-phosphate
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- UDP-D-GlcA biosynthesis:
ATP + GlcA ⟶ ADP + D-glucuronate 1-phosphate
- UDPXyl biosynthesis:
H2O + NAD + UDP-Glc ⟶ NADH + UDP-GlcA
- Galactose degradation II:
ATP + Gal ⟶ ADP + Gal1P
- UDP-D-GlcA biosynthesis:
ATP + GlcA ⟶ ADP + D-glucuronate 1-phosphate
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
ATP + beta-D-glucose ⟶ ADP + H+ + beta-D-glucose-6-phosphate
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
ATP + GlcA ⟶ ADP + D-glucuronate 1-phosphate
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Carbohydrate metabolism:
ATP + Glycerol ⟶ ADP + G3P
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
H2O + NAD + UDP-Glc ⟶ NADH + UDP-GlcA
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- UDPXyl biosynthesis:
UDP-GlcA ⟶ UDP-Xyl + carbon dioxide
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(106)
- Sorafenib Metabolism Pathway:
Oxygen + Sorafenib + Water ⟶ Hydrogen peroxide + Sorafenib N-oxide
- Tamoxifen Action Pathway:
4-Hydroxytamoxifen + Phosphoadenosine phosphosulfate ⟶ 4-Hydroxytamoxifen sulfate + Adenosine 3',5'-diphosphate
- Tamoxifen Metabolism Pathway:
4-Hydroxytamoxifen + Phosphoadenosine phosphosulfate ⟶ 4-Hydroxytamoxifen sulfate + Adenosine 3',5'-diphosphate
- Nevirapine Metabolism Pathway:
12-Hydroxynevirapine + Oxygen + Water ⟶ 4-Carboxynevirapine + Hydrogen peroxide
- Colanic Acid Building Blocks Biosynthesis:
-D-Glucose + Phosphocarrier protein HPr ⟶ -D-Glucose 6-phosphate + Phosphocarrier protein HPr
- Porphyrin Metabolism:
AH2 + Heme + Oxygen ⟶ A + Biliverdin + Carbon monoxide + Fe2+ + Water
- Acute Intermittent Porphyria:
AH2 + Heme + Oxygen ⟶ A + Biliverdin + Carbon monoxide + Fe2+ + Water
- Porphyria Variegata (PV):
AH2 + Heme + Oxygen ⟶ A + Biliverdin + Carbon monoxide + Fe2+ + Water
- Congenital Erythropoietic Porphyria (CEP) or Gunther Disease:
AH2 + Heme + Oxygen ⟶ A + Biliverdin + Carbon monoxide + Fe2+ + Water
- Hereditary Coproporphyria (HCP):
AH2 + Heme + Oxygen ⟶ A + Biliverdin + Carbon monoxide + Fe2+ + Water
- Porphyrin Metabolism:
AH2 + Heme + Oxygen ⟶ A + Biliverdin + Carbon monoxide + Fe2+ + Water
- Porphyrin Metabolism:
AH2 + Heme + Oxygen ⟶ A + Biliverdin + Carbon monoxide + Fe2+ + Water
- Acute Intermittent Porphyria:
AH2 + Heme + Oxygen ⟶ A + Biliverdin + Carbon monoxide + Fe2+ + Water
- Congenital Erythropoietic Porphyria (CEP) or Gunther Disease:
AH2 + Heme + Oxygen ⟶ A + Biliverdin + Carbon monoxide + Fe2+ + Water
- Hereditary Coproporphyria (HCP):
AH2 + Heme + Oxygen ⟶ A + Biliverdin + Carbon monoxide + Fe2+ + Water
- Porphyria Variegata (PV):
AH2 + Heme + Oxygen ⟶ A + Biliverdin + Carbon monoxide + Fe2+ + Water
- Porphyrin Metabolism:
AH2 + Heme + Oxygen ⟶ A + Biliverdin + Carbon monoxide + Fe2+ + Water
- Porphyrin Metabolism:
AH2 + Heme + Oxygen ⟶ A + Biliverdin + Carbon monoxide + Fe2+ + Water
- Porphyrin Metabolism:
AH2 + Heme + Oxygen ⟶ A + Biliverdin + Carbon monoxide + Fe2+ + Water
- Acute Intermittent Porphyria:
AH2 + Heme + Oxygen ⟶ A + Biliverdin + Carbon monoxide + Fe2+ + Water
- Congenital Erythropoietic Porphyria (CEP) or Gunther Disease:
AH2 + Heme + Oxygen ⟶ A + Biliverdin + Carbon monoxide + Fe2+ + Water
- Hereditary Coproporphyria (HCP):
AH2 + Heme + Oxygen ⟶ A + Biliverdin + Carbon monoxide + Fe2+ + Water
- Porphyria Variegata (PV):
AH2 + Heme + Oxygen ⟶ A + Biliverdin + Carbon monoxide + Fe2+ + Water
- Estrone Metabolism:
2-Hydroxyestrone + S-Adenosylmethionine ⟶ 2-Methoxyestrone + S-Adenosylhomocysteine
- Estrone Metabolism:
2-Hydroxyestrone + S-Adenosylmethionine ⟶ 2-Methoxyestrone + S-Adenosylhomocysteine
- Estrone Metabolism:
2-Hydroxyestrone + S-Adenosylmethionine ⟶ 2-Methoxyestrone + S-Adenosylhomocysteine
- Estrone Metabolism:
2-Hydroxyestrone + S-Adenosylmethionine ⟶ 2-Methoxyestrone + S-Adenosylhomocysteine
- Estrone Metabolism:
2-Hydroxyestrone + S-Adenosylmethionine ⟶ 2-Methoxyestrone + S-Adenosylhomocysteine
- Estrone Metabolism:
2-Hydroxyestrone + S-Adenosylmethionine ⟶ 2-Methoxyestrone + S-Adenosylhomocysteine
- Nicotine Action Pathway:
Nicotine ⟶ Nornicotine
- Nicotine Metabolism Pathway:
Nicotine ⟶ Nornicotine
- Valproic Acid Metabolism Pathway:
Adenosine triphosphate + Coenzyme A + Valproic acid ⟶ Adenosine monophosphate + Pyrophosphate + Valproic acid CoA
- Nucleotide Sugars Metabolism:
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Galactosemia II (GALK):
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Galactosemia III:
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Nucleotide Sugars Metabolism:
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Galactosemia II (GALK):
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Galactosemia III:
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Nucleotide Sugars Metabolism:
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Nucleotide Sugars Metabolism:
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Nucleotide Sugars Metabolism:
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Nucleotide Sugars Metabolism:
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Galactosemia II (GALK):
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Galactosemia III:
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Phenytoin (Antiarrhythmic) Action Pathway:
Hydrogen Ion + NADPH + Oxygen + Phenytoin ⟶ NADP + Phenytoin arene-oxide + Water
- Androgen and Estrogen Metabolism:
Estradiol + NADP ⟶ Estrone + NADPH
- 17-beta Hydroxysteroid Dehydrogenase III Deficiency:
Estradiol + NADP ⟶ Estrone + NADPH
- Aromatase Deficiency:
Estradiol + NADP ⟶ Estrone + NADPH
- Androgen and Estrogen Metabolism:
Estradiol + NADP ⟶ Estrone + NADPH
- 17-beta Hydroxysteroid Dehydrogenase III Deficiency:
Estradiol + NADP ⟶ Estrone + NADPH
- Aromatase Deficiency:
