Subcellular Location: serotonergic synapse

Found 500 associated metabolites.

3 associated genes. HTR1B, HTT, SLC6A4

Ginsenoside RE

2-[(2-{[5,16-dihydroxy-2,6,6,10,11-pentamethyl-14-(6-methyl-2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}hept-5-en-2-yl)tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-8-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol

C48H82O18 (946.5501)


Ginsenoside Re is a ginsenoside found in Panax ginseng that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 6 and 20 have been converted to the corresponding alpha-L-rhamnopyranosyl-(1->2)-beta-D-glucopyranoside and beta-D-glucopyranoside respectively, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite, an antioxidant, a neuroprotective agent, an anti-inflammatory agent, an antineoplastic agent and a nephroprotective agent. It is a 12beta-hydroxy steroid, a 3beta-hydroxy steroid, a beta-D-glucoside, a ginsenoside, a tetracyclic triterpenoid, a disaccharide derivative and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. Ginsenoside B2 is under investigation in clinical trial NCT00781534 (A Clinical Trial of Ginseng in Diabetes). Ginsenoside Re is a natural product found in Panax vietnamensis, Luffa aegyptiaca, and other organisms with data available. See also: Asian Ginseng (part of); American Ginseng (part of); Panax notoginseng root (part of). Ginsenoside B2 is found in tea. Ginsenoside B2 is a constituent of Panax ginseng (ginseng) and Panax japonicum (Japanese ginseng) Constituent of Panax ginseng (ginseng) and Panax japonicum (Japanese ginseng). Ginsenoside B2 is found in tea. Ginsenoside Re (Ginsenoside B2) is an extract from Panax notoginseng. Ginsenoside Re decreases the β-amyloid protein (Aβ). Ginsenoside Re plays a role in antiinflammation through inhibition of JNK and NF-κB. Ginsenoside Re (Ginsenoside B2) is an extract from Panax notoginseng. Ginsenoside Re decreases the β-amyloid protein (Aβ). Ginsenoside Re plays a role in antiinflammation through inhibition of JNK and NF-κB.

   

Ginsenoside Rd

2-{[2-(5-{[4,5-dihydroxy-6-(hydroxymethyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-16-hydroxy-2,6,6,10,11-pentamethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl)-6-methylhept-5-en-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C48H82O18 (946.5501)


Ginsenoside Rd is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is (20S)-ginsenoside Rg3 in which the hydroxy group at position 20 has been converted to its beta-D-glucopyranoside. It has a role as a vulnerary, a neuroprotective agent, an apoptosis inducer, an anti-inflammatory drug, an immunosuppressive agent and a plant metabolite. It is a ginsenoside, a beta-D-glucoside and a tetracyclic triterpenoid. It is functionally related to a (20S)-ginsenoside Rg3. Ginsenoside Rd is a natural product found in Panax vietnamensis, Gynostemma pentaphyllum, and other organisms with data available. See also: American Ginseng (part of); Panax notoginseng root (part of). Ginsenoside Rd is found in tea. Ginsenoside Rd is a constituent of Panax ginseng (ginseng) Constituent of Panax ginseng (ginseng). Ginsenoside Rd is found in tea. Ginsenoside Rd inhibits TNFα-induced NF-κB transcriptional activity with an IC50 of 12.05±0.82 μM in HepG2 cells. Ginsenoside Rd inhibits expression of COX-2 and iNOS mRNA. Ginsenoside Rd also inhibits Ca2+ influx. Ginsenoside Rd inhibits CYP2D6, CYP1A2, CYP3A4, and CYP2C9, with IC50s of 58.0±4.5 μM, 78.4±5.3 μM, 81.7±2.6 μM, and 85.1±9.1 μM, respectively. Ginsenoside Rd inhibits TNFα-induced NF-κB transcriptional activity with an IC50 of 12.05±0.82 μM in HepG2 cells. Ginsenoside Rd inhibits expression of COX-2 and iNOS mRNA. Ginsenoside Rd also inhibits Ca2+ influx. Ginsenoside Rd inhibits CYP2D6, CYP1A2, CYP3A4, and CYP2C9, with IC50s of 58.0±4.5 μM, 78.4±5.3 μM, 81.7±2.6 μM, and 85.1±9.1 μM, respectively.

   

alpha-Hederin

(4aS,6aS,6bR,8aR,9R,10S,12aR,12bR,14bS)-10-(((2S,3R,4S,5S)-4,5-Dihydroxy-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2-yl)oxy)-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C41H66O12 (750.4554)


Kalopanaxsaponin A is a triterpenoid saponin that is hederagenin attached to a 2-O-(6-deoxy-alpha-L-mannopyranosyl)-alpha-L-arabinopyranosyl residue at position 3 via a glycosidic linkage. It has been isolated from the stem bark of Kalopanax pictus. It has a role as an anti-inflammatory agent and a plant metabolite. It is a pentacyclic triterpenoid, a triterpenoid saponin, a disaccharide derivative and a hydroxy monocarboxylic acid. It is functionally related to a hederagenin. alpha-Hederin is a natural product found in Lonicera japonica, Hedera caucasigena, and other organisms with data available. A triterpenoid saponin that is hederagenin attached to a 2-O-(6-deoxy-alpha-L-mannopyranosyl)-alpha-L-arabinopyranosyl residue at position 3 via a glycosidic linkage. It has been isolated from the stem bark of Kalopanax pictus. alpha-Hederin (α-Hederin), a monodesmosidic triterpenoid saponin, exhibits promising antitumor potential against a variety of human cancer cell lines. alpha-Hederin could inhibit the proliferation and induce apoptosis of gastric cancer accompanied by glutathione decrement and reactive oxygen species generation via activating mitochondrial dependent pathway[1]. alpha-Hederin (α-Hederin), a monodesmosidic triterpenoid saponin, exhibits promising antitumor potential against a variety of human cancer cell lines. alpha-Hederin could inhibit the proliferation and induce apoptosis of gastric cancer accompanied by glutathione decrement and reactive oxygen species generation via activating mitochondrial dependent pathway[1].

   

Crocetin

(2E,4E,6E,8E,10E,12E,14E)-2,6,11,15-tetramethylhexadeca-2,4,6,8,10,12,14-heptaenedioic acid8,8-diapocarotene-8,8-dioic acid

C20H24O4 (328.1675)


Crocetin is a 20-carbon dicarboxylic acid which is a diterpenoid and natural carotenoid. Found in the crocus flower, it has been administered as an anti-fatigue dietary supplement. It has a role as a nutraceutical, a metabolite and an antioxidant. It is a carotenoic acid, a diterpenoid and a polyunsaturated dicarboxylic acid. It is a conjugate acid of a crocetin(2-). Vitamin A-analog that increases diffusivity of oxygen in aqueous solutions, including plasma. Crocetin is a natural product found in Verbascum lychnitis, Gardenia jasminoides, and other organisms with data available. cis-Crocetin is found in herbs and spices. cis-Crocetin is occurs as glycoside in saffro COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Occurs as glycoside in saffron. cis-Crocetin is found in herbs and spices. D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

alpha-Cyperone

(4aS,7R)-1,4a-dimethyl-7-prop-1-en-2-yl-3,4,5,6,7,8-hexahydronaphthalen-2-one

C15H22O (218.1671)


(+)-4,11-Eudesmadien-3-one is found in root vegetables. (+)-4,11-Eudesmadien-3-one is a constituent of Cyperus rotundus (nutgrass). alpha-Cyperone is a natural product found in Cyperus alopecuroides, Cyperus articulatus, and other organisms with data available. Constituent of Cyperus rotundus (nutgrass). (+)-4,11-Eudesmadien-3-one is found in root vegetables.

   

Protopine

15-methyl-7,9,19,21-tetraoxa-15-azapentacyclo[15.7.0.04,12.06,10.018,22]tetracosa-1(17),4,6(10),11,18(22),23-hexaen-3-one

C20H19NO5 (353.1263)


Protopine is a dibenzazecine alkaloid isolated from Fumaria vaillantii. It has a role as a plant metabolite. Protopine is a natural product found in Corydalis heterocarpa var. japonica, Fumaria capreolata, and other organisms with data available. Protopine is a benzylisoquinoline alkaloid occurring in opium poppies and other plants of the family papaveraceae. It has been found to inhibit histamine H1 receptors and platelet aggregation, and acts as an opioid analgesic. See also: Sanguinaria canadensis root (part of); Chelidonium majus flowering top (part of). Protopine is a benzylisoquinoline alkaloid occurring in opium poppies and other plants of the family papaveraceae. It has been found to inhibit histamine H1 receptors and platelet aggregation, and acts as an opioid analgesic [HMDB] Protopine is a benzylisoquinoline alkaloid occurring in opium poppies and other plants of the family papaveraceae. It has been found to inhibit histamine H1 receptors and platelet aggregation, and acts as an opioid analgesic. Protopine is an alkaloid occurring in opium poppy,[2] Corydalis tubers[3] and other plants of the family papaveraceae, like Fumaria officinalis.[4] Protopine is metabolically derived from the benzylisoquinoline alkaloid (S)-Reticuline through a progressive series of five enzymatic transformations: 1) berberine bridge enzyme to (S)-Scoulerine; 2) (S)-cheilanthifoline synthase/CYP719A25 to (S)-Cheilanthifoline; 3) (S)-stylopine synthase/CYP719A20 to (S)-Stylopine; 4) (S)-tetrahydroprotoberberine N-methyltransferase to (S)-cis-N-Methylstylopine; and ultimately, 5) N-methylstylopine hydroxylase to protopine.[5] It has been found to inhibit histamine H1 receptors and platelet aggregation, and acts as an analgesic.[6][7] Protopine (Corydinine), an isoquinoline alkaloid, is a specific reversible and competitive inhibitor of acetylcholinesterase. Protopine exhibits anti-inflammation, anti-microbial, anti-angiogenic and anti-tumour activity[1][2]. Protopine (Corydinine), an isoquinoline alkaloid, is a specific reversible and competitive inhibitor of acetylcholinesterase. Protopine exhibits anti-inflammation, anti-microbial, anti-angiogenic and anti-tumour activity[1][2].

   

Abrine

(2S)-3-(1H-indol-3-yl)-2-(methylamino)propanoic acid

C12H14N2O2 (218.1055)


N(alpha)-methyl-L-tryptophan is a N-methyl-L-alpha-amino acid that is the N(alpha)-methyl derivative of L-tryptophan. It has a role as an Escherichia coli metabolite. It is a L-tryptophan derivative and a N-methyl-L-alpha-amino acid. It is a tautomer of a N(alpha)-methyl-L-tryptophan zwitterion. N-Methyltryptophan is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). A N-methyl-L-alpha-amino acid that is the N(alpha)-methyl derivative of L-tryptophan. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.216 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.210 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.211 L-(+)-Abrine, a lethal albumin found in Abrus precatorius seeds, is an acute toxic alkaloid and chemical marker for abrin. L-(+)-Abrine, a lethal albumin found in Abrus precatorius seeds, is an acute toxic alkaloid and chemical marker for abrin.

   

Acetophenone

Acetophenone, TraceCERT(R), certified reference material

C8H8O (120.0575)


Acetophenone appears as a colorless liquid with a sweet pungent taste and odor resembling the odor of oranges. Freezes under cool conditions. Slightly soluble in water and denser than water. Hence sinks in water. Vapor heavier than air. A mild irritant to skin and eyes. Vapors can be narcotic in high concentrations. Used as a flavoring, solvent, and polymerization catalyst. Acetophenone is a methyl ketone that is acetone in which one of the methyl groups has been replaced by a phenyl group. It has a role as a photosensitizing agent, an animal metabolite and a xenobiotic. Acetophenone is used for fragrance in soaps and perfumes, as a flavoring agent in foods, and as a solvent for plastics and resins. Acute (short-term) exposure to acetophenone vapor may produce skin irritation and transient corneal injury in humans. No information is available on the chronic (long-term), reproductive, developmental, or carcinogenic effects of acetophenone in humans. EPA has classified acetophenone as a Group D, not classifiable as to human carcinogenicity. Acetophenone is a natural product found in Nepeta nepetella, Hypericum hyssopifolium, and other organisms with data available. Acetophenone is a metabolite found in or produced by Saccharomyces cerevisiae. Acetophenone is the organic compound with the formula C6H5C(O)CH3. It is the simplest aromatic ketone. This colourless, viscous liquid is a precursor to useful resins and fragrances. Acetophenone is found in chicory. Acetophenone is a flavouring ingredient used in fruit flavours. Acetophenone is a raw material for the synthesis of some pharmaceuticals and is also listed as an approved excipient by the U.S. FDA. In a 1994 report released by five top cigarette companies in the U.S., acetophenone was listed as one of the 599 additives to cigarettes. A methyl ketone that is acetone in which one of the methyl groups has been replaced by a phenyl group. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents Flavouring ingredient used in fruit flavours; leavening agent D003879 - Dermatologic Agents Acetophenone is an organic compound with simple structure[1]. Acetophenone is an organic compound with simple structure[1].

   

Tetrahydropalmatine

(13aS)-2,3,9,10-tetramethoxy-6,8,13,13a-tetrahydro-5H-isoquinolino[2,1-b]isoquinoline

C21H25NO4 (355.1783)


Tetrahydropalmatine is a berberine alkaloid obtained by formal addition of two molecules of hydrogen to the pyridine ring of palmatine. It has a role as an adrenergic agent, a non-narcotic analgesic and a dopaminergic antagonist. It is a berberine alkaloid, an organic heterotetracyclic compound and an an (S)-7,8,13,14-tetrahydroprotoberberine. It is functionally related to a palmatine. Tetrahydropalmatine is under investigation in clinical trial NCT02118610 (Treatment of Schizophrenia With L-tetrahydropalmatine (l-THP): a Novel Dopamine Antagonist With Anti-inflammatory and Antiprotozoal Activity). Tetrahydropalmatine is a natural product found in Corydalis heterocarpa, Ceratocapnos heterocarpa, and other organisms with data available. A berberine alkaloid obtained by formal addition of two molecules of hydrogen to the pyridine ring of palmatine. Tetrahydropalmatine (THP) is an isoquinoline alkaloid found in several different plant species, mainly in the genus Corydalis (Yan Hu Suo),[1][2] but also in other plants such as Stephania rotunda.[3] These plants have traditional uses in Chinese herbal medicine. The pharmaceutical industry has synthetically produced the more potent enantiomer Levo-tetrahydropalmatine (Levo-THP), which has been marketed worldwide under different brand names as an alternative to anxiolytic and sedative drugs of the benzodiazepine group and analgesics such as opiates. It is also sold as a dietary supplement. In 1940, a Vietnamese scientist Sang Dinh Bui extracted an alkaloid from the root of Stephania rotunda with the yield of 1.2–1.5\\\\\\\% and he named this compound rotundine. From 1950 to 1952, two Indian scientists studied and extracted from Stephania glabra another alkaloid named hyndanrine. In 1965, the structure of rotundine and hyndarin was proved to be the same as tetrahydropalmatine. Tetrahydropalmatine has been demonstrated to possess analgesic effects and may be beneficial in the treatment of heart disease and liver damage.[5][6] It is a blocker of voltage-activated L-type calcium channel active potassium channels.[citation needed] It is a potent muscle relaxant.[citation needed] It has also shown potential in the treatment of drug addiction to both cocaine and opiates, and preliminary human studies have shown promising results.[7][8][9] The pharmacological profile of l-THP includes antagonism of dopamine D1, and D2 receptors as well as actions at dopamine D3, alpha adrenergic and serotonin receptors. The Ki values for l-THP at D1 and D2 dopamine receptors are approximately 124 nM (D1) and 388 nM (D2). In addition to the antagonism of post-synaptic dopamine receptors, the blockade of pre-synaptic autoreceptors by l-THP results in increased dopamine release, and it has been suggested that lower affinity of l-THP for D2 receptors may confer some degree of autoreceptor selectivity. Along with dopamine receptors, l-THP has been reported to interact with a number of other receptor types, including alpha-1 adrenergic receptors, at which it functions as an antagonist, and GABA-A receptors, through positive allosteric modulation. Additionally, l-THP displays significant binding to 5-HT1A and alpha-2 adrenergic receptors. In the case of 5-HT1A receptors, l-THP binds with a Ki of approximately 340 nM.[10] Animal experiments have shown that the sedative effect of THP results from blocking dopaminergic neurons in the brain. Dopamine is an important neurotransmitter in the central nervous system where it occurs in several important signaling systems that regulate muscular activity and attention, as well as feelings of joy, enthusiasm, and creativity. Therefore, THP causes no feelings of euphoria, and has been seen as an alternative to addictive drugs for people suffering from anxiety and pain, and as a possibility for relief for people not helped by existing drugs.[citation needed] Several cases of poisoning related to THP have been reported.[11] These cases involved negative effects on respiration, cardiac activity, and the nervous system. In addition, chronic hepatitis has been reported, caused by THP production in East Asia under conditions that were insufficiently sterile. Fatalities started to be reported in 1999 in cases where THP had been used in combination with other drugs having analgesic and anti-anxiety effects. All 1999 deaths could be tied to a single THP-based supplement, sold under the name "Jin Bu Huan Anodyne Tablets". Toxicity with even Jin Bu Huan has been reported.[12] This product was therefore blacklisted by US and European health authorities. In some other countries, such as Singapore, THP is treated as a controlled substance, and license is required to sell it.[citation needed] Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM. Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM. Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM. Tetrahydropalmatine possesses analgesic effects. Tetrahydropalmatine acts through inhibition of amygdaloid release of dopamine to inhibit an epileptic attack in rats[1]. Tetrahydropalmatine possesses analgesic effects. Tetrahydropalmatine acts through inhibition of amygdaloid release of dopamine to inhibit an epileptic attack in rats[1]. Tetrahydropalmatine possesses analgesic effects. Tetrahydropalmatine acts through inhibition of amygdaloid release of dopamine to inhibit an epileptic attack in rats[1].

   

3-(Dimethylaminomethyl)indole

InChI=1/C11H14N2/c1-13(2)8-9-7-12-11-6-4-3-5-10(9)11/h3-7,12H,8H2,1-2H

C11H14N2 (174.1157)


3-(Dimethylaminomethyl)indole, also known as donaxin or (1H-indol-3-ylmethyl)dimethylamine, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. An aminoalkylindole that is indole carrying a dimethylaminomethyl substituent at postion 3. 3-(Dimethylaminomethyl)indole has been detected, but not quantified, in several different foods, such as barley, brassicas, cereals and cereal products, common wheats, and lupines. This could make 3-(dimethylaminomethyl)indole a potential biomarker for the consumption of these foods. Gramine is an aminoalkylindole that is indole carrying a dimethylaminomethyl substituent at postion 3. It has a role as a plant metabolite, a serotonergic antagonist, an antiviral agent and an antibacterial agent. It is an aminoalkylindole, an indole alkaloid and a tertiary amino compound. It is a conjugate base of a gramine(1+). Gramine is a natural product found in Desmanthus illinoensis, Lupinus arbustus, and other organisms with data available. Isolated from cabbage and barley shoots. 3-(Dimethylaminomethyl)indole is found in many foods, some of which are cereals and cereal products, brassicas, common wheat, and barley. An aminoalkylindole that is indole carrying a dimethylaminomethyl substituent at postion 3. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 14 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 37 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 44 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 22 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 58 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 29 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 7 KEIO_ID G041 Gramine (Donaxine) is a natural alkaloid isolated from giant reed[2], acts as an active adiponectin receptor (AdipoR) agonist, with IC50s of 3.2 and 4.2 μM for AdipoR2 and AdipoR1, respectively[1]. Gramine is also a human and mouse β2-Adrenergic receptor (β2-AR) agonist[2]. Gramine (Donaxine) has anti-tumor, anti-viral and anti-inflammatory properties[1]. Gramine (Donaxine) is a natural alkaloid isolated from giant reed[2], acts as an active adiponectin receptor (AdipoR) agonist, with IC50s of 3.2 and 4.2 μM for AdipoR2 and AdipoR1, respectively[1]. Gramine is also a human and mouse β2-Adrenergic receptor (β2-AR) agonist[2]. Gramine (Donaxine) has anti-tumor, anti-viral and anti-inflammatory properties[1]. Gramine (Donaxine) is a natural alkaloid isolated from giant reed[2], acts as an active adiponectin receptor (AdipoR) agonist, with IC50s of 3.2 and 4.2 μM for AdipoR2 and AdipoR1, respectively[1]. Gramine is also a human and mouse β2-Adrenergic receptor (β2-AR) agonist[2]. Gramine (Donaxine) has anti-tumor, anti-viral and anti-inflammatory properties[1].

   

L-2-Amino-3-(oxalylamino)propanoic acid

N-Oxalyl-L-alpha-beta-diaminopropionic acid (BOAA,ODAP)

C5H8N2O5 (176.0433)


L-2-Amino-3-(oxalylamino)propanoic acid is found in grass pea. L-2-Amino-3-(oxalylamino)propanoic acid is isolated from Panax notoginseng (sanchi Isolated from Panax notoginseng (sanchi). L-2-Amino-3-(oxalylamino)propanoic acid is found in tea and grass pea. L-2-Amino-3-(oxalylamino)propanoic acid is an alpha-amino acid. N(3)-oxalyl-L-2,3-diaminopropionic acid is an N(beta)-acyl-L-2,3-diaminopropionic acid in which the acyl group is oxalyl. It is functionally related to a propionic acid. It is a conjugate acid of a N(3)-(carboxylatoformyl)-L-2,3-diaminopropionate(1-). Dencichin is a natural product found in Lathyrus latifolius and Lathyrus sativus with data available. See also: Panax notoginseng root (part of). Dencichin is a non-protein amino acid originally extracted from Panax notoginseng, and can inhibit HIF-prolyl hydroxylase-2 (PHD-2) activity.

   

Schisantherin B

2-Butenoic acid, 2-methyl-, 5,6,7,8-tetrahydro-6-hydroxy-1,2,3,13-tetramethoxy-6,7-dimethylbenzo(3,4)cycloocta(1,2-f)(1,3)benzodioxol-5-yl ester, (5S-(5.alpha.(Z),6.beta.,7.beta.))-

C28H34O9 (514.2203)


Gomisin B is a tannin. Schisantherin B is a natural product found in Kadsura angustifolia, Schisandra rubriflora, and other organisms with data available. See also: Schisandra chinensis fruit (part of). Schisantherin B (Gomisin-B; Wuweizi ester-B; Schisantherin-B) is a natural product. Schisantherin B (Gomisin-B; Wuweizi ester-B; Schisantherin-B) is a natural product.

   

Tacrolimus Hydrate

15,19-Epoxy-3H-pyrido[2,1-c][1,4]oxaazacyclotricosine-1,7,20,21(4H,23H)-tetrone, 5,6,8,11,12,13,14,15,16,17,18,19,24,25,26,26a-hexadecahydro-5,19-dihydroxy-3-[(E)-2-[(1R,3R,4R)-4-hydroxy-3-methoxycycl ohexyl]-1-methylethenyl]-14,16-dimethoxy-4,10,12,18-tetramethyl-8-(2-propen-1-yl)-, (3S,4R,5S,8R,9E,12S,14S,15R,16S,18R,19R,26aS)-

C44H69NO12 (803.482)


Tacrolimus (also FK-506 or Fujimycin) is an immunosuppressive drug whose main use is after organ transplant to reduce the activity of the patients immune system and so the risk of organ rejection. It is also used in a topical preparation in the treatment of severe atopic dermatitis, severe refractory uveitis after bone marrow transplants, and the skin condition vitiligo. It was discovered in 1984 from the fermentation broth of a Japanese soil sample that contained the bacteria Streptomyces tsukubaensis. Tacrolimus is chemically known as a macrolide. It reduces peptidyl-prolyl isomerase activity by binding to the immunophilin FKBP-12 (FK506 binding protein) creating a new complex. This FKBP12-FK506 complex interacts with and inhibits calcineurin thus inhibiting both T-lymphocyte signal transduction and IL-2 transcription. It is used in foods as emulsifier, stabiliser, thickener, gelling agent, formulation aid and firming agent; ice-cream stabiliser, used to improve the yield of curds in soft cheese, to increase the yield of doughs and baked products, as a binder and lubricant in sausages, and as thickener or viscosity control agent in beverages, salad dressings and relishes D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents > D016559 - Tacrolimus D004791 - Enzyme Inhibitors > D065095 - Calcineurin Inhibitors Tacrolimus (anhydrous) is a macrolide lactam containing a 23-membered lactone ring, originally isolated from the fermentation broth of a Japanese soil sample that contained the bacteria Streptomyces tsukubaensis. It has a role as an immunosuppressive agent and a bacterial metabolite. Tacrolimus (also FK-506 or Fujimycin) is an immunosuppressive drug whose main use is after organ transplant to reduce the activity of the patients immune system and so the risk of organ rejection. It is also used in a topical preparation in the treatment of severe atopic dermatitis, severe refractory uveitis after bone marrow transplants, and the skin condition vitiligo. It was discovered in 1984 from the fermentation broth of a Japanese soil sample that contained the bacteria Streptomyces tsukubaensis. Tacrolimus is chemically known as a macrolide. It reduces peptidyl-prolyl isomerase activity by binding to the immunophilin FKBP-12 (FK506 binding protein) creating a new complex. This FKBP12-FK506 complex inhibits calcineurin which inhibits T-lymphocyte signal transduction and IL-2 transcription. Tacrolimus anhydrous is a Calcineurin Inhibitor Immunosuppressant. The mechanism of action of tacrolimus anhydrous is as a Calcineurin Inhibitor. Tacrolimus is a calcineurin inhibitor and potent immunosuppressive agent used largely as a means of prophylaxis against cellular rejection after transplantation. Tacrolimus therapy can be associated with mild serum enzyme elevations, and it has been linked to rare instances of clinically apparent cholestatic liver injury. Tacrolimus is a natural product found in Streptomyces clavuligerus, Streptomyces hygroscopicus, and other organisms with data available. Tacrolimus is a macrolide isolated from Streptomyces tsukubaensis. Tacrolimus binds to the FKBP-12 protein and forms a complex with calcium-dependent proteins, thereby inhibiting calcineurin phosphatase activity and resulting in decreased cytokine production. This agent exhibits potent immunosuppressive activity in vivo and prevents the activation of T-lymphocytes in response to antigenic or mitogenic stimulation. Tacrolimus possesses similar immunosuppressive properties to cyclosporine, but is more potent. Tacrolimus Anhydrous is anhydrous from of tacrolimus, a macrolide isolated from Streptomyces tsukubaensis. Tacrolimus binds to the FKBP-12 protein and forms a complex with calcium-dependent proteins, thereby inhibiting calcineurin phosphatase activity and resulting in decreased cytokine production. This agent exhibits potent immunosuppressive activity in vivo and prevents the activation of T-lymphocytes in response to antigenic or mitogenic stimulation. Tacrolimus possesses similar immunosuppressive properties to cyclosporine, but is more potent. A macrolide isolated from the culture broth of a strain of Streptomyces tsukubaensis that has strong immunosuppressive activity in vivo and prevents the activation of T-lymphocytes in response to antigenic or mitogenic stimulation in vitro. D - Dermatologicals > D11 - Other dermatological preparations > D11A - Other dermatological preparations > D11AH - Agents for dermatitis, excluding corticosteroids L - Antineoplastic and immunomodulating agents > L04 - Immunosuppressants > L04A - Immunosuppressants > L04AD - Calcineurin inhibitors C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C146638 - Calcineurin Inhibitor COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Notopterol

7H-Furo(3,2-g)(1)benzopyran-7-one, 4-((5-hydroxy-3,7-dimethyl-2,6-octadienyl)oxy)-, (E)-

C21H22O5 (354.1467)


Notopterol is a furanocoumarin. Notopterol is a natural product found in Hansenia forbesii and Hansenia weberbaueriana with data available. Notopterol is a coumarin extracted from N. incisum. Notopterol induces apoptosis and has antipyretic, analgesic and anti-inflammatory effects. Notopterol is used for acute myeloid leukemia (AML)[1]. Notopterol is a coumarin extracted from N. incisum. Notopterol induces apoptosis and has antipyretic, analgesic and anti-inflammatory effects. Notopterol is used for acute myeloid leukemia (AML)[1].

   

Genipin

Methyl (1S,4aS,7aS)-7-(hydroxymethyl)-1-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-1,4a,5,7a-tetrahydrocyclopenta[c]pyran-4-carboxylate

C23H34O15 (550.1898)


Genipin 1-beta-gentiobioside is a terpene glycoside. Genipin 1-gentiobioside is a natural product found in Gardenia jasminoides and Genipa americana with data available. Genipin 1-β-D-gentiobioside (Genipin 1-gentiobioside) is one of the most abundant and bioactive iridoid glycosides in Gardenia jasminoides Ellis, which possesses hepatoprotective, anti-inflammatory, antioxidant, and antithrombotic activities. Genipin 1-β-D-gentiobioside (Genipin 1-gentiobioside) is one of the most abundant and bioactive iridoid glycosides in Gardenia jasminoides Ellis, which possesses hepatoprotective, anti-inflammatory, antioxidant, and antithrombotic activities.

   

Taurine

2-aminoethanesulfonic acid

C2H7NO3S (125.0147)


Essential nutrient obtained from diet and by in vivo synthysis from methionine and cysteine. Present in meats, fish, legumes, human milk, molluscs and other foods. Dietary supplement, e.g. in Red Bull drink. Taurine is a sulfur amino acid like methionine, cystine, cysteine and homocysteine. It is a lesser-known amino acid because it is not incorporated into the structural building blocks of protein. Yet taurine is an essential amino acid in pre-term and newborn infants of humans and many other species. Adults can synthesize their own taurine, yet are probably dependent in part on dietary taurine. Taurine is abundant in the brain, heart, breast, gallbladder and kidney and has important roles in health and disease in these organs. Taurine has many diverse biological functions serving as a neurotransmitter in the brain, a stabilizer of cell membranes and a facilitator in the transport of ions such as sodium, potassium, calcium and magnesium. Taurine is highly concentrated in animal and fish protein, which are good sources of dietary taurine. It can be synthesized by the body from cysteine when vitamin B6 is present. Deficiency of taurine occurs in premature infants and neonates fed formula milk, and in various disease states. Inborn errors of taurine metabolism have been described. OMIM 168605, an unusual neuropsychiatric disorder inherited in an autosomal dominant fashion through 3 generations of a family. Symptoms began late in the fifth decade in 6 affected persons and death occurred after 4 to 6 years. The earliest and most prominent symptom was mental depression not responsive to antidepressant drugs or electroconvulsive therapy. Sleep disturbances, exhaustion and marked weight loss were features. Parkinsonism developed later, and respiratory failure occurred terminally. OMIM 145350 describes congestive cardiomyopathy and markedly elevated urinary taurine levels (about 5 times normal). Other family members had late or holosystolic mitral valve prolapse and elevated urinary taurine values (about 2.5 times normal). In 2 with mitral valve prolapse, congestive cardiomyopathy eventually developed while the amounts of urinary taurine doubled. Taurine, after GABA, is the second most important inhibitory neurotransmitter in the brain. Its inhibitory effect is one source of taurines anticonvulsant and antianxiety properties. It also lowers glutamic acid in the brain, and preliminary clinical trials suggest taurine may be useful in some forms of epilepsy. Taurine in the brain is usually associated with zinc or manganese. The amino acids alanine and glutamic acid, as well as pantothenic acid, inhibit taurine metabolism while vitamins A and B6, zinc and manganese help build taurine. Cysteine and B6 are the nutrients most directly involved in taurine synthesis. Taurine levels have been found to decrease significantly in many depressed patients. One reason that the findings are not entirely clear is because taurine is often elevated in the blood of epileptics who need it. It is often difficult to distinguish compensatory changes in human biochemistry from true metabolic or deficiency disease. Low levels of taurine are found in retinitis pigmentosa. Taurine deficiency in experimental animals produces degeneration of light-sensitive cells. Therapeutic applications of taurine to eye disease are likely to be forthcoming. Taurine has many important metabolic roles. Supplements can stimulate prolactin and insulin release. The parathyroid gland makes a peptide hormone called glutataurine (glutamic acid-taurine), which further demonstrates taurines role in endocrinology. Taurine increases bilirubin and cholesterol excretion in bile, critical to normal gallbladder function. It seems to inhibit the effect of morphine and potentiates the effects of opiate antagonists. Low plasma taurine levels have been found in a variety of conditions, i.e., depression, hypertension, hypothyroidism, gout, institutionalized patients, infertility, obesity, kidney fa... Taurine is a sulfur amino acid like methionine, cystine, cysteine, and homocysteine. It is a lesser-known amino acid because it is not incorporated into the structural building blocks of protein. Yet taurine is an essential amino acid in pre-term and newborn infants of humans and many other species. Adults can synthesize their own taurine, yet are probably dependent, in part, on dietary taurine. Taurine is abundant in the brain, heart, breast, gallbladder, and kidney and has important roles in health and disease in these organs. Taurine has many diverse biological functions including serving as a neurotransmitter in the brain, a stabilizer of cell membranes, and a facilitator in the transport of ions such as sodium, potassium, calcium, and magnesium. Taurine is highly concentrated in animal and fish protein, which are good sources of dietary taurine. It can be synthesized by the body from cysteine when vitamin B6 is present. Deficiency of taurine occurs in premature infants, neonates fed formula milk, and various disease states. Several inborn errors of taurine metabolism have been described. Perry syndrome is an unusual neuropsychiatric disorder inherited in an autosomal dominant fashion through three generations of a family. Symptoms began late in the fifth decade in 6 affected persons and death occurred after 4 to 6 years. The earliest and most prominent symptom was mental depression that was not responsive to antidepressant drugs or electroconvulsive therapy. Sleep disturbances, exhaustion, and marked weight loss were features. Parkinsonism developed later, and respiratory failure occurred terminally (OMIM: 168605). Hypertaurinuric cardiomyopathy describes congestive cardiomyopathy and markedly elevated urinary taurine levels (about 5 times normal). Other family members had late or holosystolic mitral valve prolapse and elevated urinary taurine values (about 2.5 times normal). In two with mitral valve prolapse, congestive cardiomyopathy eventually developed while the amounts of urinary taurine doubled (OMIM: 145350). Taurine, after GABA, is the second most important inhibitory neurotransmitter in the brain. Its inhibitory effect is one source of taurines anticonvulsant and antianxiety properties. It also lowers glutamic acid in the brain, and preliminary clinical trials suggest taurine may be useful in some forms of epilepsy. Taurine in the brain is usually associated with zinc or manganese. The amino acids alanine and glutamic acid, as well as pantothenic acid, inhibit taurine metabolism while vitamins A and B6, zinc, and manganese help build taurine. Cysteine and B6 are the nutrients most directly involved in taurine synthesis. Taurine levels have been found to decrease significantly in many depressed patients. One reason that the findings are not entirely clear is that taurine is often elevated in the blood of epileptics who need it. It is often difficult to distinguish compensatory changes in human biochemistry from true metabolic or deficiency disease. Low levels of taurine are found in retinitis pigmentosa. Taurine deficiency in experimental animals produces degeneration of light-sensitive cells. Therapeutic applications of taurine to eye disease are likely to be forthcoming. Taurine has many important metabolic roles. Supplements can stimulate prolactin and insulin release. The parathyroid gland makes a peptide hormone called glutataurine (glutamic acid-taurine), which further demonstrates taurines role in endocrinology. Taurine increases bilirubin and cholesterol excretion in bile, critical to normal gallbladder function. It seems to inhibit the effect of morphine and potentiates the effects of opiate antagonists. Low plasma taurine levels have been found in a variety of conditions, i.e. depression, hypertension, hypothyroidism, gout, institutionalized patients, infertility, obesity, kidney failure, and others (http://www.dcnutrition.com/AminoAcids/). Moreover, taurine is found to be associated with maple syrup uri... Large white crystals or white powder. Taurine is an amino sulfonic acid that is the 2-amino derivative of ethanesulfonic acid. It is a naturally occurring amino acid derived from methionine and cysteine metabolism. An abundant component of fish- and meat-based foods, it has been used as an oral supplement in the treatment of disorders such as cystic fibrosis and hypertension. It has a role as a human metabolite, an antioxidant, a mouse metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a glycine receptor agonist, a nutrient and a radical scavenger. It is a conjugate acid of a 2-aminoethanesulfonate. It is a tautomer of a taurine zwitterion. Taurine, whose chemical name is 2-aminoethanesulfonic acid, is one of the most abundant amino acids in several organs. It plays important role in essential biological processes. This conditional amino acid can be either be manufactured by the body or obtained in the diet mainly by the consumption of fish and meat. The supplements containing taurine were FDA approved by 1984 and they are hypertonic injections composed by cristalline amino acids. Taurine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). A conditionally essential nutrient, important during mammalian development. It is present in milk but is isolated mostly from ox bile and strongly conjugates bile acids. See also: ... View More ... An amino sulfonic acid that is the 2-amino derivative of ethanesulfonic acid. It is a naturally occurring amino acid derived from methionine and cysteine metabolism. An abundant component of fish- and meat-based foods, it has been used as an oral supplement in the treatment of disorders such as cystic fibrosis and hypertension. [Spectral] Taurine (exact mass = 125.01466) and L-Threonine (exact mass = 119.05824) and 4-Hydroxy-L-proline (exact mass = 131.05824) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Taurine (exact mass = 125.01466) and L-Glutamate (exact mass = 147.05316) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Taurine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=107-35-7 (retrieved 2024-06-29) (CAS RN: 107-35-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Taurine, a sulphur-containing amino acid and an organic osmolyte involved in cell volume regulation, provides a substrate for the formation of bile salts, and plays a role in the modulation of intracellular free calcium concentration. Taurine has the ability to activate autophagy in adipocytes[1][2][3]. Taurine, a sulphur-containing amino acid and an organic osmolyte involved in cell volume regulation, provides a substrate for the formation of bile salts, and plays a role in the modulation of intracellular free calcium concentration. Taurine has the ability to activate autophagy in adipocytes[1][2][3].

   

Bicuculline

(bicuculline) 6-Methyl-5-(8-oxo-6,8-dihydro-furo[3,4:3,4]benzo[1,2-d][1,3]dioxol-6-yl)-5,6,7,8-tetrahydro-[1,3]dioxolo[4,5-g]isoquinolin-6-ium

C20H17NO6 (367.1056)


Bicuculline is a benzylisoquinoline alkaloid that is 6-methyl-5,6,7,8-tetrahydro[1,3]dioxolo[4,5-g]isoquinoline which is substituted at the 5-pro-S position by a (6R)-8-oxo-6,8-dihydrofuro[3,4-e][1,3]benzodioxol-6-yl group. A light-sensitive competitive antagonist of GABAA receptors. It was originally identified in 1932 in plant alkaloid extracts and has been isolated from Dicentra cucullaria, Adlumia fungosa, Fumariaceae, and several Corydalis species. It has a role as an agrochemical, a central nervous system stimulant, a GABA-gated chloride channel antagonist, a neurotoxin and a GABAA receptor antagonist. It is an isoquinoline alkaloid, a member of isoquinolines and a benzylisoquinoline alkaloid. Bicuculline is a light-sensitive competitive antagonist of GABAA receptors. It was originally identified in 1932 in plant alkaloid extracts and has been isolated from Dicentra cucullaria, Adlumia fungosa, Fumariaceae, and several Corydalis species. Bicuculline is a natural product found in Fumaria capreolata, Fumaria densiflora, and other organisms with data available. Bicuculline is a light-sensitive competitive antagonist of GABAA receptors. It was originally identified in 1932 in plant alkaloid extracts and has been isolated from Dicentra cucullaria, Adlumia fungosa, Fumariaceae, and several Corydalis species. Since it blocks the inhibitory action of GABA receptors, the action of bicuculline mimics epilepsy. This property is utilized in laboratories across the world in the in vitro study of epilepsy, generally in hippocampal or cortical neurons in prepared brain slices from rodents. This compound is also routinely used to isolate glutamatergic (excitatory amino acid) receptor function. An isoquinoline alkaloid obtained from Dicentra cucullaria and other plants. It is a competitive antagonist for GABA-A receptors. A benzylisoquinoline alkaloid that is 6-methyl-5,6,7,8-tetrahydro[1,3]dioxolo[4,5-g]isoquinoline which is substituted at the 5-pro-S position by a (6R)-8-oxo-6,8-dihydrofuro[3,4-e][1,3]benzodioxol-6-yl group. A light-sensitive competitive antagonist of GABAA receptors. It was originally identified in 1932 in plant alkaloid extracts and has been isolated from Dicentra cucullaria, Adlumia fungosa, Fumariaceae, and several Corydalis species. Bicuculline. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=485-49-4 (retrieved 2024-07-09) (CAS RN: 485-49-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Bicuculline ((+)-Bicuculline; d-Bicuculline), as a convulsant alkaloid, is a competitive neurotransmitter GABAA receptor antagonist (IC50=2 μM). Bicuculline also blocks Ca2+-activated potassium (SK) channels and subsequently blocks the slow afterhyperpolarization (slow AHP) [1][2][3]. Bicuculline ((+)-Bicuculline) is A competing neurotransmitter GABAA receptor antagonist (IC50=2 μM). Bicuculline also blocks Ca2+ activating potassium (SK) channels and subsequently blocks slow post-hyperpolarization (slow AHP). Bicuculline has anticonvulsant activity. Bicuculline can be used to induce seizures in mice[1][2][3][4]. Bicuculline ((+)-Bicuculline; d-Bicuculline), as a convulsant alkaloid, is a competitive neurotransmitter GABAA receptor antagonist (IC50=2 μM). Bicuculline also blocks Ca2+-activated potassium (SK) channels and subsequently blocks the slow afterhyperpolarization (slow AHP) [1][2][3].

   

Atractylenolide II

[4aS-(4aalpha,8abeta,9abeta)]-4a,5,6,7,8,8a,9,9a-Octahydro-3,8a-dimethyl-5-methylenenaphtho[2,3-b]furan-2(4H)-one

C15H20O2 (232.1463)


Atractylenolide II is a sesquiterpene lactone. Atractylenolide II is a natural product found in Chloranthus henryi, Atractylodes macrocephala, and other organisms with data available. Atractylenolide II is a sesquiterpene compound isolated from the dried rhizome of Atractylodes macrocephala (Baizhu in Chinese); anti-proliferative activity. IC50 value: 82.3 μM(B16 melanoma cell, 48 h) [1] Target: anticancer natural compound in vitro: AT-II treatment for 48 h dose-dependently inhibited cell proliferation with an IC(50) of 82.3 μM, and induced G1 phase cell cycle arrest. Moreover, treatment with 75 μM AT-II induced apoptosis. These observations were associated with the decrease of the expression of Cdk2, phosphorylated-Akt, phosphorylated-ERK and Bcl-2, the increase of the expression of phosphorylated-p38, phosphorylated-p53, p21, p27, and activation of caspases-8, -9 and -3. In addition, a chemical inhibitor of p53, PFTα, significantly decreased AT-II-mediated growth inhibition and apoptosis [1]. In B16 and A375 cells, AT-II (20, 40 μm) treatment for 48 h dose-dependently reduced protein expression levels of phospho-STAT3, phospho-Src, as well as STAT3-regulated Mcl-1 and Bcl-xL. Overexpression of a constitutively active variant of STAT3, STAT3C in A375 cells diminished the antiproliferative and apoptotic effects of AT-II [2]. in vivo: Daily administration of AT-II (12.5, 25 mg/kg, i.g.) for 14 days significantly inhibited tumor growth in a B16 xenograft mouse model and inhibited the activation/phosphorylation of STAT3 and Src in the xenografts [2]. Atractylenolide II is a sesquiterpene compound isolated from the dried rhizome of Atractylodes macrocephala (Baizhu in Chinese); anti-proliferative activity. IC50 value: 82.3 μM(B16 melanoma cell, 48 h) [1] Target: anticancer natural compound in vitro: AT-II treatment for 48 h dose-dependently inhibited cell proliferation with an IC(50) of 82.3 μM, and induced G1 phase cell cycle arrest. Moreover, treatment with 75 μM AT-II induced apoptosis. These observations were associated with the decrease of the expression of Cdk2, phosphorylated-Akt, phosphorylated-ERK and Bcl-2, the increase of the expression of phosphorylated-p38, phosphorylated-p53, p21, p27, and activation of caspases-8, -9 and -3. In addition, a chemical inhibitor of p53, PFTα, significantly decreased AT-II-mediated growth inhibition and apoptosis [1]. In B16 and A375 cells, AT-II (20, 40 μm) treatment for 48 h dose-dependently reduced protein expression levels of phospho-STAT3, phospho-Src, as well as STAT3-regulated Mcl-1 and Bcl-xL. Overexpression of a constitutively active variant of STAT3, STAT3C in A375 cells diminished the antiproliferative and apoptotic effects of AT-II [2]. in vivo: Daily administration of AT-II (12.5, 25 mg/kg, i.g.) for 14 days significantly inhibited tumor growth in a B16 xenograft mouse model and inhibited the activation/phosphorylation of STAT3 and Src in the xenografts [2].

