Cyclothiazide (BioDeep_00000009375)

 

Secondary id: BioDeep_00000408824

human metabolite blood metabolite


代谢物信息卡片


3-{bicyclo[2.2.1]hept-5-en-2-yl}-6-chloro-1,1-dioxo-3,4-dihydro-2H-1λ⁶,2,4-benzothiadiazine-7-sulfonamide

化学式: C14H16ClN3O4S2 (389.0271)
中文名称: 环噻嗪
谱图信息: 最多检出来源 not specific(not specific) 0%

分子结构信息

SMILES: C1C2CC(C1C=C2)C3NC4=CC(=C(C=C4S(=O)(=O)N3)S(=O)(=O)N)Cl
InChI: InChI=1S/C14H16ClN3O4S2/c15-10-5-11-13(6-12(10)23(16,19)20)24(21,22)18-14(17-11)9-4-7-1-2-8(9)3-7/h1-2,5-9,14,17-18H,3-4H2,(H2,16,19,20)

描述信息

As a diuretic, cyclothiazide inhibits active chloride reabsorption at the early distal tubule via the Na-Cl cotransporter, resulting in an increase in the excretion of sodium, chloride, and water. Thiazides like cyclothiazide also inhibit sodium ion transport across the renal tubular epithelium through binding to the thiazide sensitive sodium-chloride transporter. This results in an increase in potassium excretion via the sodium-potassium exchange mechanism. The antihypertensive mechanism of cyclothiazide is less well understood although it may be mediated through its action on carbonic anhydrases in the smooth muscle or through its action on the large-conductance calcium-activated potassium (KCa) channel, also found in the smooth muscle. Cyclothiazide is indicated as adjunctive therapy in edema associated with congestive heart failure, hepatic cirrhosis, and corticosteroid and estrogen therapy. It is also indicated in the management of hypertension either as the sole therapeutic agent or to enhance the effectiveness of other antihypertensive drugs in the more severe forms of hypertension.
C - Cardiovascular system > C03 - Diuretics > C03A - Low-ceiling diuretics, thiazides > C03AA - Thiazides, plain
C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49185 - Thiazide Diuretic
D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents
D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents
D045283 - Natriuretic Agents > D004232 - Diuretics
Same as: D01256
Cyclothiazide, a positive allosteric modulator of AMPA receptors, is used frequently to block the desensitization of both native and heterologously expressed AMPA receptors. Cyclothiazide is known to produce a fast inhibition of AMPA receptor desensitization and a much slower potentiation of the AMPA current[1].

同义名列表

15 个代谢物同义名

3-{bicyclo[2.2.1]hept-5-en-2-yl}-6-chloro-1,1-dioxo-3,4-dihydro-2H-1λ⁶,2,4-benzothiadiazine-7-sulfonamide; 6-Chloro-3,4-dihydro-3-(2-norbornen-5-yl)-2H-1,2,4-benzothiadiazine-7-sulphonamide 1,1-dioxide; 6-Chloro-3,4-dihydro-3-(5-norbornen-2-yl)-2H-1,2,4-benzothiadiazine-7-sulphonamide 1,1-dioxide; 6-Chloro-3,4-dihydro-3-(2-norbornen-5-yl)-2H-1,2,4-benzothiadiazine-7-sulfonamide 1,1-dioxide; 6-Chloro-3,4-dihydro-3-(5-norbornen-2-yl)-2H-1,2,4-benzothiadiazine-7-sulfonamide 1,1-dioxide; 6-Chloro-3,4-dihydro-3-(2-norbornen-5-yl)-7-sulphamoyl-1,2,4-benzothiadiazine 1,1-dioxide; 6-Chloro-3-(2-norbornen-5-yl)-7-sulphamyl-3,4-dihydro-1,2,4-benzothiadiazine 1,1-dioxide; 6-Chloro-3,4-dihydro-3-(2-norbornen-5-yl)-7-sulfamoyl-1,2,4-benzothiadiazine 1,1-dioxide; 6-Chloro-3-(2-norbornen-5-yl)-7-sulfamyl-3,4-dihydro-1,2,4-benzothiadiazine 1,1-dioxide; Cyclothiazidum; cyclothiazide; Ciclotiazida; Ciclotiazide; Anhydron; Cyclothiazide