Estradiol + NADP ⟶ Estrone + NADPH
- Androgen and Estrogen Metabolism:
Estradiol + NADP ⟶ Estrone + NADPH
- Androgen and Estrogen Metabolism:
Estradiol + NADP ⟶ Estrone + NADPH
- Androgen and Estrogen Metabolism:
Estradiol + NADP ⟶ Estrone + NADPH
- Androgen and Estrogen Metabolism:
Estradiol + NADP ⟶ Estrone + NADPH
- 17-beta Hydroxysteroid Dehydrogenase III Deficiency:
Estradiol + NADP ⟶ Estrone + NADPH
- Aromatase Deficiency:
Estradiol + NADP ⟶ Estrone + NADPH
- Androstenedione Metabolism:
Androstanedione + Hydrogen Ion + NADH ⟶ Androsterone + NAD
- Androstenedione Metabolism:
Androstanedione + Hydrogen Ion + NADH ⟶ Androsterone + NAD
- Androstenedione Metabolism:
Androstanedione + Hydrogen Ion + NADH ⟶ Androsterone + NAD
- Androstenedione Metabolism:
Androstanedione + Hydrogen Ion + NADH ⟶ Androsterone + NAD
- Androstenedione Metabolism:
Androstanedione + Hydrogen Ion + NADH ⟶ Androsterone + NAD
- Androstenedione Metabolism:
Androstanedione + Hydrogen Ion + NADH ⟶ Androsterone + NAD
- Morphine Action Pathway:
Morphine ⟶ Normorphine
- Morphine Metabolism Pathway:
Morphine ⟶ Normorphine
- Celecoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Celecoxib Metabolism Pathway:
Celecoxib + Hydrogen Ion + NADPH + Oxygen ⟶ Hydroxycelecoxib + NADP + Water
- Codeine Action Pathway:
Codeine + NADH + Oxygen ⟶ Formaldehyde + Morphine + NAD + Water
- Codeine Metabolism Pathway:
Codeine + NADH + Oxygen ⟶ Formaldehyde + Morphine + NAD + Water
- Starch and Sucrose Metabolism:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogen Synthetase Deficiency:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type III. Cori Disease, Debrancher Glycogenosis:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type IV. Amylopectinosis, Anderson Disease:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type VI. Hers Disease:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Mucopolysaccharidosis VII. Sly Syndrome:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Sucrase-Isomaltase Deficiency:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Starch and Sucrose Metabolism:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogen Synthetase Deficiency:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type III. Cori Disease, Debrancher Glycogenosis:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type IV. Amylopectinosis, Anderson Disease:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type VI. Hers Disease:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Mucopolysaccharidosis VII. Sly Syndrome:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Sucrase-Isomaltase Deficiency:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Starch and Sucrose Metabolism:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Starch and Sucrose Metabolism:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogen Synthetase Deficiency:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type III. Cori Disease, Debrancher Glycogenosis:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type IV. Amylopectinosis, Anderson Disease:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type VI. Hers Disease:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Mucopolysaccharidosis VII. Sly Syndrome:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Sucrase-Isomaltase Deficiency:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Irinotecan Action Pathway:
Adenosine triphosphate + Irinotecan + Water ⟶ Adenosine diphosphate + Irinotecan + Phosphate
- Irinotecan Metabolism Pathway:
Adenosine triphosphate + Irinotecan + Water ⟶ Adenosine diphosphate + Irinotecan + Phosphate
- Mycophenolic Acid Metabolism Pathway:
Adenosine triphosphate + Mycophenolic acid + Water ⟶ Adenosine diphosphate + Mycophenolic acid + Phosphate
- Ibuprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Etoposide Action Pathway:
Adenosine triphosphate + Etoposide + Water ⟶ Adenosine diphosphate + Etoposide + Phosphate
- Ibuprofen Metabolism Pathway:
3-Hydroxyibuprofen + Oxygen + Water ⟶ Carboxy-ibuprofen + Hydrogen peroxide
- Etoposide Metabolism Pathway:
Adenosine triphosphate + Etoposide + Water ⟶ Adenosine diphosphate + Etoposide + Phosphate
- Tramadol Metabolism Pathway:
NADH + Oxygen + Tramadol ⟶ Formaldehyde + N-Desmethyltramadol + NAD + Water
- Acetaminophen Metabolism Pathway:
Acetaminophen + Phosphoadenosine phosphosulfate ⟶ Adenosine 3',5'-diphosphate + Paracetamol sulfate
- Artemether Metabolism Pathway:
Artemether + NADH + Oxygen ⟶ Dihydroartemisinin (DHA) + Formaldehyde + NAD + Water
- Ascorbate Biosynthesis:
Hydrogen Ion + NADPH + aldehydo-D-glucuronate ⟶ Gulonic acid + NADP
- Amino Sugar and Nucleotide Sugar Metabolism III:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Polymyxin Resistance:
L-Glutamic acid + UDP- -L-threo-pentapyranos-4-ulose ⟶ Oxoglutaric acid + UDP-4-amino-4-deoxy- -L-arabinopyranose
- Amino Sugar and Nucleotide Sugar Metabolism III:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Polymyxin Resistance:
L-Glutamic acid + UDP- -L-threo-pentapyranos-4-ulose ⟶ Oxoglutaric acid + UDP-4-amino-4-deoxy- -L-arabinopyranose
PharmGKB(0)
3 个相关的物种来源信息
- 3702 - Arabidopsis thaliana: 10.1007/S00425-005-1553-1
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Ze Li, Shaoguo Ru, Jiali Li, Yunjia Yang, Weiwei Wang. Continuous exposure to bisphenol S increases the accumulation of endogenous metabolic toxicants by obstructing the glucuronic acid pathway.
Environmental pollution (Barking, Essex : 1987).
2023 Sep; 336(?):122433. doi:
10.1016/j.envpol.2023.122433
. [PMID: 37659633] - Megan E Mitchell, Petia Z Gatzeva-Topalova, Austin D Bargmann, Tarek Sammakia, Marcelo C Sousa. Targeting the Conformational Change in ArnA Dehydrogenase for Selective Inhibition of Polymyxin Resistance.
Biochemistry.