   

Plantamoside

[(2R,3R,4R,5R,6R)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)-4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-tetrahydropyran-3-yl] (E)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C29H36O16 (640.2003)


Plantamajoside is a hydroxycinnamic acid. Plantamajoside is a natural product found in Primulina eburnea, Plantaginaceae, and other organisms with data available. Plantamajoside is a phenylpropanoid glycoside isolated from Plantago asiatica L.(Plantaginaceae). Plantamajoside has protective effects on LPS-induced acute lung injury (ALI) mice model. Plantamajoside has the potential for the treatment of pulmonary inflammation[1]. Plantamajoside is a phenylpropanoid glycoside isolated from Plantago asiatica L.(Plantaginaceae). Plantamajoside has protective effects on LPS-induced acute lung injury (ALI) mice model. Plantamajoside has the potential for the treatment of pulmonary inflammation[1].

   

Harpagoside

(E)-3-phenylprop-2-enoic acid [(1S,4aS,5R,7S,7aS)-4a,5-dihydroxy-7-methyl-1-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-1,5,6,7a-tetrahydrocyclopenta[c]pyran-7-yl] ester

C24H30O11 (494.1788)


Harpagoside is a terpene glycoside. Harpagoside is a natural product found in Verbascum lychnitis, Verbascum sinuatum, and other organisms with data available. See also: Harpagophytum procumbens root (part of); Harpagophytum zeyheri root (part of). Origin: Plant; SubCategory_DNP: Monoterpenoids, Iridoid monoterpenoids Harpagoside is isolated from Harpagophytum procumbens. Harpagoside has inhibitory effects on COX-1 and COX-2 activity and inhibits NO production[1]. Harpagoside is isolated from Harpagophytum procumbens. Harpagoside has inhibitory effects on COX-1 and COX-2 activity and inhibits NO production[1].

   

Costunolide

Cyclodeca[b]furan-2(3H)-one, 3a,4,5,8,9,11a-hexahydro-6,10-dimethyl-3-methylene-, (3aS,6E,10E,11aR)-

C15H20O2 (232.1463)


Costunolide is a germacranolide with anthelminthic, antiparasitic and antiviral activities. It has a role as an anthelminthic drug, an antiinfective agent, an antineoplastic agent, an antiparasitic agent, an antiviral drug and a metabolite. It is a germacranolide and a heterobicyclic compound. (+)-Costunolide is a natural product found in Magnolia garrettii, Critonia morifolia, and other organisms with data available. Constituent of costus root (Saussurea lappa). Costunolide is found in tarragon, sweet bay, and herbs and spices. Costunolide is found in herbs and spices. Costunolide is a constituent of costus root (Saussurea lappa) D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D000890 - Anti-Infective Agents > D000998 - Antiviral Agents INTERNAL_ID 2266; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2266 D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors Costunolide ((+)-Costunolide) is a naturally occurring sesquiterpene lactone, with antioxidative, anti-inflammatory, antiallergic, bone remodeling, neuroprotective, hair growth promoting, anticancer, and antidiabetic properties. Costunolide can induce cell cycle arrest and apoptosis on breast cancer cells[1][2][3]. Costunolide ((+)-Costunolide) is a naturally occurring sesquiterpene lactone, with antioxidative, anti-inflammatory, antiallergic, bone remodeling, neuroprotective, hair growth promoting, anticancer, and antidiabetic properties. Costunolide can induce cell cycle arrest and apoptosis on breast cancer cells[1][2][3].

   

Valtrats

BUTANOIC ACID, 3-METHYL-, 4-((ACETYLOXY)METHYL)-6,7A-DIHYDROSPIRO(CYCLOPENTA-(C)PYRAN-7(1H),2-OXIRANE)-1,6-DIYL ESTER, (1S-(1-.ALPHA.,6-.ALPHA,,7- .BETA.,7A-.ALPHA.))-

C22H30O8 (422.1941)


Valtratum is a fatty acid ester. Valtrate is a natural product found in Valeriana pulchella, Valeriana alpestris, and other organisms with data available. See also: Viburnum opulus bark (part of). C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic Valepotriate can be isolated from?Valeriana jatamansi?Jones, has anti-epileptic and anti-cancer activities[1][2]. Valepotriate can be isolated from?Valeriana jatamansi?Jones, has anti-epileptic and anti-cancer activities[1][2].

   

Prunin

(S)-5-Hydroxy-2-(4-hydroxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C21H22O10 (434.1213)


Naringenin 7-O-beta-D-glucoside is a flavanone 7-O-beta-D-glucoside that is (S)-naringenin substituted by a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a metabolite, a hypoglycemic agent, an antilipemic drug and an antibacterial agent. It is a flavanone 7-O-beta-D-glucoside, a dihydroxyflavanone, a monosaccharide derivative, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. Prunin is a natural product found in Prunus mume, Podocarpus nivalis, and other organisms with data available. Acquisition and generation of the data is financially supported in part by CREST/JST. Prunin is a potent inhibitor of human enterovirus A71 (HEVA71). Prunin shows strong inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), with an IC50 of 5.5 μM[1][2]. Prunin is a potent inhibitor of human enterovirus A71 (HEVA71). Prunin shows strong inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), with an IC50 of 5.5 μM[1][2].

   

Swertisin

5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-6-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one

C22H22O10 (446.1213)


Swertisin is a flavone C-glycoside that is 7-O-methylapigenin in which the hydrogen at position 6 has been replaced by a beta-D-glucosyl residue. It has a role as a plant metabolite, an adenosine A1 receptor antagonist, an anti-inflammatory agent, an antioxidant and a hypoglycemic agent. It is a flavone C-glycoside, a monosaccharide derivative, a polyphenol, a monomethoxyflavone and a dihydroxyflavone. It is functionally related to an apigenin. Swertisin is a natural product found in Carex fraseriana, Gentiana orbicularis, and other organisms with data available. A flavone C-glycoside that is 7-O-methylapigenin in which the hydrogen at position 6 has been replaced by a beta-D-glucosyl residue. Swertisin, a C-glucosylflavone isolated from Iris tectorum, is known to have antidiabetic, anti-inflammatory and antioxidant effects. Swertisin is an adenosine A1 receptor antagonist[1][2].

   

1-Kestose

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C18H32O16 (504.169)


1-kestose, also known as 1f-beta-D-fructosylsucrose or [beta-D-fru-(2->1)]2-alpha-D-glup, is a member of the class of compounds known as oligosaccharides. Oligosaccharides are carbohydrates made up of 3 to 10 monosaccharide units linked to each other through glycosidic bonds. 1-kestose is soluble (in water) and a very weakly acidic compound (based on its pKa). 1-kestose can be found in a number of food items such as german camomile, nance, amaranth, and european plum, which makes 1-kestose a potential biomarker for the consumption of these food products. 1-kestose can be found primarily in prostate Tissue, as well as in human prostate tissue. Moreover, 1-kestose is found to be associated with prostate cancer. 1-kestose is a trisaccharide found in vegetables consisting of beta-D-fructofuranose having beta-D-fructofuranosyl and alpha-D-glucopyranosyl residues attached at the 1- and 2-positions respectively. 1-Kestose is a natural product found in Taraxacum lapponicum, Arctium umbrosum, and other organisms with data available. 1-Kestose is a fructooligosaccharide. An oligosaccharide is a saccharide polymer containing a small number (typically three to six) of component sugars, also known as simple sugars. They are generally found either O- or N-linked to compatible amino acid side chains in proteins or to lipid moieties. A trisaccharide found in vegetables consisting of beta-D-fructofuranose having beta-D-fructofuranosyl and alpha-D-glucopyranosyl residues attached at the 1- and 2-positions respectively. 1-Kestose, the smallest fructooligosaccharide component, which efficiently stimulates Faecalibacterium prausnitzii as well as Bifidobacteria. 1-Kestose, the smallest fructooligosaccharide component, which efficiently stimulates Faecalibacterium prausnitzii as well as Bifidobacteria.

   

Jintan

(2S,3S,4S,5R,6R)-6-[(2S,3R,4S,5S,6S)-2-[[(3S,4aR,6aR,6bS,8aS,11S,12aR,14aR,14bS)-11-carboxy-4,4,6a,6b,8a,11,14b-heptamethyl-14-oxo-2,3,4a,5,6,7,8,9,10,12,12a,14a-dodecahydro-1H-picen-3-yl]oxy]-6-carboxy-4,5-dihydroxyoxan-3-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid;azane

C42H61O16.NH4 (839.4303)


Monoammonium glycyrrhizinate is an organic molecular entity. An oleanolic acid from GLYCYRRHIZA that has some antiallergic, antibacterial, and antiviral properties. It is used topically for allergic or infectious skin inflammation and orally for its aldosterone effects in electrolyte regulation. D000893 - Anti-Inflammatory Agents Ammonium glycyrrhizinate (Monoammonium glycyrrhizinate) has various pharmacological actions such as anti-inflammatory, antiallergic, antigastriculcer, and antihepatitis activities. Ammonium glycyrrhizinate (Monoammonium glycyrrhizinate) has various pharmacological actions such as anti-inflammatory, antiallergic, antigastriculcer, and antihepatitis activities.

   

Yamogenintetroside B

2-[4-(16-{[4-hydroxy-6-(hydroxymethyl)-3,5-bis[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-6-methoxy-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-6-yl)-2-methylbutoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C52H86O22 (1062.561)


Methylprotodioscin is a steroid saponin. Methylprotodioscin is a natural product found in Dracaena draco, Smilax menispermoidea, and other organisms with data available. Methylprotodioscin is found in herbs and spices. Methylprotodioscin is isolated from seeds of Trigonella caerulea (sweet trefoil) and Asparagus officinalis (asparagus). Methyl protodioscin(NSC-698790) is a furostanol bisglycoside with antitumor properties; shows to reduce proliferation, cause cell cycle arrest. IC50 value: Target: in vitro: MPD showed growth inhibitory effects in A549 cells in a dose- and time-dependent manner. The significant G2/M cell cycle arrest and apoptotic effect were also seen in A549 cells treated with MPD. MPD-induced apoptosis was accompanied by a significant reduction of mitochondrial membrane potential, release of mitochondrial cytochrome c to cytosol, activation of caspase-3, downregulation of Bcl-2, p-Bad, and upregulation of Bax [1]. In THP-1 macrophages, MPD increases levels of ABCA1 mRNA and protein in dose- and time-dependent manners, and apoA-1-mediated cholesterol efflux. MPD also decreases the gene expressions of HMGCR, FAS and ACC for cholesterol and fatty acid synthesis [2]. Methyl protodioscin(NSC-698790) is a furostanol bisglycoside with antitumor properties; shows to reduce proliferation, cause cell cycle arrest. IC50 value: Target: in vitro: MPD showed growth inhibitory effects in A549 cells in a dose- and time-dependent manner. The significant G2/M cell cycle arrest and apoptotic effect were also seen in A549 cells treated with MPD. MPD-induced apoptosis was accompanied by a significant reduction of mitochondrial membrane potential, release of mitochondrial cytochrome c to cytosol, activation of caspase-3, downregulation of Bcl-2, p-Bad, and upregulation of Bax [1]. In THP-1 macrophages, MPD increases levels of ABCA1 mRNA and protein in dose- and time-dependent manners, and apoA-1-mediated cholesterol efflux. MPD also decreases the gene expressions of HMGCR, FAS and ACC for cholesterol and fatty acid synthesis [2].

   

Senegin III

6-deoxy-alpha-L-mannopyranosyl-(1->3)-[beta-D-galactopyranosyl-(1->4)-beta-D-xylopyranosyl-(1->4)-6-deoxy-alpha-L-mannopyranosyl-(1->2)]-6-deoxy-1-O-[(2beta,3beta)-3-(beta-D-glucopyranosyloxy)-2,23,27-trihydroxy-23,28-dioxoolean-12-en-28-yl]-4-O-[3-(4-methoxyphenyl)prop-2-enoyl]-beta-D-galactopyranose

C75H112O35 (1572.6984)


A triterpenoid saponin isolated from Polygala senega var latifolia and has been shown to exhibit hypoglycemic activity. Senegin III is a triterpenoid saponin isolated from Polygala senega var latifolia and has been shown to exhibit hypoglycemic activity. It has a role as a hypoglycemic agent and a plant metabolite. It is a cinnamate ester, a hydroxy monocarboxylic acid, a pentacyclic triterpenoid and a triterpenoid saponin. It is functionally related to a 4-methoxycinnamic acid. It derives from a hydride of an oleanane. Senegin III is a natural product found in Polygala fallax, Polygala senega, and other organisms with data available. Onjisaponin B is a natural product derived from Polygala tenuifolia. Onjisaponin B enhances autophagy and accelerates the degradation of mutant α-synuclein and huntingtin in PC-12 cells, and exbibits potential therapeutic effects on Parkinson disease and Huntington disease[1]. Onjisaponin B is a natural product derived from Polygala tenuifolia. Onjisaponin B enhances autophagy and accelerates the degradation of mutant α-synuclein and huntingtin in PC-12 cells, and exbibits potential therapeutic effects on Parkinson disease and Huntington disease[1].

   

Stigmastanol

(3S,5S,8R,9S,10S,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methylheptan-2-yl]-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H52O (416.4018)


Stigmastanol is a 3-hydroxy steroid that is 5alpha-stigmastane which is substituted at the 3beta position by a hydroxy group. It has a role as an anticholesteremic drug and a plant metabolite. It is a 3-hydroxy steroid and a member of phytosterols. It derives from a hydride of a 5alpha-stigmastane. Stigmastanol is a natural product found in Alnus japonica, Dracaena cinnabari, and other organisms with data available. Stigmastanol is a steroid derivative characterized by the hydroxyl group in position C-3 of the steroid skeleton, and a saturated bond in position 5-6 of the B ring. See also: Saw Palmetto (part of). D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents C1907 - Drug, Natural Product > C28178 - Phytosterol > C68422 - Saturated Phytosterol D009676 - Noxae > D000963 - Antimetabolites Stigmastanol is the 6-amino derivative isolated from Hypericum riparium. Hypericum riparium A. Chev. is a Cameroonian medicinal plant belonging to the family Guttiferae[1][2]. Stigmastanol is the 6-amino derivative isolated from Hypericum riparium. Hypericum riparium A. Chev. is a Cameroonian medicinal plant belonging to the family Guttiferae[1][2].

   

K-Strophanthidin

(3S,5S,8R,9S,10S,13R,14S,17R)-3,5,14-trihydroxy-13-methyl-17-(5-oxo-2H-furan-3-yl)-2,3,4,6,7,8,9,11,12,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthrene-10-carbaldehyde

C23H32O6 (404.2199)


Strophanthidin is a 3beta-hydroxy steroid, a 14beta-hydroxy steroid, a 5beta-hydroxy steroid, a 19-oxo steroid, a member of cardenolides and a steroid aldehyde. It is functionally related to a 5beta-cardanolide. Strophanthidin is a natural product found in Crossosoma bigelovii, Adonis aestivalis, and other organisms with data available. 3 beta,5,14-Trihydroxy-19-oxo-5 beta-card-20(22)-enolide. The aglycone cardioactive agent isolated from Strophanthus Kombe, S. gratus and other species; it is a very toxic material formerly used as digitalis. Synonyms: Apocymarin; Corchorin; Cynotoxin; Corchorgenin. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D013328 - Strophanthins Strophanthidin is a naturally available cardiac glycoside[1]. Strophanthidin 0.1 and 1 nmol/L increases and 1~100 μmol/L inhibits the Na+/K+-ATPase activities, but Strophanthidin 10 and 100 nmol/L does not affect Na+/K+-ATPase activities in cardiac sarcolemmal[2]. Strophanthidin increases both diastolic and systolic intracellular Ca2+ concentration[3]. Strophanthidin is a naturally available cardiac glycoside[1]. Strophanthidin 0.1 and 1 nmol/L increases and 1~100 μmol/L inhibits the Na+/K+-ATPase activities, but Strophanthidin 10 and 100 nmol/L does not affect Na+/K+-ATPase activities in cardiac sarcolemmal[2]. Strophanthidin increases both diastolic and systolic intracellular Ca2+ concentration[3].

   

justicidins

NAPHTHO(2,3-C)FURAN-1(3H)-ONE, 6,7-DIMETHOXY-9-(3,4-(METHYLENEDIOXY)PHENYL)-

C21H16O6 (364.0947)


Justicidin B is a lignan. Justicidin B is a natural product found in Haplophyllum bucharicum, Haplophyllum cappadocicum, and other organisms with data available.

   

Haemanthamine

(1S,13S,15S,18R)-15-methoxy-5,7-dioxa-12-azapentacyclo[10.5.2.01,13.02,10.04,8]nonadeca-2,4(8),9,16-tetraen-18-ol

C17H19NO4 (301.1314)


Haemanthamine is an alkaloid. Hemanthamine is a natural product found in Sternbergia clusiana, Cyrtanthus elatus, and other organisms with data available.

   

(-)-3-Isothujone

Bicyclo(3.1.0)hexan-3-one, 4-methyl-1-(1-methylethyl)-, (1-alpha,4-alpha,5-alpha)-(+-)-

C10H16O (152.1201)


(-)-3-Isothujone is found in alcoholic beverages. Ingredient of absinthe. Presence in food and beverages regulated by legislation.Thujone is a ketone and a monoterpene that occurs naturally in two diastereomeric forms: (-)-alpha-thujone and (+)-beta-thujone. It has a menthol odor. In addition to (-)-alpha-thujone and (+)-beta-thujone, there are their enantiomeric forms, (+)-alpha-thujone and (-)-beta-thujone. (Wikipedia (-)-alpha-thujone is the (1S,4R,5R)-stereoisomer of alpha-thujone. It is an enantiomer of a (+)-alpha-thujone. alpha-Thujone is a natural product found in Xylopia sericea, Rhododendron mucronulatum, and other organisms with data available. See also: Artemisia absinthium whole (part of). A thujane monoterpenoid that is thujane substituted by an oxo group at position 3. Ingredient of absinthe. Presence in food and beverages regulated by legislation α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3].

   

Mesembrenone

6H-Indol-6-one, 3a-(3,4-dimethoxyphenyl)-1,2,3,3a,7,7a-hexahydro-1-methyl-, (3aR-cis)-

C17H21NO3 (287.1521)


Mesembrenone is a member of pyrrolidines. Mesembrenone is a natural product found in Bergeranthus scapiger, Oscularia deltoides, and other organisms with data available.

   

Punicic_acid

cis-9, trans-11, cis-13-octadecatrienoic acid

C18H30O2 (278.2246)


(9Z,11E,13Z)-octadecatrienoic acid is a 9,11,13-octadecatrienoic acid having its double bonds in cis, trans and cis configurations, respectively. It has been isolated from pomegranate (Punica granatum). It has a role as an antineoplastic agent and a plant metabolite. Punicic acid is a natural product found in Trichosanthes nervifolia, Punica granatum, and other organisms with data available. Punicic Acid is a polyunsaturated long-chain fatty acid with an 18-carbon backbone and exactly three double bonds, originating from the 5th, 7th and 9th positions from the methyl end, with these three bonds in the cis-, trans- and cis- configurations, respectively. See also: Pomegranate Seed Oil (has part). A 9,11,13-octadecatrienoic acid having its double bonds in cis, trans and cis configurations, respectively. It has been isolated from pomegranate (Punica granatum).

   

Tramiprosate

Acamprosate impurity A, European Pharmacopoeia (EP) Reference Standard

C3H9NO3S (139.0303)


3-aminopropanesulfonic acid is an amino sulfonic acid that is the 3-amino derivative of propanesulfonic acid. It has a role as an algal metabolite, a nootropic agent, an anticonvulsant, a GABA agonist and an anti-inflammatory agent. It is a tautomer of a 3-aminopropanesulfonic acid zwitterion. D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists D002491 - Central Nervous System Agents > D000927 - Anticonvulsants C26170 - Protective Agent > C1509 - Neuroprotective Agent Tramiprosate (Homotaurine), an orally active and brain-penetrant natural amino acid found in various species of red marine algae. Tramiprosate binds to soluble Aβ and maintains Aβ in a non-fibrillar form. Tramiprosate is also a GABA analog and possess neuroprotection, anticonvulsion and antihypertension effects[1][2][3].

   

Accent

N-(Oleoyl, cocoyl)glutamic acid monosodium salt

C5H8NNaO4 (169.0351)


One of the FLAVORING AGENTS used to impart a meat-like flavor. See also: Monosodium Glutamate (preferred); Glutamic Acid (has active moiety) ... View More ... D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents L-Glutamic acid monosodium salt acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). (S)-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals. L-Glutamic acid monosodium salt is an excitatory amino acid neurotransmitter that acts as an agonist for all subtypes of glutamate receptors (metabolic rhodophylline, NMDA, and AMPA). L-Glutamic acid monosodium salt has an agonist effect on the release of DA from dopaminergic nerve endings. L-Glutamic acid monosodium salt can be used in the study of neurological diseases[1][2][3][4][5]. L-Glutamic acid monosodium salt acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). (S)-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals.

   

Methyldopa

3-(3,4-Dihydroxyphenyl)-alpha-methyl-L-a lanine

C10H13NO4 (211.0845)


Methyl dopa appears as colorless or almost colorless crystals or white to yellowish-white fine powder. Almost tasteless. In the sesquihydrate form. pH (saturated aqueous solution) about 5.0. (NTP, 1992) Alpha-methyl-L-dopa is a derivative of L-tyrosine having a methyl group at the alpha-position and an additional hydroxy group at the 3-position on the phenyl ring. It has a role as a hapten, an antihypertensive agent, an alpha-adrenergic agonist, a peripheral nervous system drug and a sympatholytic agent. It is a L-tyrosine derivative and a non-proteinogenic L-alpha-amino acid. Methyldopa, or α-methyldopa, is a centrally acting sympatholytic agent and an antihypertensive agent. It is an analog of DOPA (3,4‐hydroxyphenylanine), and it is a prodrug, meaning that the drug requires biotransformation to an active metabolite for therapeutic effects. Methyldopa works by binding to alpha(α)-2 adrenergic receptors as an agonist, leading to the inhibition of adrenergic neuronal outflow and reduction of vasoconstrictor adrenergic signals. Methyldopa exists in two isomers D-α-methyldopa and L-α-methyldopa, which is the active form. First introduced in 1960 as an antihypertensive agent, methyldopa was considered to be useful in certain patient populations, such as pregnant women and patients with renal insufficiency. Since then, methyldopa was largely replaced by newer, better-tolerated antihypertensive agents; however, it is still used as monotherapy or in combination with [hydrochlorothiazide]. Methyldopa is also available as intravenous injection, which is used to manage hypertension when oral therapy is unfeasible and to treat hypertensive crisis. Methyldopa anhydrous is a Central alpha-2 Adrenergic Agonist. The mechanism of action of methyldopa anhydrous is as an Adrenergic alpha2-Agonist. Methyldopa (alpha-methyldopa or α-methyldopa) is a centrally active sympatholytic agent that has been used for more than 50 years for the treatment of hypertension. Methyldopa has been clearly linked to instances of acute and chronic liver injury that can be severe and even fatal. Methyldopa is a phenylalanine derivative and an aromatic amino acid decarboxylase inhibitor with antihypertensive activity. Methyldopa is a prodrug and is metabolized in the central nervous system. The antihypertensive action of methyldopa seems to be attributable to its conversion into alpha-methylnorepinephrine, which is a potent alpha-2 adrenergic agonist that binds to and stimulates potent central inhibitory alpha-2 adrenergic receptors. This results in a decrease in sympathetic outflow and decreased blood pressure. Methyldopa or alpha-methyldopa (brand names Aldomet, Apo-Methyldopa, Dopamet, Novomedopa) is a centrally-acting adrenergic antihypertensive medication. Its use is now deprecated following introduction of alternative safer classes of agents. However it continues to have a role in otherwise difficult to treat hypertension and gestational hypertension (formerly known as pregnancy-induced hypertension). Methyldopa is an aromatic-amino-acid decarboxylase inhibitor in animals and in man. Only methyldopa, the L-isomer of alpha-methyldopa, has the ability to inhibit dopa decarboxylase and to deplete animal tissues of norepinephrine. In man the antihypertensive activity appears to be due solely to the L-isomer. About twice the dose of the racemate (DL-alpha-methyldopa) is required for equal antihypertensive effect. Methyldopa has no direct effect on cardiac function and usually does not reduce glomerular filtration rate, renal blood flow, or filtration fraction. Cardiac output usually is maintained without cardiac acceleration. In some patients the heart rate is slowed. Normal or elevated plasma renin activity may decrease in the course of methyldopa therapy. Methyldopa reduces both supine and standing blood pressure. Methyldopa usually produces highly effective lowering of the supine pressure with infrequent symptomatic postural hypotension. Exercise hy... Methyldopa or alpha-methyldopa (brand names Aldomet, Apo-Methyldopa, Dopamet, Novomedopa) is a centrally-acting adrenergic antihypertensive medication. Its use is now deprecated following introduction of alternative safer classes of agents. However it continues to have a role in otherwise difficult to treat hypertension and gestational hypertension (formerly known as pregnancy-induced hypertension). Methyldopa is an aromatic-amino-acid decarboxylase inhibitor in animals and in man. Only methyldopa, the L-isomer of alpha-methyldopa, has the ability to inhibit dopa decarboxylase and to deplete animal tissues of norepinephrine. In man the antihypertensive activity appears to be due solely to the L-isomer. About twice the dose of the racemate (DL-alpha-methyldopa) is required for equal antihypertensive effect. Methyldopa has no direct effect on cardiac function and usually does not reduce glomerular filtration rate, renal blood flow, or filtration fraction. Cardiac output usually is maintained without cardiac acceleration. In some patients the heart rate is slowed. Normal or elevated plasma renin activity may decrease in the course of methyldopa therapy. Methyldopa reduces both supine and standing blood pressure. Methyldopa usually produces highly effective lowering of the supine pressure with infrequent symptomatic postural hypotension. Exercise hypotension and diurnal blood pressure variations rarely occur. Methyldopa, in its active metabolite form, is a central alpha-2 receptor agonist. Using methyldopa leads to alpha-2 receptor-negative feedback to sympathetic nervous system (SNS) (centrally and peripherally), allowing peripheral sympathetic nervous system tone to decrease. Such activity leads to a decrease in total peripheral resistance (TPR) and cardiac output. When introduced it was a mainstay of antihypertensive therapy, but its use has declined, with increased use of other safer classes of agents. One of its important present-day uses is in the management of pregnancy-induced hypertension, as it is relatively safe in pregnancy compared to other antihypertensive drugs (Wikipedia). Methyldopa or alpha-methyldopa (brand names Aldomet, Apo-Methyldopa, Dopamet, Novomedopa) is a centrally-acting adrenergic antihypertensive medication. Its use is now deprecated following introduction of alternative safer classes of agents. However it continues to have a role in otherwise difficult to treat hypertension and gestational hypertension (formerly known as pregnancy-induced hypertension).; Methyldopa is an aromatic-amino-acid decarboxylase inhibitor in animals and in man. Only methyldopa, the L-isomer of alpha-methyldopa, has the ability to inhibit dopa decarboxylase and to deplete animal tissues of norepinephrine. In man the antihypertensive activity appears to be due solely to the L-isomer. About twice the dose of the racemate (DL-alpha-methyldopa) is required for equal antihypertensive effect. Methyldopa has no direct effect on cardiac function and usually does not reduce glomerular filtration rate, renal blood flow, or filtration fraction. Cardiac output usually is maintained without cardiac acceleration. In some patients the heart rate is slowed. Normal or elevated plasma renin activity may decrease in the course of methyldopa therapy. Methyldopa reduces both supine and standing blood pressure. Methyldopa usually produces highly effective lowering of the supine pressure with infrequent symptomatic postural hypotension. Exercise hypotension and diurnal blood pressure variations rarely occur.; Methyldopa, in its active metabolite form, is a central alpha-2 receptor agonist. Using methyldopa leads to alpha-2 receptor-negative feedback to sympathetic nervous system (SNS) (centrally and peripherally), allowing peripheral sympathetic nervous system tone to decrease. Such activity leads to a decrease in total peripheral resistance (TPR) and cardiac output.; When introduced it was a mainstay of antihypertensive therapy, but its use has declined, with increased use of other safer classes of agents. One of its important present-day uses is in the management of pregnancy-induced hypertension, as it is relatively safe in pregnancy compared to other antihypertensive drugs. C - Cardiovascular system > C02 - Antihypertensives > C02A - Antiadrenergic agents, centrally acting > C02AB - Methyldopa D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist Methyldopa (L-(-)-α-Methyldopa), a potent antihyoertensive agent, is an alpha-adrenergic agonist (selective for α2-adrenergic receptors). Methyldopa is a proagent and is metabolized (α-Methylepinephrine) in the central nervous system[1][2].

   

(+)-Fargesin

1,3-Benzodioxole, 5-(4-(3,4-dimethoxyphenyl)tetrahydro-1H,3H-furo(3,4-c)furan-1-yl)-, (1S-(1alpha,3aalpha,4beta,6aalpha))-

C21H22O6 (370.1416)


Fargesin is a lignan. Planinin is a natural product found in Piper mullesua and Magnolia coco with data available. Constituent of Artemisia absinthium (wormwood). (+)-Fargesin is found in alcoholic beverages and herbs and spices. (+)-Spinescin is found in herbs and spices. (+)-Spinescin is a constituent of sassafras root. Fargesin is a bioactive neolignan isolated from magnolia plants, with antihypertensive and anti-inflammatory effects[1][2][3]. Fargesin is a bioactive neolignan isolated from magnolia plants, with antihypertensive and anti-inflammatory effects[1][2][3].

   

3,4-Dimethoxybenzaldehyde

InChI=1/C9H10O3/c1-11-8-4-3-7(6-10)5-9(8)12-2/h3-6H,1-2H

C9H10O3 (166.063)


Veratraldehyde appears as needles or chunky light peach powder. Has an odor of vanilla beans. (NTP, 1992) Veratraldehyde is a dimethoxybenzene that is benzaldehyde substituted by methoxy groups at positions 3 and 4. It is found in peppermint, ginger, raspberry, and other fruits. It has a role as an antifungal agent. It is a member of benzaldehydes and a dimethoxybenzene. 3,4-Dimethoxybenzaldehyde is a natural product found in Polygala senega, Pluchea sagittalis, and other organisms with data available. 3,4-Dimethoxybenzaldehyde is found in fruits. 3,4-Dimethoxybenzaldehyde is isolated from peppermint, raspberry, ginger and Bourbon vanilla. 3,4-Dimethoxybenzaldehyde is used in vanilla flavour Isolated from peppermint, raspberry, ginger and Bourbon vanilla. It is used in vanilla flavours. 3,4-Dimethoxybenzaldehyde is found in peppermint, herbs and spices, and fruits. CONFIDENCE standard compound; INTERNAL_ID 1016; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3940; ORIGINAL_PRECURSOR_SCAN_NO 3939 CONFIDENCE standard compound; INTERNAL_ID 1016; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3955; ORIGINAL_PRECURSOR_SCAN_NO 3954 CONFIDENCE standard compound; INTERNAL_ID 1016; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3930; ORIGINAL_PRECURSOR_SCAN_NO 3929 CONFIDENCE standard compound; INTERNAL_ID 1016; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3941; ORIGINAL_PRECURSOR_SCAN_NO 3940 CONFIDENCE standard compound; INTERNAL_ID 1016; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3963; ORIGINAL_PRECURSOR_SCAN_NO 3961 CONFIDENCE standard compound; INTERNAL_ID 1016; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3961; ORIGINAL_PRECURSOR_SCAN_NO 3960 Veratraldehyde is an important chemical used in perfumery, agrochemical, and pharmaceutical industries. Veratraldehyde is an important chemical used in perfumery, agrochemical, and pharmaceutical industries.

   

p-Anisic acid

4-Methoxy-benzoic Acid; 4-Anisic acid; Anisic acid pound>>p-Anisic acid pound>>p-Methoxybenzoic acid

C8H8O3 (152.0473)


p-Anisic acid, also known as 4-anisate or draconic acid, belongs to the class of organic compounds known as p-methoxybenzoic acids and derivatives. These are benzoic acids in which the hydrogen atom at position 4 of the benzene ring is replaced by a methoxy group. p-Anisic acid is a drug. p-Anisic acid exists in all eukaryotes, ranging from yeast to humans. p-Anisic acid is a faint, sweet, and cadaverous tasting compound. Outside of the human body, p-anisic acid has been detected, but not quantified in several different foods, such as anises, cocoa beans, fennels, and german camomiles. This could make p-anisic acid a potential biomarker for the consumption of these foods. It is a white crystalline solid which is insoluble in water, highly soluble in alcohols and soluble in ether, and ethyl acetate. p-Anisic acid has antiseptic properties. It is also used as an intermediate in the preparation of more complex organic compounds. It is generally obtained by the oxidation of anethole or p-methoxyacetophenone. The term "anisic acid" often refers to this form specifically. p-Anisic acid is found naturally in anise. 4-methoxybenzoic acid is a methoxybenzoic acid substituted with a methoxy group at position C-4. It has a role as a plant metabolite. It is functionally related to a benzoic acid. It is a conjugate acid of a 4-methoxybenzoate. 4-Methoxybenzoic acid is a natural product found in Chaenomeles speciosa, Annona purpurea, and other organisms with data available. Anisic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Stevia rebaudiuna Leaf (part of). Flavouring agent. Food additive listed in the EAFUS Food Additive Database (Jan. 2001) A methoxybenzoic acid substituted with a methoxy group at position C-4. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS KEIO_ID A154 p-Anisic acid (4-Methoxybenzoic acid) is one of the isomers of anisic acid, with anti-bacterial and antiseptic properties[1]. p-Anisic acid (4-Methoxybenzoic acid) is one of the isomers of anisic acid, with anti-bacterial and antiseptic properties[1].

   

Canadine

(1S)-16,17-dimethoxy-5,7-dioxa-13-azapentacyclo[11.8.0.02,10.04,8.015,20]henicosa-2,4(8),9,15(20),16,18-hexaene

C20H21NO4 (339.1471)


(S)-canadine is the (S)-enantiomer of canadine. It has a role as a plant metabolite. It is an an (S)-7,8,13,14-tetrahydroprotoberberine and a canadine. It is functionally related to a (S)-nandinine. It is an enantiomer of a (R)-canadine. (S)-Canadine is a natural product found in Hydrastis canadensis, Corydalis turtschaninovii, and other organisms with data available. The (S)-enantiomer of canadine. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.721 D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators relative retention time with respect to 9-anthracene Carboxylic Acid is 0.718 Tetrahydroberberine is an isoquinoline alkaloid isolated from Corydalis Corydalis, with uM-level affinity for D2 and 5-HT1A receptors. Tetrahydroberberine is a different kind of living thing that can be extended and divided into parts. Tetrahydroberberine is a kind of effective D2 receptor antagonistic force. Tetrahydroberberine has the ability to strengthen the stomach and relieve the pressure on the stomach[1][2][3]. Tetrahydroberberine is an isoquinoline alkaloid isolated from Corydalis Corydalis, with uM-level affinity for D2 and 5-HT1A receptors.

   

Myristicin

1-Methoxy-2,3-methylenedioxy-5-(2-propenyl)benzene

C11H12O3 (192.0786)


Myristicin is an organic molecular entity. It has a role as a metabolite. Myristicin is a natural product found in Chaerophyllum azoricum, Peperomia bracteata, and other organisms with data available. Myristicin is found in anise. Myristicin is a constituent of dill, nutmeg, parsley and many other essential oils. May be responsible for psychotic effects of nutmeg at large doses Myristicin, 3-methoxy,4,5-methylendioxy-allylbenzene, is a natural organic compound present in the essential oil of nutmeg and to a lesser extent in other spices such as parsley and dill. Myristicin is a naturally occurring insecticide and acaricide with possible neurotoxic effects on dopaminergic neurons[citation needed]. It has hallucinogenic properties at doses much higher than used in cooking. Myristicin is a weak inhibitor of monoamine oxidase.Myristicin has been shown to exhibit apoptotic and hepatoprotective functions (A7836, A7837).Myristicin belongs to the family of Benzodioxoles. These are organic compounds containing a benzene ring fused to either isomers of dioxole. Myristicin is found in anise. Myristicin is a constituent of dill, nutmeg, parsley and many other essential oils. May be responsible for psychotic effects of nutmeg at large doses Myristicin, 3-methoxy,4,5-methylendioxy-allylbenzene, is a natural organic compound present in the essential oil of nutmeg and to a lesser extent in other spices such as parsley and dill. Myristicin is a naturally occurring insecticide and acaricide with possible neurotoxic effects on dopaminergic neurons[citation needed]. It has hallucinogenic properties at doses much higher than used in cooking. Myristicin is a weak inhibitor of monoamine oxidase Constituent of dill, nutmeg, parsley and many other essential oils. May be responsible for psychotic effects of nutmeg at large doses Myristicine ?act as a serotonin receptor antagonist, a weak monamine oxidase (MAO) inhibitor. Myristicine is the main component of nutmeg essential oil from Myristica fragrans?Houtt. Myristicine abuse produce hallucinogenic effects, organ damage, deliriumand others[1]. Myristicine is an orally bioavailable serotonin receptor antagonist and weak monoamine oxidase (MAO) inhibitor. Myristicine also exerts anti-cancer effects on gastric cancer cells by inhibiting the EGFR/ERK signaling pathway. Myristicine is the main component of nutmeg essential oil and has anti-cancer, anti-proliferative, antibacterial, anti-inflammatory and apoptosis-inducing effects. Myristicine abuse can produce hallucinogenic effects, organ damage, etc[1][2][3][4]. Myristicine is an orally bioavailable serotonin receptor antagonist and weak monoamine oxidase (MAO) inhibitor. Myristicine also exerts anti-cancer effects on gastric cancer cells by inhibiting the EGFR/ERK signaling pathway. Myristicine is the main component of nutmeg essential oil and has anti-cancer, anti-proliferative, antibacterial, anti-inflammatory and apoptosis-inducing effects. Myristicine abuse can produce hallucinogenic effects, organ damage, etc[1][2][3][4]. Myristicine ?act as a serotonin receptor antagonist, a weak monamine oxidase (MAO) inhibitor. Myristicine is the main component of nutmeg essential oil from Myristica fragrans?Houtt. Myristicine abuse produce hallucinogenic effects, organ damage, deliriumand others[1].

   

Asitrilobin B

2(5H)-FURANONE, 5-METHYL-3-((2R,8R,13R)-2,8,13-TRIHYDROXY-13-((2R,5R)-TETRAHYDRO-5-((1R)-1-HYDROXYTRIDECYL)-2-FURANYL)TRIDECYL)-, (5S)-

C35H64O7 (596.4652)


Annonacin is a natural product found in Xylopia aromatica, Asimina triloba, and other organisms with data available. Asitrilobin B is found in fruits. Asitrilobin B is a constituent of the seeds of Asimina triloba (pawpaw). Constituent of the seeds of Asimina triloba (pawpaw). Asitrilobin B is found in fruits.

   

LeachianoneG

Leachianone GLeucopelargonidin3-Deoxy-4-O-methylsappanolEpimedokoreanin BQingyangshengenin11-Deoxymogroside IIIE3-O-Acetyloleanolic acidLupulone CMbamiloside Ap-Hydroxyphenethyl trans-ferulate2-Hydroxyl emodin-1-methyl ether

C20H20O6 (356.126)


Leachianone G is a tetrahydroxyflavanone having the hydroxy groups at the 2-, 4-, 5- and 7-positions and a prenyl group at 8-position. It is a tetrahydroxyflavanone, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. It is a conjugate acid of a leachianone G(1-). Leachianone G is a natural product found in Morus alba, Sophora flavescens, and Lespedeza cyrtobotrya with data available.

   

Dihydrovaltrate

Butanoic acid, 3-methyl-, 6-(acetyloxy)-4a,5,6,7a-tetrahydro-4-((3-methyl-1-oxobutoxy)methyl)spiro(cyclopenta(c)pyran-7(1H),2-oxiran)-1-yl ester, (1S-(1-alpha,4a-alpha,6-alpha,7-beta,7a-alpha))-

C22H32O8 (424.2097)


Didrovaltratum is an iridoid monoterpenoid. Didrovaltrate is a natural product found in Valeriana pulchella, Fedia cornucopiae, and other organisms with data available. See also: Viburnum opulus bark (has part). Isolated from Valeriana subspecies Dihydrovaltrate is found in tea, fats and oils, and herbs and spices. Dihydrovaltrate is found in fats and oils. Dihydrovaltrate is isolated from Valeriana specie C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic

   

Butin_(molecule)

4H-1-BENZOPYRAN-4-ONE, 2-(3,4-DIHYDROXYPHENYL)-2,3-DIHYDRO-7-HYDROXY-, (2S)-

C15H12O5 (272.0685)


Butin is a trihydroxyflavanone in which the three hydroxy substituents are located at positions 3, 4 and 7. It is found in Acacia mearnsii, Vernonia anthelmintica and Dalbergia odorifera and has a protective affect against oxidative stress-induced mitochondrial dysfunction. It has a role as an antioxidant, a protective agent and a metabolite. It is a trihydroxyflavanone and a member of 4-hydroxyflavanones. Butin is a natural product found in Dipteryx lacunifera, Acacia vestita, and other organisms with data available. A trihydroxyflavanone in which the three hydroxy substituents are located at positions 3, 4 and 7. It is found in Acacia mearnsii, Vernonia anthelmintica and Dalbergia odorifera and has a protective affect against oxidative stress-induced mitochondrial dysfunction. (-)-Butin is the S enantiomer of Butin. Butin is a major biologically active flavonoid isolated from the heartwood of Dalbergia odorifera, with strong antioxidant, antiplatelet and anti-inflammatory activities[1][2]. (-)-Butin is the S enantiomer of Butin. Butin is a major biologically active flavonoid isolated from the heartwood of Dalbergia odorifera, with strong antioxidant, antiplatelet and anti-inflammatory activities[1][2]. (-)-Butin is the S enantiomer of Butin. Butin is a major biologically active flavonoid isolated from the heartwood of Dalbergia odorifera, with strong antioxidant, antiplatelet and anti-inflammatory activities[1][2]. (-)-Butin is the S enantiomer of Butin. Butin is a major biologically active flavonoid isolated from the heartwood of Dalbergia odorifera, with strong antioxidant, antiplatelet and anti-inflammatory activities[1][2]. Butin is a major biologically active flavonoid isolated from the heartwood of Dalbergia odorifera, with strong antioxidant, antiplatelet and anti-inflammatory activities. Butin significantly alleviates myocardial infarction and improves heart function, together with prevents diabetes-induced cardiac oxidative damage in rat[1][2]. Butin is a major biologically active flavonoid isolated from the heartwood of Dalbergia odorifera, with strong antioxidant, antiplatelet and anti-inflammatory activities. Butin significantly alleviates myocardial infarction and improves heart function, together with prevents diabetes-induced cardiac oxidative damage in rat[1][2].

   

Geraniol

cis-3,7-Dimethyl-2,6-octadien-1-ol, >=97\\%, FCC, FG

C10H18O (154.1358)


Geraniol, also known as beta-Geraniol, (E)-nerol (the isomer of nerol) or geranyl alcohol, is a monoterpenoid alcohol. It belongs to the class of organic compounds known as acyclic monoterpenoids. These are monoterpenes that do not contain a cycle. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. In plants, the biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in the plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. beta-Geraniol is an isoprenoid lipid molecule that is very hydrophobic, practically insoluble in water, and relatively neutral. beta-Geraniol has a sweet, citrus, and floral taste. beta-Geraniol is found in highest concentrations in common grapes, black walnuts, and common thymes and in lower concentrations in cardamoms, common oregano, and gingers. beta-Geraniol has also been detected in lemon verbena, oval-leaf huckleberries, common pea, sweet cherries, and nopals. It is found as an alcohol and as its ester in many essential oils including geranium oil. It is the primary part of rose oil, palmarosa oil, and citronella oil (Java type) and occurs in small quantities in geranium, lemon, and many other essential oils. Because it has a rose-like odor, it is commonly used in perfumes. It is used to create flavors such as peach, raspberry, grapefruit, red apple, plum, lime, orange, lemon, watermelon, pineapple, and blueberry. An alternate application has been found in the use of insect repellents or deterrants. Though it may repel mosquitoes, flies, lice, cockroaches, ants, and ticks, it is also produced by the scent glands of honey bees to help them mark nectar-bearing flowers and locate the entrances to their hives (http//doi:10.1051/apido:19900403). Extensive testing by Dr. Jerry Butler at the University of Florida has shown geraniol to be one of natures most effective insect repellents (PMID:20836800). Nerol is the (2Z)-stereoisomer of 3,7-dimethylocta-2,6-dien-1-ol. It has been isolated from the essential oils from plants like lemon grass. It has a role as a volatile oil component, a plant metabolite and a fragrance. Nerol is a natural product found in Eupatorium cannabinum, Vitis rotundifolia, and other organisms with data available. Nerol is a metabolite found in or produced by Saccharomyces cerevisiae. Constituent of many essential oils including neroli and bergamot oils. In essential oils it is a minor component always accompanied by geraniol. Flavouring agent The (2Z)-stereoisomer of 3,7-dimethylocta-2,6-dien-1-ol. It has been isolated from the essential oils from plants like lemon grass. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2].