数据库引用编号

15 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 6 BDNF, CA1, CA3, GFAP, GRM5, NTRK2
Endosome membrane 1 NTRK2
Endoplasmic reticulum membrane 1 GRIA1
Nucleus 2 ARID3B, GRM1
cytosol 5 CA1, CA3, GFAP, GRIA1, NTRK2
dendrite 8 BDNF, GRIA1, GRIA2, GRIA4, GRIK3, GRM1, GRM5, NTRK2
nucleoplasm 3 ARID3B, CD2, GRIK2
Cell membrane 13 CD2, GRIA1, GRIA2, GRIA3, GRIA4, GRID1, GRIK1, GRIK2, GRIK3, GRM1, GRM5, NTRK2, SLC1A2
Cell projection, axon 1 NTRK2
Early endosome membrane 2 GRIA1, NTRK2
Multi-pass membrane protein 12 CACNA1I, GRIA1, GRIA2, GRIA3, GRIA4, GRID1, GRIK1, GRIK2, GRIK3, GRM1, GRM5, SLC1A2
Synapse 1 GRIA1
cell surface 4 CACNG2, CD2, GRIA1, SLC1A2
dendritic shaft 2 GRIA1, GRM5
glutamatergic synapse 8 CACNG2, GRIA1, GRID1, GRIK2, GRIK3, GRM1, GRM5, SLC1A2
Golgi apparatus 1 CD2
neuromuscular junction 1 GRIA1
neuronal cell body 4 GRIA1, GRIA2, GRIA4, GRM5
postsynapse 2 GRIA2, GRM5
presynaptic membrane 4 GRIK1, GRIK2, GRIK3, SLC1A2
synaptic vesicle 1 BDNF
Presynapse 1 GRIA1
plasma membrane 15 CACNA1I, CACNG2, CD2, GRIA1, GRIA2, GRIA3, GRIA4, GRID1, GRIK1, GRIK2, GRIK3, GRM1, GRM5, NTRK2, SLC1A2
synaptic vesicle membrane 1 GRIA1
terminal bouton 3 GRIK2, GRIK3, NTRK2
Membrane 10 BDNF, CACNA1I, GRIA1, GRIA2, GRIA4, GRIK2, GRIK3, GRM5, NTRK2, SLC1A2
axon 3 BDNF, GRIK3, NTRK2
extracellular exosome 2 CA1, GRID1
endoplasmic reticulum 1 GRIK2
extracellular space 1 BDNF
perinuclear region of cytoplasm 2 BDNF, NTRK2
Schaffer collateral - CA1 synapse 3 CACNG2, GRM1, GRM5
protein-containing complex 1 CD2
intracellular membrane-bounded organelle 1 GRIK1
postsynaptic density 4 GRIA1, GRIA2, GRIK2, NTRK2
Single-pass type I membrane protein 2 CD2, NTRK2
Secreted 1 BDNF
extracellular region 2 BDNF, CD2
cytoplasmic side of plasma membrane 1 CD2
astrocyte end-foot 1 GFAP
excitatory synapse 2 GRIA1, GRIA2
hippocampal mossy fiber to CA3 synapse 2 CACNG2, GRIK2
neuronal cell body membrane 1 GRIA1
external side of plasma membrane 3 CD2, GRIA1, GRIA2
Extracellular vesicle 1 GRIA4
dendritic spine 6 GRIA1, GRIA2, GRIA3, GRIA4, GRM5, NTRK2