2023 Jul; ?(?):. doi:
10.1021/acs.biochem.3c00227
. [PMID: 37410993] - Yue Li, Dongming Yan, Jingyi Jin, Bo Tan, Xi Chen, Bin Zou, Guochao Song, Fengyi Weng, Chenghai Liu, Furong Qiu. Clarify the potential cholestatic hepatotoxicity components from Chinese Herb Medicine and metabolism's role via hBSEP vesicles and S9/hBSEP vesicles.
Toxicology in vitro : an international journal published in association with BIBRA.
2022 Apr; 80(?):105324. doi:
10.1016/j.tiv.2022.105324
. [PMID: 35101544] - Ilaria Caon, Arianna Parnigoni, Manuela Viola, Evgenia Karousou, Alberto Passi, Davide Vigetti. Cell Energy Metabolism and Hyaluronan Synthesis.
The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.
2021 01; 69(1):35-47. doi:
10.1369/0022155420929772
. [PMID: 32623953] - Pramod C Nair, Nuy Chau, Ross A McKinnon, John O Miners. Arginine-259 of UGT2B7 Confers UDP-Sugar Selectivity.
Molecular pharmacology.
2020 12; 98(6):710-718. doi:
10.1124/molpharm.120.000104
. [PMID: 33008919] - Soo Yeon Chung, Hikaru Seki, Yukiko Fujisawa, Yoshikazu Shimoda, Susumu Hiraga, Yuhta Nomura, Kazuki Saito, Masao Ishimoto, Toshiya Muranaka. A cellulose synthase-derived enzyme catalyses 3-O-glucuronosylation in saponin biosynthesis.
Nature communications.
2020 11; 11(1):5664. doi:
10.1038/s41467-020-19399-0
. [PMID: 33199711] - Eva Hansmann, Elvira Mennillo, Emiko Yoda, Mélanie Verreault, Olivier Barbier, Shujuan Chen, Robert H Tukey. Differential Role of Liver X Receptor (LXR) α and LXRβ in the Regulation of UDP-Glucuronosyltransferase 1A1 in Humanized UGT1 Mice.
Drug metabolism and disposition: the biological fate of chemicals.
2020 04; 48(4):255-263. doi:
10.1124/dmd.119.090068
. [PMID: 31980500] - Meng Zhang, Fu-Dong Li, Kai Li, Zi-Long Wang, Yu-Xi Wang, Jun-Bin He, Hui-Fei Su, Zhong-Yi Zhang, Chang-Biao Chi, Xiao-Meng Shi, Cai-Hong Yun, Zhi-Yong Zhang, Zhen-Ming Liu, Liang-Ren Zhang, Dong-Hui Yang, Ming Ma, Xue Qiao, Min Ye. Functional Characterization and Structural Basis of an Efficient Di-C-glycosyltransferase from Glycyrrhiza glabra.
Journal of the American Chemical Society.
2020 02; 142(7):3506-3512. doi:
10.1021/jacs.9b12211
. [PMID: 31986016] - Yuhta Nomura, Hikaru Seki, Tomonori Suzuki, Kiyoshi Ohyama, Masaharu Mizutani, Tomomi Kaku, Keita Tamura, Eiichiro Ono, Manabu Horikawa, Hiroshi Sudo, Hiroaki Hayashi, Kazuki Saito, Toshiya Muranaka. Functional specialization of UDP-glycosyltransferase 73P12 in licorice to produce a sweet triterpenoid saponin, glycyrrhizin.
The Plant journal : for cell and molecular biology.
2019 09; 99(6):1127-1143. doi:
10.1111/tpj.14409
. [PMID: 31095780] - Nuy Chau, Leyla Kaya, Benjamin C Lewis, Peter I Mackenzie, John O Miners. Drug and Chemical Glucosidation by Control Supersomes and Membranes from Spodoptera frugiperda (Sf) 9 Cells: Implications for the Apparent Glucuronidation of Xenobiotics by UDP-glucuronosyltransferase 1A5.
Drug metabolism and disposition: the biological fate of chemicals.
2019 03; 47(3):271-278. doi:
10.1124/dmd.118.084947
. [PMID: 30541877] - Justine Badée, Nahong Qiu, Neil Parrott, Abby C Collier, Stephan Schmidt, Stephen Fowler. Optimization of Experimental Conditions of Automated Glucuronidation Assays in Human Liver Microsomes Using a Cocktail Approach and Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry.
Drug metabolism and disposition: the biological fate of chemicals.
2019 02; 47(2):124-134. doi:
10.1124/dmd.118.084301
. [PMID: 30478159] - Yin Yao Dong, Hua Wang, Ashley C W Pike, Stephen A Cochrane, Sadra Hamedzadeh, Filip J Wyszyński, Simon R Bushell, Sylvain F Royer, David A Widdick, Andaleeb Sajid, Helena I Boshoff, Yumi Park, Ricardo Lucas, Wei-Min Liu, Seung Seo Lee, Takuya Machida, Leanne Minall, Shahid Mehmood, Katsiaryna Belaya, Wei-Wei Liu, Amy Chu, Leela Shrestha, Shubhashish M M Mukhopadhyay, Claire Strain-Damerell, Rod Chalk, Nicola A Burgess-Brown, Mervyn J Bibb, Clifton E Barry Iii, Carol V Robinson, David Beeson, Benjamin G Davis, Elisabeth P Carpenter. Structures of DPAGT1 Explain Glycosylation Disease Mechanisms and Advance TB Antibiotic Design.
Cell.
2018 11; 175(4):1045-1058.e16. doi:
10.1016/j.cell.2018.10.037
. [PMID: 30388443] - Hyesoo Jeong, Jimin Lee, Soolin Kim, Yoo Yeon Yeo, Hyunyoung So, Honghua Wu, Yun Seon Song, Chang-Young Jang, Hee-Doo Kim, Min Jung Kim, Minsun Chang. Hepatic Metabolism of Sakuranetin and Its Modulating Effects on Cytochrome P450s and UDP-Glucuronosyltransferases.
Molecules (Basel, Switzerland).
2018 Jun; 23(7):. doi:
10.3390/molecules23071542
. [PMID: 29949932] - S R Salinas, A A Petruk, N G Brukman, M I Bianco, M Jacobs, M A Marti, L Ielpi. Binding of the substrate UDP-glucuronic acid induces conformational changes in the xanthan gum glucuronosyltransferase.
Protein engineering, design & selection : PEDS.
2016 06; 29(6):197-207. doi:
10.1093/protein/gzw007
. [PMID: 27099353] - Benedikt Warth, Gerald Siegwart, Marc Lemmens, Rudolf Krska, Gerhard Adam, Rainer Schuhmacher. Hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry for the quantification of uridine diphosphate-glucose, uridine diphosphate-glucuronic acid, deoxynivalenol and its glucoside: In-house validation and application to wheat.
Journal of chromatography. A.