   

Solanidine

(1S,2S,7S,10R,11S,14S,15R,16S,17R,20S,23S)-10,14,16,20-tetramethyl-22-azahexacyclo[12.10.0.02,11.05,10.015,23.017,22]tetracos-4-en-7-ol

C27H43NO (397.3344)


Solanidine is a steroid alkaloid fundamental parent, a 3beta-hydroxy-Delta(5)-steroid and a solanid-5-en-3-ol. It has a role as a plant metabolite and a toxin. It is a conjugate base of a solanidine(1+). Solanidine is a natural product found in Fritillaria delavayi, Fritillaria tortifolia, and other organisms with data available. Alkaloid from potato (Solanum tuberosum). Glycosides, (especies Solanines and chaconine) are trace toxic constits. of potato tubers (especies greened tubers), and interbreeding of potatoes with wild strains may increase their concn. or introduce other more toxic, solanidine glycosides Solanidine is a steroidal alkaloid, and its glycosides have been reported to have caused poisoning in man and animals. Solanidine is present in sera of healthy individuals and in amounts dependent on their dietary potato consumption. (PMID: 4007882). Solanidine is a cholestane alkaloid isolated from several potato species including Solanum demissum, Solanum acaule, and Solanum tuberosum. Solanidine can inhibit proliferation and exhibit obvious antitumor effect[1]. Solanidine is a cholestane alkaloid isolated from several potato species including Solanum demissum, Solanum acaule, and Solanum tuberosum. Solanidine can inhibit proliferation and exhibit obvious antitumor effect[1].

   

3-Hexen-1-ol

(3Z)-3-Hexen-1-ol ; (z)-3-hexen-1-o;3-Hexen-1-ol;Cis-3-Hexenol

C6H12O (100.0888)


(Z)-hex-3-en-1-ol is a hex-3-en-1-ol in which the double bond adopts a Z-configuration. Also known as leaf alcohol, it is emitted by green plants upon mechanical damage. Used as a flavourant in tea. It has a role as an insect attractant, a plant metabolite and a fragrance. cis-3-Hexen-1-ol is a natural product found in Lonicera japonica, Santolina corsica, and other organisms with data available. cis-3-hexen-1-ol is a metabolite found in or produced by Saccharomyces cerevisiae. 3-Hexen-1-ol, also known as 1-hydroxy-3-hexene, is a colourless oily liquid with an intense grassy-green odour of freshly cut green grass and leaves. It is produced in small amounts by most plants and it acts as an attractant to many predatory insects. 3-Hexen-1-ol is a very important aroma compound that is used in fruit and vegetable flavours and in perfumes. The yearly production is about 30 tonnes. 3-Hexen-1-ol is found in black elderberry. It is used as tea flavourant. Preferred to (E)-isomer in perfumes and flavours to add natural `green notes. Occurs in geranium, tea, citrus and other oils, and many fruits, e.g. banana, concord grape, quince. (Z)-3-Hexen-1-ol is found in many foods, some of which are allspice, dill, citrus, and garden tomato (variety). A hex-3-en-1-ol in which the double bond adopts a Z-configuration. Also known as leaf alcohol, it is emitted by green plants upon mechanical damage. Used as a flavourant in tea. cis-3-Hexen-1-ol ((Z)-3-Hexen-1-ol) is a green grassy smelling compound found in many fresh fruits and vegetables. cis-3-Hexen-1-ol is widely used as an added flavor in processed food to provide a fresh green quality. cis-3-Hexen-1-ol is an attractant to various insects[1][2]. cis-3-Hexen-1-ol ((Z)-3-Hexen-1-ol) is a green grassy smelling compound found in many fresh fruits and vegetables. cis-3-Hexen-1-ol is widely used as an added flavor in processed food to provide a fresh green quality. cis-3-Hexen-1-ol is an attractant to various insects[1][2].

   

Cuminaldehyde

4-(1-Methylethyl)benzaldehyde

C10H12O (148.0888)


Cuminaldehyde is the biologically active constituent of Cuminum cyminum seed oil. C. cyminum seed-derived materials have an inhibitory effect in vitro against rat lens aldose reductase and alpha-glucosidase. This inhibitory action cuminaldehyde suggest a potential utility as an antidiabetic therapeutic. (PMID:15796577). Cuminaldehyde is a volatile compound representative of cumin aroma present in trace amounts in the blood and milk of ewes fed with cumin seed. (PMID:8738023). The terpenoid cuminaldehyde, undergoes reduction biotransformation in mammals, but not oxidation. (PMID:2815827). Cuminaldehyde is a member of the class of benzaldehydes that is benzaldehyde substituted by an isopropyl group at position 4. It is a component of essential oils from Cumin and exhibits insecticidal activities. It has a role as an insecticide, a volatile oil component and a plant metabolite. It derives from a hydride of a cumene. 4-Isopropylbenzaldehyde is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. See also: Paeonia lactiflora root (part of). A member of the class of benzaldehydes that is benzaldehyde substituted by an isopropyl group at position 4. It is a component of essential oils from Cumin and exhibits insecticidal activities. Found in many essential oils, including eucalyptus, cumin and cassiaand is also present in grilled or roast beef and cognac. Flavouring agent Cuminaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=122-03-2 (retrieved 2024-07-11) (CAS RN: 122-03-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Cuminaldehyde is the major component of Cuminum cyminum, a natural aldehyde with inhibitory effect on alpha-synuclein fibrillation and cytotoxicity. Cuminaldehyde shows anticancer activity[1]. Cuminaldehyde is the major component of Cuminum cyminum, a natural aldehyde with inhibitory effect on alpha-synuclein fibrillation and cytotoxicity. Cuminaldehyde shows anticancer activity[1].

   

Acetochlor

2-chloranyl-N-(ethoxymethyl)-N-(2-ethyl-6-methyl-phenyl)ethanamide

C14H20ClNO2 (269.1182)


CONFIDENCE standard compound; INTERNAL_ID 1174; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9499; ORIGINAL_PRECURSOR_SCAN_NO 9495 CONFIDENCE standard compound; INTERNAL_ID 1174; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9451; ORIGINAL_PRECURSOR_SCAN_NO 9447 CONFIDENCE standard compound; INTERNAL_ID 1174; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9445; ORIGINAL_PRECURSOR_SCAN_NO 9442 CONFIDENCE standard compound; INTERNAL_ID 1174; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9479; ORIGINAL_PRECURSOR_SCAN_NO 9474 CONFIDENCE standard compound; INTERNAL_ID 1174; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9585; ORIGINAL_PRECURSOR_SCAN_NO 9582 CONFIDENCE standard compound; INTERNAL_ID 1174; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9473; ORIGINAL_PRECURSOR_SCAN_NO 9469 CONFIDENCE standard compound; EAWAG_UCHEM_ID 104 CONFIDENCE standard compound; INTERNAL_ID 8482 CONFIDENCE standard compound; INTERNAL_ID 3221 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Epoxiconazole

Pesticide6_Epoxiconazole_C17H13ClFN3O_1H-1,2,4-Triazole, 1-[[3-(2-chlorophenyl)-2-(4-fluorophenyl)oxiranyl]methyl]-

C17H13ClFN3O (329.0731)


D016573 - Agrochemicals D010575 - Pesticides CONFIDENCE standard compound; INTERNAL_ID 238; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9422; ORIGINAL_PRECURSOR_SCAN_NO 9420 CONFIDENCE standard compound; INTERNAL_ID 238; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9436; ORIGINAL_PRECURSOR_SCAN_NO 9433 CONFIDENCE standard compound; INTERNAL_ID 238; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9461; ORIGINAL_PRECURSOR_SCAN_NO 9459 CONFIDENCE standard compound; INTERNAL_ID 238; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9474; ORIGINAL_PRECURSOR_SCAN_NO 9472 CONFIDENCE standard compound; INTERNAL_ID 238; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9445; ORIGINAL_PRECURSOR_SCAN_NO 9444 CONFIDENCE standard compound; INTERNAL_ID 238; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9488; ORIGINAL_PRECURSOR_SCAN_NO 9486 CONFIDENCE standard compound; INTERNAL_ID 2574 CONFIDENCE standard compound; INTERNAL_ID 8407 CONFIDENCE standard compound; EAWAG_UCHEM_ID 95

   

Monuron

3-(p-Chlorophenyl)-1,1-dimethylurea

C9H11ClN2O (198.056)


CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7858; ORIGINAL_PRECURSOR_SCAN_NO 7856 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7928; ORIGINAL_PRECURSOR_SCAN_NO 7925 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7944; ORIGINAL_PRECURSOR_SCAN_NO 7942 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3857; ORIGINAL_PRECURSOR_SCAN_NO 3854 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7900; ORIGINAL_PRECURSOR_SCAN_NO 7898 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3846; ORIGINAL_PRECURSOR_SCAN_NO 3844 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7885; ORIGINAL_PRECURSOR_SCAN_NO 7882 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3870; ORIGINAL_PRECURSOR_SCAN_NO 3866 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7933; ORIGINAL_PRECURSOR_SCAN_NO 7931 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3859; ORIGINAL_PRECURSOR_SCAN_NO 3857 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3877; ORIGINAL_PRECURSOR_SCAN_NO 3875 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3866; ORIGINAL_PRECURSOR_SCAN_NO 3861

   

Isoferulic acid

(2E)-3-(3-hydroxy-4-methoxyphenyl)prop-2-enoic acid

C10H10O4 (194.0579)


Isoferulic acid (CAS: 537-73-5) is a chlorogenic acid (CGA). CGAs are formed by the esterification of hydroxycinnamic acids (e.g. caffeic acid, ferulic acid, and p-coumaric acid) with quinic acid. CGAs are abundant phenolic compounds in coffee, with caffeoylquinic (CQA), feruloylquinic (FQA), and dicaffeoylquinic (diCQA) acids being the major subclasses, and coffee is the most consumed food product in the world. Isoferulic acid is present in normal human urine in concentrations of 0.05-2.07 umol/mmol creatinine at baseline, and reaches 0.2-9.6 umol/mmol creatinine in four hours after a cup of coffee, with a large inter-individual variation (PMID:17884997). It is used as a food additive; listed in the EAFUS Food Additive Database (Jan 2001) KEIO_ID I024 Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. trans-Isoferulic acid (trans-3-Hydroxy-4-methoxycinnamic acid) is an aromatic acid isolated from the roots of Clematis florida var. plena. trans-Isoferulic acid exhibits anti-inflammatory activity[1].trans-isoferulic acid suppresses NO and PGE2 production through the induction of Nrf2-dependent heme oxygenase-1 (HO-1)[2]. trans-Isoferulic acid (trans-3-Hydroxy-4-methoxycinnamic acid) is an aromatic acid isolated from the roots of Clematis florida var. plena. trans-Isoferulic acid exhibits anti-inflammatory activity[1].trans-isoferulic acid suppresses NO and PGE2 production through the induction of Nrf2-dependent heme oxygenase-1 (HO-1)[2].

   

3,4-Dihydroxyphenylglycol

4-(1,2-dihydroxyethyl)benzene-1,2-diol

C8H10O4 (170.0579)


3,4-Dihydroxyphenylglycol, also known as DHPG or DOPEG, belongs to the class of organic compounds known as catechols. Catechols are compounds containing a 1,2-benzenediol moiety. 3,4-Dihydroxyphenylglycol is an extremely weak basic (essentially neutral) compound. 3,4-Dihydroxyphenylglycol exists in all living organisms, ranging from bacteria to plants to humans. It is a potent antioxidant (PMID: 30007612). In mammals, 3,4-Dihydroxyphenylglycol is the primary metabolite of norepinephrine and is generated through the action of the enzyme monoamine oxidase (MAO). DHPG is then further metabolized by the enzyme Catechol-O-methyltransferase (COMT) to 3-methoxy-4-hydroxyphenylglycol (MHPG). Within humans, 3,4-dihydroxyphenylglycol participates in a number of enzymatic reactions. In particular, 3,4-dihydroxyphenylglycol can be biosynthesized from 3,4-dihydroxymandelaldehyde; which is mediated by the enzyme alcohol dehydrogenase 1A. In addition, 3,4-dihydroxyphenylglycol and guaiacol can be converted into vanylglycol and pyrocatechol through its interaction with the enzyme catechol O-methyltransferase. Outside of the human body, 3,4-dihydroxyphenylglycol is found, on average, in the highest concentration in olives. High levels of DHPG (up to 368 mg/kg of dry weight) have been found in the pulp of natural black olives. This could make 3,4-dihydroxyphenylglycol a potential biomarker for the consumption of olives and olive oil. 3,4-Dihydroxyphenylglycol has been linked to Menkes disease (PMID: 19234788). DHPG level are lower in Menkes patients (3.57 ± 0.40 nM) than healthy infants 8.91 ± 0.77 nM). Menkes disease (also called “kinky hair disease”) is an X-linked recessive neurodevelopmental disorder caused by defects in a gene that encodes a copper-transporting ATPase (ATP7A). Affected infants typically appear healthy at birth and show normal neurodevelopment for 2-3 months. Subsequently there is loss of milestones (e.g., smiling, visual tracking, head control) and death in late infancy or childhood (PMID: 19234788). 3,4-Dihydroxyphenylglycol (DOPEG) is a normal norepinephrine metabolite present in CSF, plasma and urine in humans (PMID 6875564). In healthy individuals there is a tendency for free DOPEG to increase and for conjugated DOPEG to decrease with age; plasmatic DOPEG levels are significantly lower in depressed patients as compared to healthy controls (PMID 6671452). DL-1-(3,4-Dihydroxyphenyl)-1,2-ethanediol is found in olive. 4-(1,2-Dihydroxyethyl)benzene-1,2-diol, a normal norepinephrine metabolite, is found to be associated with Menkes syndrome.

   

(RS)-3,5-DHPG

(S)-3,5-Dihydroxyphenylglycine

C8H9NO4 (183.0532)


D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists DHPG ((RS)-3,5-DHPG) is an amino acid, which acts as a selective and potent agonist of group I mGluR (mGluR 1 and mGluR 5), shows no effect on Group II or Group III mGluRs[1]. DHPG ((RS)-3,5-DHPG) is also an effective antagonist of mGluRs linked to phospholipase D[2].

   

5-Aminopentanoic acid

5-Aminovaleric acid hydrochloride

C5H11NO2 (117.079)


5-Aminopentanoic acid (or 5-aminovalerate) is a lysine degradation product. It can be produced both endogenously or through bacterial catabolism of lysine. 5-aminovalerate is formed via the following multi-step reaction: L-lysine leads to cadverine leads to L-piperideine leads 5-aminovalerate (PMID:405455). In other words it is a metabolite of cadaverine which is formed via the intermediate, 1-piperideine (PMID:6436440). Cadaverine is a foul-smelling diamine compound produced by protein hydrolysis during putrefaction of animal tissue. High levels of 5-aminovalerate in biofluids may indicate bacterial overgrowth or endogenous tissue necrosis. In most cases endogenous 5-aminovalerate is thought to be primarily a microbial metabolite produced by the gut or oral microflora, although it can be produced endogenously. 5-aminovalerate is a normal metabolite present in human saliva, with a tendency to elevated concentration in patients with chronic periodontitis. Bacterial contamination and decomposition of salivary proteins is primarily responsible for elevated salivary levels (PMID 3481959). Beyond being a general waste product, 5-aminovalerate is also believed to act as a methylene homologue of gamma-aminobutyric acid (GABA) and functions as a weak GABA agonist (PMID:4031870). It is also known as an antifibrinolytic amino acid analog and so it functions as a weak inhibitor of the blood clotting pathway (PMID:6703712). 5- aminovalerate is an in vivo substrate of 4-aminobutyrate:2-oxoglutarate aminotransferase (PMID:4031870). It can be found in Corynebacterium (PMID:27717386). 5-aminopentanoic acid is a normal metabolite present in human saliva, with a tendency to elevated concentration in patients with chronic periodontitis. Bacterial contamination and decomposition of salivary proteins is responsible for the elevated salivary levels (PMID 3481959) [HMDB] 5-Aminovaleric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=660-88-8 (retrieved 2024-07-17) (CAS RN: 660-88-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 5-Aminovaleric acid is believed to act as a methylene homologue of gamma-aminobutyric acid (GABA) and functions as a weak GABA agonist.

   

5-Hydroxylysine

alpha,epsilon-Diamino-delta-hydroxycaproic acid

C6H14N2O3 (162.1004)


5-Hydroxylysine (Hyl), also known as hydroxylysine or 5-Hydroxy-L-lysine, belongs to the class of organic compounds known as L-alpha-amino acids. These are alpha amino acids which have the L-configuration of the alpha-carbon atom. Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. 5-Hydroxylysine is a hydroxylated derivative of the amino acid lysine that is present in certain collagens, the chief structural protein of mammalian skin and connective tissue. 5-Hydroxylysine arises from a post-translational hydroxy modification of lysine and is biosynthesized from lysine via oxidation by lysyl hydroxylase enzymes. 5-Hydroxylysine can then undergo further modification by glycosylation, giving rise to galactosyl hydroxylysine (GH) and glucosylgalactosyl hydroxylysine (GGH). These glycosylated forms of hydroxylysine contribute to collagen’s unusual toughness and resiliency. The monoglycosylated, galactosyl-hydroxylysine is enriched in bone compared with the disaccharide form, glucosyl-galactosyl-hydroxylysine, which is the major form in skin. 5-Hydroxylysine exists in all eukaryotes, ranging from yeast to humans. It was first discovered in 1921 by Donald Van Slyke. Free forms of hydroxylysine arise through proteolytic degradation of collagen. Urinary excretion of 5-Hydroxylysine and its glycosides can be used as an index of collagen degradation, with high levels being indicative of more rapid or extensive collagen degradation (often seen in patients with thermal burns, Pagets disease of bone or hyperphosphatasia) (PMID: 404321). One of the natural protein-bound amino acids. Occurs free in plant tissues, e.g. Medicago sativa (alfalfa)

   

5-Sulfosalicylic acid

Sulfosalicylic acid, beryllium salt (1:1)

C7H6O6S (217.9885)


5-Sulfosalicylic acid is a derivative of salicylic acid, a common anti-inflammatory drug.Sulfosalicylic acid is used in urine tests to determine urine protein content. The chemical causes the precipitation of dissolved proteins, which is measured from the degree of turbidity. It is also used for integral colour anodizing. -Wikipedia [HMDB] 5-Sulfosalicylic acid is a derivative of salicylic acid, a common anti-inflammatory drug. Sulfosalicylic acid is used in urine tests to determine urine protein content. The chemical causes the precipitation of dissolved proteins, which is measured from the degree of turbidity. It is also used for integral colour anodizing. -Wikipedia. D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic

   

16a-Hydroxyestrone

(1S,10R,11S,13R,15S)-5,13-dihydroxy-15-methyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-2(7),3,5-trien-14-one

C18H22O3 (286.1569)


16a-Hydroxyestrone or 16alpha-hydroxyestrone (16α-OH-E1 or 16a OHE1), or hydroxyestrone, is an endogenous steroidal estrogen and a major metabolite of estrone and estradiol. 16a-hydroxyestrone belongs to the class of organic compounds known as estrogens and derivatives. These are steroids with a structure containing a 3-hydroxylated estrane. Thus, 16a-hydroxyestrone is considered to be a steroid molecule. 16a-hydroxyestrone is found in all vertebrates. Vertebrates, especially mammals, metabolizes estrogen into two major pathways and one minor. The two major pathways lead to 2-hydroxyestrone and 16a-hydroxyestrone (2-OHE1 and 16a OHE1 respectively). The minor pathway leads to 4-hydroxyestrone (4-OHE1). 2a-hydroxyestrone is considered to be the good metabolite (PMID: 8943806) as 2-hydroxyestrone does not stimulate cell growth and it blocks the action of stronger estrogens that may be carcinogenic. 16a-Hydroxyestrone, on the other hand, has a significantly stronger estrogenic activity, and studies show that it may increase the risk of breast cancer. The binding of 16a-hydroxyestrone to the estrogen receptor is reported to be covalent and irreversible (PMID: 3186693). A low urinary ratio of 2-hydroxyestrone to 16-alpha-hydroxyestrone is a strong predictor of breast cancer risk among women (PMID: 19502596). Estrone (also oestrone) is an estrogenic hormone secreted by the ovary. Its molecular formula is C18H22O2. estrone has a melting point of 254.5 degrees Celsius. estrone is one of the three estrogens, which also include estriol and estradiol. estrone is the least prevalent of the three hormones, estradiol being prevalent almost always in a female body, estriol being prevalent primarily during pregnancy. estrone sulfate is relevant to health and disease due to its conversion to estrone sulfate, a long-lived derivative of estrone. estrone sulfate acts as a pool of estrone which can be converted as needed to the more active estradiol. [HMDB] C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

Asparagine

(2S)-2-Amino-3-carbamoylpropanoic acid

C4H8N2O3 (132.0535)


Asparagine (Asn) or L-asparagine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-asparagine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Asparagine is found in all organisms ranging from bacteria to plants to animals. In humans, asparagine is not an essential amino acid, which means that it can be synthesized from central metabolic pathway intermediates in humans and is not required in the diet. The precursor to asparagine is oxaloacetate. Oxaloacetate is converted to aspartate using a transaminase enzyme. This enzyme transfers the amino group from glutamate to oxaloacetate producing alpha-ketoglutarate and aspartate. The enzyme asparagine synthetase produces asparagine, AMP, glutamate, and pyrophosphate from aspartate, glutamine, and ATP. In the asparagine synthetase reaction, ATP is used to activate aspartate, forming beta-aspartyl-AMP. Glutamine donates an ammonium group which reacts with beta-aspartyl-AMP to form asparagine and free AMP. Since the asparagine side chain can make efficient hydrogen bond interactions with the peptide backbone, asparagines are often found near the beginning and end of alpha-helices, and in turn motifs in beta sheets. Its role can be thought as "capping" the hydrogen bond interactions which would otherwise need to be satisfied by the polypeptide backbone. Asparagine also provides key sites for N-linked glycosylation, a modification of the protein chain that is characterized by the addition of carbohydrate chains. A reaction between asparagine and reducing sugars or reactive carbonyls produces acrylamide (acrylic amide) in food when heated to sufficient temperature (i.e. baking). These occur primarily in baked goods such as French fries, potato chips, and roasted coffee. Asparagine was first isolated in 1806 from asparagus juice --hence its name. Asparagine was the first amino acid to be isolated. The smell observed in the urine of some individuals after the consumption of asparagus is attributed to a byproduct of the metabolic breakdown of asparagine, asparagine-amino-succinic-acid monoamide. However, some scientists disagree and implicate other substances in the smell, especially methanethiol. [Spectral] L-Asparagine (exact mass = 132.05349) and L-Aspartate (exact mass = 133.03751) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. One of the nonessential amino acids. Dietary supplement, nutrient. Widely distributed in the plant kingdom. Isolated from asparagus, beetroot, peas, beans, etc. (-)-Asparagine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=70-47-3 (retrieved 2024-07-15) (CAS RN: 70-47-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Asparagine ((-)-Asparagine) is a non-essential amino acid that is involved in the metabolic control of cell functions in nerve and brain tissue. L-Asparagine ((-)-Asparagine) is a non-essential amino acid that is involved in the metabolic control of cell functions in nerve and brain tissue.

   

L-Cystathionine

(2S)-2-amino-4-{[(2R)-2-amino-2-carboxyethyl]sulfanyl}butanoic acid

C7H14N2O4S (222.0674)


Cystathionine is a dipeptide formed by serine and homocysteine. Cystathioninuria is a prominent manifestation of vitamin-B6 deficiency. The transsulfuration of methionine yields homocysteine, which combines with serine to form cystathionine, the proximate precursor of cysteine through the enzymatic activity of cystathionase. In conditions in which cystathionine gamma-synthase or cystathionase is deficient, for example, there is cystathioninuria. Although cystathionine has not been detected in normal human serum or plasma by most conventional methods, gas chromatographic/mass spectrometric methodology detected a mean concentration of cystathionine in normal human serum of 140 nM, with a range of 65 to 301 nM. Cystathionine concentrations in CSF have been 10, 1, and 0.5 uM, and "not detected". Only traces (i.e., <1 uM) of cystathionine are present in normal CSF.587. Gamma-cystathionase deficiency (also known as Cystathioninuria), which is an autosomal recessive disorder (NIH: 2428), provided the first instance in which, in a human, the major biochemical abnormality due to a defined enzyme defect was clearly shown to be alleviated by administration of large doses of pyridoxine. The response in gamma-cystathionase-deficient patients is not attributable to correction of a preexisting deficiency of this vitamin (OMMBID, Chap. 88). Isolated from Phallus impudicus (common stinkhorn) CONFIDENCE standard compound; INTERNAL_ID 146 KEIO_ID C019; [MS2] KO008910 KEIO_ID C047 KEIO_ID C019 Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; ML_ID 30 L-Cystathionine is a nonprotein thioether and is a key amino acid associated with the metabolic state of sulfur-containing amino acids. L-Cystathionine protects against Homocysteine-induced mitochondria-dependent apoptosis of vascular endothelial cells (HUVECs). L-Cystathionine plays an important role in cardiovascular protection[1][2]. L-Cystathionine is a nonprotein thioether and is a key amino acid associated with the metabolic state of sulfur-containing amino acids. L-Cystathionine protects against Homocysteine-induced mitochondria-dependent apoptosis of vascular endothelial cells (HUVECs). L-Cystathionine plays an important role in cardiovascular protection[1][2].

   

Panthenol

D(+)-alpha,gamma-Dihydroxy-N-(3-hydroxypropyl)-beta,beta-dimethylbutyramide

C9H19NO4 (205.1314)


In cosmetics, panthenol (also called pantothenol) is a humectant, emollient, and moisturizer. It binds to hair follicles readily and is a frequent component of shampoos and hair conditioners (in concentrations of 0.1-1\\\%). It coats the hair and seals its surface, lubricating follicles and making strands appear shiny. Panthenol (specifically D-panthenol or dexpanthenol) is the alcohol analog of pantothenic acid (vitamin B5), and is thus the provitamin of B5. In organisms, it is quickly oxidized into pantothenate. Panthenol is a viscous transparent liquid at room temperature, but salts of pantothenic acid (for example sodium pantothenate) are powders (typically white). It is very soluble in water, alcohol, and propylene glycol, soluble in ether and chloroform, and only slightly soluble in glycerin. D - Dermatologicals > D03 - Preparations for treatment of wounds and ulcers > D03A - Cicatrizants A - Alimentary tract and metabolism > A11 - Vitamins S - Sensory organs > S01 - Ophthalmologicals Dietary supplement D-Panthenol is the biologically-active alcohol of pantothenic acid, which leads to an elevation in the amount of coenzyme A in the cell.

   

Picolinic acid

5-Aminopyridine-2-carboxylic acid

C6H5NO2 (123.032)


Picolinic acid is a metabolite of the tryptophan catabolism. Picolinic acid is produced under inflammatory conditions and a costimulus with interferon-gamma (IFNgamma) of macrophage (Mphi) effector functions, is a selective inducer of the Mphi inflammatory protein-1alpha (MIP-1alpha) and -1beta (MIPs), two chemokines/cytokines involved in the elicitation of the inflammatory reactions and in the development of the Th1 responses. IFNgamma and picolinic acid have reciprocal effects on the production of MIPs chemokines and the expression of their receptor. The concerted action of IFNgamma and picolinic acid on MIP-1alpha/beta chemokine/receptor system is likely to be of pathophysiological significance and to represent an important regulatory mechanism for leukocyte recruitment and distribution into damaged tissues during inflammatory responses. Picolinic acid has an effect on the production of L-arginine-derived reactive nitrogen intermediates in macrophages, by augmenting IFN-gamma-induced NO2- production, and acts synergistically with IFN-gamma in activating macrophages. Children with acrodermatitis enteropathica (AE) are treated with oral zinc dipicolinate (zinc-PA). The concentration of picolinic acid in the plasma of asymptomatic children with AE was significantly less than that of normal children. However, oral treatment with PA alone is ineffective. The results support the hypothesis that the genetic defect in AE is in the tryptophan pathway, although the role of PA in zinc metabolism remains to be defined. (PMID:15206716, 8473748, 1701787, 6694049). Picolinic acid is a metabolite of the tryptophan catabolism. Picolinic acid is produced under inflammatory conditions and a costimulus with interferon-gamma (IFNgamma) of macrophage (Mphi) effector functions, is a selective inducer of the Mphi inflammatory protein-1alpha (MIP-1alpha) and -1beta (MIPs), two chemokines/cytokines involved in the elicitation of the inflammatory reactions and in the development of the Th1 responses. IFNgamma and picolinic acid have reciprocal effects on the production of MIPs chemokines and the expression of their receptor. The concerted action of IFNgamma and picolinic acid on MIP-1alpha/beta chemokine/receptor system is likely to be of pathophysiological significance and to represent an important regulatory mechanism for leukocyte recruitment and distribution into damaged tissues during inflammatory responses. Picolinic acid has an effect on the production of L-arginine-derived reactive nitrogen intermediates in macrophages, by augmenting IFN-gamma-induced NO2- production, and acts synergistically with IFN-gamma in activating macrophages. D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents [Raw Data] CBA16_Picolinic-acid_pos_10eV_1-8_01_816.txt [Raw Data] CBA16_Picolinic-acid_pos_20eV_1-8_01_817.txt KEIO_ID P045 Picolinic acid (PCL 016) is a topical antiviral agent, which inhibits adenovirus replication in rabbits.

   

6-Acetylmorphine

10-hydroxy-4-methyl-12-oxa-4-azapentacyclo[9.6.1.0¹,¹³.0⁵,¹⁷.0⁷,¹⁸]octadeca-7(18),8,10,15-tetraen-14-yl acetate

C19H21NO4 (327.1471)


6-acetylmorphine belongs to the family of Morphinans. These are polycyclic compounds with a four-ring skeleton with three condensed six-member rings forming a partially hydrogenated phenanthrene moiety, one of which is aromatic while the two others are alicyclic. D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids

   

Alprazolam

12-chloro-3-methyl-9-phenyl-2,4,5,8-tetraazatricyclo[8.4.0.0²,⁶]tetradeca-1(10),3,5,8,11,13-hexaene

C17H13ClN4 (308.0829)


Alprazolam is only found in individuals that have used or taken this drug. It is a triazolobenzodiazepine compound with antianxiety and sedative-hypnotic actions, that is efficacious in the treatment of panic disorders, with or without agoraphobia, and in generalized anxiety disorders. (From AMA Drug Evaluations Annual, 1994, p238)Benzodiazepines bind nonspecifically to benzodiazepine receptors BNZ1, which mediates sleep, and BNZ2, which affects muscle relaxation, anticonvulsant activity, motor coordination, and memory. As benzodiazepine receptors are thought to be coupled to gamma-aminobutyric acid-A (GABAA) receptors, this enhances the effects of GABA by increasing GABA affinity for the GABA receptor. Binding of the inhibitory neurotransmitter GABA to the site opens the chloride channel, resulting in a hyperpolarized cell membrane that prevents further excitation of the cell. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05B - Anxiolytics > N05BA - Benzodiazepine derivatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent

   

Bufotenin

3-[2-(dimethylamino)ethyl]-1H-indol-5-ol

C12H16N2O (204.1263)


A hallucinogenic serotonin analog found in frog or toad skins, mushrooms, higher plants, and mammals, especially in the brains, plasma, and urine of schizophrenics. Bufotenin has been used as a tool in CNS studies and misused as a psychedelic. Bufotenin (5-OH-DMT), is a tryptamine related to the neurotransmitter serotonin. It is an alkaloid found in the skin of some species of toads; in mushrooms, higher plants, and mammals. Bufotenin is a chemical constituent in the venom and eggs of several species of toads belonging to the Bufo genus, but most notably in the Colorado River toad (Bufo alvarius) as it is the only toad species in which bufotenin is present in large enough quantities for a psychoactive effect. Extracts of toad venom, containing bufotenin and other bioactive compounds, have been used in some traditional medicines (probably derived from Bufo gargarizans), which has been used medicinally for centuries in China. Bufotenin is a constituent of the seeds of Anadenanthera colubrina and Anadenanthera peregrina trees. Anadenanthera seeds have been used as an ingredient in psychedelic snuff preparations by indigenous cultures of the Caribbean, Central and South America. Bufotenin is a tertiary amine that consists of N,N-dimethyltryptamine bearing an additional hydroxy substituent at position 5. It has a role as a hallucinogen and a coral metabolite. It is a tryptamine alkaloid and a tertiary amine. It is functionally related to a N,N-dimethyltryptamine. D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens D009676 - Noxae > D011042 - Poisons > D014688 - Venoms

   

Diphenhydramine

N-(2-(Diphenylmethoxy)ethyl)-N,N-dimethylamine

C17H21NO (255.1623)


Diphenhydramine is a histamine H1 antagonist used as an antiemetic, antitussive, for dermatoses and pruritus, for hypersensitivity reactions, as a hypnotic, an antiparkinson, and as an ingredient in common cold preparations. It has some undesired antimuscarinic and sedative effects. -- Pubchem; Pseudoephedrine is a phenethylamine, and an isomer of ephedrine. Pseudoephedrine is the International Nonproprietary Name (INN) of the (1S,2S)- diastereomer of ephedrine (which has 1R,2S- configuration). Other names are (+)-pseudoephedrine and D-pseudoephedrine (Reynolds, 1989). The enantiomer (-)-(1R,2R)-Pseudoephedrine has fewer side-effects, fewer central nervous system (CNS) stimulatory effects, does not reduce to d-methamphetamine, yet retains its efficacy as a decongestant.[citation needed] However, the patent holder for (-)-Pseudoephedrine (Pfizer/Warner-Lambert) has not yet sought or received government approval for its sale to the public.(US Patent 6,495,529); Treatment for urinary incontinence is an unlabeled use for these medications. Unlabeled use means doctors can use the medication to treat a condition other than that for which it was first approved by the U.S. Food and Drug Administration (FDA). These medications are approved by the FDA for the treatment of nasal congestion caused by colds or allergies. However it has also been successful in treating stress incontinence by increasing the pressure (tension) exerted by the muscles of the bladder neck and the urethra, which helps retain the urine within the bladder. Despite being one of the oldest antihistamines on the market, it is by and large the most effective antihistamine available, either by prescription or over-the-counter, and has been shown to exceed the effectiveness of even the latest prescription drugs. Consequently, it is frequently used when an allergic reaction requires fast, effective reversal of the (often dangerous) effects of a massive histamine release. However, it is not always the drug of choice for treating allergies. Like many other first generation antihistamines, is also a potent anticholinergic agent. This leads to profound drowsiness as a very common side-effect, along with the possibilities of motor impairment (ataxia), dry mouth and throat, flushed skin, rapid or irregular heartbeat (tachycardia), blurred vision at near point due to lack of accommodation (cycloplegia), abnormal sensitivity to bright light (photophobia), pupil dilatation, urinary retention, constipation, difficulty concentrating, short-term memory loss, visual disturbances, hallucinations, confusion, erectile dysfunction, and delirium. -- Wikipedia;. A histamine H1 antagonist used as an antiemetic, antitussive, for dermatoses and pruritus, for hypersensitivity reactions, as a hypnotic, an antiparkinson, and as an ingredient in common cold preparations. It has some undesired antimuscarinic and sedative effects. -- Pubchem; Pseudoephedrine is a phenethylamine, and an isomer of ephedrine. Pseudoephedrine is the International Nonproprietary Name (INN) of the (1S,2S)- diastereomer of ephedrine (which has 1R,2S- configuration). Other names are (+)-pseudoephedrine and D-pseudoephedrine (Reynolds, 1989). The enantiomer (-)-(1R,2R)-Pseudoephedrine has fewer side-effects, fewer central nervous system (CNS) stimulatory effects, does not reduce to d-methamphetamine, yet retains its efficacy as a decongestant.[citation needed] However, the patent holder for (-)-Pseudoephedrine (Pfizer/Warner-Lambert) has not yet sought or received government approval for its sale to the public.(US Patent 6,495,529); Treatment for urinary incontinence is an unlabeled use for these medications. Unlabeled use means doctors can use the medication to treat a condition other than that for which it was first approved by the U.S. Food and Drug Administration (FDA). These medications are approved by the FDA for the treatment of nasal congestion caused by colds or allergies. However it has also been successful in treating stress incontinence by increasing the pressure (tension) exerted by the muscles of the bladder neck and the urethra, which helps retain the urine within the bladder.; Despite being one of the oldest antihistamines on the market, it is by and large the most effective antihistamine available, either by prescription or over-the-counter, and has been shown to exceed the effectiveness of even the latest prescription drugs. Consequently, it is frequently used when an allergic reaction requires fast, effective reversal of the (often dangerous) effects of a massive histamine release. However, it is not always the drug of choice for treating allergies. Like many other first generation antihistamines, is also a potent anticholinergic agent. This leads to profound drowsiness as a very common side-effect, along with the possibilities of motor impairment (ataxia), dry mouth and throat, flushed skin, rapid or irregular heartbeat (tachycardia), blurred vision at near point due to lack of accommodation (cycloplegia), abnormal sensitivity to bright light (photophobia), pupil dilatation, urinary retention, constipation, difficulty concentrating, short-term memory loss, visual disturbances, hallucinations, confusion, erectile dysfunction, and delirium. -- Wikipedia [HMDB] D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AA - Antihistamines for topical use R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AA - Aminoalkyl ethers D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics CONFIDENCE standard compound; EAWAG_UCHEM_ID 3352 D018926 - Anti-Allergic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Diphenhydramine is a first-generation histamine H1-receptor antagonist with anti-cholinergic effect. Diphenhydramine hydrochloride can across the ovine blood-brain barrier (BBB) [1][2][3].

   

Xanthurenic acid

4,8-Dihydroxy-2-quinolinecarboxylic acid

C10H7NO4 (205.0375)


Xanthurenic acid, also known as xanthurenate or 8-hydroxykynurenic acid, is a member of the class of compounds known as quinoline carboxylic acids. Quinoline carboxylic acids are quinolines in which the quinoline ring system is substituted by a carboxyl group at one or more positions. Xanthurenic acid is slightly soluble (in water). Xanthurenic acid can be found primarily in blood, feces, and urine, as well as in human epidermis tissue. Within the cell, xanthurenic acid is primarily located in the membrane. Xanthurenic acid exists in all eukaryotes, ranging from yeast to humans. In humans, xanthurenic acid is involved in the tryptophan metabolism. Moreover, xanthurenic acid is found to be associated with citrullinemia type I, which is an inborn error of metabolism. Xanthurenic acid is a metabolite from tryptophan catabolism. It is a substrate of the enzyme methyltransferases (EC 2.1.1.-) in pathway tryptophan metabolism (KEGG). Xanthurenic acid is a metabolite from tryptophan catabolism. It is a substrate of the enzyme methyltransferases [EC 2.1.1.-] in pathway tryptophan metabolism (KEGG). [HMDB] D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents [Raw Data] CBA13_Xanthurenic-aci_neg_40eV_1-5_01_737.txt [Raw Data] CBA13_Xanthurenic-aci_neg_50eV_1-5_01_738.txt [Raw Data] CBA13_Xanthurenic-aci_neg_10eV_1-5_01_734.txt [Raw Data] CBA13_Xanthurenic-aci_neg_30eV_1-5_01_736.txt [Raw Data] CBA13_Xanthurenic-aci_pos_40eV_1-5_01_684.txt [Raw Data] CBA13_Xanthurenic-aci_pos_50eV_1-5_01_685.txt [Raw Data] CBA13_Xanthurenic-aci_pos_30eV_1-5_01_683.txt [Raw Data] CBA13_Xanthurenic-aci_pos_10eV_1-5_01_681.txt [Raw Data] CBA13_Xanthurenic-aci_pos_20eV_1-5_01_682.txt [Raw Data] CBA13_Xanthurenic-aci_neg_20eV_1-5_01_735.txt Xanthurenic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=59-00-7 (retrieved 2024-07-01) (CAS RN: 59-00-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Xanthurenic acid is a putative endogenous Group II metabotropic glutamate receptor agonist, on sensory transmission in the thalamus. Xanthurenic acid is a putative endogenous Group II metabotropic glutamate receptor agonist, on sensory transmission in the thalamus.

   

Oxymorphone

(1S,5R,13R,17S)-10,17-dihydroxy-4-methyl-12-oxa-4-azapentacyclo[9.6.1.0¹,¹³.0⁵,¹⁷.0⁷,¹⁸]octadeca-7(18),8,10-trien-14-one

C17H19NO4 (301.1314)


An opioid analgesic with actions and uses similar to those of morphine, apart from an absence of cough suppressant activity. It is used in the treatment of moderate to severe pain, including pain in obstetrics. It may also be used as an adjunct to anesthesia. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1092) D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AA - Natural opium alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Procainamide

Bristol-myers squibb brand OF procainamide hydrochloride

C13H21N3O (235.1685)


Procainamide is only found in individuals that have used or taken this drug. It is a derivative of procaine with less CNS action. [PubChem]Procainamide is sodium channel blocker. It stabilizes the neuronal membrane by inhibiting the ionic fluxes required for the initiation and conduction of impulses thereby effecting local anesthetic action. C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BA - Antiarrhythmics, class ia D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

8-Anilino-1-naphthalene sulfonate

1-Anilino-8-naphthalenesulfonate, monoammonium salt, hemihydrate

C16H13NO3S (299.0616)


8-Anilino-1-naphthalene sulfonate belongs to the class of organic compounds known as 1-naphthalene sulfonic acids and derivatives. These are organic aromatic compounds that contain a naphthalene moiety that carries a sulfonic acid group (or a derivative thereof) at the 1-position. Naphthalene is a bicyclic compound that is made up of two fused benzene ring. KEIO_ID A177

   

Glutaric acid

1,3-Propanedicarboxylic acid

C5H8O4 (132.0423)


Glutaric acid is a simple five-carbon linear dicarboxylic acid. Glutaric acid is naturally produced in the body during the metabolism of some amino acids, including lysine and tryptophan. Glutaric acid may cause irritation to the skin and eyes. When present in sufficiently high levels, glutaric acid can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of glutaric acid are associated with at least three inborn errors of metabolism, including glutaric aciduria type I, malonyl-CoA decarboxylase deficiency, and glutaric aciduria type III. Glutaric aciduria type I (glutaric acidemia type I, glutaryl-CoA dehydrogenase deficiency, GA1, or GAT1) is an inherited disorder in which the body is unable to completely break down the amino acids lysine, hydroxylysine, and tryptophan due to a deficiency of mitochondrial glutaryl-CoA dehydrogenase (EC 1.3.99.7, GCDH). Excessive levels of their intermediate breakdown products (e.g. glutaric acid, glutaryl-CoA, 3-hydroxyglutaric acid, glutaconic acid) can accumulate and cause damage to the brain (and also other organs). Babies with glutaric acidemia type I are often born with unusually large heads (macrocephaly). Macrocephaly is amongst the earliest signs of GA1. GA1 also causes secondary carnitine deficiency because glutaric acid, like other organic acids, is detoxified by carnitine. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart, liver, and kidney abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of untreated glutaric aciduria. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. Treatment of glutaric aciduria is mainly based on the restriction of lysine intake, supplementation of carnitine, and an intensification of therapy during intercurrent illnesses. The major principle of dietary treatment is to reduce the production of glutaric acid and 3-hydroxyglutaric acid by restriction of natural protein, in general, and of lysine, in particular (PMID: 17465389, 15505398). Glutaric acid has also been found in Escherichia (PMID: 30143200). Isolated from basidiomycete fungi and fruits of Prunus cerasus (CCD). Glutaric acid is found in many foods, some of which are red beetroot, common beet, soy bean, and tamarind. Glutaric acid, C5 dicarboxylic acid, is an intermediate during the catabolic pathways of lysine and tryptophan. Glutaric acid affects pericyte contractility and migration. Glutaric acid is an indicator of glutaric aciduria type I[1][2][3]. Glutaric acid, C5 dicarboxylic acid, is an intermediate during the catabolic pathways of lysine and tryptophan. Glutaric acid affects pericyte contractility and migration. Glutaric acid is an indicator of glutaric aciduria type I[1][2][3].