perikaryon 2 GRIK2, GRIK3
neuron spine 1 GRIA1
Early endosome 1 NTRK2
cell-cell junction 2 CD2, GRIA1
recycling endosome 1 GRIA1
vesicle 1 SLC1A2
postsynaptic membrane 8 GRIA1, GRIA2, GRIA3, GRIA4, GRID1, GRIK1, GRIK2, GRIK3
presynaptic active zone membrane 1 GRIA1
Cytoplasm, perinuclear region 1 NTRK2
Membrane raft 1 SLC1A2
axolemma 1 SLC1A2
GABA-ergic synapse 1 GRID1
Cell projection, dendritic spine 1 GRIA1
intermediate filament 1 GFAP
Postsynaptic cell membrane 9 GRIA1, GRIA2, GRIA3, GRIA4, GRID1, GRIK1, GRIK2, GRIK3, GRM1
dendrite cytoplasm 2 GRIK2, GRIK3
kainate selective glutamate receptor complex 3 GRIK1, GRIK2, GRIK3
mossy fiber rosette 1 GRIK2
receptor complex 1 NTRK2
cell projection 2 GFAP, GRIK2
postsynaptic density, intracellular component 1 GRIA1
Recycling endosome membrane 1 GRIA1
AMPA glutamate receptor complex 5 CACNG2, GRIA1, GRIA2, GRIA3, GRIA4
Cell projection, dendrite 3 GRIA1, GRIA4, NTRK2
Presynaptic cell membrane 1 GRIK2
cell body 2 GFAP, SLC1A2
intermediate filament cytoskeleton 1 GFAP
synaptic membrane 1 GRIA1
endoplasmic reticulum lumen 1 BDNF
axon terminus 1 NTRK2
voltage-gated calcium channel complex 2 CACNA1I, CACNG2
endocytic vesicle membrane 5 CACNG2, GRIA1, GRIA2, GRIA3, GRIA4
cerebellar mossy fiber 1 CACNG2
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 GRIA1
postsynaptic density membrane 11 CACNG2, GRIA1, GRIA2, GRIA3, GRIA4, GRID1, GRIK1, GRIK2, GRIK3, GRM1, GRM5
postsynaptic endocytic zone 1 GRIA2
ER to Golgi transport vesicle membrane 1 GRIA1
parallel fiber to Purkinje cell synapse 1 GRIA3
Synapse, synaptosome 1 CACNG2
somatodendritic compartment 1 CACNG2
dendritic spine membrane 1 GRIA1
astrocyte projection 2 GRM5, SLC1A2
cytoplasmic side of lysosomal membrane 1 GFAP
asymmetric synapse 1 GRIA2
neuron projection terminus 1 SLC1A2
proximal dendrite 1 GRIA1
[Neurotrophic factor BDNF precursor form]: Secreted 1 BDNF
axonal spine 1 GRIA1
perisynaptic space 1 GRIA1
membrane protein complex 1 SLC1A2
G protein-coupled receptor dimeric complex 1 GRM1
G protein-coupled receptor homodimeric complex 1 GRM1