2015 Dec; 1423(?):183-9. doi:
10.1016/j.chroma.2015.10.070
. [PMID: 26554298] - Xu C Duan, Ai M Lu, Bin Gu, Zhi P Cai, Hong Y Ma, Shuang Wei, Pedro Laborda, Li Liu, Josef Voglmeir. Functional characterization of the UDP-xylose biosynthesis pathway in Rhodothermus marinus.
Applied microbiology and biotechnology.
2015 Nov; 99(22):9463-72. doi:
10.1007/s00253-015-6683-1
. [PMID: 26033773] - Chitra Bhatia, Stephanie Oerum, James Bray, Kathryn L Kavanagh, Naeem Shafqat, Wyatt Yue, Udo Oppermann. Towards a systematic analysis of human short-chain dehydrogenases/reductases (SDR): Ligand identification and structure-activity relationships.
Chemico-biological interactions.
2015 Jun; 234(?):114-25. doi:
10.1016/j.cbi.2014.12.013
. [PMID: 25526675] - Zhufeng Wu, Hongming Liu, Baojian Wu. Regioselective glucuronidation of gingerols by human liver microsomes and expressed UDP-glucuronosyltransferase enzymes: reaction kinetics and activity correlation analyses for UGT1A9 and UGT2B7.
The Journal of pharmacy and pharmacology.
2015 Apr; 67(4):583-96. doi:
10.1111/jphp.12351
. [PMID: 25496264] - Utz Fischer, Simon Hertlein, Clemens Grimm. The structure of apo ArnA features an unexpected central binding pocket and provides an explanation for enzymatic cooperativity.
Acta crystallographica. Section D, Biological crystallography.
2015 Mar; 71(Pt 3):687-96. doi:
10.1107/s1399004714026686
. [PMID: 25760615] - Adrian Semeniuk, Christian Sohlenkamp, Katarzyna Duda, Georg Hölzl. A bifunctional glycosyltransferase from Agrobacterium tumefaciens synthesizes monoglucosyl and glucuronosyl diacylglycerol under phosphate deprivation.
The Journal of biological chemistry.
2014 Apr; 289(14):10104-14. doi:
10.1074/jbc.m113.519298
. [PMID: 24558041] - Davide Vigetti, Manuela Viola, Evgenia Karousou, Giancarlo De Luca, Alberto Passi. Metabolic control of hyaluronan synthases.
Matrix biology : journal of the International Society for Matrix Biology.
2014 Apr; 35(?):8-13. doi:
10.1016/j.matbio.2013.10.002
. [PMID: 24134926] - Roman Gangl, Robert Behmüller, Raimund Tenhaken. Molecular cloning of a novel glucuronokinase/putative pyrophosphorylase from zebrafish acting in an UDP-glucuronic acid salvage pathway.
PloS one.
2014; 9(2):e89690. doi:
10.1371/journal.pone.0089690
. [PMID: 24586965] - Nenad Manevski, Jari Yli-Kauhaluoma, Moshe Finel. UDP-glucuronic acid binds first and the aglycone substrate binds second to form a ternary complex in UGT1A9-catalyzed reactions, in both the presence and absence of bovine serum albumin.
Drug metabolism and disposition: the biological fate of chemicals.
2012 Nov; 40(11):2192-203. doi:
10.1124/dmd.112.047746
. [PMID: 22912433] - Yuelin Song, Xiaojuan Yang, Yong Jiang, Pengfei Tu. Characterization of the metabolism of sibiricaxanthone F and its aglycone in vitro by high performance liquid chromatography coupled with Q-trap mass spectrometry.
Journal of pharmaceutical and biomedical analysis.
2012 Nov; 70(?):700-7. doi:
10.1016/j.jpba.2012.06.038
. [PMID: 22819207] - Mitsuhiro Nishihara, Miyako Sudo, Naohiro Kawaguchi, Junzo Takahashi, Yutaka Kiyota, Takahiro Kondo, Satoru Asahi. An unusual metabolic pathway of sipoglitazar, a novel antidiabetic agent: cytochrome P450-catalyzed oxidation of sipoglitazar acyl glucuronide.
Drug metabolism and disposition: the biological fate of chemicals.
2012 Feb; 40(2):249-58. doi:
10.1124/dmd.111.040105
. [PMID: 22028317] - Bryan Broach, Xiaogang Gu, Maor Bar-Peled. Biosynthesis of UDP-glucuronic acid and UDP-galacturonic acid in Bacillus cereus subsp. cytotoxis NVH 391-98.
The FEBS journal.
2012 Jan; 279(1):100-12. doi:
10.1111/j.1742-4658.2011.08402.x
. [PMID: 22023070] - Rebecca Reboul, Claudia Geserick, Martin Pabst, Beat Frey, Doris Wittmann, Ursula Lütz-Meindl, Renaud Léonard, Raimund Tenhaken. Down-regulation of UDP-glucuronic acid biosynthesis leads to swollen plant cell walls and severe developmental defects associated with changes in pectic polysaccharides.
The Journal of biological chemistry.
2011 Nov; 286(46):39982-92. doi:
10.1074/jbc.m111.255695
. [PMID: 21949134] - Nenad Manevski, Paolo Svaluto Moreolo, Jari Yli-Kauhaluoma, Moshe Finel. Bovine serum albumin decreases Km values of human UDP-glucuronosyltransferases 1A9 and 2B7 and increases Vmax values of UGT1A9.
Drug metabolism and disposition: the biological fate of chemicals.
2011 Nov; 39(11):2117-29. doi:
10.1124/dmd.111.041418
. [PMID: 21856742] - Ana I Loureiro, Carlos Fernandes-Lopes, Maria J Bonifácio, Lyndon C Wright, Patricio Soares-da-Silva. Hepatic UDP-glucuronosyltransferase is responsible for eslicarbazepine glucuronidation.
Drug metabolism and disposition: the biological fate of chemicals.
2011 Sep; 39(9):1486-94. doi:
10.1124/dmd.111.038620
. [PMID: 21673130] - Haizheng Hong, Hong Su, Li Ma, Ming Yao, Ramaswamy A Iyer, W Griffith Humphreys, Lisa J Christopher. In vitro characterization of the metabolic pathways and cytochrome P450 inhibition and induction potential of BMS-690514, an ErbB/vascular endothelial growth factor receptor inhibitor.
Drug metabolism and disposition: the biological fate of chemicals.
2011 Sep; 39(9):1658-67. doi:
10.1124/dmd.111.039776
. [PMID: 21673131] - Mukesh K Mahajan, Vinita Uttamsingh, Liang-Shang Gan, Barbara Leduc, David A Williams. Identification and characterization of oxymetazoline glucuronidation in human liver microsomes: evidence for the involvement of UGT1A9.
Journal of pharmaceutical sciences.