   

Strychnine

(4aR,5aS,8aR,13aS,15aS,15bR)-4a,5,5a,7,8,13a,15,15a,15b,16-decahydro-2H-4,6-methanoindolo[3,2,1-ij]oxepino[2,3,4-de]pyrrolo[2,3-h]quinolin-14-one

C21H22N2O2 (334.1681)


Strychnine (/ˈstrɪkniːn, -nɪn/, STRIK-neen, -⁠nin, US chiefly /-naɪn/ -⁠nyne)[6][7] is a highly toxic, colorless, bitter, crystalline alkaloid used as a pesticide, particularly for killing small vertebrates such as birds and rodents. Strychnine, when inhaled, swallowed, or absorbed through the eyes or mouth, causes poisoning which results in muscular convulsions and eventually death through asphyxia.[8] While it is no longer used medicinally, it was used historically in small doses to strengthen muscle contractions, such as a heart and bowel stimulant[9] and performance-enhancing drug. The most common source is from the seeds of the Strychnos nux-vomica tree. Strychnine is a natural product found in Strychnos ignatii, Strychnos wallichiana D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants > D003292 - Convulsants A monoterpenoid indole alkaloid that is strychnidine bearing a keto substituent at the 10-position. D018377 - Neurotransmitter Agents > D018684 - Glycine Agents D009676 - Noxae > D011042 - Poisons Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.465 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.456 CONFIDENCE standard compound; INTERNAL_ID 694; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5745; ORIGINAL_PRECURSOR_SCAN_NO 5743 CONFIDENCE standard compound; INTERNAL_ID 694; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5769; ORIGINAL_PRECURSOR_SCAN_NO 5767 CONFIDENCE standard compound; INTERNAL_ID 694; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5764; ORIGINAL_PRECURSOR_SCAN_NO 5762 CONFIDENCE standard compound; INTERNAL_ID 694; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5713; ORIGINAL_PRECURSOR_SCAN_NO 5712 CONFIDENCE standard compound; INTERNAL_ID 694; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5746; ORIGINAL_PRECURSOR_SCAN_NO 5745 CONFIDENCE standard compound; INTERNAL_ID 694; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5749; ORIGINAL_PRECURSOR_SCAN_NO 5746 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2322

   

Glutaconic acid

1-Propene-1,3-dicarboxylic acid

C5H6O4 (130.0266)


Glutaconic acid is related to the fully saturated glutaric acid and belongs to the class of compounds known as dicarboxylic acids and derivatives. These are organic compounds containing exactly two carboxylic acid groups. Glutaconic acid is soluble (in water) and a weakly acidic compound (based on its pKa). Glutaconic acid has been detected in the urine of individuals with inborn errors of metabolism. When present in sufficiently high levels, glutaconic acid can act as an acidogen, a neurotoxin, and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A neurotoxin is a compound that is toxic to neural tissues and cells. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of glutaconic acid are associated with glutaric aciduria type I (glutaric acidemia type I, glutaryl-CoA dehydrogenase deficiency, GA1, or GAT1). GA1 is an inherited disorder in which the body is unable to completely break down the amino acids lysine, hydroxylysine, and tryptophan due to a deficiency of mitochondrial glutaryl-CoA dehydrogenase (EC 1.3.99.7, GCDH). Excessive levels of their intermediate breakdown products (e.g. glutaric acid, glutaryl-CoA, 3-hydroxyglutaric acid, glutaconic acid) can accumulate and cause damage to the brain (and also other organs), but particularly the basal ganglia. GA1 is associated with a risk for intracranial and retinal hemorrhage, and non-specific white matter changes. Babies with glutaric acidemia type I are often born with unusually large heads (macrocephaly). Other symptoms include spasticity (increased muscle tone/stiffness) and dystonia (involuntary muscle contractions resulting in abnormal movement or posture), but many affected individuals are asymptomatic. Seizures and coma (encephalopathy) are rare. GA1 also causes secondary carnitine deficiency because 3-hydroxyglutaric acid, like other organic acids, is detoxified by carnitine. Glutaconic acids neurotoxicity is thought to be partially caused by an excitotoxic mechanism in which glutaconic acid overactivates N-methyl-D-aspartate (NMDA) receptors. Accumulating trans-glutaconic (TG) acids have been proposed to be involved in the development of the striatal degeneration seen in children with glutaric acidemia type I via an excitotoxic mechanism. Glutaconic acid is an organic compound with general formula C5H6O4. The compound is a dicarboxylic acid and related with the fully saturated glutaric acid. [HMDB]

   

Thiopental

5-Ethyl-5-(1-methyl-butyl)-2-thioxo-dihydro-pyrimidine-4,6-dione

C11H18N2O2S (242.1089)


A barbiturate that is administered intravenously for the induction of general anesthesia or for the production of complete anesthesia of short duration. It is also used for hypnosis and for the control of convulsive states. It has been used in neurosurgical patients to reduce increased intracranial pressure. It does not produce any excitation but has poor analgesic and muscle relaxant properties. Small doses have been shown to be anti-analgesic and lower the pain threshold. (From Martindale, The Extra Pharmacopoeia, 30th ed, p920) D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CA - Barbiturates, plain N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AF - Barbiturates, plain D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators D002491 - Central Nervous System Agents > D000927 - Anticonvulsants C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent EAWAG_UCHEM_ID 2742; CONFIDENCE standard compound CONFIDENCE standard compound; EAWAG_UCHEM_ID 2742

   

3-Methoxytyramine

4-(2-aminoethyl)-2-methoxyphenol

C9H13NO2 (167.0946)


3-methoxytyramine, also known as 4-(2-amino-Ethyl)-2-methoxy-phenol or 3-O-Methyldopamine, is classified as a member of the Methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. 3-methoxytyramine is considered to be slightly soluble (in water) and acidic. 3-methoxytyramine can be found primarily in human brain and most tissues tissues; and in blood, cerebrospinal fluid (csf) or urine. Within a cell, 3-methoxytyramine is primarily located in the cytoplasm The O-methylated derivative of dopamine. Dopamine is methylated by catechol-O-methyltransferase (COMT) to make 3-Methoxytyramine. This compound can be broken down to homovanillic acid by monoamine oxidase and aldehyde dehydrogenase. Elevated concentrations of this compound are indicated for a variety of brain and carcinoid tumors as well as certain mental disorders. [HMDB] COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 3-Methoxytyramine, a well known extracellular metabolite of 3-hydroxytyramine/dopamine, is a neuromodulator.

   

Diethylpropion

Investigacion farmaceutica brand OF amfepramone hydrochloride

C13H19NO (205.1467)


Diethylpropion is only found in individuals that have used or taken this drug. It is a appetite depressant considered to produce less central nervous system disturbance than most drugs in this therapeutic category. It is also considered to be among the safest for patients with hypertension. (From AMA Drug Evaluations Annual, 1994, p2290)Diethylpropion is an amphetamine that stimulates neurons to release or maintain high levels of a particular group of neurotransmitters known as catecholamines; these include dopamine and norepinephrine. High levels of these catecholamines tend to suppress hunger signals and appetite. Diethylpropion (through catecholamine elevation) may also indirectly affect leptin levels in the brain. It is theorized that diethylpropion can raise levels of leptin which signal satiety. It is also theorized that increased levels of the catecholamines are partially responsible for halting another chemical messenger known as neuropeptide Y. This peptide initiates eating, decreases energy expenditure, and increases fat storage. A - Alimentary tract and metabolism > A08 - Antiobesity preparations, excl. diet products > A08A - Antiobesity preparations, excl. diet products > A08AA - Centrally acting antiobesity products C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D019440 - Anti-Obesity Agents > D001067 - Appetite Depressants C78272 - Agent Affecting Nervous System > C29728 - Anorexiant

   

Betaxolol

1-(4-(2-(Cyclopropylmethoxy)ethyl)phenoxy)-3-((1-methylethyl)amino)-2-propanol

C18H29NO3 (307.2147)


Betaxolol is only found in individuals that have used or taken this drug. It is a cardioselective beta-1-adrenergic antagonist with no partial agonist activity. [PubChem]Betaxolol selectively blocks catecholamine stimulation of beta(1)-adrenergic receptors in the heart and vascular smooth muscle. This results in a reduction of heart rate, cardiac output, systolic and diastolic blood pressure, and possibly reflex orthostatic hypotension. Betaxolol can also competitively block beta(2)-adrenergic responses in the bronchial and vascular smooth muscles, causing bronchospasm. C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AB - Beta blocking agents, selective S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01ED - Beta blocking agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Betaxolol is a selective beta1 adrenergic receptor blocker that can be used for the research of hypertension and glaucoma.

   

Biperiden

1-{bicyclo[2.2.1]hept-5-en-2-yl}-1-phenyl-3-(piperidin-1-yl)propan-1-ol

C21H29NO (311.2249)


A muscarinic antagonist that has effects in both the central and peripheral nervous systems. It has been used in the treatment of arteriosclerotic, idiopathic, and postencephalitic parkinsonism. It has also been used to alleviate extrapyramidal symptoms induced by phenothiazine derivatives and reserpine. [PubChem] D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AA - Tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent Biperiden (KL 373) is a non-selective muscarinic receptor antagonist that competitively binds to M1 muscarinic receptors, thereby inhibiting acetylcholine and enhancing dopamine signaling in the central nervous system. Biperiden has the potential for the research of Parkinson's disease and other related psychiatric disorders[1][2].

   

Zolpidem

N,N,6-Trimethyl-2-(4-methylphenyl)imidazo(1,2a)pyridine-3-acetamide hemitartrate

C19H21N3O (307.1685)


Some users take zolpidem recreationally for these side effects. However, it may be less common than benzodiazepine abuse. In the United States, recreational use may be less common than in countries where the drug is available as a less expensive generic. Zolpidem can become addictive if taken for extended periods of time, due to dependence on its ability to put one to sleep or to the euphoria it can sometimes produce. Like most addictive drugs, a tolerance in the zolpidem user develops and increases all the more quickly the longer she or he has been regularly taking it. Under the influence of the drug it is common to take more zolpidem than is necessary due to either forgetting that one has already taken a pill (elderly users are particularly at risk here), or knowingly taking more than the prescribed dosage. Users with a predilection for abuse are advised to keep additional zolpidem in a safe place that is unlikely to be remembered or accessed while intoxicated to avoid this risk. A trustworthy friend or relative is the best defense if such people are available; otherwise, a box or cupboard locked with a combination padlock is a good defense against this tendency, as the abovementioned side-effects can easily prevent a user from operating such a lock while under the drugs influence; Zolpidem is a prescription drug used for the short-term treatment of insomnia. It works quickly (usually within 15 minutes) and has a short half-life (2-3 hours). Some trade names of zolpidem are Ambien, Stilnox, Stilnoct, Hypnogen or Myslee. Its hypnotic effects are similar to those of the benzodiazepines, but it is classified as an imidazopyridine, and the anticonvulsant and muscle relaxant effects only appear at 10 and 20 times the dose required for sedation, respectively. For that reason, it has never been approved for either muscle relaxation or seizure prevention. Such drastically increased doses are more likely to induce one or more negative side effects, including hallucinations and/or amnesia. (See below.); Some users take zolpidem recreationally for these side effects. However, it may be less common than benzodiazepine abuse. In the United States, recreational use may be less common than in countries where the drug is available as a less expensive generic. Zolpidem can become addictive if taken for extended periods of time, due to dependence on its ability to put one to sleep or to the euphoria it can sometimes produce. Like most addictive drugs, a tolerance in the zolpidem user develops and increases all the more quickly the longer she or he has been regularly taking it. Under the influence of the drug it is common to take more zolpidem than is necessary due to either forgetting that one has already taken a pill (elderly users are particularly at risk here), or knowingly taking more than the prescribed dosage. Users with a predilection for abuse are advised to keep additional zolpidem in a safe place that is unlikely to be remembered or accessed while intoxicated to avoid this risk. A trustworthy friend or relative is the best defense if such people are available; Recreational zolpidem use is speculated to lead to tolerance and dependence much more quickly than prescribed use. Recreational use is rising, as demonstrated by the use of street names for the pill, such as: A (which is most likely due to the imprint on the Ambien CR brand of zolpidem, which consists of a capital A along with a tilde, which looks roughly like A~, as well as for sedative and calming effects, A+ is a street name for Adderall, named so because of its stimulant effects) and zombie pills (because of the waking sleep/sensory deprivation effect some users have reported experiencing). Another buzz term for Ambien is tic-tacs, referring to the shape and color of commonly abused 10mg tablets; Zolpidem is a prescription drug used for the short-term treatment of insomnia. It works quickly (usually within 15 minutes) and has a short half-life (2-3 hours). Its hypnotic eff... Zolpidem (sold under the brand names Ambien, Ambien CR, Stilnox, and Sublinox) is a prescription medication used for the treatment of insomnia, as well as some brain disorders. It is a short-acting nonbenzodiazepine hypnotic of the imidazopyridine class that potentiates gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter, by binding to GABAA receptors at the same location as benzodiazepines. It works quickly (usually within 15 minutes) and has a short half-life (two to three hours). Zolpidem has not adequately demonstrated effectiveness in maintaining sleep (unless delivered in a controlled-release form); however, it is effective in initiating sleep. Some users take zolpidem recreationally for these side effects. However, it may be less common than benzodiazepine abuse. Zolpidem can become addictive if taken for extended periods of time, due to dependence on its ability to put one to sleep or to the euphoria it can sometimes produce. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CF - Benzodiazepine related drugs D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic

   

Chlorprothixene

[3-(2-chloro-9H-thioxanthen-9-ylidene)propyl]dimethylamine

C18H18ClNS (315.0848)


Chlorprothixene is only found in individuals that have used or taken this drug. It is a typical antipsychotic drug of the thioxanthene (tricyclic) class. Chlorprothixene exerts strong blocking effects by blocking the 5-HT2 D1, D2, D3, histamine H1, muscarinic and alpha1 adrenergic receptors. Chlorprothixene blocks postsynaptic mesolimbic dopaminergic D1 and D2 receptors in the brain; depresses the release of hypothalamic and hypophyseal hormones and is believed to depress the reticular activating system thus affecting basal metabolism, body temperature, wakefulness, vasomotor tone, and emesis. D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AF - Thioxanthene derivatives D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Chlorprothixene is a dopamine and histamine receptors antagonist with Kis of 18 nM, 2.96 nM, 4.56 nM, 9 nM and 3.75 nM for hD1, hD2, hD3, hD5 and hH1 receptors, respectively. Antipsychotic activity[1].

   

Fluphenazine

2-(4-{3-[2-(trifluoromethyl)-10H-phenothiazin-10-yl]propyl}piperazin-1-yl)ethan-1-ol

C22H26F3N3OS (437.1749)


Fluphenazine is only found in individuals that have used or taken this drug. It is a phenothiazine used in the treatment of psychoses. Its properties and uses are generally similar to those of chlorpromazine. [PubChem]Fluphenazine blocks postsynaptic mesolimbic dopaminergic D1 and D2 receptors in the brain; depresses the release of hypothalamic and hypophyseal hormones and is believed to depress the reticular activating system thus affecting basal metabolism, body temperature, wakefulness, vasomotor tone, and emesis. N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AB - Phenothiazines with piperazine structure D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent

   

Guanabenz

2-{[(2,6-dichlorophenyl)methylidene]amino}guanidine

C8H8Cl2N4 (230.0126)


Guanabenz is only found in individuals that have used or taken this drug. It is an alpha-2 selective adrenergic agonist used as an antihypertensive agent. [PubChem]Guanabenzs antihypertensive effect is thought to be due to central alpha-adrenergic stimulation, which results in a decreased sympathetic outflow to the heart, kidneys, and peripheral vasculature in addition to a decreased systolic and diastolic blood pressure and a slight slowing of pulse rate. Chronic administration of guanabenz also causes a decrease in peripheral vascular resistance. C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

Iproniazid

N-(propan-2-yl)pyridine-4-carbohydrazide

C9H13N3O (179.1059)


N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AF - Monoamine oxidase inhibitors, non-selective D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors C471 - Enzyme Inhibitor > C667 - Monoamine Oxidase Inhibitor

   

Loxapine

13-chloro-10-(4-methylpiperazin-1-yl)-2-oxa-9-azatricyclo[9.4.0.0³,⁸]pentadeca-1(11),3,5,7,9,12,14-heptaene

C18H18ClN3O (327.1138)


Loxapine is only found in individuals that have used or taken this drug. It is an antipsychotic agent used in schizophrenia. [PubChem]Loxapine is a dopamine antagonist, and also a serotonin 5-HT2 blocker. The exact mode of action of Loxapine has not been established, however changes in the level of excitability of subcortical inhibitory areas have been observed in several animal species in association with such manifestations of tranquilization as calming effects and suppression of aggressive behavior. N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AH - Diazepines, oxazepines, thiazepines and oxepines D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Loxapine is an orally active dopamine inhibitor, 5-HT receptor antagonist and also a dibenzoxazepine anti-psychotic agent[1][4].

   

Repaglinide

2-ethoxy-4-({[(1S)-3-methyl-1-[2-(piperidin-1-yl)phenyl]butyl]carbamoyl}methyl)benzoic acid

C27H36N2O4 (452.2675)


Repaglinide is an oral antihyperglycemic agent used for the treatment of non-insulin-dependent diabetes mellitus (NIDDM). It belongs to the meglitinide class of short-acting insulin secretagogues, which act by binding to cells of the pancreas to stimulate insulin release. Repaglinide induces an early insulin response to meals decreasing postprandial blood glucose levels. It should only be taken with meals and meal-time doses should be skipped with any skipped meal. Approximately one month of therapy is required before a decrease in fasting blood glucose is seen. Meglitnides may have a neutral effect on weight or cause a slight increase in weight. The average weight gain caused by meglitinides appears to be lower than that caused by sulfonylureas and insulin and appears to occur only in those naive to oral antidiabetic agents. Due to their mechanism of action, meglitinides may cause hypoglycemia although the risk is thought to be lower than that of sulfonylureas since their action is dependent on the presence of glucose. In addition to reducing postprandial and fasting blood glucose, meglitnides have been shown to decrease glycosylated hemoglobin (HbA1c) levels, which are reflective of the last 8-10 weeks of glucose control. Meglitinides appear to be more effective at lowering postprandial blood glucose than metformin, sulfonylureas and thiazolidinediones. Repaglinide is extensively metabolized in the liver and excreted in bile. Repaglinide metabolites do not possess appreciable hypoglycemic activity. Approximately 90\\% of a single orally administered dose is eliminated in feces and 8\\% in urine. C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C98079 - Meglitinide Antidiabetic Agent A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins D007004 - Hypoglycemic Agents

   

Pyridaben

4-Chloro-2-(1,1-dimethylethyl)-5-(((4-(1,1-dimethylethyl)phenyl)methyl)thio)-3(2H)-pyridazinone

C19H25ClN2OS (364.1376)


CONFIDENCE standard compound; INTERNAL_ID 331; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10598; ORIGINAL_PRECURSOR_SCAN_NO 10596 CONFIDENCE standard compound; INTERNAL_ID 331; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10636; ORIGINAL_PRECURSOR_SCAN_NO 10634 CONFIDENCE standard compound; INTERNAL_ID 331; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10546; ORIGINAL_PRECURSOR_SCAN_NO 10544 CONFIDENCE standard compound; INTERNAL_ID 331; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10660; ORIGINAL_PRECURSOR_SCAN_NO 10659 CONFIDENCE standard compound; INTERNAL_ID 331; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10708; ORIGINAL_PRECURSOR_SCAN_NO 10707 CONFIDENCE standard compound; INTERNAL_ID 331; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10670; ORIGINAL_PRECURSOR_SCAN_NO 10667 CONFIDENCE standard compound; INTERNAL_ID 2632

   

Protriptyline

methyl(3-{tricyclo[9.4.0.0³,⁸]pentadeca-1(15),3,5,7,9,11,13-heptaen-2-yl}propyl)amine

C19H21N (263.1674)


Protriptyline hydrochloride is a dibenzocycloheptene-derivative tricyclic antidepressant (TCA). TCAs are structurally similar to phenothiazines. They contain a tricyclic ring system with an alkyl amine substituent on the central ring. In non-depressed individuals, protriptyline does not affect mood or arousal, but may cause sedation. In depressed individuals, protriptyline exerts a positive effect on mood. TCAs are potent inhibitors of serotonin and norepinephrine reuptake. In addition, TCAs down-regulate cerebral cortical β-adrenergic receptors and sensitize post-synaptic serotonergic receptors with chronic use. The antidepressant effects of TCAs are thought to be due to an overall increase in serotonergic neurotransmission. TCAs also block histamine H1 receptors, α1-adrenergic receptors and muscarinic receptors, which accounts for their sedative, hypotensive and anticholinergic effects (e.g. blurred vision, dry mouth, constipation, urinary retention), respectively. See toxicity section below for a complete listing of side effects. Protriptyline may be used for the treatment of depression. N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AA - Non-selective monoamine reuptake inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent > C94727 - Tricyclic Antidepressant D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators

   

Perphenazine

2-{4-[3-(2-chloro-10H-phenothiazin-10-yl)propyl]piperazin-1-yl}ethan-1-ol

C21H26ClN3OS (403.1485)


Perphenazine is only found in individuals that have used or taken this drug. It is an antipsychotic phenothiazine derivative with actions and uses similar to those of chlorpromazine. [PubChem]Binds to the dopamine D1 and dopamine D2 receptors and inhibits their activity. The mechanism of the anti-emetic effect is due predominantly to blockage of the dopamine D2 neurotransmitter receptors in the chemoreceptor trigger zone and vomiting centre. Perphenazine also binds the alpha andrenergic receptor. This receptors action is mediated by association with G proteins that activate a phosphatidylinositol-calcium second messenger system. N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AB - Phenothiazines with piperazine structure D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Perphenazine is an orally active dopamine receptor and histamine-1 receptor antagonist, with Ki values of 0.56 nM (D2), 0.43 nM (D3), 6 nM (5-HT2A), respectively. Perphenazine also binds to Alpha-1A adrenergic receptor. Perphenazine inhibits cancer cell proliferation, and induces apoptosis. Perphenazine can be used in the research of mental disease, cancer, inflammation[1][3][5].

   

Oxycodone

(1S,5R,13R,17S)-17-hydroxy-10-methoxy-4-methyl-12-oxa-4-azapentacyclo[9.6.1.0^{1,13}.0^{5,17}.0^{7,18}]octadeca-7(18),8,10-trien-14-one

C18H21NO4 (315.1471)


Oxycodone is only found in individuals that have used or taken this drug. It is a semisynthetic derivative of codeine that acts as a narcotic analgesic more potent and addicting than codeine. [PubChem]Oxycodone acts as a weak agonist at mu, kappa, and delta opioid receptors within the central nervous system (CNS). Oxycodone primarily affects mu-type opioid receptors, which are coupled with G-protein receptors and function as modulators, both positive and negative, of synaptic transmission via G-proteins that activate effector proteins. Binding of the opiate stimulates the exchange of GTP for GDP on the G-protein complex. As the effector system is adenylate cyclase and cAMP located at the inner surface of the plasma membrane, opioids decrease intracellular cAMP by inhibiting adenylate cyclase. Subsequently, the release of nociceptive neurotransmitters such as substance P, GABA, dopamine, acetylcholine, and noradrenaline is inhibited. Opioids such as oxycodone also inhibit the release of vasopressin, somatostatin, insulin, and glucagon. Opioids close N-type voltage-operated calcium channels (kappa-receptor agonist) and open calcium-dependent inwardly rectifying potassium channels (mu and delta receptor agonist). This results in hyperpolarization and reduced neuronal excitability. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AA - Natural opium alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Saccharin

1,1-dioxo-1,2-dihydro-1Lambda*6*-benzo[D]isothiazol-3-one

C7H5NO3S (182.999)


Saccharin, ammonium salt is used as a food additive [EAFUS] (EAFUS: Everything Added to Food in the United States). Saccharin belongs to the family of aromatic homomonocyclic compounds. These are aromatic compounds containing only one ring, which is homocyclic. Widely-used sweetening agent. All salts intensely sweet. Permitted in foods at levels of 80-1200 ppm in EU D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents CONFIDENCE standard compound; INTERNAL_ID 8670 COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Estazolam

12-chloro-9-phenyl-2,4,5,8-tetraazatricyclo[8.4.0.0²,⁶]tetradeca-1(10),3,5,8,11,13-hexaene

C16H11ClN4 (294.0672)


Estazolam is only found in individuals that have used or taken this drug. It is a benzodiazepine with anticonvulsant, hypnotic, and muscle relaxant properties. It has been shown in some cases to be more potent than diazepam or nitrazepam. [PubChem]Benzodiazepines bind nonspecifically to benzodiazepine receptors, which affects affects muscle relaxation, anticonvulsant activity, motor coordination, and memory. As benzodiazepine receptors are thought to be coupled to gamma-aminobutyric acid-A (GABAA) receptors, this enhances the effects GABA by increasing GABA affinity for the GABA receptor. Binding of the inhibitory neurotransmitter GABA to the site opens the chloride channel, resulting in a hyperpolarized cell membrane that prevents further excitation of the cell. N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CD - Benzodiazepine derivatives D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants

   

temephos

O-4-[(4-{[dimethoxy(sulfanylidene)-λ⁵-phosphanyl]oxy}phenyl)sulfanyl]phenyl O,O-dimethyl phosphorothioate

C16H20O6P2S3 (465.9897)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

Benzamide

benzamide

C7H7NO (121.0528)


Benzamide is an intermediate in the Benzoate degradation via CoA ligation. Benzamides are a class of chemical compounds derived from Benzamid, the carbonic acid amide of benzoic acid. In psychiatry some substituted benzamides are therapeutically used as neuroleptics and/or antipsychotics (wikipedia). Benzamide is an intermediate in the Benzoate degradation via CoA ligation. CONFIDENCE standard compound; INTERNAL_ID 8080 KEIO_ID B009 Benzamide (Benzenecarboxamide) is a potent poly(ADP-ribose) polymerase (PARP) inhibitor. Benzamide has protective activity against both glutamate- and methamphetamine (METH)-induced neurotoxicity in vitro. Benzamide can attenuate the METH-induced dopamine depletions and exhibits neuroprotective activity in mice, also has no acute effect on striatal dopamine metabolism and does not reduce body temperature[1].

   

Benzatropine

(1R,3R,5S)-3-(diphenylmethoxy)-8-methyl-8-azabicyclo[3.2.1]octane

C21H25NO (307.1936)


Benzotropine is a centrally-acting, antimuscarinic agent used as an adjunct in the treatment of Parkinsons disease. It may also be used to treat extrapyramidal reactions, such as dystonia and Parkinsonism, caused by antipsychotics (e.g. phenothiazines). Symptoms of Parkinsons disease and extrapyramidal reactions arise from decreases in dopaminergic activity which creates an imbalance between dopaminergic and cholinergic activity. Anticholinergic therapy is thought to aid in restoring this balance leading to relief of symptoms. In addition to its anticholinergic effects, benztropine also inhibits the reuptake of dopamine at nerve terminals via the dopamine transporter. Benzotropine also produces antagonistic effects at the histamine H1 receptor. N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AC - Ethers of tropine or tropine derivatives D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D049990 - Membrane Transport Modulators

   

Doxepin

dimethyl(3-{9-oxatricyclo[9.4.0.0³,⁸]pentadeca-1(15),3,5,7,11,13-hexaen-2-ylidene}propyl)amine

C19H21NO (279.1623)


Doxepin hydrochloride is a dibenzoxepin-derivative tricyclic antidepressant (TCA). TCAs are structurally similar to phenothiazines. They contain a tricyclic ring system with an alkyl amine substituent on the central ring. In non-depressed individuals, doxepin does not affect mood or arousal, but may cause sedation. In depressed individuals, doxepin exerts a positive effect on mood. TCAs are potent inhibitors of serotonin and norepinephrine reuptake. Tertiary amine TCAs, such as doxepin and amitriptyline, are more potent inhibitors of serotonin reuptake than secondary amine TCAs, such as nortriptyline and desipramine. TCAs also down-regulate cerebral cortical β-adrenergic receptors and sensitize post-synaptic serotonergic receptors with chronic use. The antidepressant effects of TCAs are thought to be due to an overall increase in serotonergic neurotransmission. TCAs also block histamine H1 receptors, α1-adrenergic receptors and muscarinic receptors, which accounts for their sedative, hypotensive and anticholinergic effects (e.g. blurred vision, dry mouth, constipation, urinary retention), respectively. Doxepin has less sedative and anticholinergic effects than amitriptyline. See toxicity section below for a complete listing of side effects. Doxepin may be used to treat depression and insomnia. Unlabeled indications include chronic and neuropathic pain, and anxiety. Doxepin may also be used as a second line agent to treat idiopathic urticaria. D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AA - Non-selective monoamine reuptake inhibitors D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent > C94727 - Tricyclic Antidepressant D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists EAWAG_UCHEM_ID 3676; CONFIDENCE standard compound CONFIDENCE standard compound; EAWAG_UCHEM_ID 3676

   

Hydrocodone

(1S,5R,13R,17R)-10-methoxy-4-methyl-12-oxa-4-azapentacyclo[9.6.1.0¹,¹³.0⁵,¹⁷.0⁷,¹⁸]octadeca-7(18),8,10-trien-14-one

C18H21NO3 (299.1521)


Hydrocodone is only found in individuals that have used or taken this drug. It is a narcotic analgesic related to codeine, but more potent and more addicting by weight. It is used also as cough suppressant. [PubChem]Hydrocodone acts as a weak agonist at OP1, OP2, and OP3 opiate receptors within the central nervous system (CNS). Hydrocodone primarily affects OP3 receptors, which are coupled with G-protein receptors and function as modulators, both positive and negative, of synaptic transmission via G-proteins that activate effector proteins. Binding of the opiate stimulates the exchange of GTP for GDP on the G-protein complex. As the effector system is adenylate cyclase and cAMP located at the inner surface of the plasma membrane, opioids decrease intracellular cAMP by inhibiting adenylate cyclase. Subsequently, the release of nociceptive neurotransmitters such as substance P, GABA, dopamine, acetylcholine, and noradrenaline is inhibited. Opioids such as hydrocodone also inhibit the release of vasopressin, somatostatin, insulin, and glucagon. Opioids close N-type voltage-operated calcium channels (OP2-receptor agonist) and open calcium-dependent inwardly rectifying potassium channels (OP3 and OP1 receptor agonist). This results in hyperpolarization and reduced neuronal excitability. R - Respiratory system > R05 - Cough and cold preparations > R05D - Cough suppressants, excl. combinations with expectorants > R05DA - Opium alkaloids and derivatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist C78273 - Agent Affecting Respiratory System > C66917 - Antitussive Agent D019141 - Respiratory System Agents > D000996 - Antitussive Agents D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Meclizine

1-[(4-chlorophenyl)(phenyl)methyl]-4-[(3-methylphenyl)methyl]piperazine

C25H27ClN2 (390.1863)


Meclizine is only found in individuals that have used or taken this drug. It is a histamine H1 antagonist used in the treatment of motion sickness, vertigo, and nausea during pregnancy and radiation sickness. [PubChem]Along with its actions as an antagonist at H1-receptors, meclizine also possesses anticholinergic, central nervous system depressant, and local anesthetic effects. Meclizine depresses labyrinth excitability and vestibular stimulation and may affect the medullary chemoreceptor trigger zone. R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AE - Piperazine derivatives D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics CONFIDENCE standard compound; EAWAG_UCHEM_ID 3084 D002491 - Central Nervous System Agents D018926 - Anti-Allergic Agents

   

Rimantadine

Forest brand OF rimantadine hydrochloride

C12H21N (179.1674)


Rimantadine is only found in individuals that have used or taken this drug. It is an RNA synthesis inhibitor that is used as an antiviral agent in the prophylaxis and treatment of influenza. [PubChem]The mechanism of action of rimantadine is not fully understood. Rimantadine appears to exert its inhibitory effect early in the viral replicative cycle, possibly inhibiting the uncoating of the virus. Genetic studies suggest that a virus protein specified by the virion M2 gene plays an important role in the susceptibility of influenza A virus to inhibition by rimantadine. J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AC - Cyclic amines D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C254 - Anti-Infective Agent > C281 - Antiviral Agent CONFIDENCE standard compound; EAWAG_UCHEM_ID 3149

   

Hydromorphone

(1S,5R,13R,17R)-10-hydroxy-4-methyl-12-oxa-4-azapentacyclo[9.6.1.0¹,¹³.0⁵,¹⁷.0⁷,¹⁸]octadeca-7(18),8,10-trien-14-one

C17H19NO3 (285.1365)


Hydromorphone is only found in individuals that have used or taken this drug. It is an opioid analgesic derived from morphine and used mainly as an analgesic. It has a shorter duration of action and is more potent than morphine. [PubChem]Hydromorphone is a narcotic analgesic; its principal therapeutic effect is relief of pain. Hydromorphone interacts predominantly with the opioid mu-receptors. These mu-binding sites are discretely distributed in the human brain, with high densities in the posterior amygdala, hypothalamus, thalamus, nucleus caudatus, putamen, and certain cortical areas. They are also found on the terminal axons of primary afferents within laminae I and II (substantia gelatinosa) of the spinal cord and in the spinal nucleus of the trigeminal nerve. In clinical settings, Hydromorphone exerts its principal pharmacological effect on the central nervous system and gastrointestinal tract. Hydromorphone also binds with kappa-receptors which are thought to mediate spinal analgesia, miosis and sedation. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AA - Natural opium alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics

   

salvinorin A

methyl (2S,4aR,6aR,7R,9S,10aS,10bR)-9-acetyloxy-2-(furan-3-yl)-6a,10b-dimethyl-4,10-dioxo-2,4a,5,6,7,8,9,10a-octahydro-1H-benzo[f]isochromene-7-carboxylate

C23H28O8 (432.1784)


D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens A natural product found in Salvia divinorum.

   

Cannabidiolate

Cannabidiolic acid

C22H30O4 (358.2144)


A dihydroxybenzoic acid that is olivetolic acid in which the hydrogen at position 3 is substituted by a 3-p-mentha-1,8-dien-3-yl (limonene) group.

   

Psilocin

3-[2-(Dimethylamino)ethyl]-1H-indol-4-ol

C12H16N2O (204.1263)


Psilocin (4-OH-DMT), an aromatic compound, sometimes also spelled psilocine, psilocyn, or psilotsin, is a psychedelic mushroom alkaloid. It is found in most psychedelic mushrooms together with its phosphorylated counterpart psilocybin. Psilocin is a Schedule I drug under the Convention on Psychotropic Substances. The mind-altering effects of psilocin are highly variable and subjective, but resemble those caused by LSD and mescaline. The effects typically last anywhere from three to eight hours depending on certain variables (such as metabolism, food interaction); however the effects can seem to last much longer due to psilocins ability to distort the perception of time. Sulfur analogs are known with a benzothienyl replacement as well as 4-SH-DMT. N1-methylpsilocin is a functionally 5-HT2C receptor preferring agonists. 4-fluoro-N,N-dimethyltryptamine is known. O-Acetylpsilocin is an acetylized analog of psilocin, also known as 4-AcO-DMT. Additionally, substitution of a methyl group at the dimethylated nitrogen with an isopropyl or ethyl group yields 4-HO-MIPT (4-Hydroxy-N-Methyl-N-Isopropyltryptamine) and 4-HO-MET (4-Hydroxy-N-Methyl-N-Ethyltryptamine), respectively. D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens

   

Psilocybine

3-(2-(Dimethylamino)ethyl)-1H-indol-4-ol dihydrogen phosphoric acid ester

C12H17N2O4P (284.0926)


D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Metoprolol

1-[4-(2-methoxyethyl)phenoxy]-3-[(propan-2-yl)amino]propan-2-ol

C15H25NO3 (267.1834)


Metoprolol is a selective beta1 receptor blocker used in treatment of several diseases of the cardiovascular system. It is marketed under the brand name Lopressor by Novartis, and Toprol (in the USA); Seleken or Selokeen (elsewhere); A selective adrenergic beta-1-blocking agent with no stimulatory action. Its binding to plasma albumin is weaker than alprenolol and it may be useful in the treatment of several diseases of the cardiovascular system; Metoprolol is a selective beta1 receptor blocker used in treatment of several diseases of the cardiovascular system. It is marketed under the brand name Lopressor by Novartis, and Toprol (in the USA); Seleken or Selokeen (elsewhere); as Minax by Alphapharm (in Australia), as Betaloc by AstraZeneca and as Corvitol by Berlin-Chemie AG; A selective adrenergic beta-1-blocking agent with no stimulatory action. Its binding to plasma albumin is weaker than alprenolol and it may be useful in angina pectoris, hypertension, or cardiac arrhythmias; as Minax by Alphapharm (in Australia), as Betaloc by AstraZeneca and as Corvitol by Berlin-Chemie AG. C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AB - Beta blocking agents, selective C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents Metoprolol is an orally active, selective β1-adrenoceptor antagonist. Metoprolol shows anti-inflammation, antitumor and anti-angiogenic properties[1][2][3].

   

Asiaticoside

6-({[3,4-dihydroxy-6-(hydroxymethyl)-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl 10,11-dihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C48H78O19 (958.5137)


Constituent of Centella asiatica (Asiatic pennywort). Asiaticoside is found in herbs and spices and green vegetables. Asiaticoside is found in green vegetables. Asiaticoside is a constituent of Centella asiatica (Asiatic pennywort) D000890 - Anti-Infective Agents Same as: D07576 Asiaticoside, a trisaccaride triterpene from Centella asiatica, suppresses TGF-β/Smad signaling through inducing Smad7 and inhibiting TGF-βRI and TGF-βRII in keloid fibroblasts; Asiaticoside shows antioxidant, anti-inflammatory, and anti-ulcer properties. Asiaticoside, a trisaccaride triterpene from Centella asiatica, suppresses TGF-β/Smad signaling through inducing Smad7 and inhibiting TGF-βRI and TGF-βRII in keloid fibroblasts; Asiaticoside shows antioxidant, anti-inflammatory, and anti-ulcer properties.

   

Cannabichromene

2-methyl-2-(4-methylpent-3-en-1-yl)-7-pentyl-2H-chromen-5-ol

C21H30O2 (314.2246)


   

Catharanthine

methyl (1R,15R,18R)-17-ethyl-3,13-diazapentacyclo[13.3.1.02,10.04,9.013,18]nonadeca-2(10),4,6,8,16-pentaene-1-carboxylate

C21H24N2O2 (336.1838)


Catharanthine is an organic heteropentacyclic compound and monoterpenoid indole alkaloid produced by the medicinal plant Catharanthus roseus via strictosidine. It is a bridged compound, an organic heteropentacyclic compound, a methyl ester, a monoterpenoid indole alkaloid, a tertiary amino compound and an alkaloid ester. It is a conjugate base of a catharanthine(1+). Catharanthine is a natural product found in Catharanthus trichophyllus, Tabernaemontana catharinensis, and other organisms with data available. An organic heteropentacyclic compound and monoterpenoid indole alkaloid produced by the medicinal plant Catharanthus roseus via strictosidine. D000970 - Antineoplastic Agents > D014748 - Vinca Alkaloids Annotation level-1 Catharanthine is an alkaloid isolated from Catharanthus roseus, inhibits voltage-operated L-type Ca2+ channel, with anti-cancer and blood pressure-lowering activity[1]. Catharanthine is an alkaloid isolated from Catharanthus roseus, inhibits voltage-operated L-type Ca2+ channel, with anti-cancer and blood pressure-lowering activity[1].

   

cannabigerolate

Cannabigerolic acid

C22H32O4 (360.23)


   

Tiagabine

(R)-(4,4-Bis(3-methyl-2-thienyl)-3-butenyl)-3-piperidinecarboxylic acid, hydrochloride

C20H25NO2S2 (375.1327)


Tiagabine is an anti-convulsive medication. It is also used in the treatment for panic disorder as are a few other anticonvulsants. Though the exact mechanism by which tiagabine exerts its effect on the human body is unknown, it does appear to operate as a selective GABA reuptake inhibitor. D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D058805 - GABA Uptake Inhibitors N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AG - Fatty acid derivatives C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D018377 - Neurotransmitter Agents > D018682 - GABA Agents D049990 - Membrane Transport Modulators

   

Promazine

N-Dimethylamino-1-methylethyl thiodiphenylamine

C17H20N2S (284.1347)


Promazine is only found in individuals that have used or taken this drug. It is a phenothiazine with actions similar to chlorpromazine but with less antipsychotic activity. It is primarily used in short-term treatment of disturbed behavior and as an antiemetic. [PubChem]Promazine is an antagonist at types 1, 2, and 4 dopamine receptors, 5-HT receptor types 2A and 2C, muscarinic receptors 1 through 5, alpha(1)-receptors, and histamine H1-receptors. Promazines antipsychotic effect is due to antagonism at dopamine and serotonin type 2 receptors, with greater activity at serotonin 5-HT2 receptors than at dopamine type-2 receptors. This may explain the lack of extrapyramidal effects. Promazine does not appear to block dopamine within the tubero-infundibular tract, explaining the lower incidence of hyperprolactinemia than with typical antipsychotic agents or risperidone. Antagonism at muscarinic receptors, H1-receptors, and alpha(1)-receptors also occurs with promazine. N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AA - Phenothiazines with aliphatic side-chain D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent > C740 - Phenothiazine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics

   

Cisapride

4-amino-5-chloro-N-[(3S,4R)-1-[3-(4-fluorophenoxy)propyl]-3-methoxypiperidin-4-yl]-2-methoxybenzamide

C23H29ClFN3O4 (465.1831)


In many countries (including Canada) cisapride has been either withdrawn or has had its indications limited due to reports about long QT syndrome due to cisapride, which predisposes to arrhythmias. The FDA issued a warning letter regarding this risk to health care professionals and patients. A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03F - Propulsives > A03FA - Propulsives D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents Cisapride (R 51619) is an orally active 5-HT4 receptor agonist with an EC50 value of 140 nM. Cisapride is a hERG blocker with an IC50 value of 9.4 nM. Cisapride is a gastroprokinetic agent that stimulates gastrointestinal motor activity[1][2][3][4].

   

Dezocine

5,11-Methanobenzocyclodecen-3-ol, 13-amino-5,6,7,8,9,10,11,12-octahydro-5-methyl-, (5alpha,11alpha,13S*)

C16H23NO (245.178)


Dezocine is a partial opiate drug and is used for pain management. Dezocine is a very effective alternative to fentanyl when administered during outpatient laparoscopy, although is associated with an increased incidence of postoperative nausea. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics N - Nervous system > N02 - Analgesics > N02A - Opioids

   

Epibatidine

(+/-)-epibatidine

C11H13ClN2 (208.0767)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Cannabidivarin

SCHEMBL19477708

C19H26O2 (286.1933)


   

Pemoline

2-amino-5-phenyl-4,5-dihydro-1,3-oxazol-4-one

C9H8N2O2 (176.0586)


N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BA - Centrally acting sympathomimetics D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant

   

Pentobarbital

5-Ethyl-5-(1-methylbutyl)-2,4,6(1H,3H,5H)-pyrimidinetrione

C11H18N2O3 (226.1317)


A short-acting barbiturate that is effective as a sedative and hypnotic (but not as an anti-anxiety) agent and is usually given orally. It is prescribed more frequently for sleep induction than for sedation but, like similar agents, may lose its effectiveness by the second week of continued administration. (From AMA Drug Evaluations Annual, 1994, p236) D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CA - Barbiturates, plain C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators

   

Sekisanin

8H-[1,3]Dioxolo[6,7][2]benzopyrano[3,4-c]indol-6a(3H)-ol,4,4a,5,6-tetrahydro-3-methoxy-5-methyl-, (3S,4aS,6aS,13bS)-

C18H21NO5 (331.142)


   

Hypotaurine

2-aminoethane-1-sulfinic acid

C2H7NO2S (109.0197)


Hypotaurine belongs to the class of organic compounds known as sulfinic acids. Sulfinic acids are compounds containing a sulfinic acid functional group, with the general structure RS(=O)OH (R = organyl, not H). Hypotaurine exists in all living species, ranging from bacteria to humans. Within humans, hypotaurine participates in a number of enzymatic reactions. In particular, hypotaurine can be biosynthesized from cysteamine; which is catalyzed by the enzyme 2-aminoethanethiol dioxygenase. In addition, hypotaurine can be biosynthesized from 3-sulfinoalanine through its interaction with the enzyme cysteine sulfinic acid decarboxylase. In humans, hypotaurine is involved in taurine and hypotaurine metabolism. [Spectral] Hypotaurine (exact mass = 109.01975) and Cytosine (exact mass = 111.04326) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Hypotaurine is a product of enzyme cysteamine dioxygenase [EC 1.13.11.19] in taurine and hypotaurine metabolism pathway (KEGG). It may function as an antioxidant and a protective agent under physiological conditions (PMID 14992269). [HMDB] Hypotaurine (2-aminoethanesulfinic acid), an intermediate in taurine biosynthesis from cysteine in astrocytes, is an endogenous inhibitory amino acid of the glycine receptor. Antioxidant[1].