文献列表

  • Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. Cell reports. 2021 04; 35(4):109040. doi: 10.1016/j.celrep.2021.109040. [PMID: 33910017]
  • Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein. Molecular pharmacology. 2019 11; 96(5):629-640. doi: 10.1124/mol.119.115964. [PMID: 31515284]
  • Jelena Baranovic, Chandra S Ramanujan, Nahoko Kasai, Charles R Midgett, Dean R Madden, Keiichi Torimitsu, John F Ryan. Reconstitution of homomeric GluA2(flop) receptors in supported lipid membranes: functional and structural properties. The Journal of biological chemistry. 2013 Mar; 288(12):8647-8657. doi: 10.1074/jbc.m112.422105. [PMID: 23382380]
  • Xiao-Bing Zhang, Guang-Chun Sun, Lu-Ying Liu, Fang Yu, Tian-Le Xu. Alpha2 subunit specificity of cyclothiazide inhibition on glycine receptors. Molecular pharmacology. 2008 Apr; 73(4):1195-202. doi: 10.1124/mol.107.042655. [PMID: 18162605]
  • Nicholas A Mitchell, Mark W Fleck. Targeting AMPA receptor gating processes with allosteric modulators and mutations. Biophysical journal. 2007 Apr; 92(7):2392-402. doi: 10.1529/biophysj.106.095091. [PMID: 17208968]
  • Anna Pittaluga, Marco Feligioni, Fabio Longordo, Elisa Luccini, Maurizio Raiteri. Trafficking of presynaptic AMPA receptors mediating neurotransmitter release: neuronal selectivity and relationships with sensitivity to cyclothiazide. Neuropharmacology. 2006 Mar; 50(3):286-96. doi: 10.1016/j.neuropharm.2005.09.004. [PMID: 16242162]
  • Olivia N Dumitrescu, Dario A Protti, Sriparna Majumdar, Hanns Ulrich Zeilhofer, Heinz Wässle. Ionotropic glutamate receptors of amacrine cells of the mouse retina. Visual neuroscience. 2006 Jan; 23(1):79-90. doi: 10.1017/s0952523806231079. [PMID: 16597352]
  • Erika Suzuki, Markus Kessler, Amy C Arai. C-terminal truncation affects kinetic properties of GluR1 receptors. Molecular and cellular neurosciences. 2005 May; 29(1):1-10. doi: 10.1016/j.mcn.2005.01.004. [PMID: 15866042]
  • Shi-Yong Huang, Yu Liu, Pei-Ji Liang. Role of Ca2+ store in AMPA-triggered Ca2+ dynamics in retinal horizontal cells. Neuroreport. 2004 Oct; 15(15):2311-5. doi: 10.1097/00001756-200410250-00002. [PMID: 15640746]
  • Ilona Kovács, Agnes Simon, Eva Szárics, Péter Barabás, László Héja, Lajos Nyikos, Julianna Kardos. Cyclothiazide binding to functionally active AMPA receptor reveals genuine allosteric interaction with agonist binding sites. Neurochemistry international. 2004 Mar; 44(4):271-80. doi: 10.1016/s0197-0186(03)00137-2. [PMID: 14602090]
  • A C Arai, Y-F Xia, E Suzuki. Modulation of AMPA receptor kinetics differentially influences synaptic plasticity in the hippocampus. Neuroscience. 2004; 123(4):1011-24. doi: 10.1016/j.neuroscience.2003.10.033. [PMID: 14751292]
  • Jennifer C Quirk, Eric S Nisenbaum. Multiple molecular determinants for allosteric modulation of alternatively spliced AMPA receptors. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2003 Nov; 23(34):10953-62. doi: 10.1523/jneurosci.23-34-10953.2003. [PMID: 14645491]
  • F F Youssef, J I Addae, A McRae, T W Stone. Long-term potentiation protects rat hippocampal slices from the effects of acute hypoxia. Brain research. 2001 Jul; 907(1-2):144-50. doi: 10.1016/s0006-8993(01)02594-x. [PMID: 11430897]
  • K M Partin. Domain interactions regulating ampa receptor desensitization. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2001 Mar; 21(6):1939-48. doi: 10.1523/jneurosci.21-06-01939.2001. [PMID: 11245679]
  • J Y Chatton, P Marquet, P J Magistretti. A quantitative analysis of L-glutamate-regulated Na+ dynamics in mouse cortical astrocytes: implications for cellular bioenergetics. The European journal of neuroscience. 2000 Nov; 12(11):3843-53. doi: 10.1046/j.1460-9568.2000.00269.x. [PMID: 11069579]
  • Y Uwai, H Saito, Y Hashimoto, K I Inui. Interaction and transport of thiazide diuretics, loop diuretics, and acetazolamide via rat renal organic anion transporter rOAT1. The Journal of pharmacology and experimental therapeutics. 2000 Oct; 295(1):261-5. doi: . [PMID: 10991988]