2011 Feb; 100(2):784-93. doi:
10.1002/jps.22303
. [PMID: 20669329] - Hee E Kang, Se I Sohn, Seung R Baek, Jee W Lee, Myung G Lee. Effects of acute renal failure induced by uranyl nitrate on the pharmacokinetics of liquiritigenin and its two glucuronides, M1 and M2, in rats.
The Journal of pharmacy and pharmacology.
2011 Jan; 63(1):49-57. doi:
10.1111/j.2042-7158.2010.01175.x
. [PMID: 21155815] - Donglu Zhang, Nirmala Raghavan, Lifei Wang, Yongjun Xue, Mary Obermeier, Stephanie Chen, Shiwei Tao, Hao Zhang, Peter T Cheng, Wenying Li, Ragu Ramanathan, Zheng Yang, W Griffith Humphreys. Plasma stability-dependent circulation of acyl glucuronide metabolites in humans: how circulating metabolite profiles of muraglitazar and peliglitazar can lead to misleading risk assessment.
Drug metabolism and disposition: the biological fate of chemicals.
2011 Jan; 39(1):123-31. doi:
10.1124/dmd.110.035048
. [PMID: 20876787] - Jin Zhou, Timothy S Tracy, Rory P Remmel. Bilirubin glucuronidation revisited: proper assay conditions to estimate enzyme kinetics with recombinant UGT1A1.
Drug metabolism and disposition: the biological fate of chemicals.
2010 Nov; 38(11):1907-11. doi:
10.1124/dmd.110.033829
. [PMID: 20668247] - Yu-Qi He, Li Yang, Hui-Xin Liu, Jiang-Wei Zhang, Yong Liu, Alan Fong, Ai-Zhen Xiong, Yan-Liu Lu, Ling Yang, Chang-Hong Wang, Zheng-Tao Wang. Glucuronidation, a new metabolic pathway for pyrrolizidine alkaloids.
Chemical research in toxicology.
2010 Mar; 23(3):591-9. doi:
10.1021/tx900328f
. [PMID: 20092275] - Isao Horiuchi, Yuya Kato, Arisa Nakamura, Kazuya Ishida, Masato Taguchi, Yukiya Hashimoto. Inhibitory and stimulative effects of amiodarone on metabolism of carvedilol in human liver microsomes.
Biological & pharmaceutical bulletin.
2010; 33(4):717-20. doi:
10.1248/bpb.33.717
. [PMID: 20410613] - Arijit Das, Yixing Zhou, Andrei A Ivanov, Rhonda L Carter, T Kendall Harden, Kenneth A Jacobson. Enhanced potency of nucleotide-dendrimer conjugates as agonists of the P2Y14 receptor: multivalent effect in G protein-coupled receptor recognition.
Bioconjugate chemistry.
2009 Aug; 20(8):1650-9. doi:
10.1021/bc900206g
. [PMID: 19572637] - Hyojin Ko, Arijit Das, Rhonda L Carter, Ingrid P Fricks, Yixing Zhou, Andrei A Ivanov, Artem Melman, Bhalchandra V Joshi, Pavol Kovác, Jan Hajduch, Kenneth L Kirk, T Kendall Harden, Kenneth A Jacobson. Molecular recognition in the P2Y(14) receptor: Probing the structurally permissive terminal sugar moiety of uridine-5'-diphosphoglucose.
Bioorganic & medicinal chemistry.
2009 Jul; 17(14):5298-311. doi:
10.1016/j.bmc.2009.05.024
. [PMID: 19502066] - Ingrid P Fricks, Rhonda L Carter, Eduardo R Lazarowski, T Kendall Harden. Gi-dependent cell signaling responses of the human P2Y14 receptor in model cell systems.
The Journal of pharmacology and experimental therapeutics.
2009 Jul; 330(1):162-8. doi:
10.1124/jpet.109.150730
. [PMID: 19339661] - Anja Maria Pieslinger, Marion Christine Hoepflinger, Raimund Tenhaken. Nonradioactive enzyme measurement by high-performance liquid chromatography of partially purified sugar-1-kinase (glucuronokinase) from pollen of Lilium longiflorum.
Analytical biochemistry.
2009 May; 388(2):254-9. doi:
10.1016/j.ab.2009.03.002
. [PMID: 19272347] - Mitch A Phelps, Thomas S Lin, Amy J Johnson, Eunju Hurh, Darlene M Rozewski, Katherine L Farley, Di Wu, Kristie A Blum, Beth Fischer, Sarah M Mitchell, Mollie E Moran, Michelle Brooker-McEldowney, Nyla A Heerema, David Jarjoura, Larry J Schaaf, John C Byrd, Michael R Grever, James T Dalton. Clinical response and pharmacokinetics from a phase 1 study of an active dosing schedule of flavopiridol in relapsed chronic lymphocytic leukemia.
Blood.
2009 Mar; 113(12):2637-45. doi:
10.1182/blood-2008-07-168583
. [PMID: 18981292] - Wei Zeng, Mohor Chatterjee, Ahmed Faik. UDP-Xylose-stimulated glucuronyltransferase activity in wheat microsomal membranes: characterization and role in glucurono(arabino)xylan biosynthesis.
Plant physiology.
2008 May; 147(1):78-91. doi:
10.1104/pp.107.115576
. [PMID: 18359844] - Jenny Kaeding, Emmanuel Bouchaert, Julie Bélanger, Patrick Caron, Sarah Chouinard, Mélanie Verreault, Olivier Larouche, Georges Pelletier, Bart Staels, Alain Bélanger, Olivier Barbier. Activators of the farnesoid X receptor negatively regulate androgen glucuronidation in human prostate cancer LNCAP cells.
The Biochemical journal.
2008 Mar; 410(2):245-53. doi:
10.1042/bj20071136
. [PMID: 17988216] - Amrita V Kamath, Jian Wang, Francis Y Lee, Punit H Marathe. Preclinical pharmacokinetics and in vitro metabolism of dasatinib (BMS-354825): a potent oral multi-targeted kinase inhibitor against SRC and BCR-ABL.
Cancer chemotherapy and pharmacology.
2008 Mar; 61(3):365-76. doi:
10.1007/s00280-007-0478-8
. [PMID: 17429625] - R K Kuester, I G Sipes. Prediction of metabolic clearance of bisphenol A (4,4 '-dihydroxy-2,2-diphenylpropane) using cryopreserved human hepatocytes.
Drug metabolism and disposition: the biological fate of chemicals.
2007 Oct; 35(10):1910-5. doi:
10.1124/dmd.107.014787
. [PMID: 17646283] - Theunis C Goosen, Jonathan N Bauman, John A Davis, Chongwoo Yu, Susan I Hurst, J Andrew Williams, Cho-Ming Loi. Atorvastatin glucuronidation is minimally and nonselectively inhibited by the fibrates gemfibrozil, fenofibrate, and fenofibric acid.