   

(±)-Methamidophos

Methyl phosphoramidothioate ((meo)(mes)p(O)(NH2))

C2H8NO2PS (141.0013)


(±)-Methamidophos is an agricultural systemic insecticide and acaricide. It is a metabolite of acephate DGK99-C C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

Cyclohexylamine

Aminohexahydrobenzene

C6H13N (99.1048)


Cyclohexylamine is a food contaminant arising from its use as a boiler water additive Cyclohexylamine, also called hexahydroaniline, 1-aminocyclohexane, or aminohexahydrobenzene, is an organic chemical, an amine derived from cyclohexane. It is a clear to yellowish liquid with fishy odor, with melting point of 17.7 °C and boiling point 134.5 °C, miscible with water. Like other amines, it is of mildly alkaline nature, compared to strong bases such as NaOH, but it is a stronger base than its aromatic sister compound aniline, which differs only in that its ring is aromatic. It is flammable, with flash point at 28.6 °C. Explosive mixtures with air can be formed above 26 °C. It is toxic by both ingestion and inhalation; the inhalation itself may be fatal. It readily absorbs through skin, which it irritates. It is corrosive. Cyclohexylamine is listed as an extremely hazardous substance as defined by Section 302 of the U.S. Emergency Planning and Community Right-to-Know Act Food contaminant arising from its use as a boiler water additive CONFIDENCE standard compound; INTERNAL_ID 2441 CONFIDENCE standard compound; INTERNAL_ID 8266 KEIO_ID C114

   

m-Phenylenediamine

Meta-phenylenediamine

C6H8N2 (108.0687)


KEIO_ID P035

   

Phenylethylamine

Phenethylamine, beta-(14)C-labeled CPD

C8H11N (121.0891)


Phenylethylamine (PEA) is an aromatic amine, which is a colorless liquid at room temperature. It is soluble in water, ethanol, and ether. Similar to other low-molecular-weight amines, it has a fishy odor. Upon exposure to air, it forms a solid carbonate salt with carbon dioxide. Phenethylamine is strongly basic and forms a stable crystalline hydrochloride salt with a melting point of 217 °C. Phenethylamine is also a skin irritant and possible sensitizer. Phenethylamine also has a constitutional isomer (+)-phenylethylamine (1-phenylethylamine), which has two stereoisomers: (R)-(+)-1-phenylethylamine and (S)-(-)-1-phenylethylamine. In the human brain, 2-phenethylamine is believed to function as a neuromodulator or neurotransmitter (a trace amine). Phenethylamine can be biosynthesized from the amino acid phenylalanine by enzymatic decarboxylation. It is also found in many foods such as chocolate, especially after microbial fermentation. However trace amounts from food are quickly metabolized by the enzyme MAO-B (into phenylacetic acid), preventing significant concentrations from reaching the brain. Phenylethylamine is a precursor to the neurotransmitter phenylethanolamine. High levels of PEA have been found in the urine of schizophrenics but it is not significantly elevated in the serum or CSF of schizophrenics (PMID:7906896, PMID:7360842).¬† Urinary levels of PEA are significantly lower in children with attention deficit hyperactivity disorder (ADHD) (PMID:12205654).¬† It has been found that PEA is the primary compound found in carnivore (especially cat) urine that leads to rodent (mouse and rat) avoidance. In other words, phenylethylamine is useful for scaring off rodent pests.¬† Quantitative HPLC analysis across 38 mammalian species has shown that PEA production in urine is especially enhanced in carnivores, with some producing >3,000-fold more than herbivores (PMID:21690383). Phenethylamine has been found to be a metabolite of Bacillus, Enterococcus and Lactobacillus (PMID:22953951; PMID:17307265; PMID:16630269). Present in cooked cabbage, cheeses, sherry, wine, processed lean fish, cocoa, raw cauliflower, raw beetroot and raw radish. Flavouring ingredient

   

coronardine

(-)-Coronaridine

C21H26N2O2 (338.1994)


Coronaridine, an iboga type alkaloid, inhibits the wnt signaling pathway by decreasing β-catenin expression[1]. Coronaridine, an iboga type alkaloid, inhibits the wnt signaling pathway by decreasing β-catenin expression[1].

   

1-Methylhistamine

2-(1-methyl-1H-imidazol-4-yl)ethan-1-amine

C6H11N3 (125.0953)


1-Methylhistamine, also known as H137, belongs to the class of organic compounds known as 2-arylethylamines. These are primary amines that have the general formula RCCNH2, where R is an organic group. 1-Methylhistamine exists in all living organisms, ranging from bacteria to humans. Within humans, 1-methylhistamine participates in a number of enzymatic reactions. In particular, S-adenosylhomocysteine and 1-methylhistamine can be biosynthesized from S-adenosylmethionine and histamine; which is mediated by the enzyme histamine N-methyltransferase. In addition, 1-methylhistamine can be converted into methylimidazole acetaldehyde through its interaction with the enzyme amine oxidase [flavin-containing] a. In humans, 1-methylhistamine is involved in histidine metabolism. 1-Methylhistamine is a potentially toxic compound. 1-Methylhistamine is a histamine metabolite. It is a product of histamine 1-methyltransferase [EC 2.1.1.8] in the pathway histidine metabolism (KEGG). [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. D004791 - Enzyme Inhibitors

   

4-Chloroaniline

4-Chloroaniline, trifluoroboron salt (1:1)

C6H6ClN (127.0189)


CONFIDENCE standard compound; INTERNAL_ID 1361; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3539; ORIGINAL_PRECURSOR_SCAN_NO 3535 CONFIDENCE standard compound; INTERNAL_ID 1361; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3530; ORIGINAL_PRECURSOR_SCAN_NO 3527 CONFIDENCE standard compound; INTERNAL_ID 1361; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3546; ORIGINAL_PRECURSOR_SCAN_NO 3542 CONFIDENCE standard compound; INTERNAL_ID 1361; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3544; ORIGINAL_PRECURSOR_SCAN_NO 3541 CONFIDENCE standard compound; INTERNAL_ID 4138 CONFIDENCE standard compound; INTERNAL_ID 8258 CONFIDENCE standard compound; INTERNAL_ID 8115

   

Tetrachlorosalicylanilide

2-Hydroxy-3,4,5,6-tetrachlorobenzanilide

C13H7Cl4NO2 (348.9231)


CONFIDENCE standard compound; INTERNAL_ID 2369 D004791 - Enzyme Inhibitors CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8640 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8243

   

N-Acetylimidazole

1-(1H-imidazol-1-yl)ethan-1-one

C5H6N2O (110.048)


   

Beta-Guanidinopropionic acid

3-(diaminomethylideneamino)propanoic acid

C4H9N3O2 (131.0695)


Beta-Guanidinopropionic acid is analog of creatine and is reported to decrease phosphocreatine and ATP content in animal tissues in vivo. Acquisition and generation of the data is financially supported in part by CREST/JST. A human metabolite taken as a putative food compound of mammalian origin [HMDB] C274 - Antineoplastic Agent > C177430 - Agent Targeting Cancer Metabolism KEIO_ID G039

   

4-Hydroxyquinoline

1,4-dihydroquinolin-4-one

C9H7NO (145.0528)


CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 53 CONFIDENCE standard compound; INTERNAL_ID 2492 KEIO_ID H139

   

NA 28:8;O2

(5Z,8Z,11Z,14Z)-N-(3,4-dihydroxyphenethyl)icosa-5,8,11,14-tetraenamide

C28H41NO3 (439.3086)


   

3-Methylamino-L-alanine

(S)-2-AMINO-3-(METHYLAMINO)PROPANOIC ACID

C4H10N2O2 (118.0742)


D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists

   

Clobenpropit

N-[(4-chlorophenyl)methyl]{[3-(1H-imidazol-5-yl)propyl]sulfanyl}methanimidamide

C14H17ClN4S (308.0862)


D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists

   

Fluperlapine

6-fluoro-10-(4-methylpiperazin-1-yl)-9-azatricyclo[9.4.0.0³,⁸]pentadeca-1(15),3(8),4,6,9,11,13-heptaene

C19H20FN3 (309.1641)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist

   

Geranic acid

(2E)-3,7-di­methyl­octa-2,6-di­enoic acid

C10H16O2 (168.115)


Geranic acid, also known as 3,7-dimethylocta-2,6-dienoate or geranate, is a member of the class of compounds known as acyclic monoterpenoids. Acyclic monoterpenoids are monoterpenes that do not contain a cycle. Thus, geranic acid is considered to be a fatty acid lipid molecule. Geranic acid is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Geranic acid, or 3,7-dimethyl-2,6-octadienoic acid, is a pheromone used by some organisms. It is a double bond isomer of nerolic acid . Geranic acid is found in cardamom. Geranic acid is present in petitgrain, lemongrass and other essential oil

   

Linopirdine

1-phenyl-3,3-bis[(pyridin-4-yl)methyl]-2,3-dihydro-1H-indol-2-one

C26H21N3O (391.1685)


N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker D020011 - Protective Agents Same as: D04741

   

2-(Methylamino)benzoic acid

N-Methylanthranilic acid, 8ci

C8H9NO2 (151.0633)


2-(Methylamino)benzoic acid is found in citrus. 2-(Methylamino)benzoic acid is isolated from grapefruit peel oi KEIO_ID M127 2-(Methylamino)benzoic acid is the main metabolite of methyl-N-methylanthranilates (MMA) (HY-76705) and is the compound in which the ester group is converted. MMA can be isolated from citrus fruits and has potential analgesic activity. 2-(Methylamino)benzoic acid was used to detect the metabolic levels of MMA in rat liver[1].

   

Zolmitriptan

(4S)-4-({3-[2-(dimethylamino)ethyl]-1H-indol-5-yl}methyl)-1,3-oxazolidin-2-one

C16H21N3O2 (287.1634)


Zolmitriptan is only found in individuals that have used or taken this drug. It is a synthetic tryptamine derivative and appears as a white powder that is readily soluble in water. [Wikipedia]Zolmitriptan binds with high affinity to human 5-HT1B and 5-HT1D receptors leading to cranial blood vessel constriction. Current theories proposed to explain the etiology of migraine headache suggest that symptoms are due to local cranial vasodilatation and/or to the release of sensory neuropeptides (vasoactive intestinal peptide, substance P and calcitonin gene-related peptide) through nerve endings in the trigeminal system. The therapeutic activity of zolmitriptan for the treatment of migraine headache can most likely be attributed to the agonist effects at the 5HT1B/1D receptors on intracranial blood vessels (including the arterio-venous anastomoses) and sensory nerves of the trigeminal system which result in cranial vessel constriction and inhibition of pro-inflammatory neuropeptide release. N - Nervous system > N02 - Analgesics > N02C - Antimigraine preparations > N02CC - Selective serotonin (5ht1) agonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist D000890 - Anti-Infective Agents > D023303 - Oxazolidinones

   

3-(3-hydroxyphenyl)propionate

dihydro-3-Coumaric acid, monosodium salt

C9H10O3 (166.063)


3-(3-Hydroxyphenyl)propanoic (hMPP) acid is one of the major metabolites of ingested caffeic acid (PMID: 15479001) and of the phenolic degradation products of proanthocyanidins (the most abundant polyphenol present in chocolate) by the microflora in the colon (PMID: 12663291). mHPP is suspected to have antioxidants properties and is actively absorbed by the monocarboxylic acid transporter (MCT) in intestinal Caco-2 cell monolayers (PMID: 15479001, 12663291). hMPP has been found to be a metabolite of Clostridium, Escherichia, and Eubacterium (PMID: 28393285, 19520845). 3-(3-Hydroxyphenyl)propanoic acid is a flavonoid metabolite. 3-(3-Hydroxyphenyl)propanoic acid is a phenolic acid metabolite formed by the gut microflora detected after the consumption of whole grain. 3-(3-Hydroxyphenyl)propanoic (hMPP) acid is one of the major metabolites of ingested caffeic acid (PMID 15479001) and of the phenolic degradation products of proanthocyanidins (the most abundant polyphenol present in chocolate) by the microflora in the colon (PMID 12663291). mHPP is suspected to have antioxidants properties and is actively absorbed by the monocarboxylic acid transporter (MCT) in intestinal Caco-2 cell monolayers (PMID 15479001, 12663291). [HMDB] 3-(3-Hydroxyphenyl)propionic acid is a flavonoid metabolite formed by human microflora. 3-(3-Hydroxyphenyl)propionic acid shows vasodilatory activity[1]. 3-(3-Hydroxyphenyl)propionic acid is a flavonoid metabolite formed by human microflora. 3-(3-Hydroxyphenyl)propionic acid shows vasodilatory activity[1].

   

D-Arabinose 5-phosphate

{[(2R,3R,4S)-2,3,4-trihydroxy-5-oxopentyl]oxy}phosphonic acid

C5H11O8P (230.0192)


D-Arabinose 5-phosphate is an intermediate in biosynthesis of lipopolysaccharide. It is reversibly converted to D-ribulose 5-phosphate by arabinose-5-phosphate isomerase (EC 5.3.1.13). Acquisition and generation of the data is financially supported in part by CREST/JST. D-Arabinose 5-phosphate is an intermediate in biosynthesis of lipopolysaccharide. KEIO_ID A147

   

Arg-OEt

Arginine, ethyl ester

C8H18N4O2 (202.143)


   

2-Amino-2-methyl-1,3-propanediol

2-amino-2-methylpropane-1,3-diol

C4H11NO2 (105.079)


KEIO_ID A224

   

Dimethylamine

N-Methylmethanamine (acd/name 4.0)

C2H7N (45.0578)


Dimethylamine (DMA) is an organic secondary amine. It is a colorless, liquefied and flammable gas with an ammonia and fish-like odor. Dimethylamine is abundantly present in human urine. Main sources of urinary DMA have been reported to include trimethylamine N-oxide, a common food component, and asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide (NO) synthesis. ADMA is excreted in the urine in part unmetabolized and in part after hydrolysis to DMA by dimethylarginine dimethylaminohydrolase (DDAH). Statistically significant increases in urinary DMA have been found in individuals after the consumption of fish and seafoods. The highest values were obtained for individuals that consumed coley, squid and whiting with cod, haddock, sardine, skate and swordfish (PMID: 18282650). It has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). As a pure chemical substance Dimethylamine is used as dehairing agent in tanning, in dyes, in rubber accelerators, in soaps and cleaning compounds and as an agricultural fungicide. In the body, DMA also undergoes nitrosation under weak acid conditions to give dimethlynitrosamine. Study has shown that DMA is a metabolite of Arthrobacter and Micrococcus (PMID: 11422368 ; PMID: 7191). Aminating agent in the manuf. of ion-exchange resins for food processing KEIO_ID D103

   

Ethylamine

Ethylamine Hydrochloride

C2H7N (45.0578)


Ethylamine, also known as 1-aminoethane or ethanamine, belongs to the class of organic compounds known as monoalkylamines. These are organic compounds containing an primary aliphatic amine group. Ethylamine exists in all living organisms, ranging from bacteria to humans. Ethylamine is an ammonia and fishy tasting compound. Ethylamine can be found found in a few different foods, such as barley, apples, and corns and in a lower concentration in white cabbages, wild carrots, and cabbages. Ethylamine has also been detected, but not quantified, in several different foods, such as black elderberries, common grapes, french plantains, soy beans, and spinachs. Ethylamine is a uremic toxin. Most uremic toxins are metabolic waste products and are normally excreted in the urine or feces. Uremic syndrome may affect any part of the body and can cause nausea, vomiting, loss of appetite, and weight loss. Ethylamine is component of normal human urine it has been suggested that this short aliphatic chain may play a significant role in the central nervous system disturbances observe during hepatic and renal disease especially when the blood brain barrier is compromised. Found in foods and drinks KEIO_ID E025

   

Isonicotinamide

Pyridine-4-carboxylic acid amide

C6H6N2O (122.048)


KEIO_ID I051

   

succinylcholine

trimethyl-[2-[4-oxo-4-[2-(trimethylazaniumyl)ethoxy]butanoyl]oxyethyl]azanium

C14H30N2O4+2 (290.2205)


M - Musculo-skeletal system > M03 - Muscle relaxants > M03A - Muscle relaxants, peripherally acting agents > M03AB - Choline derivatives D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant

   

Lumichrome

7,8-dimethyl-1H,2H,3H,4H-benzo[g]pteridine-2,4-dione

C12H10N4O2 (242.0804)


Lumichrome, also known as light folinic acid or 7,8-dimethyl-10-ribitylisoalloxazine, is a derivative of riboflavin (vitamin B2). The chemical structure of lumichrome consists of a heterocyclic isoalloxazine ring, which is a fused pyridine and pyrazine ring system. The isoalloxazine ring contains a methyl group at the 7 and 8 positions and is substituted at the 10 position with a ribityl group, which is a 5-carbon chain derived from ribose with a methyl group at the 2’ position. Photocatalytic Activity: Lumichrome exhibits photocatalytic activity and can act as a photosensitizer. It can absorb light energy and transfer it to other molecules, potentially triggering photochemical reactions. Fluorescence: Lumichrome is known for its fluorescence properties. This characteristic makes it useful in various applications, including fluorescence microscopy and as a labeling agent in biological assays. Antioxidant Properties: Lumichrome has been found to have antioxidant properties. It can scavenge free radicals, which may help in protecting cells from oxidative stress. Metabolic Intermediate: In the body, lumichrome can be formed from riboflavin through photochemical or enzymatic degradation. It may play a role in the metabolism of flavins and could be involved in the recycling of flavin cofactors. Potential Biomarker: Due to its presence in biological tissues and its fluorescence properties, lumichrome has been proposed as a potential biomarker for certain diseases and conditions. Plant Pigment: In plants, lumichrome can be involved in light capture and energy transfer processes, although it is not a chlorophyll pigment. It may contribute to the overall light-harvesting capabilities of plant tissues. While lumichrome has several interesting chemical and biological properties, it is not considered an essential nutrient like its parent compound, riboflavin. Its exact role in biological systems is still an area of ongoing research. Lumichrome, a photodegradation product of Riboflavin, is an endogenous compound in humans. Lumichrome inhibits human lung cancer cell growth and induces apoptosis via a p53-dependent mechanism[1][2].

   

Nicotinic acid mononucleotide

3-carboxy-1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-[(phosphonooxy)methyl]oxolan-2-yl]-1lambda5-pyridin-1-ylium

[C11H15NO9P]+ (336.0484)


Nicotinic acid mononucleotide, also known as nicotinate ribonucleotide, belongs to the class of organic compounds known as nicotinic acid nucleotides. These are pyridine nucleotides in which the pyridine base is nicotinic acid or a derivative thereof. Nicotinic acid mononucleotide is an extremely weak basic (essentially neutral) compound (based on its pKa). Nicotinic acid mononucleotide an intermediate in the cofactor biosynthesis and the nicotinate and nicotinamide metabolism pathways. It is a substrate for nicotinamide riboside kinase, ectonucleotide pyrophosphatase/phosphodiesterase, nicotinamide mononucleotide adenylyltransferase, 5-nucleotidase, nicotinate-nucleotide pyrophosphorylase, and 5(3)-deoxyribonucleotidase. Nicotinic acid mononucleotide is an intermediate in the metabolism of Nicotinate and nicotinamide. It is a substrate for Ectonucleotide pyrophosphatase/phosphodiesterase 2, Ectonucleotide pyrophosphatase/phosphodiesterase 1, Nicotinamide mononucleotide adenylyltransferase 3, Cytosolic 5-nucleotidase IA, Cytosolic 5-nucleotidase IB, Nicotinate-nucleotide pyrophosphorylase, 5(3)-deoxyribonucleotidase (cytosolic type), Cytosolic purine 5-nucleotidase, Nicotinamide mononucleotide adenylyltransferase 2, Ectonucleotide pyrophosphatase/phosphodiesterase 3, 5-nucleotidase, 5(3)-deoxyribonucleotidase (mitochondrial) and Nicotinamide mononucleotide adenylyltransferase 1. [HMDB] NaMN is the most common mononucleotide intermediate (a hub) in NAD biogenesis. For example, in E. coli all three pyridine precursors are converted into NaMN (Table 1 and Figure 3(a)). Qa produced by the de novo Asp–DHAP pathway (genes nadB and nadA) is converted into NaMN by QAPRT (gene nadC). Salvage of both forms of niacin proceeds via NAPRT (gene pncB) either directly upon or after deamidation by NMDSE (gene pncA). Overall, more than 90\% of approximately 680 analyzed bacterial genomes contain at least one of the pathways leading to the formation of NaMN. Most of them (∼480 genomes) have the entire set of nadBAC genes for NaMN de novo synthesis from Asp that are often clustered on the chromosome and/or are co-regulated by the same transcription factors (see Section 7.08.3.1.2). Among the examples provided in Table 1, F. tularensis (Figure 4(c)) has all three genes of this de novo pathway forming a single operon-like cluster and supporting the growth of this organism in the absence of any pyridine precursors in the medium. More than half the genomes with the Asp–DHAP pathway also contain a deamidating niacin salvage pathway (genes pncAB) as do many representatives of the α-, β-, and γ-Proteobacteria, Actinobacteria, and Bacillus/Clostridium group. As already emphasized, the genomic reconstruction approach provides an assessment of the metabolic potential of an organism, which may or may not be realized under given conditions. For example, E. coli and B. subtilis can utilize both de novo and PncAB Nm salvage pathways under the same growth conditions, whereas in M. tuberculosis (having the same gene pattern) the latter pathway was considered nonfunctional, so that the entire NAD pool is generated by the de novo NadABC route. However, a recent study demonstrated the functional activity of the Nm salvage pathway in vivo, under hypoxic conditions in infected macrophages.221 This study also implicated the two downstream enzymes of NAD synthesis (NAMNAT and NADSYN) as attractive chemotherapeutic targets to treat acute and latent forms of tuberculosis. In approximately 100 species, including many Cyanobacteria (e.g., Synechococcus spp.), Bacteroidetes (e.g., Chlorobium spp.) and Proteobacteria (e.g., Caulobacter crescentus, Zymomonas mobilis, Desulfovibrio spp., and Shewanella spp. representing α-, β-, δ-, and γ-groups, respectively) the Asp–DHAP pathway is the only route to NAD biogenesis. Among them, nearly all Helicobacter spp. (except H. hepaticus), contain only the two genes nadA and nadC but lack the first gene of the pathway (nadB), which is a likely subject of nonorthologous gene replacement. One case of NadB (ASPOX) replacement by the ASPDH enzyme in T. maritima (and methanogenic archaea) was discussed in Section 7.08.2.1. However, no orthologues of the established ASPDH could be identified in Helicobacter spp. as well as in approximately 15 other diverse bacterial species that have the nadAC but lack the nadB gene (e.g., all analyzed Corynebacterium spp. except for C. diphtheriae). Therefore, the identity of the ASPOX or ASPDH enzyme in these species is still unknown, representing one of the few remaining cases of ‘locally missing genes’220 in the NAD subsystem. All other bacterial species contain either both the nadA and nadB genes (plus nadC) or none. In a limited number of bacteria (∼20 species), mostly in the two distant groups of Xanthomonadales (within γ-Proteobacteria) and Flavobacteriales (within Bacteroidetes), the Asp–DHAP pathway of Qa synthesis is replaced by the Kyn pathway. As described in Section 7.08.2.1.2, four out of five enzymes (TRDOX, KYNOX, KYNSE, and HADOX) in the bacterial version of this pathway are close homologues of the respective eukaryotic enzymes, whereas the KYNFA gene is a subject of multiple nonorthologous replacements. Although the identity of one alternative form of KYNFA (gene kynB) was established in a group of bacteria that have a partial Kyn pathway for Trp degradation to anthranilate (e.g., in P. aeruginosa or B. cereus57), none of the known KYNFA homologues are present in Xanthomonadales or Flavobacteriales. In a few species (e.g., Salinispora spp.) a complete gene set of the Kyn pathway genes co-occurs with a complete Asp–DHAP pathway. Further experiments would be required to establish to what extent and under what conditions these two pathways contribute to Qa formation. As discussed, the QAPRT enzyme is shared by both de novo pathways, and a respective gene, nadC is always found in the genomes containing one or the other pathway. Similarly, gene nadC always co-occurs with Qa de novo biosynthetic genes with one notable exception of two groups of Streptococci, S. pneumonaie and S. pyogenes. Although all other members of the Lactobacillales group also lack the Qa de novo biosynthetic machinery and rely entirely on niacin salvage, only these two human pathogens contain a nadC gene. The functional significance of this ‘out of context’ gene is unknown, but it is tempting to speculate that it may be involved in a yet-unknown pathway of Qa salvage from the human host. Among approximately 150 bacterial species that lack de novo biosynthesis genes and rely on deamidating salvage of niacin (via NAPRT), the majority (∼100) are from the group of Firmicutes. Such a functional variant (illustrated for Staphylococcus aureus in Figure 4(b)) is characteristic of many bacterial pathogens, both Gram-positive and Gram-negative (e.g., Brucella, Bordetella, and Campylobacter spp. from α-, β-, and δ-Proteobacteria, Borrelia, and Treponema spp. from Spirochaetes). Most of the genomes in this group contain both pncA and pncB genes that are often clustered on the chromosome and/or are co-regulated (see Section 7.08.3.1.2). In some cases (e.g., within Mollicutes and Spirochaetales), only the pncB, but not the pncA gene, can be reliably identified, suggesting that either of these species can utilize only the deamidated form of niacin (Na) or that some of them contain an alternative (yet-unknown) NMASE. Although the nondeamidating conversion of Nm into NMN (via NMPRT) appears to be present in approximately 50 bacterial species (mostly in β- and γ-Proteobacteria), it is hardly ever the only route of NAD biogenesis in these organisms. The only possible exception is observed in Mycoplasma genitalium and M. pneumoniae that contain the nadV gene as the only component of pyridine mononucleotide biosynthetic machinery. In some species (e.g., in Synechocystes spp.), the NMPRT–NMNAT route is committed primarily to the recycling of endogenous Nm. On the other hand, in F. tularensis (Figure 4(c)), NMPRT (gene nadV) together with NMNAT (of the nadM family) constitute the functional nondeamidating Nm salvage pathway as it supports the growth of the nadE′-mutant on Nm but not on Na (L. Sorci et al., unpublished). A similar nondeamidating Nm salvage pathway implemented by NMPRT and NMNAT (of the nadR family) is present in some (but not all) species of Pasteurellaceae in addition to (but never instead of) the RNm salvage pathway (see below), as initially demonstrated for H. ducreyi.128 A two-step conversion of NaMN into NAD via a NaAD intermediate (Route I in Figure 2) is present in the overwhelming majority of bacteria. The signature enzyme of Route I, NAMNAT of the NadD family is present in nearly all approximately 650 bacterial species that are expected to generate NaMN via de novo or salvage pathways (as illustrated by Figures 3(a) and 3(b)). All these species, without a single exception, also contain NADSYN (encoded by either a short or a long form of the nadE gene), which is required for this route. The species that lack the NadD/NadE signature represent several relatively rare functional variants, including: 1. Route I of NAD synthesis (NaMN → NaAD → NAD) variant via a bifunctional NAMNAT/NMNAT enzyme of the NadM family is common for archaea (see Section 7.08.3.2), but it appears to be present in only a handful of bacteria, such as Acinetobacter, Deinococcus, and Thermus groups. Another unusual feature of the latter two groups is the absence of the classical NADKIN, a likely subject of a nonorthologous replacement that remains to be elucidated. 2. Route II of NAD synthesis (NaMN → NMN → NAD). This route is implemented by a combination of the NMNAT of either the NadM family (as in F. tularensis) or the NadR family (as in M. succinoproducens and A. succinogenes) with NMNSYN of the NadE′ family. The case of F. tularensis described in Section 7.08.2.4 is illustrated in Figure 3(b). The rest of the NAD biosynthetic machinery in both species from the Pasteurellaceae group, beyond the shared Route II, is remarkably different from that in F. tularensis. Instead of de novo biosynthesis, they harbor a Na salvage pathway via NAPRT encoded by a pncB gene that is present in a chromosomal cluster with nadE′. Neither of these two genes are present in other Pasteurellaceae that lack the pyridine carboxylate amidation machinery (see below). 3. Salvage of RNm (RNm → NMN → NAD). A genomic signature of this pathway, a combination of the PnuC-like transporter and a bifunctional NMNAT/RNMKIN of the NadR family, is present in many Enterobacteriaceae and in several other diverse species (e.g., in M. tuberculosis). However, in H. influenzae (Figure 3(d)) and related members of Pasteurellaceae, it is the only route of NAD biogenesis. As shown in Table 1, H. influenzae as well as many other members of this group have lost nearly all components of the rich NAD biosynthetic machinery that are present in their close phylogenetic neighbors (such as E. coli and many other Enterobacteriaceae). This pathway is an ultimate route for utilization of the so called V-factors (NADP, NAD, NMN, or RNm) that are required to support growth of H. influenzae. It was established that all other V-factors are degraded to RNm by a combination of periplasmic- and membrane-associated hydrolytic enzymes.222 Although PnuC was initially considered an NMN transporter,223 its recent detailed analysis in both H. influenzae and Salmonella confirmed that its actual physiological function is in the uptake of RNm coupled with the phosphorylation of RNM to NMN by RNMKIN.17,148,224 As already mentioned, H. ducreyi and several other V-factor-independent members of the Pasteurellaceae group (H. somnus, Actinobacillus pleuropneumoniae, and Actinomycetemcomitans) harbor the NMNAT enzyme (NadV) that allows them to grow in the presence of Nm (but not Na) in the medium (Section 7.08.2.2). 4. Uptake of the intact NAD. Several groups of phylogenetically distant intracellular endosymbionts with extremely truncated genomes contain only a single enzyme, NADKIN, from the entire subsystem. Among them are all analyzed species of the Wolbachia, Rickettsia, and Blochmannia groups. These species are expected to uptake and utilize the intact NAD from their host while retaining the ability to convert it into NADP. Among all analyzed bacteria, only the group of Chlamydia does not have NADKIN and depends on the salvage of both NAD and NADP via a unique uptake system.157 A comprehensive genomic reconstruction of the metabolic potential (gene annotations and asserted pathways) across approximately 680 diverse bacterial genomes sets the stage for the accurate cross-genome projection and prediction of regulatory mechanisms that control the realization of this potential in a variety of species and growth conditions. In the next section, we summarize the recent accomplishments in the genomic reconstruction of NAD-related regulons in bacteria. Nicotinic acid mononucleotide. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=321-02-8 (retrieved 2024-06-29) (CAS RN: 321-02-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Ergokryptine

alpha-Ergocryptine

C32H41N5O5 (575.3108)


D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists

   

Pomiferin

3-(3,4-dihydroxyphenyl)-5-hydroxy-8,8-dimethyl-6-(3-methylbut-2-en-1-yl)-4H,8H-pyrano[2,3-h]chromen-4-one

C25H24O6 (420.1573)


   

Digitin

(25R)-2alpha,15beta-dihydroxy-5alpha-spirostan-3beta-yl beta-D-glucopyranosyl-(1->3)-beta-D-galactopyranosyl-(1->2)-[beta-D-xylopyranosyl-(1->3)]-beta-D-glucopyranosyl-(1->4)-beta-D-galactopyranoside

C56H92O29 (1228.5724)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D004071 - Digitalis Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents Digitonin, a glycoside obtained from Digitalis purpurea, could increase cell permeability by binding to cholesterol molecules and reduce tumor growth[1]. Digitonin is an natural detergent[2]. Digitonin, a glycoside obtained from Digitalis purpurea, could increase cell permeability by binding to cholesterol molecules and reduce tumor growth[1]. Digitonin is an natural detergent[2].

   

Cholestan-3-one

5beta-cholestan-3-one

C27H46O (386.3548)


   

Securinine

6,10-METHANOPYRIDO(1,2-A)AZEPINE-.GAMMA.9(6H),.ALPHA.-ACETIC ACID,1,2,3,4,10,10A-HEXAHYDRO-10-HYDROXY-, .GAMMA.-LACTONE

C13H15NO2 (217.1103)


Securinine is a member of indolizines. Securinine is a natural product found in Flueggea suffruticosa, Flueggea virosa, and other organisms with data available. See also: Phyllanthus amarus top (part of). relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.052 (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. Allosecurinine (Phyllochrysine) is a Securinega alkaloid isolated from Phyllanthus glaucus [1].

   

Phyllanthin

4-[(2S,3S)-3-[(3,4-dimethoxyphenyl)methyl]-4-methoxy-2-(methoxymethyl)butyl]-1,2-dimethoxy-benzene

C24H34O6 (418.2355)


Phyllanthin is a major bioactive lignan component of Phyllanthus amarus. Phyllanthin exhibits high antioxidative and hepatoprotective properties[1]. Phyllanthin is a major bioactive lignan component of Phyllanthus amarus. Phyllanthin exhibits high antioxidative and hepatoprotective properties[1].

   

Ergotamine

(4R,7R)-N-[(1S,2S,4R,7S)-7-benzyl-2-hydroxy-4-methyl-5,8-dioxo-3-oxa-6,9-diazatricyclo[7.3.0.0²,⁶]dodecan-4-yl]-6-methyl-6,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(16),2,9,12,14-pentaene-4-carboxamide

C33H35N5O5 (581.2638)


Ergotamine is only found in individuals that have used or taken this drug. It is a vasoconstrictor found in ergot of Central Europe. It is an alpha-1 selective adrenergic agonist and is commonly used in the treatment of migraine disorders. [PubChem]Ergotamine acts on migraine by one of two proposed mechanisms: 1) activation of 5-HT1D receptors located on intracranial blood vessels, including those on arterio-venous anastomoses, leads to vasoconstriction, which correlates with the relief of migraine headache, and 2) activation of 5-HT1D receptors on sensory nerve endings of the trigeminal system results in the inhibition of pro-inflammatory neuropeptide release. D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists N - Nervous system > N02 - Analgesics > N02C - Antimigraine preparations > N02CA - Ergot alkaloids D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist > C61751 - Ergotamine D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D012102 - Reproductive Control Agents > D010120 - Oxytocics

   

1-O-Acetyllycorine

Lycorine, 1-O-acetyl-

C18H19NO5 (329.1263)


   

4,4-Dichlorobenzophenone

4,4?-Dichlorobenzophenone

C13H8Cl2O (249.9952)


CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 1068

   

12-HHTrE

12(S)-Hydroxy-(5Z,8Z,10E)-heptadeca-5,8,10-trienoic acid anion

C17H28O3 (280.2038)


12(S)-HHTrE is an unusual product of the cyclooxygenase (COX) pathway and one of the primary arachidonic acid metabolites of the human platelet.1 It is biosynthesized by thromboxane (TX) synthesis from prostaglandin H2 (PGH2) concurrently with TXA2. The biological role of 12(S)-HHTrE is uncertain. It is avidly oxidized to 12-oxoHTrE by porcine 15-hydroxy PGDH. [HMDB] 12(S)-HHTrE is an unusual product of the cyclooxygenase (COX) pathway and one of the primary arachidonic acid metabolites of the human platelet.1 It is biosynthesized by thromboxane (TX) synthesis from prostaglandin H2 (PGH2) concurrently with TXA2. The biological role of 12(S)-HHTrE is uncertain. It is avidly oxidized to 12-oxoHTrE by porcine 15-hydroxy PGDH.

   

PE(16:0/18:1(9Z))

(2-aminoethoxy)[(2R)-3-(hexadecanoyloxy)-2-[(9Z)-octadec-9-enoyloxy]propoxy]phosphinic acid

C39H76NO8P (717.5308)


PE(16:0/18:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(16:0/18:1(9Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of oleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(16:0/18:1(9Z)) is a phosphatidylethanolamine. It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms. PE(16:0/18:1(9Z)), in particular, consists of one hexadecanoyl chain to the C-1 atom, and one 9Z-octadecenoyl to the C-2 atom. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PG(16:0/18:1(9Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-(hexadecanoyloxy)-2-[(9Z)-octadec-9-enoyloxy]propoxy]phosphinic acid

C40H77O10P (748.5254)


PG(16:0/18:1(9Z)) is a phosphatidylglycerol or glycerophospholipid (PG or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(16:0/18:1(9Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of oleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PGs have a net charge of -1 at physiological pH and are found in high concentration in mitochondrial membranes and as components of pulmonary surfactant. PG also serves as a precursor for the synthesis of cardiolipin. PG is synthesized from CDP-diacylglycerol and glycerol-3-phosphate. PG(16:0/18:1(9Z)) is a phosphatidylglycerol. Phosphatidylglycerols consist of a glycerol 3-phosphate backbone esterified to either saturated or unsaturated fatty acids on carbons 1 and 2. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PG(16:0/18:1(9Z)), in particular, consists of one hexadecanoyl chain to the C-1 atom, and one 9Z-octadecenoyl to the C-2 atom. In E. coli glycerophospholipid metabolism, phosphatidylglycerol is formed from phosphatidic acid (1,2-diacyl-sn-glycerol 3-phosphate) by a sequence of enzymatic reactions that proceeds via two intermediates, cytidine diphosphate diacylglycerol (CDP-diacylglycerol) and phosphatidylglycerophosphate (PGP, a phosphorylated phosphatidylglycerol). Phosphatidylglycerols, along with CDP-diacylglycerol, also serve as precursor molecules for the synthesis of cardiolipin, a phospholipid found in membranes.

   

Glycerylphosphorylethanolamine

2-AMINOETHYL (2,3-DIHYDROXYPROPYL) HYDROGEN PHOSPHATE

C5H14NO6P (215.0559)


Glycerylphosphorylethanolamine is a membrane breakdown product resulting from the cleavage of the lipid group from glycerophosphoethanlomine fatty acids (i.e. phosphatidylethanolamine). It acts as a growth stimulant for hepatocytes. A membrane breakdown product resulting from the cleavage of the lipid group from glycerophosphoethanlomine fatty acids (i.e. phosphatidylethanolamine). It acts as a growth stimulant for hepatocytes. [HMDB]

   

Penicillamine

2-amino-3-methyl-3-sulfanylbutanoic acid

C5H11NO2S (149.051)


Penicillamine is only found in individuals that have used or taken this drug. It is the most characteristic degradation product of the penicillin antibiotics. It is used as an antirheumatic and as a chelating agent in Wilsons disease. [PubChem]Penicillamine is a chelating agent recommended for the removal of excess copper in patients with Wilsons disease. From in vitro studies which indicate that one atom of copper combines with two molecules of penicillamine. Penicillamine also reduces excess cystine excretion in cystinuria. This is done, at least in part, by disulfide interchange between penicillamine and cystine, resulting in formation of penicillamine-cysteine disulfide, a substance that is much more soluble than cystine and is excreted readily. Penicillamine interferes with the formation of cross-links between tropocollagen molecules and cleaves them when newly formed. The mechanism of action of penicillamine in rheumatoid arthritis is unknown although it appears to suppress disease activity. Unlike cytotoxic immunosuppressants, penicillamine markedly lowers IgM rheumatoid factor but produces no significant depression in absolute levels of serum immunoglobulins. Also unlike cytotoxic immunosuppressants which act on both, penicillamine in vitro depresses T-cell activity but not B-cell activity. M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01C - Specific antirheumatic agents > M01CC - Penicillamine and similar agents C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor > C1971 - Angiogenesis Activator Inhibitor D064449 - Sequestering Agents > D002614 - Chelating Agents D020011 - Protective Agents > D000931 - Antidotes D018501 - Antirheumatic Agents Penicillamine (D-(-)-Penicillamine) is a penicillin metabolic degradation product, can be used as a heavy metal chelator. Penicillamine increases free copper and enhances oxidative stress. Penicillamine has effect of seizures through nitric oxide/NMDA pathways. Penicillamine is a potential immune modulator. Penicillamine can be used for the research of Wilson disease, rheumatoid arthritis, and cystinuria[1][2][3][4].

   

Glutaryl-CoA

5-[(2-{3-[(2R)-3-[({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-2-hydroxy-3-methylbutanamido]propanamido}ethyl)sulfanyl]-5-oxopentanoic acid

C26H42N7O19P3S (881.1469)


Glutaryl-CoA is a substrate for 2-oxoglutarate dehydrogenase E1 component (mitochondrial), Dihydrolipoyllysine-residue succinyltransferase component of 2- oxoglutarate dehydrogenase complex (mitochondrial) and Glutaryl-CoA dehydrogenase (mitochondrial). [HMDB] Glutaryl-CoA is a substrate for 2-oxoglutarate dehydrogenase E1 component (mitochondrial), Dihydrolipoyllysine-residue succinyltransferase component of 2- oxoglutarate dehydrogenase complex (mitochondrial) and Glutaryl-CoA dehydrogenase (mitochondrial).

   

oxalyl-CoA

3-phosphoadenosine 5-(3-{(3R)-3-hydroxy-2,2-dimethyl-4-[(3-{[2-(oxalylsulfanyl)ethyl]amino}-3-oxopropyl)amino]-4-oxobutyl} dihydrogen diphosphate)

C23H36N7O19P3S (839.0999)


An omega-carboxyacyl-CoA that results from the formal condensation of the thiol group of coenzyme A with one of the carboxy groups of oxalic acid.

   

ecdysone

17-(3,6-dihydroxy-6-methylheptan-2-yl)-2,3,14-trihydroxy-10,13-dimethyl-2,3,4,5,9,11,12,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-6-one

C27H44O6 (464.3138)


A 6-oxo steroid that is 5beta-cholest-7-en-6-one substituted by hydroxy groups at positions 2, 3, 14, 22 and 25 respectively (the 2beta, 3beta, 22R stereoisomer). It is a steroid prohormone of the major insect moulting hormone 20-hydroxyecdysone. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Ecdysone, also known as molting hormone, belongs to pentahydroxy bile acids, alcohols and derivatives class of compounds. Those are bile acids, alcohols or derivatives bearing five hydroxyl groups. Thus, ecdysone is considered to be a sterol lipid molecule. Ecdysone is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Ecdysone can be synthesized from 5beta-cholestane. Ecdysone is also a parent compound for other transformation products, including but not limited to, (25R)-11alpha,20,26-trihydroxyecdysone, (24R)-11alpha,20,24-trihydroxyecdysone, and ecdysone 25-O-D-glucopyranoside. Ecdysone can be found in spinach, which makes ecdysone a potential biomarker for the consumption of this food product. Ecdysone is a steroidal prohormone of the major insect molting hormone 20-hydroxyecdysone, which is secreted from the prothoracic glands. Insect molting hormones (ecdysone and its homologues) are generally called ecdysteroids. Ecdysteroids act as moulting hormones of arthropods but also occur in other related phyla where they can play different roles. In Drosophila melanogaster, an increase in ecdysone concentration induces the expression of genes coding for proteins that the larva requires, and it causes chromosome puffs (sites of high expression) to form in polytene chromosomes. Recent findings in Chris Q. Doe lab have found a novel role of this hormone in regulating temporal gene transitions within neural stem cells. Ecdysone and other ecdysteroids also appear in many plants mostly as a protection agent (toxins or antifeedants) against herbivorous insects. These phytoecdysteroids have been reputed to have medicinal value and are part of herbal adaptogenic remedies like Cordyceps, yet an ecdysteroid precursor in plants has been shown to have cytotoxic properties. A pesticide sold with the name MIMIC has ecdysteroid activity, although its chemical structure has little resemblance to the ecdysteroids . Ecdysone (α-Ecdysone), a major steroid hormone in insects and herbs, triggers mineralocorticoid receptor (MR) activation and induces cellular apoptosis. Ecdysone plays essential roles in coordinating developmental transitions and homeostatic sleep regulation through its active metabolite 20-hydroxyecdysone (Crustecdysone; 20E; HY-N6979)[1][2].

   

Cyclopentanone

3-Acetyl-6-methyl-pyran-2,4(3H)-dione

C5H8O (84.0575)


Cyclopentanone belongs to the class of organic compounds known as ketones. These are organic compounds in which a carbonyl group is bonded to two carbon atoms R2C=O (neither R may be a hydrogen atom). Ketones that have one or more alpha-hydrogen atoms undergo keto-enol tautomerization, the tautomer being an enol. Cyclopentanone is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, cyclopentanone is considered to be an oxygenated hydrocarbon lipid molecule. Cyclopentanone is a cyclic ketone, structurally similar to cyclopentane, consisting of a five-membered ring containing a ketone functional group. Cyclopentanone is a colorless liquid organic compound with a peppermint-like odor. Cyclopentanone is found in various foods, including potato and tomato, and cooked foods, e.g. butter, meats, coffee, roasted peanut. Cyclopentanone is also used as a flavouring ingredient. Found in various foods, including potato and tomato, and cooked foods, e.g. butter, meats, coffee, roasted peanut. Flavouring ingredient

   

Formyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-2-[({[({3-[(2-{[2-(formylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]-3-hydroxy-2,2-dimethylpropoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C22H36N7O17P3S (795.1101)


Formyl-CoA is formed during the alpha-oxidation process in liver peroxisomes, as a result of the alpha-oxidation of 3-methyl-substituted fatty acids. The amount of formyl-CoA formed constitutes 2 - 5\\% of the total formate. The formyl-CoA formed is not due to activation of formate - until now presumed to be the primary end-product of alpha-oxidation - but is rather than formate the end-product of alpha-oxidation. The cleavage of 2-hydroxy-3-methylhexadecanoyl-CoA to 2-methylpentadecanal and formate (formyl-CoA) is probably due to the presence of a specific lyase. (PMID: 9276483, 9166898) [HMDB]. Formyl-CoA is found in many foods, some of which are roman camomile, java plum, sweet marjoram, and new zealand spinach. Formyl-CoA is formed during the alpha-oxidation process in liver peroxisomes, as a result of the alpha-oxidation of 3-methyl-substituted fatty acids. The amount of formyl-CoA formed constitutes 2 - 5\\% of the total formate. The formyl-CoA formed is not due to activation of formate - until now presumed to be the primary end-product of alpha-oxidation - but is rather than formate the end-product of alpha-oxidation. The cleavage of 2-hydroxy-3-methylhexadecanoyl-CoA to 2-methylpentadecanal and formate (formyl-CoA) is probably due to the presence of a specific lyase. (PMID: 9276483, 9166898).

   

3-deoxy-D-manno-octulosonate

(4R,5R,6R,7R)-4,5,6,7,8-pentahydroxy-2-oxooctanoic acid

C8H14O8 (238.0689)


3-deoxy-d-manno-octulosonate, also known as kdo or 2-dehydro-3-deoxy-D-octonate, belongs to sugar acids and derivatives class of compounds. Those are compounds containing a saccharide unit which bears a carboxylic acid group. 3-deoxy-d-manno-octulosonate is soluble (in water) and a moderately acidic compound (based on its pKa). 3-deoxy-d-manno-octulosonate can be found in a number of food items such as peppermint, okra, horseradish tree, and hazelnut, which makes 3-deoxy-d-manno-octulosonate a potential biomarker for the consumption of these food products. 3-deoxy-d-manno-octulosonate may be a unique E.coli metabolite.