  • T Itoh, U R Reddy, J L Stern, M Chen, A Itoh, D Pleasure. Diminished calcium homeostasis and increased susceptibility to excitotoxicity of JS 3/16 progenitor cells after differentiation to oligodendroglia. Glia. 2000 Aug; 31(2):165-80. doi: 10.1002/1098-1136(200008)31:2<165::aid-glia80>3.0.co;2-#. [PMID: 10878603]
  • M Kessler, G Rogers, A Arai. The norbornenyl moiety of cyclothiazide determines the preference for flip-flop variants of AMPA receptor subunits. Neuroscience letters. 2000 Jun; 287(2):161-5. doi: 10.1016/s0304-3940(00)01180-0. [PMID: 10854736]
  • K Kohda, Y Wang, M Yuzaki. Mutation of a glutamate receptor motif reveals its role in gating and delta2 receptor channel properties. Nature neuroscience. 2000 Apr; 3(4):315-22. doi: 10.1038/73877. [PMID: 10725919]
  • M A Varney, S P Rao, C Jachec, C Deal, S D Hess, L P Daggett, F Lin, E C Johnson, G Veliçelebi. Pharmacological characterization of the human ionotropic glutamate receptor subtype GluR3 stably expressed in mammalian cells. The Journal of pharmacology and experimental therapeutics. 1998 Apr; 285(1):358-70. doi: . [PMID: 9536032]
  • M R Young, S M Fleetwood-Walker, T Dickinson, G Blackburn-Munro, H Sparrow, P J Birch, C Bountra. Behavioural and electrophysiological evidence supporting a role for group I metabotropic glutamate receptors in the mediation of nociceptive inputs to the rat spinal cord. Brain research. 1997 Nov; 777(1-2):161-9. doi: . [PMID: 9449425]
  • M Hennegriff, A Arai, M Kessler, P Vanderklish, M S Mutneja, G Rogers, R L Neve, G Lynch. Stable expression of recombinant AMPA receptor subunits: binding affinities and effects of allosteric modulators. Journal of neurochemistry. 1997 Jun; 68(6):2424-34. doi: 10.1046/j.1471-4159.1997.68062424.x. [PMID: 9166736]
  • J R Savidge, D R Bristow. Distribution of Ca(2+)-permeable AMPA receptors among cultured rat cerebellar granule cells. Neuroreport. 1997 May; 8(8):1877-82. doi: 10.1097/00001756-199705260-00017. [PMID: 9223069]
  • A Yoshioka, B Bacskai, D Pleasure. Pathophysiology of oligodendroglial excitotoxicity. Journal of neuroscience research. 1996 Nov; 46(4):427-37. doi: 10.1002/(sici)1097-4547(19961115)46:4<427::aid-jnr4>3.0.co;2-i. [PMID: 8950702]
  • K M Partin, M W Fleck, M L Mayer. AMPA receptor flip/flop mutants affecting deactivation, desensitization, and modulation by cyclothiazide, aniracetam, and thiocyanate. The Journal of neuroscience : the official journal of the Society for Neuroscience. 1996 Nov; 16(21):6634-47. doi: . [PMID: 8824304]
  • L A Raymond, A Moshaver, W G Tingley, R L Huganir. Glutamate receptor ion channel properties predict vulnerability to cytotoxicity in a transfected nonneuronal cell line. Molecular and cellular neurosciences. 1996 Feb; 7(2):102-15. doi: 10.1006/mcne.1996.0008. [PMID: 8731479]
  • D Bleakman, B A Ballyk, D D Schoepp, A J Palmer, C P Bath, E F Sharpe, M L Woolley, H R Bufton, R K Kamboj, I Tarnawa, D Lodge. Activity of 2,3-benzodiazepines at native rat and recombinant human glutamate receptors in vitro: stereospecificity and selectivity profiles. Neuropharmacology. 1996; 35(12):1689-702. doi: 10.1016/s0028-3908(96)00156-6. [PMID: 9076748]
  • T H Johansen, A Chaudhary, T A Verdoorn. Interactions among GYKI-52466, cyclothiazide, and aniracetam at recombinant AMPA and kainate receptors. Molecular pharmacology. 1995 Nov; 48(5):946-55. doi: . [PMID: 7476926]
  • K M Partin, D Bowie, M L Mayer. Structural determinants of allosteric regulation in alternatively spliced AMPA receptors. Neuron. 1995 Apr; 14(4):833-43. doi: 10.1016/0896-6273(95)90227-9. [PMID: 7718245]
  • X Jeunemaitre, A Charru, G Chatellier, P Degoulet, J Julien, P F Plouin, P Corvol, J Ménard. Long-term metabolic effects of spironolactone and thiazides combined with potassium-sparing agents for treatment of essential hypertension. The American journal of cardiology. 1988 Nov; 62(16):1072-7. doi: 10.1016/0002-9149(88)90551-6. [PMID: 3189169]
  • J T Salonen, P Ylitalo. Antihypertensive, saluretic and hypokalaemic effects of cyclothiazide in comparison with hydrochlorthiazide with amiloride supplement. European journal of clinical pharmacology. 1982; 22(6):495-9. doi: 10.1007/bf00609621. [PMID: 7128662]