Drug metabolism and disposition: the biological fate of chemicals.
2007 Aug; 35(8):1315-24. doi:
10.1124/dmd.107.015230
. [PMID: 17470524] - Shingo Sakamoto, Hiroyuki Kusuhara, Kenji Miyata, Hiroyuki Shimaoka, Takushi Kanazu, Yumiko Matsuo, Kohji Nomura, Noboru Okamura, Seijiro Hara, Kazutoshi Horie, Takahiko Baba, Yuichi Sugiyama. Glucuronidation converting methyl 1-(3,4-dimethoxyphenyl)-3-(3-ethylvaleryl)-4-hydroxy-6,7,8-trimethoxy-2-naphthoate (S-8921) to a potent apical sodium-dependent bile acid transporter inhibitor, resulting in a hypocholesterolemic action.
The Journal of pharmacology and experimental therapeutics.
2007 Aug; 322(2):610-8. doi:
10.1124/jpet.106.116426
. [PMID: 17470645] - Hyojin Ko, Ingrid Fricks, Andrei A Ivanov, T Kendall Harden, Kenneth A Jacobson. Structure-activity relationship of uridine 5'-diphosphoglucose analogues as agonists of the human P2Y14 receptor.
Journal of medicinal chemistry.
2007 May; 50(9):2030-9. doi:
10.1021/jm061222w
. [PMID: 17407275] - G S J Mannens, J Hendrickx, C G M Janssen, S Chien, B Van Hoof, T Verhaeghe, M Kao, M F Kelley, I Goris, M Bockx, B Verreet, M Bialer, W Meuldermans. The absorption, metabolism, and excretion of the novel neuromodulator RWJ-333369 (1,2-ethanediol, [1-2-chlorophenyl]-, 2-carbamate, [S]-) in humans.
Drug metabolism and disposition: the biological fate of chemicals.
2007 Apr; 35(4):554-65. doi:
10.1124/dmd.106.011940
. [PMID: 16936066] - Jie Cao, Xiao Chen, Jun Liang, Xue-Qing Yu, An-Long Xu, Eli Chan, Duan Wei, Min Huang, Jing-Yuan Wen, Xi-Yong Yu, Xiao-Tian Li, Fwu-Shan Sheu, Shu-Feng Zhou. Role of P-glycoprotein in the intestinal absorption of glabridin, an active flavonoid from the root of Glycyrrhiza glabra.
Drug metabolism and disposition: the biological fate of chemicals.
2007 Apr; 35(4):539-53. doi:
10.1124/dmd.106.010801
. [PMID: 17220245] - Hitomi Mori, Kazuhiko Takahashi, Takaharu Mizutani. Interaction between valproic acid and carbapenem antibiotics.
Drug metabolism reviews.
2007; 39(4):647-57. doi:
10.1080/03602530701690341
. [PMID: 18058328] - Zhesheng Chen, Tom G Holt, James V Pivnichny, Kwan Leung. A simple in vitro model to study the stability of acylglucuronides.
Journal of pharmacological and toxicological methods.
2007 Jan; 55(1):91-5. doi:
10.1016/j.vascn.2006.03.008
. [PMID: 16713308] - Takuji Oka, Yoshifumi Jigami. Reconstruction of de novo pathway for synthesis of UDP-glucuronic acid and UDP-xylose from intrinsic UDP-glucose in Saccharomyces cerevisiae.
The FEBS journal.
2006 Jun; 273(12):2645-57. doi:
10.1111/j.1742-4658.2006.05281.x
. [PMID: 16817893] - Gareth J Williams, Steven D Breazeale, Christian R H Raetz, James H Naismith. Structure and function of both domains of ArnA, a dual function decarboxylase and a formyltransferase, involved in 4-amino-4-deoxy-L-arabinose biosynthesis.
The Journal of biological chemistry.
2005 Jun; 280(24):23000-8. doi:
10.1074/jbc.m501534200
. [PMID: 15809294] - Petia Z Gatzeva-Topalova, Andrew P May, Marcelo C Sousa. Structure and mechanism of ArnA: conformational change implies ordered dehydrogenase mechanism in key enzyme for polymyxin resistance.
Structure (London, England : 1993).
2005 Jun; 13(6):929-42. doi:
10.1016/j.str.2005.03.018
. [PMID: 15939024] - Hidefumi Kaji, Toshiyuki Kume. Regioselective glucuronidation of denopamine: marked species differences and identification of human udp-glucuronosyltransferase isoform.
Drug metabolism and disposition: the biological fate of chemicals.
2005 Mar; 33(3):403-12. doi:
10.1124/dmd.104.002667
. [PMID: 15608137] - Shin'ya Sawada, Hirokazu Suzuki, Fumiko Ichimaida, Masa-Atsu Yamaguchi, Takashi Iwashita, Yuko Fukui, Hisashi Hemmi, Tokuzo Nishino, Toru Nakayama. UDP-glucuronic acid:anthocyanin glucuronosyltransferase from red daisy (Bellis perennis) flowers. Enzymology and phylogenetics of a novel glucuronosyltransferase involved in flower pigment biosynthesis.
The Journal of biological chemistry.
2005 Jan; 280(2):899-906. doi:
10.1074/jbc.m410537200
. [PMID: 15509561] - Petia Z Gatzeva-Topalova, Andrew P May, Marcelo C Sousa. Crystal structure of Escherichia coli ArnA (PmrI) decarboxylase domain. A key enzyme for lipid A modification with 4-amino-4-deoxy-L-arabinose and polymyxin resistance.
Biochemistry.
2004 Oct; 43(42):13370-9. doi:
10.1021/bi048551f
. [PMID: 15491143] - Vanessa Crespy, Nathalie Nancoz, Manuel Oliveira, Jörg Hau, Marie-Claude Courtet-Compondu, Gary Williamson. Glucuronidation of the green tea catechins, (-)-epigallocatechin-3-gallate and (-)-epicatechin-3-gallate, by rat hepatic and intestinal microsomes.
Free radical research.
2004 Sep; 38(9):1025-31. doi:
10.1080/10715760410001728424
. [PMID: 15621722] - Paraskevi Tsoutsikos, John O Miners, Alan Stapleton, Anthony Thomas, Benedetta C Sallustio, Kathleen M Knights. Evidence that unsaturated fatty acids are potent inhibitors of renal UDP-glucuronosyltransferases (UGT): kinetic studies using human kidney cortical microsomes and recombinant UGT1A9 and UGT2B7.
Biochemical pharmacology.
2004 Jan; 67(1):191-9. doi:
10.1016/j.bcp.2003.08.025
. [PMID: 14667942] - Gwendolyn E Kuehl, Sharon E Murphy. N-glucuronidation of trans-3'-hydroxycotinine by human liver microsomes.
Chemical research in toxicology.