   

Octane

CH3-[CH2]6-CH3

C8H18 (114.1408)


Octane, also known as N-oktanis a hydrocarbon and an alkane with the chemical formula C8H18, and the condensed structural formula CH3(CH2)6CH3. Octane has many structural isomers that differ by the amount and location of branching in the carbon chain. One of these isomers, 2,2,4-trimethylpentane (commonly called iso-octane) is used as one of the standard values in the octane rating scale. Octane belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2, and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, octane is considered to be a hydrocarbon lipid molecule. Octane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Octane is an alkane and gasoline tasting compound. Outside of the human body, octane has been detected, but not quantified in several different foods, such as pepper (Capsicum annuum), celery stalks, cauliflowers, alcoholic beverages, and corns. One of the isomers, 2,2,4-trimethylpentane or isooctane, is of major importance, as it has been selected as the 100 point on the octane rating scale, with n-heptane as the zero point. Octane is an alkane with the chemical formula C8H18. Octane is a potentially toxic compound. Treatment is mainly symptomatic and supportive. It has 18 isomers. Octane ratings are ratings used to represent the anti-knock performance of petroleum-based fuels (octane is less likely to prematurely combust under pressure than heptane), given as the percentage of 2,2,4-trimethylpentane in an 2,2,4-trimethylpentane / n-heptane mixture that would have the same performance. Found in hop oil

   

Cyanamide

Ipsen brand OF calcium carbimide

CH2N2 (42.0218)


Calcium cyanamide, with more than 0.1% calcium carbide appears as a colorless to gray, odorless solid. May cause illness from ingestion. May irritate the skin. If exposed to water or high temperatures, calcium cyanamide may generate toxic and flammable fumes. Used to make pesticides and in fertilizers. Cyanamide appears as colorless deliquescent crystals. Mp: 45 °C; bp: 260 °C. Density: 1.282 g cm-3. Quite soluble in water (77 g / 100 g solution at 15 °C). Soluble in butanol, methyl ethyl ketone, ethyl acetate, alcohols, phenols, amines, ethers. Note: The term "cyanamide" is also used to refer to the important compound calcium cyanamide, which is a different chemical. Cyanamide is a nitrile that is hydrogen cyanide in which the hydrogen has been replaced by an amino group. It has a role as an EC 1.2.1.3 [aldehyde dehydrogenase (NAD(+))] inhibitor. It is a nitrile and a one-carbon compound. It is a conjugate acid of a cyanamide(2-). Cyanamide. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=420-04-2 (retrieved 2025-02-10) (CAS RN: 420-04-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Desmosterol

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylhept-5-en-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C27H44O (384.3392)


Desmosterol is an intermediate in the synthesis of cholesterol. Desmosterolosis is a rare autosomal recessive inborn errors of cholesterol synthesis that is caused by defective activity of desmosterol reductase which results in an accumulation of demosterol (DHCR24, EC 1.3.1.72), combines a severe osteosclerotic skeletal dysplasia and includes 2-3 toe syndactyly with Smith-Lemli-Opitz syndrome (SLOS; the biochemical block in SLOS results in decreased cholesterol levels and increased 7-dehydrocholesterol levels). Desmosterolosis is caused by mutation of the 24-dehydrocholesterol reductase gene (DHCR24). Many of the malformations in SLOS and desmosterolosis are consistent with impaired hedgehog function. The hedgehog proteins include Sonic hedgehog (SHH), which plays a major role in midline patterning and limb development. Desmosterolosis, caused by defective activity of desmosterol reductase, combines a severe osteosclerotic skeletal dysplasia. 7-dehydrocholesterol reductase (DHCR7, EC 1.3.1.21) reduces the C7-C8 double bond in the sterol B ring to form cholesterol or desmosterol depending upon the precursor. Desmosterol can be converted to cholesterol by DHCR24. Therefore, SLOS and Desmosterolosis patients invariably have elevated levels of cholesterol precursors 7-dehydrocholesterol (and its spontaneous isomer 8-dehydrocholesterol) and absent desmosterol. (PMID: 14631207, 16207203). Desmosterol is found in many foods, some of which are fig, sago palm, mexican groundcherry, and pepper (c. frutescens). Desmosterol is an intermediate in the synthesis of cholesterol. Desmosterolosis is a rare autosomal recessive inborn errors of cholesterol synthesis that is caused by defective activity of desmosterol reductase which results in an accumulation of demosterol (DHCR24, EC 1.3.1.72), combines a severe osteosclerotic skeletal dysplasia and includes 2-3 toe syndactyly with Smith-Lemli-Opitz syndrome (SLOS; the biochemical block in SLOS results in decreased cholesterol levels and increased 7-dehydrocholesterol levels). Desmosterolosis is caused by mutation of the 24-dehydrocholesterol reductase gene (DHCR24). Many of the malformations in SLOS and desmosterolosis are consistent with impaired hedgehog function. The hedgehog proteins include Sonic hedgehog (SHH), which plays a major role in midline patterning and limb development. Desmosterolosis, caused by defective activity of desmosterol reductase, combines a severe osteosclerotic skeletal dysplasia. 7-dehydrocholesterol reductase (DHCR7, EC 1.3.1.21) reduces the C7-C8 double bond in the sterol B ring to form cholesterol or desmosterol depending upon the precursor. Desmosterol can be converted to cholesterol by DHCR24. Therefore, SLOS and Desmosterolosis patients invariably have elevated levels of cholesterol precursors 7-dehydrocholesterol (and its spontaneous isomer 8-dehydrocholesterol) and absent desmosterol. (PMID: 14631207, 16207203). Desmosterol is a molecule similar to cholesterol. Desmosterol is the immediate precursor of cholesterol in the Bloch pathway of cholesterol biosynthesis. Desmosterol, as an endogenous metabolite, used to study cholesterol metabolism[1]. Desmosterol is a molecule similar to cholesterol. Desmosterol is the immediate precursor of cholesterol in the Bloch pathway of cholesterol biosynthesis. Desmosterol, as an endogenous metabolite, used to study cholesterol metabolism[1].

   

Xanthommatin

11-(3-amino-3-carboxypropanoyl)-1,5-dioxo-4H-pyrido[3,2-a]phenoxazine-3-carboxylic acid

C20H13N3O8 (423.0703)


An ommochrome that consists of a pyrido[3,2-a]phenoxazine ring system bearing hydroxy, carboxy, oxo and 3-amino-3-carboxypropanoyl substituents at positions 1, 3, 5 and 11 respectively. The parent of the class of xanthommatins.

   

Questiomycin A

2-Acetylamino-(3H)-phenoxazin-3-one

C12H8N2O2 (212.0586)


Questiomycin A, also known as 2-aminophenoxazin-3-one (APO), is found in mushrooms such as Calocybe gambosa (St Georges mushroom). 2-Aminophenoxazin-3-one is a benzoxazinoid metabolite. It was found excreted in the feces of rats that were fed a rye bread-based diet which makes this compound a potential fecal biomarker of whole grain intake (PMID: 23113707).

   

2-Cyclohexen-1-one

2-Cyclohexen-1-one, 18O-labeled

C6H8O (96.0575)


Flavouring compound [Flavornet]

   

Glutaconyl-CoA

(3E)-5-[(2-{3-[(2R)-3-[({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-2-hydroxy-3-methylbutanamido]propanamido}ethyl)sulfanyl]-5-oxopent-3-enoic acid

C26H40N7O19P3S (879.1312)


Glutaconyl-CoA (CAS: 6712-05-6), also known as 4-carboxybut-2-enoyl-CoA, belongs to the class of organic compounds known as 2-enoyl CoAs. These are organic compounds containing a coenzyme A substructure linked to a 2-enoyl chain. Thus, glutaconyl-CoA is considered to be a fatty ester lipid molecule. Glutaconyl-CoA is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Glutaconyl-CoA is a substrate for glutaryl-CoA dehydrogenase. Glutaconyl-CoA is a substrate for Glutaryl-CoA dehydrogenase (mitochondrial). [HMDB]

   

Perillyl aldehyde

4-(1-Methylethenyl)-1-cyclohexene1-carboxyaldehyde

C10H14O (150.1045)


(s)-perillaldehyde, also known as P-mentha-1,8-dien-7-al, is a member of the class of compounds known as menthane monoterpenoids. Menthane monoterpenoids are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Thus, (s)-perillaldehyde is considered to be an isoprenoid lipid molecule (s)-perillaldehyde is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (s)-perillaldehyde is a cherry, fat, and fatty tasting compound found in herbs and spices, which makes (s)-perillaldehyde a potential biomarker for the consumption of this food product (s)-perillaldehyde can be found primarily in saliva. Perillaldehyde, or perilla aldehyde, is a natural organic compound found most abundantly in the perennial herb perilla, but also in a wide variety of other plants and essential oils. It is a monoterpenoid containing an aldehyde functional group.

   

N-Methylpyridinium

1-Methylpyridinium mu-iodotetraiododimercurate (1-)

C6H8N+ (94.0657)


   

arcaine

arcaine

C6H16N6 (172.1436)


D007004 - Hypoglycemic Agents > D001645 - Biguanides

   

3,4-Dihydroxyphenylacetaldehyde

Dopal (3,4-Dihydroxyphenyl)acetaldehyde)

C8H8O3 (152.0473)


3,4-Dihydroxyphenylacetaldehyde (DOPAL) is a metabolite of the monoamine oxidase-catalyzed oxidative deamination of dopamine. Aldehydes are highly reactive molecules formed during the biotransformation of numerous endogenous and exogenous compounds, including biogenic amines. DOPAL generates a free radical and activates mitochondrial permeability transition, a mechanism implicated in neuron death. There is an increasing body of evidence suggesting that these compounds are neurotoxic, and it has been recently hypothesized that neurodegenerative disorders may be associated with increased levels of this biogenic aldehyde. It is possible to speculate that reduced detoxification of 3,4- dihydroxymandelaldehyde from impaired or deficient aldehyde dehydrogenase function may be a contributing factor in the suggested neurotoxicity of these compounds. Aldehyde dehydrogenases are a group of NAD(P)+ -dependent enzymes that catalyze the oxidation of aldehydes, such as those derived from catecholamines, to their corresponding carboxylic acids. To date, 19 aldehyde dehydrogenase genes have been identified in the human genome. Mutations in these genes and subsequent inborn errors in aldehyde metabolism are the molecular basis of several diseases. Several pharmaceutical agents and environmental toxins (i.e.: 4-hydroxy-2-nonenal) are also known to disrupt or inhibit aldehyde dehydrogenase function. (PMID: 17379813, 14697885, 11164826, 16956664 [HMDB]. 3,4-Dihydroxyphenylacetaldehyde is found in many foods, some of which are asian pear, pak choy, papaya, and abiyuch. 3,4-Dihydroxyphenylacetaldehyde (DOPAL) is a metabolite of the monoamine oxidase-catalyzed oxidative deamination of dopamine. Aldehydes are highly reactive molecules formed during the biotransformation of numerous endogenous and exogenous compounds, including biogenic amines. DOPAL generates a free radical and activates mitochondrial permeability transition, a mechanism implicated in neuron death. There is an increasing body of evidence suggesting that these compounds are neurotoxic, and it has been recently hypothesized that neurodegenerative disorders may be associated with increased levels of this biogenic aldehyde. It is possible to speculate that reduced detoxification of 3,4- dihydroxymandelaldehyde from impaired or deficient aldehyde dehydrogenase function may be a contributing factor in the suggested neurotoxicity of these compounds. Aldehyde dehydrogenases are a group of NAD(P)+ -dependent enzymes that catalyze the oxidation of aldehydes, such as those derived from catecholamines, to their corresponding carboxylic acids. To date, 19 aldehyde dehydrogenase genes have been identified in the human genome. Mutations in these genes and subsequent inborn errors in aldehyde metabolism are the molecular basis of several diseases. Several pharmaceutical agents and environmental toxins (i.e.: 4-hydroxy-2-nonenal) are also known to disrupt or inhibit aldehyde dehydrogenase function. (PMID: 17379813, 14697885, 11164826, 16956664. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Androst-5-ene-3beta,17beta-diol

(1S,2R,5S,10R,11S,14S,15S)-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-ene-5,14-diol

C19H30O2 (290.2246)


5-Androstenediol is a direct metabolite of the most abundant steroid produced by the human adrenal cortex, dehydroepiandrosterone (DHEA). 5-Androstenediol is less androgenic than 4-androstenediol, and stimulates the immune system. When administered to rats in vivo, 5-androstenediol has approximately 1/70 the androgenicity of DHEA, 1/185 the androgenicity of androstenedione, and 1/475 the androgenicity of testosterone (Wikipedia). Because it induces production of white blood cells and platelets, 5-androstenediol is being developed as a radiation countermeasure as Neumune (HE2100). An intermediate in testosterone biosynthesis, found in the testis or the adrenal glands. 5-Androstenediol, derived from dehydroepiandrosterone by the reduction of the 17-keto group (17-hydroxysteroid dehydrogenases), is converted to testosterone by the oxidation of the 3-beta hydroxyl group to a 3-keto group (3-fydroxysteroid dehydrogenase). Androstenediol is a term used to refer to two different steroids with molecular weights of 290.44: 4-androstenediol (4-androstene-3beta,17beta-diol) and 5-androstenediol (5-androstene-3beta,17beta-diol). 4-Androstenediol is closer to testosterone structurally, and has androgenic effects. 5-Androstenediol is a direct metabolite of the most abundant steroid produced by the human adrenal cortex, dehydroepiandrosterone (DHEA). 5-Androstenediol is less androgenic than 4-androstenediol, and stimulates the immune system. When administered to rats in vivo, 5-androstenediol has approximately 1/70 the androgenicity of DHEA, 1/185 the androgenicity of androstenedione, and 1/475 the androgenicity of testosterone (Coffey, 1988). Because it induces production of white blood cells and platelets, 5-androstenediol is being developed as a radiation countermeasure as Neumune(HE2100). D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid

   

Histidylleucine

(2S)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-4-methylpentanoic acid

C12H20N4O3 (268.1535)


Histidylleucine is a dipeptide composed of histidine and leucine. It is an incomplete breakdown product of protein digestion or protein catabolism. Dipeptides are organic compounds containing a sequence of exactly two alpha-amino acids joined by a peptide bond. Some dipeptides are known to have physiological or cell-signalling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis.

   

Hydantoin

Imidazole-2,4(3H,5H)-dione

C3H4N2O2 (100.0273)


Hydantoin, also known as glycolylurea or 2,4-imidazolidinedione, is a member of the class of compounds known as imidazoles. Imidazoles are compounds containing an imidazole ring, which is an aromatic five-member ring with two nitrogen atoms at positions 1 and 3, and three carbon atoms. Hydantoin is soluble (in water) and a very weakly acidic compound (based on its pKa). Hydantoin can be found in a number of food items such as cabbage, common verbena, black radish, and brazil nut, which makes hydantoin a potential biomarker for the consumption of these food products. Hydantoin, or glycolylurea, is a heterocyclic organic compound with the formula CH2C(O)NHC(O)NH. It is a colorless solid that arises from the reaction of glycolic acid and urea. It is an oxidized derivative of imidazolidine. In a more general sense, hydantoins can refer to a groups and a class of compounds with the same ring structure as the parent. For example, phenytoin (mentioned below) has two phenyl groups substituted onto the number 5 carbon in a hydantoin molecule . COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

stylopine

6,7,12b,13e-Tetrahydro-4H-bis[1,3]benzodioxolo[5,6-a:4,5- g]quinolizine

C19H17NO4 (323.1158)


   

Cholest-5-ene

(1S,2R,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-ene

C27H46 (370.3599)


Cholestenes are derivatives of cholestanes which have a double bond. One of the most significant cholestenes is cholecalciferol. If there are two double bonds, the molecule is known as a "cholestadienes". Examples include fusidic acid, lanosterol, and stigmasterol.--Wikipedia. Cholestenes are derivatives of cholestanes which have a double bond. One of the most significant cholestenes is cholecalciferol.

   

2-Keto-6-acetamidocaproate

2-Keto-6-acetamidohexanoic acid

C8H13NO4 (187.0845)


2-Keto-6-acetamidocaproate is an intermediate in lysine degradation. It can be generated from N6-acetyl-L-lysine. N-acetyl-lysine is an acetylated amino acid. Post-translational lysine-acetylation is one of two major modifications of lysine residues in various proteins. Acetylation of specific lysine residues in the N-terminal domains of core histones is a biochemical marker of active genes. Acetylation is now known to play a major role in eukaryotic transcription. Specifically, acetyltransferase enzymes that act on particular lysine side chains of histones and other proteins are intimately involved in transcriptional activation. N6-acetyl-L-lysine can be converted to 2-Keto-6-acetamidocaproate via the enzyme N6-acetyllysine aminotransferase and then 2-keto-6-acetamidocaproate can be reduced enzymatically to 5-acetamidovalerate. [HMDB] 2-Keto-6-acetamidocaproate is an intermediate in lysine degradation. It can be generated from N6-acetyl-L-lysine. N-acetyl-lysine is an acetylated amino acid. Post-translational lysine-acetylation is one of two major modifications of lysine residues in various proteins. Acetylation of specific lysine residues in the N-terminal domains of core histones is a biochemical marker of active genes. Acetylation is now known to play a major role in eukaryotic transcription. Specifically, acetyltransferase enzymes that act on particular lysine side chains of histones and other proteins are intimately involved in transcriptional activation. N6-acetyl-L-lysine can be converted to 2-Keto-6-acetamidocaproate via the enzyme N6-acetyllysine aminotransferase and then 2-keto-6-acetamidocaproate can be reduced enzymatically to 5-acetamidovalerate.

   

Cinnavalininate

2-amino-3-oxo-3H-phenoxazine-1,9-dicarboxylic acid

C14H8N2O6 (300.0382)


Cinnavalininate is an intermediate in the tryptophan metabolic pathway [Kegg: C05640]. It is generated from 3-hydroxyanthranilate via the enzyme catalase (EC:1.11.1.6). [HMDB] Cinnavalininate is an intermediate in the tryptophan metabolic pathway [Kegg: C05640]. It is generated from 3-hydroxyanthranilate via the enzyme catalase (EC:1.11.1.6). Cinnabarinic acid is a specific orthosteric agonist of mGlu4 by interacting with residues of the glutamate binding pocket of mGlu4, has no activity at other mGlu receptors. Cinnabarinic acid is an endogenous metabolite of the kynurenine pathway of tryptophan. Cinnabarinic acid induces cell apoptosis[1].

   

Prostaglandin E3

(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S,5Z)-3-hydroxyocta-1,5-dien-1-yl]-5-oxocyclopentyl]hept-5-enoic acid

C20H30O5 (350.2093)


Prostaglandin E3 is from the cyclooxygenase metabolism of eicosapentaenoic acid.Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin E3 is from the cyclooxygenase metabolism of eicosapentaenoic acid.

   

Chloral hydrate

1,1,1-Trichloro-2,2-dihydroxyethane

C2H3Cl3O2 (163.9199)


Chloral hydrate is a sedative and hypnotic drug as well as a chemical reagent and precursor. The name chloral hydrate indicates that it is formed from chloral (trichloroacetaldehyde) by the addition of one molecule of water. Its chemical formula is C2H3Cl3O2. It was discovered through the chlorination of ethanol in 1832 by Justus von Liebig in Gießen. Its sedative properties were first published in 1869 and subsequently, because of its easy synthesis, its use was widespread. (Wikipedia) D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CC - Aldehydes and derivatives C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2199 - Adjuvant Analgesic

   

Clorazepate

7-Chloro-2,3-dihydro-2,2-dihydroxy-5-phenyl-1H-1,4-benzodiazepine-3-carboxylic acid

C16H11ClN2O3 (314.0458)


Clorazepate is only found in individuals that have used or taken this drug. It is a water-soluble benzodiazepine derivative effective in the treatment of anxiety. It has also muscle relaxant and anticonvulsant actions. [PubChem]Benzodiazepines bind nonspecifically to benzodiazepine receptors BNZ1, which mediates sleep, and BNZ2, which affects affects muscle relaxation, anticonvulsant activity, motor coordination, and memory. As benzodiazepine receptors are thought to be coupled to gamma-aminobutyric acid-A (GABAA) receptors, this enhances the effects of GABA by increasing GABA affinity for the GABA receptor. Binding of the inhibitory neurotransmitter GABA to the site opens the chloride channel, resulting in a hyperpolarized cell membrane that prevents further excitation of the cell. D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants

   

Diphenidol

SmithKline beecham brand OF diphenidol hydrochloride

C21H27NO (309.2093)


Diphenidol is only found in individuals that have used or taken this drug. It is an antiemetic agent used in the treatment of vomiting and vertigo. Diphenidol overdose may result in serious toxicity in children.The mechanism by which diphenidol exerts its antiemetic and antivertigo effects is not precisely known. It is thought to diminish vestibular stimulation and depress labyrinthine function and as an antimuscarinic agent. An action on the medullary chemoreceptive trigger zone may also be involved in the antiemetic effect. Diphenidol has no significant sedative, tranquilizing, or antihistaminic action. It has a weak peripheral anticholinergic effect. D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics D002491 - Central Nervous System Agents

   

Tranylcypromine

(1R,2S)-rel-2-phenyl-cyclopropanamine, monohydrochloride

C9H11N (133.0891)


A propylamine formed from the cyclization of the side chain of amphetamine. This monoamine oxidase inhibitor is effective in the treatment of major depression, dysthymic disorder, and atypical depression. It also is useful in panic and phobic disorders. (From AMA Drug Evaluations Annual, 1994, p311) N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AF - Monoamine oxidase inhibitors, non-selective D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors

   

Proparacaine

Benzoic acid, 3-amino-4-propoxy-, 2-(diethylamino)ethyl ester, monohydrochloride*benzoic acid, 3-amino-4-propoxy-, 2-(diethylamino)ethyl ester, monohydrochloride

C16H26N2O3 (294.1943)


Proparacaine is only found in individuals that have used or taken this drug. It is a topical anesthetic drug of the amino ester group. It is available as its hydrochloride salt in ophthalmic solutions at a concentration of 0.5\\%. [Wikipedia]The exact mechanism whereby proparacaine and other local anesthetics influence the permeability of the cell membrane is unknown; however, several studies indicate that local anesthetics may limit sodium ion permeability through the lipid layer of the nerve cell membrane. Proparacaine may alter epithelial sodium channels through interaction with channel protein residues. This limitation prevents the fundamental change necessary for the generation of the action potential. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics S - Sensory organs > S01 - Ophthalmologicals > S01H - Local anesthetics > S01HA - Local anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

Lysergic acid

6-Methyl-9,10-didehydroergoline-8-carboxylic acid

C16H16N2O2 (268.1212)


An ergoline alkaloid comprising 6-methylergoline having additional unsaturation at the 9,10-position and a carboxy group at the 8-position.

   

Atracurium

Atracurium

C53H72N2O12+2 (928.5085)


D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents M - Musculo-skeletal system > M03 - Muscle relaxants > M03A - Muscle relaxants, peripherally acting agents C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C66886 - Nicotinic Antagonist D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists

   

Mivacurium

Mivacurium mixture of isomers

C58H80N2O14+2 (1028.5609)


D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents M - Musculo-skeletal system > M03 - Muscle relaxants > M03A - Muscle relaxants, peripherally acting agents C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C66886 - Nicotinic Antagonist

   

Chlorphentermine

Warner chilcott brand OF chlorphentermine hydrochloride

C10H14ClN (183.0815)


D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant

   

Dyclonine

1-(4-butoxyphenyl)-3-(piperidin-1-yl)propan-1-one

C18H27NO2 (289.2042)


Dyclonine is only found in individuals that have used or taken this drug. It is an oral anaesthetic found in Sucrets, an over the counter throat lozenge. It is also found in some varieties of the Cepacol sore throat spray.Dyclonine blocks both the initiation and conduction of nerve impulses by decreasing the neuronal membranes permeability to sodium ions. This reversibly stabilizes the membrane and inhibits depolarization, resulting in the failure of a propagated action potential and subsequent conduction blockade. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations > R02AD - Anesthetics, local D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

Metyrosine

(2S)-2-amino-3-(4-hydroxyphenyl)-2-methylpropanoic acid

C10H13NO3 (195.0895)


Metyrosine is only found in individuals that have used or taken this drug. It is an inhibitor of the enzyme tyrosine 3-monooxygenase, and consequently of the synthesis of catecholamines. It is used to control the symptoms of excessive sympathetic stimulation in patients with pheochromocytoma. (Martindale, The Extra Pharmacopoeia, 30th ed)Metyrosine inhibits tyrosine hydroxylase, which catalyzes the first transformation in catecholamine biosynthesis, i.e., the conversion of tyrosine to dihydroxyphenylalanine (DOPA). Because the first step is also the rate-limiting step, blockade of tyrosine hydroxylase activity results in decreased endogenous levels of catecholamines and their synthesis. This consequently, depletes the levels of the catecholamines dopamine, adrenaline and noradrenaline in the body,usually measured as decreased urinary excretion of catecholamines and their metabolites. One main end result of the catecholamine depletion is a decrease in blood presure. C - Cardiovascular system > C02 - Antihypertensives > C02K - Other antihypertensives > C02KB - Tyrosine hydroxylase inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C2155 - Tyrosine Hydroxylase Inhibitor D004791 - Enzyme Inhibitors C471 - Enzyme Inhibitor

   

Levomethadyl Acetate

(1S,4S)-4-(Dimethylamino)-1-ethyl-2,2-diphenylpentyl acetic acid

C23H31NO2 (353.2355)


Levomethadyl Acetate is only found in individuals that have used or taken this drug. It is a narcotic analgesic with a long onset and duration of action. It is used mainly in the treatment of narcotic dependence. [PubChem]Opiate receptors (Mu, Kappa, Delta) are coupled with G-protein receptors and function as both positive and negative regulators of synaptic transmission via G-proteins that activate effector proteins. Binding of the opiate stimulates the exchange of GTP for GDP on the G-protein complex. As the effector system is adenylate cyclase and cAMP located at the inner surface of the plasma membrane, opioids decrease intracellular cAMP by inhibiting adenylate cyclase. Subsequently, the release of nociceptive neurotransmitters such as substance P, GABA, dopamine, acetylcholine and noradrenaline is inhibited. Opioids also inhibit the release of vasopressin, somatostatin, insulin and glucagon. Levomethadyl acetate effectively opens calcium-dependent inwardly rectifying potassium channels (OP1 receptor agonist), resulting in hyperpolarization and reduced neuronal excitability. N - Nervous system > N07 - Other nervous system drugs > N07B - Drugs used in addictive disorders > N07BC - Drugs used in opioid dependence D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Miserotoxin

ZINC01531158

C9H17NO8 (267.0954)


A beta-D-glucoside having 3-nitropropyl as the anomeric alkyl group.

   

Withanolide

(1S,2R,6S,9R,11S,12S,15S,16S)-15-[(1R)-1-[(2R)-4,5-dimethyl-6-oxo-3,6-dihydro-2H-pyran-2-yl]-1-hydroxyethyl]-6-hydroxy-2,16-dimethyl-8-oxapentacyclo[9.7.0.0²,⁷.0⁷,⁹.0¹²,¹⁶]octadec-4-en-3-one

C28H38O6 (470.2668)


Withanolides, which are extracted from Withania somnifera, are employed in the treatment of arthritis and are known to be potent inhibitors of angiogenesis, inflammation and oxidative stress. Withanolides can indeed inhibit the activation of NF-κB and NF-κB-regulated gene expression, which could explain their anti-arthritic actions. W. somnifera root powder has suppressive effect on arthritis by reducing amplification and propagation of the inflammatory response, without causing any gastric damage. (PMID: 17475558, 3248848, 17084827).

   

Ibogamine

CID 442109

C19H24N2 (280.1939)


A monoterpenoid indole alkaloid with formula C19H24N2. It is isolated from the flowering plant genus, Tabernaemontana and exhibits anti-addictive properties.

   
   

Heliamine

6,7-Dimethoxy-1,2,3,4-tetrahydroisoquinoline

C11H15NO2 (193.1103)


An isoquinoline that is 1,2,3,4-tetrahydroisoquinoline substituted by methoxy groups at positions 6 and 7.

   

(R)-Pronuciferine

10,11-dimethoxy-5-methyl-5-azaspiro[cyclohexane-1,2-tricyclo[6.3.1.0⁴,¹²]dodecane]-1(12),2,5,8,10-pentaen-4-one

C19H21NO3 (311.1521)


Alkaloid from Nelumbo nucifera (East India lotus). (R)-Pronuciferine is found in many foods, some of which are poppy, coffee and coffee products, sacred lotus, and cherimoya. (R)-Pronuciferine is found in cherimoya. (R)-Pronuciferine is an alkaloid from Nelumbo nucifera (East India lotus

   

beta-Santalol

(1S-(1alpha,2alpha(Z),4alpha))-2-Methyl-5-(2-methyl-3-methylenebicyclo(2.2.1)hept-2-yl)-2-penten-1-ol

C15H24O (220.1827)


beta-Santalol is found in ginger. beta-Santalol is a flavouring ingredient. beta-Santalol is a constituent of sandalwood oil (Santalum album). Flavouring ingredient. Constituent of sandalwood oil (Santalum album). beta-Santalol is found in ginger.

   

Valerenic acid

2-Propenoic acid, 3-[(4S,7R,7aR)-2,4,5,6,7,7a-hexahydro-3,7-dimethyl-1H-inden-4-yl]-2-methyl-, (2E)-

C15H22O2 (234.162)


Valerenic acid is found in fats and oils. Valerenic acid is a constituent of Valeriana officinalis (valerian) Valerenic acid is a sesquiterpenoid constituent of the essential oil of the Valerian plant Constituent of Valeriana officinalis (valerian) Valerenic acid ((-)-Valerenic Acid), a sesquiterpenoid, is an orally active positive allosteric modulator of GABAA receptors. Valerenic acid is also a partial agonist of the 5-HT5a receptor. Valerenic acid mediates anxiolytic activity via GABAA receptors containing the β3 subunit. Valerenic acid also exhibits potent antioxidant properties[1][2][3].

   

Cyanobenzene

Benzonitrile; Phenyl cyanide; Cyanobenzene

C7H5N (103.0422)


   
   

Agathisflavone

8-[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxochromen-6-yl]-5,7-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one

C30H18O10 (538.09)


A biflavonoid that is obtained by oxidative coupling of two molecules of apigenin resulting in a bond between positions C-6 and C-8 of the two chromene rings.

   

Phensuximide

1-methyl-3-phenylpyrrolidine-2,5-dione

C11H11NO2 (189.079)


Phensuximide is an anticonvulsant in the succinimide class. It suppresses the paroxysmal three cycle per second spike and wave EEG pattern associated with lapses of consciousness in petit mal seizures. The frequency of attacks is reduced by depression of nerve transmission in the motor cortex. N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AD - Succinimide derivatives C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent

   

Tambulin

3,5-dihydroxy-7,8-dimethoxy-2-(4-methoxyphenyl)-4H-chromen-4-one

C18H16O7 (344.0896)


Tambulin, also known as herbacetin 7,8,4-trimethyl ether, is a member of the class of compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, tambulin is considered to be a flavonoid lipid molecule. Tambulin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Tambulin can be found in sunflower, which makes tambulin a potential biomarker for the consumption of this food product.

   

Bikaverin

Bikaverin

C20H14O8 (382.0689)


A organic heterotetracyclic compound that is 10H-benzo[b]xanthene-7,10,12-trione substituted by hydroxy groups at positions 6 and 11, methoxy groups at positions 3 and 8 and a methyl group at position 1.

   

Pseudohypericin

9,11,13,16,18,20-hexahydroxy-5-(hydroxymethyl)-24-methyloctacyclo[13.11.1.12,10.03,8.04,25.019,27.021,26.014,28]octacosa-1(26),2,4(25),5,8,10,12,14(28),15(27),16,18,20,23-tridecaene-7,22-dione

C30H16O9 (520.0794)


Pseudohypericin is an ortho- and peri-fused polycyclic arene. Pseudohypericin is a natural product found in Hypericum bithynicum, Hypericum linarioides, and other organisms with data available. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D004791 - Enzyme Inhibitors

   

Apiole

4,7-dimethoxy-5-(prop-2-en-1-yl)-2H-1,3-benzodioxole

C12H14O4 (222.0892)


Apiole is found in dill. Apiole occurs in Sassafras albidum (sassafras) and Anethum graveolens (dill) Apiol is an organic chemical compound, also known as parsley apiol, apiole or parsley camphor. It is found in celery, parsley seeds, and the essential oil of parsley. Heinrich Christoph Link, an apothecary in Leipzig, discovered the substance in 1715 as greenish crystals reduced by steam from oil of parsley. In 1855 Joret and Homolle discovered that apiol was an effective treatment of amenorrea or lack of menstruation. In medicine it has been used, as essential oil or in purified form, for the treatment of menstrual disorders. It is an irritant and in high doses it is toxic and can cause liver and kidney damage. Occurs in Sassafras albidum (sassafras) and Anethum graveolens (dill)

   

Elemicin

4-(2-Ethyl-benzoimidazol-1-yl)-4-oxo-butyricacid

C12H16O3 (208.1099)


Elemicin is an olefinic compound. Elemicin is a natural product found in Anemopsis californica, Asarum celsum, and other organisms with data available. Constituent of Elemi oil and Myristica fragrans (nutmeg). Elemicin is found in many foods, some of which are nutmeg, carrot, parsley, and tarragon. Elemicin is found in carrot. Elemicin is a constituent of Elemi oil and Myristica fragrans (nutmeg). Elemicin is an orally active alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin has anti-influenza activities, antimicrobial, antioxidant, and antiviral activities. Elemicin and its reactive metabolite of 1′-Hydroxyelemicin can induce hepatotoxicity[1][2][3][4]. Elemicin is a alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin is one of the main components in aromatic food and has antimicrobial, antioxidant, and antiviral activities. Elemicin possesses genotoxicity and carcinogenicity[1]. Elemicin is a alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin is one of the main components in aromatic food and has antimicrobial, antioxidant, and antiviral activities. Elemicin possesses genotoxicity and carcinogenicity[1].

   

Candicine

[2-(4-hydroxyphenyl)ethyl]trimethylazanium

C11H18NO+ (180.1388)


Candicine is a member of the class of compounds known as phenethylamines. Phenethylamines are compounds containing a phenethylamine moiety, which consists of a phenyl group substituted at the second position by an ethan-1-amine. Candicine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Candicine can be found in barley, which makes candicine a potential biomarker for the consumption of this food product. Candicine is a naturally occurring organic compound that is a quaternary ammonium salt with a phenethylamine skeleton. It is the N,N,N-trimethyl derivative of the well-known biogenic amine tyramine, and, being a natural product with a positively charged nitrogen atom in its molecular structure, it is classed as an alkaloid. Although it is found in a variety of plants, including barley, its properties have not been extensively studied with modern techniques. Candicine is toxic after parenteral administration, producing symptoms of neuromuscular blockade; further details are given in the "Pharmacology" section below . Candicine is a member of the class of compounds known as phenethylamines. Phenethylamines are compounds containing a phenethylamine moiety, which consists of a phenyl group substituted at the second position by an ethan-1-amine. Candicine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Candicine can be found in barley, which makes candicine a potential biomarker for the consumption of this food product. Candicine is a naturally occurring organic compound that is a quaternary ammonium salt with a phenethylamine skeleton. It is the N,N,N-trimethyl derivative of the well-known biogenic amine tyramine, and, being a natural product with a positively charged nitrogen atom in its molecular structure, it is classed as an alkaloid. Although it is found in a variety of plants, including barley, its properties have not been extensively studied with modern techniques. Candicine is toxic after parenteral administration, producing symptoms of neuromuscular blockade; further details are given in the "Pharmacology" section below.

   

Graveoline

2-(2H-1,3-benzodioxol-5-yl)-1-methyl-1,4-dihydroquinolin-4-one

C17H13NO3 (279.0895)


Graveoline is found in herbs and spices. Graveoline is an alkaloid from Ruta graveolens (rue). Alkaloid from Ruta graveolens (rue). Graveoline is found in herbs and spices. Graveoline (Rutamine) is an anti-cancer agent that can trigger apoptosis and autophagy in skin melanoma cells. Graveoline also exhibits antifungal activity[1]. Graveoline (Rutamine) is an anti-cancer agent that can trigger apoptosis and autophagy in skin melanoma cells. Graveoline also exhibits antifungal activity[1].

   

Peimine

(3S,4aS,5S,6aS,6bS,8aS,9S,9aS,12S,15aS,15bR,16aS,16bR)-9,12,16b-Trimethyltetracosahydrobenzo[4,5]indeno[1,2-h]pyrido[1,2-b]isoquinoline-3,5,9-triol

C27H45NO3 (431.3399)


Verticine is an alkaloid. Peimine is a natural product found in Fritillaria anhuiensis, Fritillaria cirrhosa, and other organisms with data available. D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents > D014704 - Veratrum Alkaloids Peimine (Verticine) is a natural compound with excellent anti-inflammatory activity. Peimine (Verticine) is a natural compound with excellent anti-inflammatory activity.

   

Tigloidine

8-methyl-8-azabicyclo[3.2.1]octan-3-yl (2E)-2-methylbut-2-enoate

C13H21NO2 (223.1572)


Tigloyltropeine is found in fruits. Tigloyltropeine is an alkaloid from Physalis alkekengi (winter cherry) roots. Alkaloid from Physalis alkekengi (winter cherry). Tigloidine is found in fruits. Tigloidin is an analogue of atropine, with anticholinergic activity. Tigloidin is an analogue of atropine, with anticholinergic activity.

   

Indeloxazine

2-(((1H-INDEN-7-YL)OXY)METHYL)MORPHOLINE

C14H17NO2 (231.1259)


D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants Same as: D08077

   

Thiadiazolidinone

5-(4-Bromophenylimino)-3,4-tetramethylene-1,3,4-thiadiazolidin-2-one

C12H12BrN3OS (324.9884)


   

Tefluthrin

(Z)-(1R)-cis-tefluthrin

C17H14ClF7O2 (418.057)


   

Methyl-tert-butyl ether

Methyl 1,1-dimethylethyl ether

C5H12O (88.0888)


Methyl-tert-butyl ether, also known as tert-butyl methyl ether, methyl t-butyl ether or MTBE, is classified as a member of the dialkyl ethers. Dialkyl ethers are organic compounds containing the dialkyl ether functional group, with the formula ROR, where R and R are alkyl groups. Methyl-tert-butyl ether is considered to be soluble (in water) and basic. It is used as a gasoline additive. Exposure may occur by breathing air contaminated with auto exhaust or gasoline fumes while refueling autos. Respiratory irritation, dizziness, and disorientation have been reported by some motorists and occupationally exposed workers. Acute (short-term) exposure of humans to methyl tert-butyl ether also has occurred during its use as a medical treatment to dissolve cholesterol gallstones. Chronic (long-term) inhalation exposure to methyl-tert-butyl ether has resulted in central nervous system (CNS) effects, respiratory irritation, liver and kidney effects, and decreased body weight gain in animals. United States Environmental Protection Agency has not classified methyl-tert-butyl ether with respect to potential carcinogenicity. (ChemoSummarizer) D004785 - Environmental Pollutants > D000393 - Air Pollutants D009676 - Noxae > D002273 - Carcinogens

   

SB 206553

Benzo(1,2-b:4,5-b)dipyrrole-1(2H)-carboxamide, 3,5-dihydro-5-methyl-N-3-pyridinyl-

C17H16N4O (292.1324)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants

   

Diprenorphine

Diprenorphine

C26H35NO4 (425.2566)


D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists C78272 - Agent Affecting Nervous System > C681 - Opiate Antagonist Same as: D07863

   

dTDP 1-ester with 2,6-dideoxy-L-erythro-hexopyranos-3-ulose

dTDP-2,6-dideoxy-L-erythro-hexos-3-ulose; dTDP 1-ester with 2,6-dideoxy-L-erythro-hexopyranos-3-ulose

C16H24N2O14P2 (530.0703)


   

DB-065692

Desoxyepothilone b

C27H41NO5S (491.2705)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents

   

Crinine

1,2-Didehydrocrinan-3-ol

C16H17NO3 (271.1208)


   

Powellin

7-Methoxy-1,2-didehydrocrinan-3-ol, (3.alpha.)-

C17H19NO4 (301.1314)


   
   

Plicamycin

(2S,3S)-3-[(1S,3S,4R)-3,4-dihydroxy-1-methoxy-2-oxopentyl]-2-{[(2S,4R,5R,6R)-4-{[(2S,4R,5S,6R)-4-{[(2S,4S,5R,6R)-4,5-dihydroxy-4,6-dimethyloxan-2-yl]oxy}-5-hydroxy-6-methyloxan-2-yl]oxy}-5-hydroxy-6-methyloxan-2-yl]oxy}-6-{[(2S,4R,5R,6R)-4-{[(2S,4R,5S,6R)-4,5-dihydroxy-6-methyloxan-2-yl]oxy}-5-hydroxy-6-methyloxan-2-yl]oxy}-8,9-dihydroxy-7-methyl-1,2,3,4-tetrahydroanthracen-1-one

C52H76O24 (1084.4726)


Plicamycin is only found in individuals that have used or taken this drug. It is an antineoplastic antibiotic produced by Streptomyces plicatus. It has been used in the treatment of testicular cancer, Pagets disease of bone, and, rarely, the management of hypercalcemia. The manufacturer discontinued plicamycin in 2000. Plicamycin is presumed to inhibit cellular and enzymic RNA synthesis by forming a complex with DNA. Plicamycin may also lower calcium serum levels by inhibiting the effect of parathyroid hormone upon osteoclasts or by blocking the hypercalcemic action of pharmacologic doses of vitamin D. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01D - Cytotoxic antibiotics and related substances C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents C78281 - Agent Affecting Musculoskeletal System > C67439 - Bone Resorption Inhibitor D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D004396 - Coloring Agents > D005456 - Fluorescent Dyes D000077264 - Calcium-Regulating Hormones and Agents D000970 - Antineoplastic Agents Same as: D00468

   

Cyclacillin

4-Thia-1-azabicyclo[3.2.0]heptane-2-carboxylicacid, 6-[[(1-aminocyclohexyl)carbonyl]amino]-3,3-dimethyl-7-oxo-, (2S,5R,6R)-

C15H23N3O4S (341.1409)


Cyclacillin is only found in individuals that have used or taken this drug. It is a cyclohexylamido analog of penicillanic acid. [PubChem]The bactericidal activity of cyclacillin results from the inhibition of cell wall synthesis via affinity for penicillin-binding proteins (PBPs). Cyclacillin is stable in the presence of a variety of b-lactamases, including penicillinases and some cephalosporinases. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic Same as: D01334

   

nemonapride

nemonapride

C21H26ClN3O2 (387.1713)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Same as: D01468

   

Talampanel

Talampanel

C19H19N3O3 (337.1426)


C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant Same as: D02696 Talampanel (LY300164) is an orally and selective α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor antagonis with anti-seizure activity[1]. Talampanel (IVAX) has neuroprotective effects in rodent stroke models[2]. Talampanel attenuates caspase-3 dependent apoptosis in mouse brain[2].

   

Domoic acid

4-[(2E,4Z)-6-carboxy-6-methylhexa-2,4-dien-2-yl]-3-(carboxymethyl)pyrrolidine-2-carboxylic acid

C15H21NO6 (311.1369)


D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents Isodomoic acid F is found in mollusks. Isodomoic acid F is isolated from mussels. Isolated from mussels. Isodomoic acid F is found in mollusks.

   

Selfotel

4-(phosphonomethyl)piperidine-2-carboxylic acid

C7H14NO5P (223.061)


D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists C26170 - Protective Agent > C1509 - Neuroprotective Agent Same as: D02410

   

Devazepide

2-(3,4-dimethoxyphenyl)-5-{[2-(3-methoxyphenyl)ethyl](methyl)amino}-2-(propan-2-yl)pentanenitrile

C26H36N2O3 (424.2726)


C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

PS(16:0/18:1(9Z))

(2S)-2-amino-3-({[(2R)-3-(hexadecanoyloxy)-2-[(9Z)-octadec-9-enoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C40H76NO10P (761.5207)


PS(16:0/18:1(9Z)) is a phosphatidylserine (PS or GPSer). It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoserines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PS(16:0/18:1(9Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of oleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. It is usually less than 10\\% of the total phospholipids, the greatest concentration being in myelin from brain tissue. However, it may comprise 10 to 20 mol\\% of the total phospholipid in the plasma membrane and endoplasmic reticulum of the cell. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine, especially during bone formation for example. As phosphatidylserine is located entirely on the inner monolayer surface of the plasma membrane (and of other cellular membranes) and it is the most abundant anionic phospholipids. Therefore phosphatidylseriine may make the largest contribution to interfacial effects in membranes involving non-specific electrostatic interactions. This normal distribution is disturbed during platelet activation and cellular apoptosis. In human plasma, 1-stearoyl-2-oleoyl and 1-stearoyl-2-arachidonoyl species predominate, but in brain (especially grey matter), retina and many other tissues 1-stearoyl-2-docosahexaenoyl species are very abundant. Indeed, the ratio of n-3 to n-6 fatty acids in brain phosphatidylserine is very much higher than in most other lipids. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE. PS(16:0/18:1(9Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms. PS(16:0/18:1(9Z)), in particular, consists of one hexadecanoyl chain to the C-1 atom, and one 9Z-octadecenoyl to the C-2 atom. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

1,2,3,4-Tetrahydronaphthalene

Naphthalene 1,2,3,4-tetrahydride

C10H12 (132.0939)


   

3,4-Dimethoxy-N-(4-(3-nitrophenyl)thiazol-2-yl)benzenesulfonamide

3,4-Dimethoxy-N-[4-(3-nitrophenyl)-1,3-thiazol-2-yl]benzene-1-sulphonamide

C17H15N3O6S2 (421.0402)


   

Phthalazone

1(2H)-PHTHALAZINONE

C8H6N2O (146.048)


   

Chloroacetyl chloride

Monochloroacetyl chloride

C2H2Cl2O (111.9483)


Chloroacetyl chloride is a chlorinated acyl chloride. It is a bifunctional compound, making it a useful building block chemical. (Wikipedia)

   

Complestatin

Chloropeptin II

C61H45Cl6N7O15 (1325.1105)


A heterodetic cyclic peptide consisting of N-acylated trytophan, 3,5-dichloro-4-hydroxyphenylglycine, 4-hydroxyphenylglycine, 3,5-dichloro-4-hydroxyphenylglycyl, tyrosine and 4-hydroxyphenylglycine residues joined in sequence and in which the side-chain of the central 4-hydroxyphenylglycine residue is attached to the side-chain of the tryptophan via a C3-C6 bond and to the side-chain of the tyrosine via an ether bond from C5. It is isolated from the culture broth of Streptomyces and has anti-HIV-1 activity.