2003 Dec; 16(12):1502-6. doi:
10.1021/tx034173o
. [PMID: 14680362] - Brian T Ethell, Jens Riedel, Heinrich Englert, Herbert Jantz, Raymond Oekonomopulos, Brian Burchell. Glucuronidation of HMR1098 in human microsomes: evidence for the involvement of UGT1A1 in the formation of S-glucuronides.
Drug metabolism and disposition: the biological fate of chemicals.
2003 Aug; 31(8):1027-34. doi:
10.1124/dmd.31.8.1027
. [PMID: 12867491] - I Yamada, H Fujino, S Shimada, J Kojima. Metabolic fate of pitavastatin, a new inhibitor of HMG-CoA reductase: similarities and difference in the metabolism of pitavastatin in monkeys and humans.
Xenobiotica; the fate of foreign compounds in biological systems.
2003 Jul; 33(7):789-803. doi:
10.1080/0049825031000121635
. [PMID: 12893526] - David H Keating, Michael G Willits, Sharon R Long. A Sinorhizobium meliloti lipopolysaccharide mutant altered in cell surface sulfation.
Journal of bacteriology.
2002 Dec; 184(23):6681-9. doi:
10.1128/jb.184.23.6681-6689.2002
. [PMID: 12426356] - Omar Ghosheh, Edward M Hawes. Microsomal N-glucuronidation of nicotine and cotinine: human hepatic interindividual, human intertissue, and interspecies hepatic variation.
Drug metabolism and disposition: the biological fate of chemicals.
2002 Dec; 30(12):1478-83. doi:
10.1124/dmd.30.12.1478
. [PMID: 12433822] - William Turner, Frederik C Botha. Purification and kinetic properties of UDP-glucose dehydrogenase from sugarcane.
Archives of biochemistry and biophysics.
2002 Nov; 407(2):209-16. doi:
10.1016/s0003-9861(02)00500-3
. [PMID: 12413493] - Shufeng Zhou, Philip Kestell, James W Paxton. Predicting pharmacokinetics and drug interactions in patients from in vitro and in vivo models: the experience with 5,6-dimethylxanthenone-4-acetic acid (DMXAA), an anti-cancer drug eliminated mainly by conjugation.
Drug metabolism reviews.
2002 Nov; 34(4):751-90. doi:
10.1081/dmr-120015693
. [PMID: 12487149] - Ho-Yon Hwang, H Robert Horvitz. The SQV-1 UDP-glucuronic acid decarboxylase and the SQV-7 nucleotide-sugar transporter may act in the Golgi apparatus to affect Caenorhabditis elegans vulval morphogenesis and embryonic development.
Proceedings of the National Academy of Sciences of the United States of America.
2002 Oct; 99(22):14218-23. doi:
10.1073/pnas.172522199
. [PMID: 12391314] - Thomayant Prueksaritanont, Raju Subramanian, Xiaojun Fang, Bennett Ma, Yue Qiu, Jiunn H Lin, Paul G Pearson, Thomas A Baillie. Glucuronidation of statins in animals and humans: a novel mechanism of statin lactonization.
Drug metabolism and disposition: the biological fate of chemicals.
2002 May; 30(5):505-12. doi:
10.1124/dmd.30.5.505
. [PMID: 11950779] - Nariyasu Mano, Koji Nishimura, Takashi Narui, Shigeo Ikegawa, Junichi Goto. Characterization of rat liver bile acid acyl glucuronosyltransferase.
Steroids.
2002 Mar; 67(3-4):257-62. doi:
10.1016/s0039-128x(01)00162-3
. [PMID: 11856549] - Steven D Breazeale, Anthony A Ribeiro, Christian R H Raetz. Oxidative decarboxylation of UDP-glucuronic acid in extracts of polymyxin-resistant Escherichia coli. Origin of lipid a species modified with 4-amino-4-deoxy-L-arabinose.
The Journal of biological chemistry.
2002 Jan; 277(4):2886-96. doi:
10.1074/jbc.m109377200
. [PMID: 11706007] - R T Cartee, W T Forsee, J W Jensen, J Yother. Expression of the Streptococcus pneumoniae type 3 synthase in Escherichia coli. Assembly of type 3 polysaccharide on a lipid primer.
The Journal of biological chemistry.
2001 Dec; 276(52):48831-9. doi:
10.1074/jbc.m106481200
. [PMID: 11684683] - A Basu, R Basu, P Shah, A Vella, C M Johnson, M Jensen, K S Nair, W F Schwenk, R A Rizza. Type 2 diabetes impairs splanchnic uptake of glucose but does not alter intestinal glucose absorption during enteral glucose feeding: additional evidence for a defect in hepatic glucokinase activity.
Diabetes.
2001 Jun; 50(6):1351-62. doi:
10.2337/diabetes.50.6.1351
. [PMID: 11375336] - P Berninsone, H Y Hwang, I Zemtseva, H R Horvitz, C B Hirschberg. SQV-7, a protein involved in Caenorhabditis elegans epithelial invagination and early embryogenesis, transports UDP-glucuronic acid, UDP-N- acetylgalactosamine, and UDP-galactose.
Proceedings of the National Academy of Sciences of the United States of America.
2001 Mar; 98(7):3738-43. doi:
10.1073/pnas.061593098
. [PMID: 11259660] - M Cappiello, L Giuliani, A Rane, G M Pacifici. Uridine 5'-diphosphoglucuronic acid (UDPGLcUA) in the human fetal liver, kidney and placenta.
European journal of drug metabolism and pharmacokinetics.
2000 Jul; 25(3-4):161-3. doi:
10.1007/bf03192308
. [PMID: 11420884] - M C Tsai, J W Gorrod. Evidence for the biosynthesis of A glucuronide conjugate of (S)-(-)-nicotine, but not (S)-(-)-cotinine or (+/-)-trans-3'-hydroxycotinine by marmoset hepatic microsomes.
Drug metabolism and drug interactions.
1999; 15(4):223-37. doi:
10.1515/dmdi.1999.15.4.223
. [PMID: 10716038] - A Kereszt, E Kiss, B L Reuhs, R W Carlson, A Kondorosi, P Putnoky. Novel rkp gene clusters of Sinorhizobium meliloti involved in capsular polysaccharide production and invasion of the symbiotic nodule: the rkpK gene encodes a UDP-glucose dehydrogenase.
Journal of bacteriology.
1998 Oct; 180(20):5426-31. doi:
10.1128/jb.180.20.5426-5431.1998
. [PMID: 9765575] - Adrián A Vojnov, Angeles Zorreguieta, J Maxwell Dow, Michael J Daniels, Marcelo A Dankert. Evidence for a role for the gumB and gumC gene products in the formation of xanthan from its pentasaccharide repeating unit by Xanthomonas campestris.
Microbiology (Reading, England).