   

Gamma-glutamyl-L-putrescine

(2S)-2-amino-4-[(4-aminobutyl)carbamoyl]butanoic acid

C9H19N3O3 (217.1426)


Gamma-glutamyl-L-putrescine is involved in the putrescine II degradation pathway. γ-glutamyl-L-putrescine reacts with H2O and O2 to produce γ-glutamyl-γ-aminobutyraldehyde, H2O2, and NH4+. γ-glutamyl-L-putrescine is formed from an ATP-driven reaction between putrescine, L-glutamate. Gamma-glutamyl-L-putrescine is involved in the putrescine II degradation pathway.

   

Angiotensin (1-9)

Angiotensin I (1-9) trifluoroacetate salt

C56H78N16O13 (1182.5934)


A nine amino acid peptide which is formed when angiotensin converting enzyme 2 (ACE2) hydrolyzes the carboxy terminal leucine from angiotensin I. It is a anti-cardiac hypertrophy agent. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Isovaltrate

Isovaltrate

C22H30O8 (422.1941)


   

alpha-Cyperene

3H-3a,7-Methanoazulene,2,4,5,6,7,8-hexahydro-1,4,9,9-tetramethyl-, (3aR,4R,7R)-

C15H24 (204.1878)


Isolated from Cyperus rotundus (nutgrass) and other plants. alpha-Cyperene is found in burdock and root vegetables. alpha-Cyperene is found in burdock. alpha-Cyperene is isolated from Cyperus rotundus (nutgrass) and other plant

   

Dopamine quinone

Dopaminoquinone;dopamine o-quinone;DoQ;4-(2-aminoethyl)-1,2-benzoquinone;4-(2-aminoethyl)-O-benzoquinone

C8H9NO2 (151.0633)


Dopamine-quinone is synthesized by oxidation of the catechol ring of dopamine. If this occurs within the neuronal cytosol, the quinone may react with cytosolic components, particularly with cysteine residues. (PMID: 12835101). Dopamine quinone is produce by the reaction between dopamine and oxygen, with water as the byproduct. The reaction is catalyzed by the tyrosinase precursor. Dopamine-quinone is synthesized by oxidation of the catechol ring of dopamine. If this occurs within the neuronal cytosol, the quinone may react with cytosolic components, particularly with cysteine residues. (PMID: 12835101)

   

Imetit

{[2-(1H-imidazol-5-yl)ethyl]sulfanyl}methanimidamide

C6H10N4S (170.0626)


D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D017442 - Histamine Agonists

   

Immepip

4-[(1H-imidazol-5-yl)methyl]piperidine

C9H15N3 (165.1266)


   

(±)-Tryptophan

alpha-Amino-beta-(3-indolyl)-propionic acid

C11H12N2O2 (204.0899)


(±)-Tryptophan is a dietary supplement, nutrient.Tryptophan is one of the 20 standard amino acids, as well as an essential amino acid in the human diet. Only the L-stereoisomer of tryptophan is used in structural or enzyme proteins, but the D-stereoisomer is occasionally found in naturally produced peptides (for example, the marine venom peptide contryphan). (Wikipedia Dietary supplement, nutrient DL-Tryptophan is an endogenous metabolite.

   

Graveoline

2-(1,3-benzodioxol-5-yl)-1-methylquinolin-4-one

C17H13NO3 (279.0895)


D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Graveoline (Rutamine) is an anti-cancer agent that can trigger apoptosis and autophagy in skin melanoma cells. Graveoline also exhibits antifungal activity[1]. Graveoline (Rutamine) is an anti-cancer agent that can trigger apoptosis and autophagy in skin melanoma cells. Graveoline also exhibits antifungal activity[1].

   

cisapride

4-amino-5-chloro-N-[(3R,4S)-1-[3-(4-fluorophenoxy)propyl]-3-methoxypiperidin-4-yl]-2-methoxybenzamide

C23H29ClFN3O4 (465.1831)


A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03F - Propulsives > A03FA - Propulsives D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent Cisapride (R 51619) is an orally active 5-HT4 receptor agonist with an EC50 value of 140 nM. Cisapride is a hERG blocker with an IC50 value of 9.4 nM. Cisapride is a gastroprokinetic agent that stimulates gastrointestinal motor activity[1][2][3][4].

   

UNII:EU52DFC4WJ

N-Methyl-DL-aspartic acid

C5H9NO4 (147.0532)


N-Methyl-DL-aspartic acid is a glutamate analogue and a?NMDA?receptor?agonist and can be used for neurological diseases research[1][2].

   

Canadine

(1S)-16,17-dimethoxy-5,7-dioxa-13-azapentacyclo[11.8.0.0^{2,10.0^{4,8.0^{15,20]henicosa-2,4(8),9,15(20),16,18-hexaene

C20H21NO4 (339.1471)


Canadine is a berberine alkaloid that is 5,8,13,13a-tetrahydro-6H-[1,3]dioxolo[4,5-g]isoquino[3,2-a]isoquinoline substituted by methoxy groups at positions 9 and 10. It is a berberine alkaloid, an organic heteropentacyclic compound, an aromatic ether and an oxacycle. Canadine is a natural product found in Glaucium squamigerum, Hydrastis canadensis, and other organisms with data available. A berberine alkaloid that is 5,8,13,13a-tetrahydro-6H-[1,3]dioxolo[4,5-g]isoquino[3,2-a]isoquinoline substituted by methoxy groups at positions 9 and 10. D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators Tetrahydroberberine is an isoquinoline alkaloid isolated from Corydalis Corydalis, with uM-level affinity for D2 and 5-HT1A receptors. Tetrahydroberberine is a different kind of living thing that can be extended and divided into parts. Tetrahydroberberine is a kind of effective D2 receptor antagonistic force. Tetrahydroberberine has the ability to strengthen the stomach and relieve the pressure on the stomach[1][2][3]. Tetrahydroberberine is an isoquinoline alkaloid isolated from Corydalis Corydalis, with uM-level affinity for D2 and 5-HT1A receptors.

   

Pomiferin

4H,8H-BENZO(1,2-B:3,4-B)DIPYRAN-4-ONE, 3-(3,4-DIHYDROXYPHENYL)-5-HYDROXY-8,8-DIMETHYL-6-(3-METHYL-2-BUTEN-1-YL)-

C25H24O6 (420.1573)


Pomiferin is a member of isoflavanones. Pomiferin is a natural product found in Derris montana, Maclura pomifera, and other organisms with data available.

   

Corynanthin

Methyl 18-hydroxy-3,13- diazapentacyclo[11.8.0.02,10.04,9.015,20]henicosa- 2(10),4,6,8-tetraene-19-carboxylate

C21H26N2O3 (354.1943)


Methyl 17-hydroxy-20xi-yohimban-16-carboxylate is a yohimban alkaloid, a methyl ester and an organic heteropentacyclic compound. Methyl 17-hydroxy-20xi-yohimban-16-carboxylate is a natural product found in Aspidosperma oblongum, Aspidosperma ramiflorum, and other organisms with data available. D001697 - Biomedical and Dental Materials > D003764 - Dental Materials

   

16b-Hydroxyestrone

(1S,10R,11S,13S,15S)-5,13-dihydroxy-15-methyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadeca-2(7),3,5-trien-14-one

C18H22O3 (286.1569)


16b-Hydroxyestrone is an aromatized C18 steroid with a 3-hydroxyl group and a 17-ketone, a major mammalian estrogen. It is converted from androstenedione directly, or from testosterone via estradiol. In humans, it is produced primarily by the cyclic ovaries, placenta, and the adipose tissue of men and postmenopausal women. An aromatized C18 steroid with a 3-hydroxyl group and a 17-ketone, a major mammalian estrogen. It is converted from androstenedione directly, or from testosterone via estradiol. In humans, it is produced primarily by the cyclic ovaries, placenta, and the adipose tissue of men and postmenopausal women. [HMDB] C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

sn-glycero-3-Phosphoethanolamine

(2-aminoethoxy)[(2S)-2,3-dihydroxypropoxy]phosphinic acid

C5H14NO6P (215.0559)


Sn-glycero-3-phosphoethanolamine is a substrate for: Lysoplasmalogenase. Glycerophosphoethanolamine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1190-00-7 (retrieved 2024-07-25) (CAS RN: 1190-00-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Methadyl Acetate

(3R,6R)-3-Acetoxy-6-dimethylamino-4,4-diphenylheptane

C23H31NO2 (353.2355)


Methadyl Acetate is only found in individuals that have used or taken this drug. It is a narcotic analgesic with a long onset and duration of action. It is used mainly in the treatment of narcotic dependence. [PubChem]Methadyl Acetate is primarily a mu-type opioid receptor agonist. It functions similarily to methadone. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics

   

(+)-Epibatidine

2-(6-chloropyridin-3-yl)-7-azabicyclo[2.2.1]heptane

C11H13ClN2 (208.0767)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics

   

(+)-Lysergic acid

6-methyl-6,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(16),2,9,12,14-pentaene-4-carboxylic acid

C16H16N2O2 (268.1212)


   

Digitonin

2-({2-[(2-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]-3,15-dioloxy}oxan-3-yl]oxy}-5-hydroxy-6-(hydroxymethyl)-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-3-yl)oxy]-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol

C56H92O29 (1228.5724)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D004071 - Digitalis Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents Digitonin, a glycoside obtained from Digitalis purpurea, could increase cell permeability by binding to cholesterol molecules and reduce tumor growth[1]. Digitonin is an natural detergent[2]. Digitonin, a glycoside obtained from Digitalis purpurea, could increase cell permeability by binding to cholesterol molecules and reduce tumor growth[1]. Digitonin is an natural detergent[2].

   

trans-2-Phenylcyclopropylamine

GlaxoSmithKline brand OF tranylcypromine sulfate

C9H11N (133.0891)


N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AF - Monoamine oxidase inhibitors, non-selective D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors

   

3,5-Dihydroxyphenylglycine

2-amino-2-(3,5-dihydroxyphenyl)acetic acid

C8H9NO4 (183.0532)


D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists DHPG ((RS)-3,5-DHPG) is an amino acid, which acts as a selective and potent agonist of group I mGluR (mGluR 1 and mGluR 5), shows no effect on Group II or Group III mGluRs[1]. DHPG ((RS)-3,5-DHPG) is also an effective antagonist of mGluRs linked to phospholipase D[2].

   

Keto-3-deoxy-D-manno-octulosonic acid

Ion(1-),(D)-isomer OF 2-keto-3-deoxyoctonate

C8H14O8 (238.0689)


   

Androst-5-ene-3beta,17beta-diol

2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-ene-5,14-diol

C19H30O2 (290.2246)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents

   

4-(Phosphonomethyl)piperidine-2-carboxylic acid

4-(Phosphonomethyl)-2-piperidinecarboxylic acid

C7H14NO5P (223.061)


   

(R)-5-Hydroxy-2-(4-hydroxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

5-hydroxy-2-(4-hydroxyphenyl)-7-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2,3-dihydrochromen-4-one

C21H22O10 (434.1213)


Prunin, also known as pru du 6.01 protein, prunus, is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Prunin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Prunin is a bitter tasting compound found in almond, garden tomato (variety), peach, and pine nut, which makes prunin a potential biomarker for the consumption of these food products. Prunin is a flavanone glycoside found in immature citrus fruits and in tomatoes. Its aglycone form is called naringenin . Prunin is a potent inhibitor of human enterovirus A71 (HEVA71). Prunin shows strong inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), with an IC50 of 5.5 μM[1][2]. Prunin is a potent inhibitor of human enterovirus A71 (HEVA71). Prunin shows strong inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), with an IC50 of 5.5 μM[1][2].

   

Racemetirosine

2-amino-3-(4-hydroxyphenyl)-2-methylpropanoic acid

C10H13NO3 (195.0895)


C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent D004791 - Enzyme Inhibitors C471 - Enzyme Inhibitor

   

Ergokryptine

N-[2-hydroxy-7-(2-methylpropyl)-5,8-dioxo-4-(propan-2-yl)-3-oxa-6,9-diazatricyclo[7.3.0.0²,⁶]dodecan-4-yl]-6-methyl-6,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(16),2,9,12,14-pentaene-4-carboxamide

C32H41N5O5 (575.3108)


   

3-Hydroxy-alpha-methyl-DL-tyrosine

2-amino-3-(3,4-dihydroxyphenyl)-2-methylpropanoic acid

C10H13NO4 (211.0845)


C - Cardiovascular system > C02 - Antihypertensives > C02A - Antiadrenergic agents, centrally acting > C02AB - Methyldopa D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

4-Aminohex-5-ynoic acid

4-Amino-5-hexynoic acid

C6H9NO2 (127.0633)


D004791 - Enzyme Inhibitors

   

Histidinyl-Leucine

2-{[2-amino-1-hydroxy-3-(1H-imidazol-5-yl)propylidene]amino}-4-methylpentanoate

C12H20N4O3 (268.1535)


   

N-Methyl-DL-aspartic acid

2-(methylamino)butanedioic acid

C5H9NO4 (147.0532)


N-Methyl-DL-aspartic acid is a glutamate analogue and a?NMDA?receptor?agonist and can be used for neurological diseases research[1][2].

   

Pseudohypericin

9,11,13,16,18,20-hexahydroxy-5-(hydroxymethyl)-24-methyloctacyclo[13.11.1.1^{2,10}.0^{3,8}.0^{4,25}.0^{19,27}.0^{21,26}.0^{14,28}]octacosa-1,3,5,8,10,12,14(28),15(27),16,18,20,23,25-tridecaene-7,22-dione

C30H16O9 (520.0794)


D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D004791 - Enzyme Inhibitors

   

sitostanol

17-(5-ethyl-6-methyl-heptan-2-yl)-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H52O (416.4018)


Constituent of pot marigold (Calendula officinalis), sweet corn (Zea mays) and Carolina allspice (Calycanthus floridus). Stigmastanol is found in many foods, some of which are corn, fats and oils, pepper (spice), and soy bean. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents C1907 - Drug, Natural Product > C28178 - Phytosterol > C68422 - Saturated Phytosterol D009676 - Noxae > D000963 - Antimetabolites Stigmastanol is the 6-amino derivative isolated from Hypericum riparium. Hypericum riparium A. Chev. is a Cameroonian medicinal plant belonging to the family Guttiferae[1][2]. Stigmastanol is the 6-amino derivative isolated from Hypericum riparium. Hypericum riparium A. Chev. is a Cameroonian medicinal plant belonging to the family Guttiferae[1][2].

   

Cystathione

2-amino-4-[(2-amino-2-carboxyethyl)sulfanyl]butanoic acid

C7H14N2O4S (222.0674)


Cystathione, also known as dl-cystathionine, belongs to cysteine and derivatives class of compounds. Those are compounds containing cysteine or a derivative thereof resulting from reaction of cysteine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. Cystathione is soluble (in water) and a moderately acidic compound (based on its pKa). Cystathione can be found in corn, which makes cystathione a potential biomarker for the consumption of this food product. Cystathione may be a unique E.coli metabolite.

   

metoprolol

1-[4-(2-methoxyethyl)phenoxy]-3-(propan-2-ylamino)propan-2-ol

C15H25NO3 (267.1834)


C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AB - Beta blocking agents, selective C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 172 Metoprolol is an orally active, selective β1-adrenoceptor antagonist. Metoprolol shows anti-inflammation, antitumor and anti-angiogenic properties[1][2][3].

   

Isoferulic acid

3-Hydroxy-4-methoxycinnamic acid, predominantly trans, 97\\%

C10H10O4 (194.0579)


Isoferulic acid (CAS: 537-73-5) is a chlorogenic acid (CGA). CGAs are formed by the esterification of hydroxycinnamic acids (e.g. caffeic acid, ferulic acid, and p-coumaric acid) with quinic acid. CGAs are abundant phenolic compounds in coffee, with caffeoylquinic (CQA), feruloylquinic (FQA), and dicaffeoylquinic (diCQA) acids being the major subclasses, and coffee is the most consumed food product in the world. Isoferulic acid is present in normal human urine in concentrations of 0.05-2.07 umol/mmol creatinine at baseline, and reaches 0.2-9.6 umol/mmol creatinine in four hours after a cup of coffee, with a large inter-individual variation (PMID:17884997). Isoferulic acid is a ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 4 and 3 respectively on the phenyl ring. It has a role as a metabolite, a biomarker and an antioxidant. Isoferulic acid is a natural product found in Sibiraea angustata, Astragalus onobrychis, and other organisms with data available. See also: Black Cohosh (part of); Ipomoea aquatica leaf (part of). It is used as a food additive; listed in the EAFUS Food Additive Database (Jan 2001) Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. trans-Isoferulic acid (trans-3-Hydroxy-4-methoxycinnamic acid) is an aromatic acid isolated from the roots of Clematis florida var. plena. trans-Isoferulic acid exhibits anti-inflammatory activity[1].trans-isoferulic acid suppresses NO and PGE2 production through the induction of Nrf2-dependent heme oxygenase-1 (HO-1)[2]. trans-Isoferulic acid (trans-3-Hydroxy-4-methoxycinnamic acid) is an aromatic acid isolated from the roots of Clematis florida var. plena. trans-Isoferulic acid exhibits anti-inflammatory activity[1].trans-isoferulic acid suppresses NO and PGE2 production through the induction of Nrf2-dependent heme oxygenase-1 (HO-1)[2].

   

Fargesin

1H,3H-FURO(3,4-C)FURAN, 1.ALPHA.-(3,4-DIMETHOXYPHENYL)-3A.BETA.,4,6,6A.BETA.-TETRAHYDRO-4.BETA.-((3,4-METHYLENEDIOXY)PHENYL)-

C21H22O6 (370.1416)


Fargesin is a lignan. Planinin is a natural product found in Piper mullesua and Magnolia coco with data available. (+/-)-Fargesin is a natural product found in Piper mullesua, Aristolochia cymbifera, and other organisms with data available. Fargesin is a bioactive neolignan isolated from magnolia plants, with antihypertensive and anti-inflammatory effects[1][2][3]. Fargesin is a bioactive neolignan isolated from magnolia plants, with antihypertensive and anti-inflammatory effects[1][2][3].

   

Isoferulic acid

3-Hydroxy-4-methoxycinnamic acid, predominantly trans, 97\\%

C10H10O4 (194.0579)


Isoferulic acid (CAS: 537-73-5) is a chlorogenic acid (CGA). CGAs are formed by the esterification of hydroxycinnamic acids (e.g. caffeic acid, ferulic acid, and p-coumaric acid) with quinic acid. CGAs are abundant phenolic compounds in coffee, with caffeoylquinic (CQA), feruloylquinic (FQA), and dicaffeoylquinic (diCQA) acids being the major subclasses, and coffee is the most consumed food product in the world. Isoferulic acid is present in normal human urine in concentrations of 0.05-2.07 umol/mmol creatinine at baseline, and reaches 0.2-9.6 umol/mmol creatinine in four hours after a cup of coffee, with a large inter-individual variation (PMID:17884997). Isoferulic acid is a ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 4 and 3 respectively on the phenyl ring. It has a role as a metabolite, a biomarker and an antioxidant. Isoferulic acid is a natural product found in Sibiraea angustata, Astragalus onobrychis, and other organisms with data available. See also: Black Cohosh (part of); Ipomoea aquatica leaf (part of). A ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 4 and 3 respectively on the phenyl ring. It is used as a food additive; listed in the EAFUS Food Additive Database (Jan 2001) Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. trans-Isoferulic acid (trans-3-Hydroxy-4-methoxycinnamic acid) is an aromatic acid isolated from the roots of Clematis florida var. plena. trans-Isoferulic acid exhibits anti-inflammatory activity[1].trans-isoferulic acid suppresses NO and PGE2 production through the induction of Nrf2-dependent heme oxygenase-1 (HO-1)[2]. trans-Isoferulic acid (trans-3-Hydroxy-4-methoxycinnamic acid) is an aromatic acid isolated from the roots of Clematis florida var. plena. trans-Isoferulic acid exhibits anti-inflammatory activity[1].trans-isoferulic acid suppresses NO and PGE2 production through the induction of Nrf2-dependent heme oxygenase-1 (HO-1)[2].

   

Punicic acid

cis-9, trans-11, cis-13-octadecatrienoic acid

C18H30O2 (278.2246)


   

Cannabigerolic acid

Cannabigerolic acid

C22H32O4 (360.23)


A dihydroxybenzoic acid that is olivetolic acid in which the hydrogen at position 3 is substituted by a geranyl group. A biosynthetic precursor to Delta(9)-tetrahydrocannabinol, the principal psychoactive constituent of the cannabis plant.

   

(+)-Fargesin

2-(3,4-Dimethoxyphenyl)-6-(3,4-methylenedioxyphenyl)-3,7-dioxabicyclo(3,3,0)octane

C21H22O6 (370.1416)


Constituent of Artemisia absinthium (wormwood). (+)-Fargesin is found in alcoholic beverages and herbs and spices. (+)-Spinescin is found in herbs and spices. (+)-Spinescin is a constituent of sassafras root. Kobusin is a bisepoxylignan isolated from the Pnonobio biondii Pamp. Kobusin is an activator of CFTR and CaCCgie chloride channels and a inhibitor of ANO1/CaCC (calcium-activated chloride channel) channel[1][2]. Kobusin is a bisepoxylignan isolated from the Pnonobio biondii Pamp. Kobusin is an activator of CFTR and CaCCgie chloride channels and a inhibitor of ANO1/CaCC (calcium-activated chloride channel) channel[1][2].

   

dimethylamine

N-methylmethanamine

C2H7N (45.0578)


A secondary aliphatic amine where both N-substituents are methyl.

   

Prunin

(S)-5-Hydroxy-2-(4-hydroxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C21H22O10 (434.1213)


Naringenin 7-O-beta-D-glucoside is a flavanone 7-O-beta-D-glucoside that is (S)-naringenin substituted by a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a metabolite, a hypoglycemic agent, an antilipemic drug and an antibacterial agent. It is a flavanone 7-O-beta-D-glucoside, a dihydroxyflavanone, a monosaccharide derivative, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. Prunin is a natural product found in Prunus mume, Podocarpus nivalis, and other organisms with data available. A flavanone 7-O-beta-D-glucoside that is (S)-naringenin substituted by a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. Prunin is a potent inhibitor of human enterovirus A71 (HEVA71). Prunin shows strong inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), with an IC50 of 5.5 μM[1][2]. Prunin is a potent inhibitor of human enterovirus A71 (HEVA71). Prunin shows strong inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), with an IC50 of 5.5 μM[1][2].

   

Tambulin

3,5-Dihydroxy-4,7,8-trimethoxyflavone

C18H16O7 (344.0896)


A member of the class of flavonols that is flavonol substituted by an additional hydroxy group at position 5 and methoxy groups at positions 7, 8 and 4 respectively.

   

Thujone

Bicyclo[3.1.0]hexan-3-one,4-methyl-1-(1-methylethyl)-

C10H16O (152.1201)


α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3].

   

valerenic acid

valerenic acid

C15H22O2 (234.162)


A monocarboxylic acid that is 2-methylprop-2-enoic acid which is substituted at position 3 by a 3,7-dimethyl-2,4,5,6,7,7a-hexahydro-1H-inden-4-yl group. A bicyclic sesquiterpenoid constituent of the essential oil of the Valerian plant. Valerenic acid ((-)-Valerenic Acid), a sesquiterpenoid, is an orally active positive allosteric modulator of GABAA receptors. Valerenic acid is also a partial agonist of the 5-HT5a receptor. Valerenic acid mediates anxiolytic activity via GABAA receptors containing the β3 subunit. Valerenic acid also exhibits potent antioxidant properties[1][2][3].

   

Costunolide

NCGC00381718-02_C15H20O2_Cyclodeca[b]furan-2(3H)-one, 3a,4,5,8,9,11a-hexahydro-6,10-dimethyl-3-methylene-, (3aS,6E,10E,11aR)-

C15H20O2 (232.1463)


Costunolide is a germacranolide with anthelminthic, antiparasitic and antiviral activities. It has a role as an anthelminthic drug, an antiinfective agent, an antineoplastic agent, an antiparasitic agent, an antiviral drug and a metabolite. It is a germacranolide and a heterobicyclic compound. (+)-Costunolide is a natural product found in Magnolia garrettii, Critonia morifolia, and other organisms with data available. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics A germacranolide with anthelminthic, antiparasitic and antiviral activities. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors Costunolide ((+)-Costunolide) is a naturally occurring sesquiterpene lactone, with antioxidative, anti-inflammatory, antiallergic, bone remodeling, neuroprotective, hair growth promoting, anticancer, and antidiabetic properties. Costunolide can induce cell cycle arrest and apoptosis on breast cancer cells[1][2][3]. Costunolide ((+)-Costunolide) is a naturally occurring sesquiterpene lactone, with antioxidative, anti-inflammatory, antiallergic, bone remodeling, neuroprotective, hair growth promoting, anticancer, and antidiabetic properties. Costunolide can induce cell cycle arrest and apoptosis on breast cancer cells[1][2][3].

   

Coronaridine

methyl (1S,15R,17S,18S)-17-ethyl-3,13-diazapentacyclo[13.3.1.02,10.04,9.013,18]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

C21H26N2O2 (338.1994)


(-)-coronaridine is a monoterpenoid indole alkaloid with formula C21H26N2O2. It is isolated from the flowering plant genus, Tabernaemontana. It has a role as an antileishmanial agent, an antineoplastic agent, an apoptosis inducer and a plant metabolite. It is a monoterpenoid indole alkaloid, a methyl ester, an organic heteropentacyclic compound and an alkaloid ester. It is a conjugate base of a (-)-coronaridine(1+). Coronaridine is a natural product found in Voacanga schweinfurthii, Tabernanthe iboga, and other organisms with data available. A monoterpenoid indole alkaloid with formula C21H26N2O2. It is isolated from the flowering plant genus, Tabernaemontana. Coronaridine, an iboga type alkaloid, inhibits the wnt signaling pathway by decreasing β-catenin expression[1]. Coronaridine, an iboga type alkaloid, inhibits the wnt signaling pathway by decreasing β-catenin expression[1].

   

75O1TFF47Z

4-[(2S,3S)-3-[(3,4-dimethoxyphenyl)methyl]-4-methoxy-2-(methoxymethyl)butyl]-1,2-dimethoxy-benzene

C24H34O6 (418.2355)


Phyllanthin is a lignan. Phyllanthin is a natural product found in Phyllanthus debilis, Phyllanthus amarus, and other organisms with data available. See also: Phyllanthus amarus top (part of). Phyllanthin is a major bioactive lignan component of Phyllanthus amarus. Phyllanthin exhibits high antioxidative and hepatoprotective properties[1]. Phyllanthin is a major bioactive lignan component of Phyllanthus amarus. Phyllanthin exhibits high antioxidative and hepatoprotective properties[1].

   

Tigloidine

2-METHYL-2-BUTENOIC ACID (1.ALPHA.,3.ALPHA.(E),5.ALPHA.0- 8-METHYL-8-AZABICYCLO(3.2.1)OCT-3-YL ESTER

C13H21NO2 (223.1572)


Tropigline is a natural product found in Datura stramonium with data available. Tigloidin is an analogue of atropine, with anticholinergic activity. Tigloidin is an analogue of atropine, with anticholinergic activity.

   

metoprolol

1-[4-(2-methoxyethyl)phenoxy]-3-(propan-2-ylamino)propan-2-ol

C15H25NO3 (267.1834)


C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AB - Beta blocking agents, selective C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents Metoprolol is a selective beta1 receptor blocker used in treatment of several diseases of the cardiovascular system. It is marketed under the brand name Lopressor by Novartis, and Toprol (in the USA); Seleken or Selokeen (elsewhere); A selective adrenergic beta-1-blocking agent with no stimulatory action. Its binding to plasma albumin is weaker than alprenolol and it may be useful in the treatment of several diseases of the cardiovascular system; Metoprolol is a selective beta1 receptor blocker used in treatment of several diseases of the cardiovascular system. It is marketed under the brand name Lopressor by Novartis, and Toprol (in the USA); Seleken or Selokeen (elsewhere); as Minax by Alphapharm (in Australia), as Betaloc by AstraZeneca and as Corvitol by Berlin-Chemie AG; A selective adrenergic beta-1-blocking agent with no stimulatory action. Its binding to plasma albumin is weaker than alprenolol and it may be useful in angina pectoris, hypertension, or cardiac arrhythmias; as Minax by Alphapharm (in Australia), as Betaloc by AstraZeneca and as Corvitol by Berlin-Chemie AG. [HMDB] CONFIDENCE standard compound; INTERNAL_ID 1107 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 81 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 1080 CONFIDENCE standard compound; INTERNAL_ID 4072 CONFIDENCE Reference Standard (Level 1) Metoprolol is an orally active, selective β1-adrenoceptor antagonist. Metoprolol shows anti-inflammation, antitumor and anti-angiogenic properties[1][2][3].

   

doxepin

Cidoxepin

C19H21NO (279.1623)


D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AA - Non-selective monoamine reuptake inhibitors D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent > C94727 - Tricyclic Antidepressant D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists CONFIDENCE standard compound; INTERNAL_ID 1532

   

alprazolam

8-chloro-1-methyl-6-phenyl-4H-[1,2,4]triazolo[4,3-a][1,4]benzodiazepine

C17H13ClN4 (308.0829)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05B - Anxiolytics > N05BA - Benzodiazepine derivatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent CONFIDENCE standard compound; INTERNAL_ID 1570

   

6-acetylmorphine

6-O-Monoacetylmorphine

C19H21NO4 (327.1471)


D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids CONFIDENCE standard compound; INTERNAL_ID 1574

   

oxycodone

(4R,4aS,7aR,12bS)-4a-hydroxy-9-methoxy-3-methyl-2,4,5,6,7a,13-hexahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-one

C18H21NO4 (315.1471)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AA - Natural opium alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE standard compound; INTERNAL_ID 1602 IPB_RECORD: 1423; CONFIDENCE confident structure

   

Repaglinide

2-ethoxy-4-[2-[[(1S)-3-methyl-1-(2-piperidin-1-ylphenyl)butyl]amino]-2-oxoethyl]benzoic acid

C27H36N2O4 (452.2675)


C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C98079 - Meglitinide Antidiabetic Agent A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins D007004 - Hypoglycemic Agents CONFIDENCE standard compound; INTERNAL_ID 2189 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3349

   

MONURON

3-(4-chlorophenyl)-1,1-dimethylurea

C9H11ClN2O (198.056)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 161

   

saccharin

Saccharin, ammonium salt

C7H5NO3S (182.999)


D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS It is used as a food additive . CONFIDENCE standard compound; EAWAG_UCHEM_ID 2816

   

Fk-506

(3S,4R,5S,8R,9E,12S,14S,15R,16S,18R,19R,26aS)-5,6,8,11,12,13,14,15,16,17,18,19,24,25,26,26a-Hexadecahydro-5,19-dihydroxy-3-[(1E)-2-[(1R,3R,4R)-4-hydroxy-3-methoxycyclohexyl]-1-methylethenyl]-14,16-dimethoxy-4,10,12,18-tetramethyl-8-(2-propen-1-yl)-15,19-epoxy-3H-pyrido[2,1-c][1,4]oxaazacyclotricosine-1,7,20,21(4H,23H)-tetrone

C44H69NO12 (803.482)


D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents > D016559 - Tacrolimus D004791 - Enzyme Inhibitors > D065095 - Calcineurin Inhibitors CONFIDENCE standard compound; EAWAG_UCHEM_ID 2807

   

Hydrocodone

(4R,4aR,7aR,12bS)-9-methoxy-3-methyl-1,2,4,4a,5,6,7a,13-octahydro-4,12-methanobenzofuro[3,2-e]isoquinolin-7-one

C18H21NO3 (299.1521)


R - Respiratory system > R05 - Cough and cold preparations > R05D - Cough suppressants, excl. combinations with expectorants > R05DA - Opium alkaloids and derivatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist C78273 - Agent Affecting Respiratory System > C66917 - Antitussive Agent D019141 - Respiratory System Agents > D000996 - Antitussive Agents D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE standard compound; EAWAG_UCHEM_ID 3332

   

Protopine

15-methyl-7,9,19,21-tetraoxa-15-azapentacyclo[15.7.0.04,12.06,10.018,22]tetracosa-1(17),4,6(10),11,18(22),23-hexaen-3-one

C20H19NO5 (353.1263)


Annotation level-1 D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists relative retention time with respect to 9-anthracene Carboxylic Acid is 0.601 D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics relative retention time with respect to 9-anthracene Carboxylic Acid is 0.596 IPB_RECORD: 1441; CONFIDENCE confident structure Protopine (Corydinine), an isoquinoline alkaloid, is a specific reversible and competitive inhibitor of acetylcholinesterase. Protopine exhibits anti-inflammation, anti-microbial, anti-angiogenic and anti-tumour activity[1][2]. Protopine (Corydinine), an isoquinoline alkaloid, is a specific reversible and competitive inhibitor of acetylcholinesterase. Protopine exhibits anti-inflammation, anti-microbial, anti-angiogenic and anti-tumour activity[1][2].

   

5-hydroxylysine

L-Erythro-5-hydroxylysine

C6H14N2O3 (162.1004)


The lysine derivative that is 2,6-diamino-5-hydroxyhexanoic acid, a chiral alpha-amino acid. KEIO_ID H064

   

Stigmastanol

(3S,5S,8R,9S,10S,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methylheptan-2-yl]-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H52O (416.4018)


Stigmastanol is a 3-hydroxy steroid that is 5alpha-stigmastane which is substituted at the 3beta position by a hydroxy group. It has a role as an anticholesteremic drug and a plant metabolite. It is a 3-hydroxy steroid and a member of phytosterols. It derives from a hydride of a 5alpha-stigmastane. Stigmastanol is a natural product found in Alnus japonica, Dracaena cinnabari, and other organisms with data available. Stigmastanol is a steroid derivative characterized by the hydroxyl group in position C-3 of the steroid skeleton, and a saturated bond in position 5-6 of the B ring. See also: Saw Palmetto (part of). A 3-hydroxy steroid that is 5alpha-stigmastane which is substituted at the 3beta position by a hydroxy group. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents C1907 - Drug, Natural Product > C28178 - Phytosterol > C68422 - Saturated Phytosterol D009676 - Noxae > D000963 - Antimetabolites Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Stigmastanol is the 6-amino derivative isolated from Hypericum riparium. Hypericum riparium A. Chev. is a Cameroonian medicinal plant belonging to the family Guttiferae[1][2]. Stigmastanol is the 6-amino derivative isolated from Hypericum riparium. Hypericum riparium A. Chev. is a Cameroonian medicinal plant belonging to the family Guttiferae[1][2].

   

diphenhydramine

2-benzhydryloxy-N,N-dimethylethanamine

C17H21NO (255.1623)


D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AA - Antihistamines for topical use R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AA - Aminoalkyl ethers D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics D018926 - Anti-Allergic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 2671 CONFIDENCE standard compound; INTERNAL_ID 8588 CONFIDENCE standard compound; INTERNAL_ID 4116 Diphenhydramine is a first-generation histamine H1-receptor antagonist with anti-cholinergic effect. Diphenhydramine hydrochloride can across the ovine blood-brain barrier (BBB) [1][2][3].

   

betaxolol

1-[4-[2-(cyclopropylmethoxy)ethyl]phenoxy]-3-(propan-2-ylamino)propan-2-ol

C18H29NO3 (307.2147)


C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AB - Beta blocking agents, selective S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01ED - Beta blocking agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Betaxolol is a selective beta1 adrenergic receptor blocker that can be used for the research of hypertension and glaucoma.

   

Justicidin B

4-(1,3-benzodioxol-5-yl)-6,7-dimethoxy-1H-benzo[f][2]benzofuran-3-one

C21H16O6 (364.0947)


relative retention time with respect to 9-anthracene Carboxylic Acid is 1.212 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.209

   

1-Methylhistamine

N(tele)-methylhistamine

C6H11N3 (125.0953)


A primary amino compound that is the N(tele)-methyl derivative of histamine. D004791 - Enzyme Inhibitors relative retention time with respect to 9-anthracene Carboxylic Acid is 0.042 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.041

   

alpha-Ergocryptine

(6aR,9R)-N-[(1S,2S,4R,7S)-2-hydroxy-7-(2-methylpropyl)-5,8-dioxo-4-propan-2-yl-3-oxa-6,9-diazatricyclo[7.3.0.02,6]dodecan-4-yl]-7-methyl-6,6a,8,9-tetrahydro-4H-indolo[4,3-fg]quinoline-9-carboxamide

C32H41N5O5 (575.3108)


Ergotaman bearing hydroxy, isopropyl, and 2-methylpropyl groups at the 12, 2 and 5 positions, respectively, and oxo groups at positions 3, 6, and 18. It is a natural ergot alkaloid. Ergocryptine discussed in the literature prior to 1967, when beta-ergocryptine was separated from alpha-ergocryptine, is now referred to as alpha-ergocryptine. D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists relative retention time with respect to 9-anthracene Carboxylic Acid is 1.085 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.083 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.081 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.080

   

perphenazine

Perphenazine aka 2-[4-[3-(2-chlorophenothiazin-10-yl)propyl]piperazin-1-yl]ethanol

C21H26ClN3OS (403.1485)


N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AB - Phenothiazines with piperazine structure D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Perphenazine is an orally active dopamine receptor and histamine-1 receptor antagonist, with Ki values of 0.56 nM (D2), 0.43 nM (D3), 6 nM (5-HT2A), respectively. Perphenazine also binds to Alpha-1A adrenergic receptor. Perphenazine inhibits cancer cell proliferation, and induces apoptosis. Perphenazine can be used in the research of mental disease, cancer, inflammation[1][3][5].

   

Zolmitriptan

Zolmitriptan (Zomig)

C16H21N3O2 (287.1634)


N - Nervous system > N02 - Analgesics > N02C - Antimigraine preparations > N02CC - Selective serotonin (5ht1) agonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist D000890 - Anti-Infective Agents > D023303 - Oxazolidinones

   

chlorprothixene

(3Z)-3-(2-chlorothioxanthen-9-ylidene)-N,N-dimethylpropan-1-amine

C18H18ClNS (315.0848)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AF - Thioxanthene derivatives D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Chlorprothixene is a dopamine and histamine receptors antagonist with Kis of 18 nM, 2.96 nM, 4.56 nM, 9 nM and 3.75 nM for hD1, hD2, hD3, hD5 and hH1 receptors, respectively. Antipsychotic activity[1].

   

rimantadine

Rimantadine (Flumadine)

C12H21N (179.1674)


J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AC - Cyclic amines D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C254 - Anti-Infective Agent > C281 - Antiviral Agent

   

2-Aminoethanesulfinic acid

2-aminoethanesulfinic acid

C2H7NO2S (109.0197)


An aminosulfinic acid comprising ethylamine having the sulfo group at the 2-position. Hypotaurine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=300-84-5 (retrieved 2024-07-15) (CAS RN: 300-84-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Hypotaurine (2-aminoethanesulfinic acid), an intermediate in taurine biosynthesis from cysteine in astrocytes, is an endogenous inhibitory amino acid of the glycine receptor. Antioxidant[1].

   

L-Cystathionine

(2S)-2-amino-4-[(2R)-2-amino-2-carboxyethyl]sulfanylbutanoic acid

C7H14N2O4S (222.0674)


A modified amino acid generated by enzymic means from L-homocysteine and L-serine. L-Cystathionine is a nonprotein thioether and is a key amino acid associated with the metabolic state of sulfur-containing amino acids. L-Cystathionine protects against Homocysteine-induced mitochondria-dependent apoptosis of vascular endothelial cells (HUVECs). L-Cystathionine plays an important role in cardiovascular protection[1][2]. L-Cystathionine is a nonprotein thioether and is a key amino acid associated with the metabolic state of sulfur-containing amino acids. L-Cystathionine protects against Homocysteine-induced mitochondria-dependent apoptosis of vascular endothelial cells (HUVECs). L-Cystathionine plays an important role in cardiovascular protection[1][2].

   

Xanthurenic acid

8-hydroxy-4-oxo-1H-quinoline-2-carboxylic acid

C10H7NO4 (205.0375)


A quinolinemonocarboxylic acid that is quinoline-2-carboxylic acid substituted by hydroxy groups at C-4 and C-8. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Xanthurenic acid is a putative endogenous Group II metabotropic glutamate receptor agonist, on sensory transmission in the thalamus. Xanthurenic acid is a putative endogenous Group II metabotropic glutamate receptor agonist, on sensory transmission in the thalamus.

   

3-Methoxytyramine

4-(2-Aminoethyl)-2-methoxyphenol

C9H13NO2 (167.0946)


A monomethoxybenzene that is dopamine in which the hydroxy group at position 3 is replaced by a methoxy group. It is a metabolite of the neurotransmitter dopamine and considered a potential biomarker of pheochromocytomas and paragangliomas. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 3-Methoxytyramine, a well known extracellular metabolite of 3-hydroxytyramine/dopamine, is a neuromodulator.

   

Cystathionine

Homocysteine,S-(2-amino-2-carboxyethyl)-

C7H14N2O4S (222.0674)


A modified amino acid generated by enzymic means from homocysteine and serine. L-Cystathionine is a nonprotein thioether and is a key amino acid associated with the metabolic state of sulfur-containing amino acids. L-Cystathionine protects against Homocysteine-induced mitochondria-dependent apoptosis of vascular endothelial cells (HUVECs). L-Cystathionine plays an important role in cardiovascular protection[1][2]. L-Cystathionine is a nonprotein thioether and is a key amino acid associated with the metabolic state of sulfur-containing amino acids. L-Cystathionine protects against Homocysteine-induced mitochondria-dependent apoptosis of vascular endothelial cells (HUVECs). L-Cystathionine plays an important role in cardiovascular protection[1][2].

   

RGX-202

3-Guanidinopropionic acid

C4H9N3O2 (131.0695)


C274 - Antineoplastic Agent > C177430 - Agent Targeting Cancer Metabolism

   

5-Aminovaleric acid

5-Aminopentanoic acid

C5H11NO2 (117.079)


MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; JJMDCOVWQOJGCB-UHFFFAOYSA-N_STSL_0196_5-Aminovaleric acid_0500fmol_180831_S2_L02M02_26; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. 5-Aminovaleric acid is believed to act as a methylene homologue of gamma-aminobutyric acid (GABA) and functions as a weak GABA agonist.

   

GLUTARIC ACID

pentanedioic acid

C5H8O4 (132.0423)


An alpha,omega-dicarboxylic acid that is a linear five-carbon dicarboxylic acid. Glutaric acid, C5 dicarboxylic acid, is an intermediate during the catabolic pathways of lysine and tryptophan. Glutaric acid affects pericyte contractility and migration. Glutaric acid is an indicator of glutaric aciduria type I[1][2][3]. Glutaric acid, C5 dicarboxylic acid, is an intermediate during the catabolic pathways of lysine and tryptophan. Glutaric acid affects pericyte contractility and migration. Glutaric acid is an indicator of glutaric aciduria type I[1][2][3].

   

ergocryptine

12-hydroxy-2-(1-methylethyl)-5alpha-(2-methylpropyl)ergotaman-3,6,18-trione

C32H41N5O5 (575.3108)


D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists CONFIDENCE Claviceps purpurea sclerotia

   

temephos

Pesticide1_Temephos_C16H20O6P2S3_O,O,O,O-Tetramethyl O,O-(sulfanediyldi-4,1-phenylene) bis(phosphorothioate)

C16H20O6P2S3 (465.9897)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

methamidophos

Pesticide1_Methamidophos_C2H8NO2PS_O,S-Dimethyl phosphoramidothioate

C2H8NO2PS (141.0013)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

3,4-Dihydroxyphenylglycol

3,4-Dihydroxyphenylethyleneglycol

C8H10O4 (170.0579)


A tetrol composed of ethyleneglycol having a 3,4-dihydroxyphenyl group at the 1-position. 4-(1,2-Dihydroxyethyl)benzene-1,2-diol, a normal norepinephrine metabolite, is found to be associated with Menkes syndrome.