1998 Jun; 144 ( Pt 6)(?):1487-1493. doi:
10.1099/00221287-144-6-1487
. [PMID: 9639919] - B T Zhu, J Lech, R T Rosen, A H Conney. Effect of dietary 2(3)-tert-butyl-4-hydroxyanisole on the metabolism and action of estradiol and estrone in female CD-1 mice.
Cancer research.
1997 Jun; 57(12):2419-27. doi:
. [PMID: 9192820]
- N M Malinowski, R L Cysyk, E M August. A filter paper assay for hyaluronic acid synthetase: application to the enzyme from Swiss 3T3 fibroblasts.
Biochemistry and molecular biology international.
1995 Apr; 35(5):1123-32. doi:
. [PMID: 7549931]
- K Liljebjelke, R Adolphson, K Baker, R L Doong, D Mohnen. Enzymatic synthesis and purification of uridine diphosphate [14C]galacturonic acid: a substrate for pectin biosynthesis.
Analytical biochemistry.
1995 Mar; 225(2):296-304. doi:
10.1006/abio.1995.1158
. [PMID: 7762795] - R Chorné, C Mendoza, J Pisanty, N Castro, A Loría. [Increase of conjugated bilirubin in diabetics].
Revista de investigacion clinica; organo del Hospital de Enfermedades de la Nutricion.
1994 May; 46(3):237-9. doi:
NULL
. [PMID: 7973148] - J Liu, Y Liu, C Madhu, C D Klaassen. Protective effects of oleanolic acid on acetaminophen-induced hepatotoxicity in mice.
The Journal of pharmacology and experimental therapeutics.
1993 Sep; 266(3):1607-13. doi:
. [PMID: 8371159]
- G Bánhegyi, T Garzó, R Fulceri, A Benedetti, J Mandl. Latency is the major determinant of UDP-glucuronosyltransferase activity in isolated hepatocytes.
FEBS letters.
1993 Aug; 328(1-2):149-52. doi:
10.1016/0014-5793(93)80983-2
. [PMID: 8393805] - M F Grubb, J Kasofsky, J Strong, L W Anderson, R L Cysyk. Serum stimulation of UDP-glucose dehydrogenase activity in Swiss 3T3 fibroblasts.
Biochemistry and molecular biology international.
1993 Aug; 30(5):819-27. doi:
NULL
. [PMID: 8220234] - L Ielpi, R O Couso, M A Dankert. Sequential assembly and polymerization of the polyprenol-linked pentasaccharide repeating unit of the xanthan polysaccharide in Xanthomonas campestris.
Journal of bacteriology.
1993 May; 175(9):2490-500. doi:
10.1128/jb.175.9.2490-2500.1993
. [PMID: 7683019] - E M August, K L Duncan, N M Malinowski, R L Cysyk. Inhibition of fibroblast hyaluronic acid production by suramin.
Oncology research.
1993; 5(10-11):415-22. doi:
NULL
. [PMID: 8054702] - E M Cretton, M Y Xie, N M Goudgaon, R F Schinazi, C K Chu, J P Sommadossi. Catabolic disposition of 3'-azido-2',3'-dideoxyuridine in hepatocytes with evidence of azido reduction being a general catabolic pathway of 3'-azido-2',3'-dideoxynucleosides.
Biochemical pharmacology.
1992 Sep; 44(5):973-80. doi:
10.1016/0006-2952(92)90130-b
. [PMID: 1326966] - E J Pozzi, E A Garay, A D Mottino. Analysis of the interaction uridin 5'-diphosphoglucuronic acid with intestinal bilirubin UDP-glucuronyltransferase.
The International journal of biochemistry.
1992 Sep; 24(9):1429-34. doi:
10.1016/0020-711x(92)90068-c
. [PMID: 1426523] - S R Babu, V M Lakshmi, F F Hsu, T V Zenser, B B Davis. Role of N-glucuronidation in benzidine-induced bladder cancer in dog.
Carcinogenesis.
1992 Jul; 13(7):1235-40. doi:
10.1093/carcin/13.7.1235
. [PMID: 1638692] - M E Milla, C A Clairmont, C B Hirschberg. Reconstitution into proteoliposomes and partial purification of the Golgi apparatus membrane UDP-galactose, UDP-xylose, and UDP-glucuronic acid transport activities.
The Journal of biological chemistry.
1992 Jan; 267(1):103-7. doi:
. [PMID: 1730575]
- Y Adachi, T Kamisako, T Yamamoto. The effects of temporary occlusion of the superior mesenteric vein or splenic vein on biliary bilirubin and bile acid excretion in rats.
The Journal of laboratory and clinical medicine.
1991 Sep; 118(3):261-8. doi:
. [PMID: 1919299]
- M H Davies, R C Schnell. Oltipraz-induced amelioration of acetaminophen hepatotoxicity in hamsters. II. Competitive shunt in metabolism via glucuronidation.
Toxicology and applied pharmacology.
1991 Jun; 109(1):29-40. doi:
10.1016/0041-008x(91)90188-k
. [PMID: 2038747] - G F Bories, E F Perdu-Durand, J F Sutra, J E Tulliez. Evidence for glucuronidation and sulfation of zeranol and metabolites (taleranol and zearalanone) by rat and pig hepatic subfractions.
Drug metabolism and disposition: the biological fate of chemicals.
1991 Jan; 19(1):140-3. doi:
NULL
. [PMID: 1673387] - M Cappiello, L Giuliani, G M Pacifici. Distribution of UDP-glucuronosyltransferase and its endogenous substrate uridine 5'-diphosphoglucuronic acid in human tissues.
European journal of clinical pharmacology.
1991; 41(4):345-50. doi:
10.1007/bf00314965
. [PMID: 1804651] - G E Henderson, R M Mason. Stimulation of chondrocyte UDP-glucuronate pools by a serum component.
Biochemical Society transactions.
1990 Oct; 18(5):966. doi:
10.1042/bst0180966
. [PMID: 2083771] - P C Smith, L Z Benet, A F McDonagh. Covalent binding of zomepirac glucuronide to proteins: evidence for a Schiff base mechanism.
Drug metabolism and disposition: the biological fate of chemicals.
1990 Sep; 18(5):639-44. doi:
NULL
. [PMID: 1981713] - D W Zaharevitz, C A Chisena, R L Cysyk. Rapid increase of cellular UDP-glucuronide after mitogen stimulation of quiescent 3T3 mouse fibroblasts.
Biochemistry international.
1990; 20(6):1067-76. doi:
NULL
. [PMID: 2196057] - Z Gregus, C Madhu, D Goon, C D Klaassen. Effect of galactosamine-induced hepatic UDP-glucuronic acid depletion on acetaminophen elimination in rats. Dispositional differences between hepatically and extrahepatically formed glucuronides of acetaminophen and other chemicals.
Drug metabolism and disposition: the biological fate of chemicals.
1988 Jul; 16(4):527-33. doi:
. [PMID: 2903018]