   

Glutaconic acid

trans-Glutaconic acid

C5H6O4 (130.0266)


A pentenedioic acid that is pent-2-ene substituted by carboxy groups at positions 1 and 5.

   

octane

n-Octane

C8H18 (114.1408)


   

picolinic acid

2-Pyridinecarboxylic acid

C6H5NO2 (123.032)


A pyridinemonocarboxylic acid in which the carboxy group is located at position 2. It is an intermediate in the metabolism of tryptophan. D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents Picolinic acid (PCL 016) is a topical antiviral agent, which inhibits adenovirus replication in rabbits.

   

Benzamide

InChI=1\C7H7NO\c8-7(9)6-4-2-1-3-5-6\h1-5H,(H2,8,9

C7H7NO (121.0528)


Benzamide (Benzenecarboxamide) is a potent poly(ADP-ribose) polymerase (PARP) inhibitor. Benzamide has protective activity against both glutamate- and methamphetamine (METH)-induced neurotoxicity in vitro. Benzamide can attenuate the METH-induced dopamine depletions and exhibits neuroprotective activity in mice, also has no acute effect on striatal dopamine metabolism and does not reduce body temperature[1].

   

nerol

(2Z)-3,7-Dimethyl-2,6-octadien-1-ol

C10H18O (154.1358)


Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2].

   

1-Acetylimidazole

1-imidazol-1-ylethanone

C5H6N2O (110.048)


   

clobenpropit

N-[(4-chlorophenyl)methyl]-3-(1H-imidazol-5-yl)propyl ester, carbamimidothioic acid, dihydrobromide

C14H17ClN4S (308.0862)


D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists

   

FLUPERLAPINE

3-fluoro-6-(4-methylpiperazin-1-yl)-11H-benzo[c][1]benzazepine

C19H20FN3 (309.1641)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist

   

Fluphenazine (oxide)

FLUPHENAZINE aka 2-[4-[3-[2-(trifluoromethyl)phenothiazin-10-yl]propyl]piperazin-1-yl]ethanol

C22H26F3N3OS (437.1749)


N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AB - Phenothiazines with piperazine structure D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent

   

hydromorphone

(4R,4aR,7aR,12bS)-9-hydroxy-3-methyl-1,2,4,4a,5,6,7a,13-octahydro-4,12-methanobenzofuro[3,2-e]isoquinolin-7-one

C17H19NO3 (285.1365)


A morphinane alkaloid that is a hydrogenated ketone derivative of morphine. A semi-synthetic drug, it is a centrally acting pain medication of the opioid class. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AA - Natural opium alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Linopirdine

Linopirdine(DuP-996)

C26H21N3O (391.1685)


N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker D020011 - Protective Agents Same as: D04741

   

loxapine

8-chloro-6-(4-methylpiperazin-1-yl)benzo[b][1,4]benzoxazepine

C18H18ClN3O (327.1138)


N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AH - Diazepines, oxazepines, thiazepines and oxepines D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Loxapine is an orally active dopamine inhibitor, 5-HT receptor antagonist and also a dibenzoxazepine anti-psychotic agent[1][4].

   

N-Methylanthranilic acid

2-(methylamino)benzoic acid

C8H9NO2 (151.0633)


An aromatic amino acid that is anthranilic acid in which one of the hydrogens attached to the nitrogen is substituted by a methyl group. 2-(Methylamino)benzoic acid is the main metabolite of methyl-N-methylanthranilates (MMA) (HY-76705) and is the compound in which the ester group is converted. MMA can be isolated from citrus fruits and has potential analgesic activity. 2-(Methylamino)benzoic acid was used to detect the metabolic levels of MMA in rat liver[1].

   

oxymorphone

(4R,4aS,7aR,12bS)-4a,9-dihydroxy-3-methyl-2,4,5,6,7a,13-hexahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-one

C17H19NO4 (301.1314)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AA - Natural opium alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Phenethylamine

2-Phenylethanamine

C8H11N (121.0891)


D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs

   

Selegiline

(2R)-N-methyl-1-phenyl-N-prop-2-ynylpropan-2-amine

C13H17N (187.1361)


N - Nervous system > N04 - Anti-parkinson drugs > N04B - Dopaminergic agents > N04BD - Monoamine oxidase b inhibitors D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors C471 - Enzyme Inhibitor > C667 - Monoamine Oxidase Inhibitor D020011 - Protective Agents

   

Tiagabine

(3R)-1-[4,4-bis(3-methylthiophen-2-yl)but-3-enyl]piperidine-3-carboxylic acid

C20H25NO2S2 (375.1327)


D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D058805 - GABA Uptake Inhibitors N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AG - Fatty acid derivatives C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D018377 - Neurotransmitter Agents > D018682 - GABA Agents D049990 - Membrane Transport Modulators

   

zolpidem

N,N-dimethyl-2-[6-methyl-2-(4-methylphenyl)imidazo[1,2-a]pyridin-3-yl]acetamide

C19H21N3O (307.1685)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CF - Benzodiazepine related drugs D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic

   

pemoline

2-amino-5-phenyl-1,3-oxazol-4-one

C9H8N2O2 (176.0586)


N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BA - Centrally acting sympathomimetics D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant

   

Gramine

1-(1H-indol-3-yl)-N,N-dimethylmethanamine

C11H14N2 (174.1157)


Annotation level-1 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 4 Gramine (Donaxine) is a natural alkaloid isolated from giant reed[2], acts as an active adiponectin receptor (AdipoR) agonist, with IC50s of 3.2 and 4.2 μM for AdipoR2 and AdipoR1, respectively[1]. Gramine is also a human and mouse β2-Adrenergic receptor (β2-AR) agonist[2]. Gramine (Donaxine) has anti-tumor, anti-viral and anti-inflammatory properties[1]. Gramine (Donaxine) is a natural alkaloid isolated from giant reed[2], acts as an active adiponectin receptor (AdipoR) agonist, with IC50s of 3.2 and 4.2 μM for AdipoR2 and AdipoR1, respectively[1]. Gramine is also a human and mouse β2-Adrenergic receptor (β2-AR) agonist[2]. Gramine (Donaxine) has anti-tumor, anti-viral and anti-inflammatory properties[1]. Gramine (Donaxine) is a natural alkaloid isolated from giant reed[2], acts as an active adiponectin receptor (AdipoR) agonist, with IC50s of 3.2 and 4.2 μM for AdipoR2 and AdipoR1, respectively[1]. Gramine is also a human and mouse β2-Adrenergic receptor (β2-AR) agonist[2]. Gramine (Donaxine) has anti-tumor, anti-viral and anti-inflammatory properties[1].

   

ergotamine

Ergotaminum

C33H35N5O5 (581.2638)


A peptide ergot alkaloid that is dihydroergotamine in which a double bond replaces the single bond between positions 9 and 10. D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists N - Nervous system > N02 - Analgesics > N02C - Antimigraine preparations > N02CA - Ergot alkaloids D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist > C61751 - Ergotamine D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D012102 - Reproductive Control Agents > D010120 - Oxytocics CONFIDENCE Claviceps purpurea sclerotia

   

protriptyline

protriptyline

C19H21N (263.1674)


N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AA - Non-selective monoamine reuptake inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent > C94727 - Tricyclic Antidepressant D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators

   

pentobarbital

pentobarbital

C11H18N2O3 (226.1317)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CA - Barbiturates, plain C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators

   

thiopental

5-ethyl-5-pentan-2-yl-2-sulfanylidene-1,3-diazinane-4,6-dione

C11H18N2O2S (242.1089)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CA - Barbiturates, plain N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AF - Barbiturates, plain D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators D002491 - Central Nervous System Agents > D000927 - Anticonvulsants C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

estazolam

8-chloro-6-phenyl-4H-[1,2,4]triazolo[4,3-a][1,4]benzodiazepine

C16H11ClN4 (294.0672)


N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CD - Benzodiazepine derivatives D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants

   

Methyldopa

1H-INDAZOLE-3,6-DICARBOXYLICACID,6-METHYLESTER

C10H13NO4 (211.0845)


CONFIDENCE standard compound; INTERNAL_ID 1284; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1003; ORIGINAL_PRECURSOR_SCAN_NO 1001 C - Cardiovascular system > C02 - Antihypertensives > C02A - Antiadrenergic agents, centrally acting > C02AB - Methyldopa D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist CONFIDENCE standard compound; INTERNAL_ID 1284; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1000; ORIGINAL_PRECURSOR_SCAN_NO 997 CONFIDENCE standard compound; INTERNAL_ID 1284; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 999; ORIGINAL_PRECURSOR_SCAN_NO 998 CONFIDENCE standard compound; INTERNAL_ID 1284; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 998; ORIGINAL_PRECURSOR_SCAN_NO 996 CONFIDENCE standard compound; INTERNAL_ID 1284; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1004; ORIGINAL_PRECURSOR_SCAN_NO 1001 CONFIDENCE standard compound; INTERNAL_ID 1284; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 996; ORIGINAL_PRECURSOR_SCAN_NO 994 CONFIDENCE standard compound; INTERNAL_ID 1284; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1895; ORIGINAL_PRECURSOR_SCAN_NO 1893 CONFIDENCE standard compound; INTERNAL_ID 1284; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1905; ORIGINAL_PRECURSOR_SCAN_NO 1903 CONFIDENCE standard compound; INTERNAL_ID 1284; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1906; ORIGINAL_PRECURSOR_SCAN_NO 1904 CONFIDENCE standard compound; INTERNAL_ID 1284; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1906; ORIGINAL_PRECURSOR_SCAN_NO 1903 Methyldopa (L-(-)-α-Methyldopa), a potent antihyoertensive agent, is an alpha-adrenergic agonist (selective for α2-adrenergic receptors). Methyldopa is a proagent and is metabolized (α-Methylepinephrine) in the central nervous system[1][2].

   

biperiden

1-(2-bicyclo[2.2.1]hept-5-enyl)-1-phenyl-3-piperidin-1-ylpropan-1-ol

C21H29NO (311.2249)


D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AA - Tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent Biperiden (KL 373) is a non-selective muscarinic receptor antagonist that competitively binds to M1 muscarinic receptors, thereby inhibiting acetylcholine and enhancing dopamine signaling in the central nervous system. Biperiden has the potential for the research of Parkinson's disease and other related psychiatric disorders[1][2].

   

iproniazid

N-propan-2-ylpyridine-4-carbohydrazide

C9H13N3O (179.1059)


N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AF - Monoamine oxidase inhibitors, non-selective D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors C471 - Enzyme Inhibitor > C667 - Monoamine Oxidase Inhibitor

   

Crocetin

(2E,4E,6E,8E,10E,12E,14E)-2,6,11,15-tetramethylhexadeca-2,4,6,8,10,12,14-heptaenedioic acid8,8-diapocarotene-8,8-dioic acid

C20H24O4 (328.1675)


Crocetin is a 20-carbon dicarboxylic acid which is a diterpenoid and natural carotenoid. Found in the crocus flower, it has been administered as an anti-fatigue dietary supplement. It has a role as a nutraceutical, a metabolite and an antioxidant. It is a carotenoic acid, a diterpenoid and a polyunsaturated dicarboxylic acid. It is a conjugate acid of a crocetin(2-). Vitamin A-analog that increases diffusivity of oxygen in aqueous solutions, including plasma. Crocetin is a natural product found in Verbascum lychnitis, Gardenia jasminoides, and other organisms with data available. A 20-carbon dicarboxylic acid which is a diterpenoid and natural carotenoid. Found in the crocus flower, it has been administered as an anti-fatigue dietary supplement. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Crocetin is a natural carotenoid dicarboxylic acid that is found in the crocus flower and Gardenia jasminoides (fruits).

   

rotundine

DL-TETRAHYDROPALMATINE

C21H25NO4 (355.1783)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators Origin: Plant; SubCategory_DNP: Isoquinoline alkaloids, Benzylisoquinoline alkaloids Tetrahydropalmatine possesses analgesic effects. Tetrahydropalmatine acts through inhibition of amygdaloid release of dopamine to inhibit an epileptic attack in rats[1]. Tetrahydropalmatine possesses analgesic effects. Tetrahydropalmatine acts through inhibition of amygdaloid release of dopamine to inhibit an epileptic attack in rats[1]. Tetrahydropalmatine possesses analgesic effects. Tetrahydropalmatine acts through inhibition of amygdaloid release of dopamine to inhibit an epileptic attack in rats[1].

   

PE 34:1

7-Octadecenoic acid, 1-[[[(2-aminoethoxy)hydroxyphosphinyl]oxy]methyl]-2-[(1-oxohexadecyl)oxy]ethyl ester, [R-(Z)]- (9CI)

C39H76NO8P (717.5308)


Found in mouse brain; TwoDicalId=80; MgfFile=160720_brain_AA_18_Neg; MgfId=1248

   

Tetrahydropalmatin

D-Tetrahydropalmatine

C21H25NO4 (355.1783)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2302 D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D-Tetrahydropalmatine is an isoquinoline alkaloid, mainly in the genus Corydalis[1]. D-Tetrahydropalmatine is a dopamine (DA) receptor antagonist with preferential affinity toward the D1 receptors[2]. D-Tetrahydropalmatine is a potent organic cation transporter 1 (OCT1) inhibitor[3]. D-Tetrahydropalmatine is an isoquinoline alkaloid, mainly in the genus Corydalis[1]. D-Tetrahydropalmatine is a dopamine (DA) receptor antagonist with preferential affinity toward the D1 receptors[2]. D-Tetrahydropalmatine is a potent organic cation transporter 1 (OCT1) inhibitor[3]. D-Tetrahydropalmatine is an isoquinoline alkaloid, mainly in the genus Corydalis[1]. D-Tetrahydropalmatine is a dopamine (DA) receptor antagonist with preferential affinity toward the D1 receptors[2]. D-Tetrahydropalmatine is a potent organic cation transporter 1 (OCT1) inhibitor[3].

   

Lumichrome

7,8-dimethyl-1H-benzo[g]pteridine-2,4-dione

C12H10N4O2 (242.0804)


A compound showing blue fluorescence, formed by a photolysis of riboflavin in acid or neutral solution. Lumichrome, a photodegradation product of Riboflavin, is an endogenous compound in humans. Lumichrome inhibits human lung cancer cell growth and induces apoptosis via a p53-dependent mechanism[1][2].

   

CYCLOPENTANONE

cyclopentanone

C5H8O (84.0575)


   

PROCAINAMIDE

4-amino-N-[2-(diethylamino)ethyl]benzamide

C13H21N3O (235.1685)


C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BA - Antiarrhythmics, class ia D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Desmesterol

cholest-5,24-dien-3beta-ol

C27H44O (384.3392)


A cholestanoid that is cholesta-5,24-diene substituted by a beta-hydroxy group at position 3. It is an intermediate metabolite obtained during the synthesis of cholesterol. Desmosterol is a molecule similar to cholesterol. Desmosterol is the immediate precursor of cholesterol in the Bloch pathway of cholesterol biosynthesis. Desmosterol, as an endogenous metabolite, used to study cholesterol metabolism[1]. Desmosterol is a molecule similar to cholesterol. Desmosterol is the immediate precursor of cholesterol in the Bloch pathway of cholesterol biosynthesis. Desmosterol, as an endogenous metabolite, used to study cholesterol metabolism[1].

   

Apiole

Apiole (parsley)

C12H14O4 (222.0892)


A natural product found in Petroselinum sativum.

   

Plicamycin

mithramycin a

C52H76O24 (1084.4726)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01D - Cytotoxic antibiotics and related substances C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents C78281 - Agent Affecting Musculoskeletal System > C67439 - Bone Resorption Inhibitor D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D004396 - Coloring Agents > D005456 - Fluorescent Dyes D000077264 - Calcium-Regulating Hormones and Agents D000970 - Antineoplastic Agents Same as: D00468

   
   

Methadyl acetate

Acetilmetadol [inn-spanish];Acetylmethadol;Acetylmethadolum [inn-latin];Betamethadol

C23H31NO2 (353.2355)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Planinin

5-[4-(3,4-dimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2H-1,3-benzodioxole

C21H22O6 (370.1416)


   

FA 5:2;O2

2-methyl-2Z-butenedioic acid

C5H6O4 (130.0266)


D003879 - Dermatologic Agents Citraconic acid belongs to the class of organic compounds known as methyl-branched fatty acids.

   

Prostaglandin E3

9-oxo-11R,15S-dihydroxy-5Z,13E,17Z-prostatrienoic acid

C20H30O5 (350.2093)


   

Glutaryl-CoA

3-phosphoadenosine 5-{3-[(3R)-4-{[3-({2-[(4-carboxybutanoyl)sulfanyl]ethyl}amino)-3-oxopropyl]amino}-3-hydroxy-2,2-dimethyl-4-oxobutyl] dihydrogen diphosphate}

C26H42N7O19P3S (881.1469)


An omega-carboxyacyl-CoA that results from the formal condensation of the thiol group of coenzyme A with one of the carboxy groups of glutaric acid.

   

PS 34:1

L-Serine, 3-[(1-oxohexadecyl)oxy]-2-[(1-oxo-9-octadecenyl)oxy]propyl hydrogen phosphate (ester), [R-(Z)]-

C40H76NO10P (761.5207)


A 3-sn-phosphatidyl-L-serine compound with a palmitoyl group at the 1-position and an oleoyl group at the 2-position.

   

ST 27:1;O

3beta-hydroxymethyl-A-nor-5alpha-cholest-15-ene

C27H46O (386.3548)


   

ST 27:1

Cholest-5-ene

C27H46 (370.3599)


   

Withanolide

(1S,2R,6S,9R,11S,12S,15S,16S)-15-[(1R)-1-[(2R)-4,5-dimethyl-6-oxo-3,6-dihydro-2H-pyran-2-yl]-1-hydroxyethyl]-6-hydroxy-2,16-dimethyl-8-oxapentacyclo[9.7.0.0^{2,7}.0^{7,9}.0^{12,16}]octadec-4-en-3-one

C28H38O6 (470.2668)


A withanolide that is 5,6:22,26-diepoxyergosta-2,24-diene-1,26-dione substituted by hydroxy groups at positions 4 and 22 (the 4beta,5beta,6beta,22R stereoisomer). Isolated from Tubocapsicum anomalum and Withania somnifera, it exhibits cytotoxic activity. Withanolides, which are extracted from Withania somnifera, are employed in the treatment of arthritis and are known to be potent inhibitors of angiogenesis, inflammation and oxidative stress. Withanolides can indeed inhibit the activation of NF-κB and NF-κB-regulated gene expression, which could explain their anti-arthritic actions. W. somnifera root powder has suppressive effect on arthritis by reducing amplification and propagation of the inflammatory response, without causing any gastric damage. (PMID: 17475558, 3248848, 17084827) [HMDB]

   

Withanolide

(3aS,5aR,9bR)-5a,9-dimethyl-3-methylene-4,5,6,7,8,9b-hexahydro-3aH-benzo[g]benzofuran-2-one

C28H38O6 (470.2668)


   

ST 18:4;O3

3,16alpha-dihydroxy-1,3,5(10)-estratrien-17-one

C18H22O3 (286.1569)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents 4-Hydroxyestrone (4-OHE1), an estrone metabolite, has strong neuroprotective effect against oxidative neurotoxicity. 4-Hydroxyestrone increases cytoplasmic translocation of p53 resulting from SIRT1-mediated deacetylation of p53. 4-Hydroxyestrone has little estrogenic activity[1].

   

Cyperene

3H-3a,7-Methanoazulene,2,4,5,6,7,8-hexahydro-1,4,9,9-tetramethyl-, (3aR,4R,7R)-

C15H24 (204.1878)


   

beta-Santalol

(1S-(1alpha,2alpha(Z),4alpha))-2-Methyl-5-(2-methyl-3-methylenebicyclo(2.2.1)hept-2-yl)-2-penten-1-ol

C15H24O (220.1827)


Constituent of Santalum album (sandalwood). Flavouring ingredient.

   

Cyanamide

cyanamide

CH2N2 (42.0218)


   

4-CHLOROANILINE

1-Amino-4-chlorobenzene

C6H6ClN (127.0189)


   

5-METHYL-1-(3-PYRIDYLCARBAMOYL)-1,2,3,5-TETRAHYDROPYRROLO [2,3-F]INDOLE

Benzo(1,2-b:4,5-b)dipyrrole-1(2H)-carboxamide, 3,5-dihydro-5-methyl-N-3-pyridinyl-

C17H16N4O (292.1324)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants

   

Granisetronum

exo-Granisetron (Granisetron Impurity F)

C18H24N4O (312.195)


D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D005765 - Gastrointestinal Agents > D000932 - Antiemetics D002491 - Central Nervous System Agents

   

1-Palmitoyl-2-oleoyl-sn-glycero-3-(phospho-rac-(1-glycerol))

1-Palmitoyl-2-oleoyl-sn-glycero-3-(phospho-rac-(1-glycerol))

C40H77O10P (748.5254)


   

Cyclacillin

4-Thia-1-azabicyclo[3.2.0]heptane-2-carboxylicacid, 6-[[(1-aminocyclohexyl)carbonyl]amino]-3,3-dimethyl-7-oxo-, (2S,5R,6R)-

C15H23N3O4S (341.1409)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

8-Anilino-1-naphthalenesulfonic acid

8-anilinonaphthalene-1-sulfonic acid

C16H13NO3S (299.0616)


   

Racemetirosine

a-methyl-D-tyrosine

C10H13NO3 (195.0895)


C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent D004791 - Enzyme Inhibitors C471 - Enzyme Inhibitor

   

Rilmenidine

Oxaminozoline

C10H16N2O (180.1263)


C - Cardiovascular system > C02 - Antihypertensives > C02A - Antiadrenergic agents, centrally acting > C02AC - Imidazoline receptor agonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Same as: D08482

   

Indeloxazine

2-(((1H-INDEN-7-YL)OXY)METHYL)MORPHOLINE

C14H17NO2 (231.1259)


D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants Same as: D08077

   

atractylenolideII

Atractylenolide II

C15H20O2 (232.1463)


Atractylenolide II is a sesquiterpene compound isolated from the dried rhizome of Atractylodes macrocephala (Baizhu in Chinese); anti-proliferative activity. IC50 value: 82.3 μM(B16 melanoma cell, 48 h) [1] Target: anticancer natural compound in vitro: AT-II treatment for 48 h dose-dependently inhibited cell proliferation with an IC(50) of 82.3 μM, and induced G1 phase cell cycle arrest. Moreover, treatment with 75 μM AT-II induced apoptosis. These observations were associated with the decrease of the expression of Cdk2, phosphorylated-Akt, phosphorylated-ERK and Bcl-2, the increase of the expression of phosphorylated-p38, phosphorylated-p53, p21, p27, and activation of caspases-8, -9 and -3. In addition, a chemical inhibitor of p53, PFTα, significantly decreased AT-II-mediated growth inhibition and apoptosis [1]. In B16 and A375 cells, AT-II (20, 40 μm) treatment for 48 h dose-dependently reduced protein expression levels of phospho-STAT3, phospho-Src, as well as STAT3-regulated Mcl-1 and Bcl-xL. Overexpression of a constitutively active variant of STAT3, STAT3C in A375 cells diminished the antiproliferative and apoptotic effects of AT-II [2]. in vivo: Daily administration of AT-II (12.5, 25 mg/kg, i.g.) for 14 days significantly inhibited tumor growth in a B16 xenograft mouse model and inhibited the activation/phosphorylation of STAT3 and Src in the xenografts [2]. Atractylenolide II is a sesquiterpene compound isolated from the dried rhizome of Atractylodes macrocephala (Baizhu in Chinese); anti-proliferative activity. IC50 value: 82.3 μM(B16 melanoma cell, 48 h) [1] Target: anticancer natural compound in vitro: AT-II treatment for 48 h dose-dependently inhibited cell proliferation with an IC(50) of 82.3 μM, and induced G1 phase cell cycle arrest. Moreover, treatment with 75 μM AT-II induced apoptosis. These observations were associated with the decrease of the expression of Cdk2, phosphorylated-Akt, phosphorylated-ERK and Bcl-2, the increase of the expression of phosphorylated-p38, phosphorylated-p53, p21, p27, and activation of caspases-8, -9 and -3. In addition, a chemical inhibitor of p53, PFTα, significantly decreased AT-II-mediated growth inhibition and apoptosis [1]. In B16 and A375 cells, AT-II (20, 40 μm) treatment for 48 h dose-dependently reduced protein expression levels of phospho-STAT3, phospho-Src, as well as STAT3-regulated Mcl-1 and Bcl-xL. Overexpression of a constitutively active variant of STAT3, STAT3C in A375 cells diminished the antiproliferative and apoptotic effects of AT-II [2]. in vivo: Daily administration of AT-II (12.5, 25 mg/kg, i.g.) for 14 days significantly inhibited tumor growth in a B16 xenograft mouse model and inhibited the activation/phosphorylation of STAT3 and Src in the xenografts [2].

   

Myristicin

1,3-Benzodioxole, 4-methoxy-6-(2-propenyl)- (9CI)

C11H12O3 (192.0786)


Myristicine ?act as a serotonin receptor antagonist, a weak monamine oxidase (MAO) inhibitor. Myristicine is the main component of nutmeg essential oil from Myristica fragrans?Houtt. Myristicine abuse produce hallucinogenic effects, organ damage, deliriumand others[1]. Myristicine is an orally bioavailable serotonin receptor antagonist and weak monoamine oxidase (MAO) inhibitor. Myristicine also exerts anti-cancer effects on gastric cancer cells by inhibiting the EGFR/ERK signaling pathway. Myristicine is the main component of nutmeg essential oil and has anti-cancer, anti-proliferative, antibacterial, anti-inflammatory and apoptosis-inducing effects. Myristicine abuse can produce hallucinogenic effects, organ damage, etc[1][2][3][4]. Myristicine is an orally bioavailable serotonin receptor antagonist and weak monoamine oxidase (MAO) inhibitor. Myristicine also exerts anti-cancer effects on gastric cancer cells by inhibiting the EGFR/ERK signaling pathway. Myristicine is the main component of nutmeg essential oil and has anti-cancer, anti-proliferative, antibacterial, anti-inflammatory and apoptosis-inducing effects. Myristicine abuse can produce hallucinogenic effects, organ damage, etc[1][2][3][4]. Myristicine ?act as a serotonin receptor antagonist, a weak monamine oxidase (MAO) inhibitor. Myristicine is the main component of nutmeg essential oil from Myristica fragrans?Houtt. Myristicine abuse produce hallucinogenic effects, organ damage, deliriumand others[1].

   

Elemicin

Benzene, 1,2,3-trimethoxy-5-(2-propenyl)- (9CI)

C12H16O3 (208.1099)


Elemicin is an orally active alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin has anti-influenza activities, antimicrobial, antioxidant, and antiviral activities. Elemicin and its reactive metabolite of 1′-Hydroxyelemicin can induce hepatotoxicity[1][2][3][4]. Elemicin is a alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin is one of the main components in aromatic food and has antimicrobial, antioxidant, and antiviral activities. Elemicin possesses genotoxicity and carcinogenicity[1]. Elemicin is a alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin is one of the main components in aromatic food and has antimicrobial, antioxidant, and antiviral activities. Elemicin possesses genotoxicity and carcinogenicity[1].

   

Bicculine

Furo(3,4-e)-1,3-benzodioxol-8(6H)-one, 6-(5,6,7,8-tetrahydro-6-methyl-1,3-dioxolo(4,5-g)isoquinolin-5-yl)-, (R-(R*,S*))-

C20H17NO6 (367.1056)


D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants > D003292 - Convulsants D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018756 - GABA Antagonists Bicuculline ((+)-Bicuculline; d-Bicuculline), as a convulsant alkaloid, is a competitive neurotransmitter GABAA receptor antagonist (IC50=2 μM). Bicuculline also blocks Ca2+-activated potassium (SK) channels and subsequently blocks the slow afterhyperpolarization (slow AHP) [1][2][3]. Bicuculline ((+)-Bicuculline) is A competing neurotransmitter GABAA receptor antagonist (IC50=2 μM). Bicuculline also blocks Ca2+ activating potassium (SK) channels and subsequently blocks slow post-hyperpolarization (slow AHP). Bicuculline has anticonvulsant activity. Bicuculline can be used to induce seizures in mice[1][2][3][4]. Bicuculline ((+)-Bicuculline; d-Bicuculline), as a convulsant alkaloid, is a competitive neurotransmitter GABAA receptor antagonist (IC50=2 μM). Bicuculline also blocks Ca2+-activated potassium (SK) channels and subsequently blocks the slow afterhyperpolarization (slow AHP) [1][2][3].

   

cuminal

InChI=1\C10H12O\c1-8(2)10-5-3-9(7-11)4-6-10\h3-8H,1-2H

C10H12O (148.0888)


Cuminaldehyde is the major component of Cuminum cyminum, a natural aldehyde with inhibitory effect on alpha-synuclein fibrillation and cytotoxicity. Cuminaldehyde shows anticancer activity[1]. Cuminaldehyde is the major component of Cuminum cyminum, a natural aldehyde with inhibitory effect on alpha-synuclein fibrillation and cytotoxicity. Cuminaldehyde shows anticancer activity[1].

   

Hypnon

InChI=1\C8H8O\c1-7(9)8-5-3-2-4-6-8\h2-6H,1H

C8H8O (120.0575)


D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents D003879 - Dermatologic Agents Acetophenone is an organic compound with simple structure[1]. Acetophenone is an organic compound with simple structure[1].

   

Oktan

InChI=1\C8H18\c1-3-5-7-8-6-4-2\h3-8H2,1-2H

C8H18 (114.1408)


   

AI3-34793

4-01-00-02141 (Beilstein Handbook Reference)

C6H12O (100.0888)


cis-3-Hexen-1-ol ((Z)-3-Hexen-1-ol) is a green grassy smelling compound found in many fresh fruits and vegetables. cis-3-Hexen-1-ol is widely used as an added flavor in processed food to provide a fresh green quality. cis-3-Hexen-1-ol is an attractant to various insects[1][2]. cis-3-Hexen-1-ol ((Z)-3-Hexen-1-ol) is a green grassy smelling compound found in many fresh fruits and vegetables. cis-3-Hexen-1-ol is widely used as an added flavor in processed food to provide a fresh green quality. cis-3-Hexen-1-ol is an attractant to various insects[1][2].

   

Phenethylamine

2-phenylethanamine

C8H11N (121.0891)


2-phenylethylamine is a phenylethylamine having the phenyl substituent at the 2-position. It has a role as a human metabolite, an Escherichia coli metabolite and a mouse metabolite. It is a phenylethylamine, an aralkylamine and an alkaloid. It is a conjugate base of a 2-phenylethanaminium. Phenylethylamine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Phenethylamine has been reported in Senegalia berlandieri, Sedum lydium D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs

   

XS-89

(3S,5S,8R,9S,10S,13R,14S,17R)-3,5,14-trihydroxy-13-methyl-17-(5-oxo-2H-furan-3-yl)-2,3,4,6,7,8,9,11,12,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthrene-10-carboxaldehyde

C23H32O6 (404.2199)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D013328 - Strophanthins Strophanthidin is a naturally available cardiac glycoside[1]. Strophanthidin 0.1 and 1 nmol/L increases and 1~100 μmol/L inhibits the Na+/K+-ATPase activities, but Strophanthidin 10 and 100 nmol/L does not affect Na+/K+-ATPase activities in cardiac sarcolemmal[2]. Strophanthidin increases both diastolic and systolic intracellular Ca2+ concentration[3]. Strophanthidin is a naturally available cardiac glycoside[1]. Strophanthidin 0.1 and 1 nmol/L increases and 1~100 μmol/L inhibits the Na+/K+-ATPase activities, but Strophanthidin 10 and 100 nmol/L does not affect Na+/K+-ATPase activities in cardiac sarcolemmal[2]. Strophanthidin increases both diastolic and systolic intracellular Ca2+ concentration[3].

   

Veratral

InChI=1\C9H10O3\c1-11-8-4-3-7(6-10)5-9(8)12-2\h3-6H,1-2H

C9H10O3 (166.063)


Veratraldehyde is an important chemical used in perfumery, agrochemical, and pharmaceutical industries. Veratraldehyde is an important chemical used in perfumery, agrochemical, and pharmaceutical industries.

   

Hyndarin

InChI=1\C21H25NO4\c1-23-18-6-5-13-9-17-15-11-20(25-3)19(24-2)10-14(15)7-8-22(17)12-16(13)21(18)26-4\h5-6,10-11,17H,7-9,12H2,1-4H3\t17-\m0\s

C21H25NO4 (355.1783)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM. Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM. Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM.

   

Gramin

InChI=1\C11H14N2\c1-13(2)8-9-7-12-11-6-4-3-5-10(9)11\h3-7,12H,8H2,1-2H

C11H14N2 (174.1157)


Gramine (Donaxine) is a natural alkaloid isolated from giant reed[2], acts as an active adiponectin receptor (AdipoR) agonist, with IC50s of 3.2 and 4.2 μM for AdipoR2 and AdipoR1, respectively[1]. Gramine is also a human and mouse β2-Adrenergic receptor (β2-AR) agonist[2]. Gramine (Donaxine) has anti-tumor, anti-viral and anti-inflammatory properties[1]. Gramine (Donaxine) is a natural alkaloid isolated from giant reed[2], acts as an active adiponectin receptor (AdipoR) agonist, with IC50s of 3.2 and 4.2 μM for AdipoR2 and AdipoR1, respectively[1]. Gramine is also a human and mouse β2-Adrenergic receptor (β2-AR) agonist[2]. Gramine (Donaxine) has anti-tumor, anti-viral and anti-inflammatory properties[1]. Gramine (Donaxine) is a natural alkaloid isolated from giant reed[2], acts as an active adiponectin receptor (AdipoR) agonist, with IC50s of 3.2 and 4.2 μM for AdipoR2 and AdipoR1, respectively[1]. Gramine is also a human and mouse β2-Adrenergic receptor (β2-AR) agonist[2]. Gramine (Donaxine) has anti-tumor, anti-viral and anti-inflammatory properties[1].

   

ANISIC ACID

InChI=1\C8H8O3\c1-11-7-4-2-6(3-5-7)8(9)10\h2-5H,1H3,(H,9,10

C8H8O3 (152.0473)


COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS p-Anisic acid (4-Methoxybenzoic acid) is one of the isomers of anisic acid, with anti-bacterial and antiseptic properties[1]. p-Anisic acid (4-Methoxybenzoic acid) is one of the isomers of anisic acid, with anti-bacterial and antiseptic properties[1].

   

AI3-05924

4-14-00-01015 (Beilstein Handbook Reference)

C8H9NO2 (151.0633)


2-(Methylamino)benzoic acid is the main metabolite of methyl-N-methylanthranilates (MMA) (HY-76705) and is the compound in which the ester group is converted. MMA can be isolated from citrus fruits and has potential analgesic activity. 2-(Methylamino)benzoic acid was used to detect the metabolic levels of MMA in rat liver[1].

   

537-73-5

3-Hydroxy-4-methoxycinnamic acid, predominantly trans

C10H10O4 (194.0579)


Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. trans-Isoferulic acid (trans-3-Hydroxy-4-methoxycinnamic acid) is an aromatic acid isolated from the roots of Clematis florida var. plena. trans-Isoferulic acid exhibits anti-inflammatory activity[1].trans-isoferulic acid suppresses NO and PGE2 production through the induction of Nrf2-dependent heme oxygenase-1 (HO-1)[2]. trans-Isoferulic acid (trans-3-Hydroxy-4-methoxycinnamic acid) is an aromatic acid isolated from the roots of Clematis florida var. plena. trans-Isoferulic acid exhibits anti-inflammatory activity[1].trans-isoferulic acid suppresses NO and PGE2 production through the induction of Nrf2-dependent heme oxygenase-1 (HO-1)[2].

   

Apiol

Benzene, 1-allyl-2,5-dimethoxy-3,4-(methylenedioxy)-

C12H14O4 (222.0892)


   

Ethanamine

Ethylamine, aqueous solution with not 50\\% but not >70\\% ethylamine [UN2270] [Flammable liquid]

C2H7N (45.0578)


   

AI3-32395

InChI=1\C9H10O3\c10-8-3-1-2-7(6-8)4-5-9(11)12\h1-3,6,10H,4-5H2,(H,11,12

C9H10O3 (166.063)


3-(3-Hydroxyphenyl)propionic acid is a flavonoid metabolite formed by human microflora. 3-(3-Hydroxyphenyl)propionic acid shows vasodilatory activity[1]. 3-(3-Hydroxyphenyl)propionic acid is a flavonoid metabolite formed by human microflora. 3-(3-Hydroxyphenyl)propionic acid shows vasodilatory activity[1].

   

29307-60-6

(1S,4aS,7aS)-7-(hydroxymethyl)-1-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxymethyl]-2-tetrahydropyranyl]oxy]-1,4a,5,7a-tetrahydrocyclopenta[d]pyran-4-carboxylic acid methyl ester

C23H34O15 (550.1898)


Genipin 1-β-D-gentiobioside (Genipin 1-gentiobioside) is one of the most abundant and bioactive iridoid glycosides in Gardenia jasminoides Ellis, which possesses hepatoprotective, anti-inflammatory, antioxidant, and antithrombotic activities. Genipin 1-β-D-gentiobioside (Genipin 1-gentiobioside) is one of the most abundant and bioactive iridoid glycosides in Gardenia jasminoides Ellis, which possesses hepatoprotective, anti-inflammatory, antioxidant, and antithrombotic activities.

   

cyclohexenone

4-07-00-00124 (Beilstein Handbook Reference)

C6H8O (96.0575)


   

Candicine

Ammonium, (p-hydroxyphenethyl)trimethyl-

C11H18NO+ (180.1388)


   

Tetranap

InChI=1\C10H12\c1-2-6-10-8-4-3-7-9(10)5-1\h1-2,5-6H,3-4,7-8H

C10H12 (132.0939)


   

Neric acid

3-02-00-01469 (Beilstein Handbook Reference)

C10H16O2 (168.115)


   

LS-473

4-12-00-00008 (Beilstein Handbook Reference)

C6H13N (99.1048)


   

Benzonitrile

Benzonitrile

C7H5N (103.0422)


Flavouring compound [Flavornet]

   

Glutamate monosodium salt

Glutamate monosodium salt

C5H8NNaO4 (169.0351)


D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents L-Glutamic acid monosodium salt acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). (S)-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals. L-Glutamic acid monosodium salt is an excitatory amino acid neurotransmitter that acts as an agonist for all subtypes of glutamate receptors (metabolic rhodophylline, NMDA, and AMPA). L-Glutamic acid monosodium salt has an agonist effect on the release of DA from dopaminergic nerve endings. L-Glutamic acid monosodium salt can be used in the study of neurological diseases[1][2][3][4][5]. L-Glutamic acid monosodium salt acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). (S)-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals.

   

Ginsenoside

.BETA.-D-GLUCOPYRANOSIDE, (3.BETA.,6.ALPHA.,12.BETA.)-20-(.BETA.-D-GLUCOPYRANOSYLOXY)-3,12-DIHYDROXYDAMMAR-24-EN-6-YL 2-O-(6-DEOXY-.ALPHA.-L-MANNOPYRANOSYL)-

C48H82O18 (946.5501)


Ginsenoside Re is a ginsenoside found in Panax ginseng that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 6 and 20 have been converted to the corresponding alpha-L-rhamnopyranosyl-(1->2)-beta-D-glucopyranoside and beta-D-glucopyranoside respectively, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite, an antioxidant, a neuroprotective agent, an anti-inflammatory agent, an antineoplastic agent and a nephroprotective agent. It is a 12beta-hydroxy steroid, a 3beta-hydroxy steroid, a beta-D-glucoside, a ginsenoside, a tetracyclic triterpenoid, a disaccharide derivative and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. Ginsenoside B2 is under investigation in clinical trial NCT00781534 (A Clinical Trial of Ginseng in Diabetes). Ginsenoside Re is a natural product found in Panax vietnamensis, Luffa aegyptiaca, and other organisms with data available. See also: Asian Ginseng (part of); American Ginseng (part of); Panax notoginseng root (part of). A ginsenoside found in Panax ginseng that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 6 and 20 have been converted to the corresponding alpha-L-rhamnopyranosyl-(1->2)-beta-D-glucopyranoside and beta-D-glucopyranoside respectively, and in which a double bond has been introduced at the 24-25 position. Ginsenoside Re (Ginsenoside B2) is an extract from Panax notoginseng. Ginsenoside Re decreases the β-amyloid protein (Aβ). Ginsenoside Re plays a role in antiinflammation through inhibition of JNK and NF-κB. Ginsenoside Re (Ginsenoside B2) is an extract from Panax notoginseng. Ginsenoside Re decreases the β-amyloid protein (Aβ). Ginsenoside Re plays a role in antiinflammation through inhibition of JNK and NF-κB.

   

GS-Rd

.BETA.-D-GLUCOPYRANOSIDE, (3.BETA.,12.BETA.)-20-(.BETA.-D-GLUCOPYRANOSYLOXY)-12-HYDROXYDAMMAR-24-EN-3-YL 2-O-.BETA.-D-GLUCOPYRANOSYL-

C48H82O18 (946.5501)


Ginsenoside Rd is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is (20S)-ginsenoside Rg3 in which the hydroxy group at position 20 has been converted to its beta-D-glucopyranoside. It has a role as a vulnerary, a neuroprotective agent, an apoptosis inducer, an anti-inflammatory drug, an immunosuppressive agent and a plant metabolite. It is a ginsenoside, a beta-D-glucoside and a tetracyclic triterpenoid. It is functionally related to a (20S)-ginsenoside Rg3. Ginsenoside Rd is a natural product found in Panax vietnamensis, Gynostemma pentaphyllum, and other organisms with data available. See also: American Ginseng (part of); Panax notoginseng root (part of). A ginsenoside found in Panax ginseng and Panax japonicus var. major that is (20S)-ginsenoside Rg3 in which the hydroxy group at position 20 has been converted to its beta-D-glucopyranoside. Ginsenoside Rd inhibits TNFα-induced NF-κB transcriptional activity with an IC50 of 12.05±0.82 μM in HepG2 cells. Ginsenoside Rd inhibits expression of COX-2 and iNOS mRNA. Ginsenoside Rd also inhibits Ca2+ influx. Ginsenoside Rd inhibits CYP2D6, CYP1A2, CYP3A4, and CYP2C9, with IC50s of 58.0±4.5 μM, 78.4±5.3 μM, 81.7±2.6 μM, and 85.1±9.1 μM, respectively. Ginsenoside Rd inhibits TNFα-induced NF-κB transcriptional activity with an IC50 of 12.05±0.82 μM in HepG2 cells. Ginsenoside Rd inhibits expression of COX-2 and iNOS mRNA. Ginsenoside Rd also inhibits Ca2+ influx. Ginsenoside Rd inhibits CYP2D6, CYP1A2, CYP3A4, and CYP2C9, with IC50s of 58.0±4.5 μM, 78.4±5.3 μM, 81.7±2.6 μM, and 85.1±9.1 μM, respectively.

   

L-BOAA

N-Oxalyl-L-alpha-beta-diaminopropionic acid (BOAA,ODAP)

C5H8N2O5 (176.0433)


N(3)-oxalyl-L-2,3-diaminopropionic acid is an N(beta)-acyl-L-2,3-diaminopropionic acid in which the acyl group is oxalyl. It is functionally related to a propionic acid. It is a conjugate acid of a N(3)-(carboxylatoformyl)-L-2,3-diaminopropionate(1-). Dencichin is a natural product found in Lathyrus latifolius and Lathyrus sativus with data available. See also: Panax notoginseng root (part of). Dencichin is a non-protein amino acid originally extracted from Panax notoginseng, and can inhibit HIF-prolyl hydroxylase-2 (PHD-2) activity.

   

Homotaurine

Acamprosate impurity A, European Pharmacopoeia (EP) Reference Standard

C3H9NO3S (139.0303)


3-aminopropanesulfonic acid is an amino sulfonic acid that is the 3-amino derivative of propanesulfonic acid. It has a role as an algal metabolite, a nootropic agent, an anticonvulsant, a GABA agonist and an anti-inflammatory agent. It is a tautomer of a 3-aminopropanesulfonic acid zwitterion. D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists An amino sulfonic acid that is the 3-amino derivative of propanesulfonic acid. D002491 - Central Nervous System Agents > D000927 - Anticonvulsants C26170 - Protective Agent > C1509 - Neuroprotective Agent Tramiprosate (Homotaurine), an orally active and brain-penetrant natural amino acid found in various species of red marine algae. Tramiprosate binds to soluble Aβ and maintains Aβ in a non-fibrillar form. Tramiprosate is also a GABA analog and possess neuroprotection, anticonvulsion and antihypertension effects[1][2][3].

   

LeachianoneG

Leachianone GLeucopelargonidin3-Deoxy-4-O-methylsappanolEpimedokoreanin BQingyangshengenin11-Deoxymogroside IIIE3-O-Acetyloleanolic acidLupulone CMbamiloside Ap-Hydroxyphenethyl trans-ferulate2-Hydroxyl emodin-1-methyl ether

C20H20O6 (356.126)


Leachianone G is a tetrahydroxyflavanone having the hydroxy groups at the 2-, 4-, 5- and 7-positions and a prenyl group at 8-position. It is a tetrahydroxyflavanone, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. It is a conjugate acid of a leachianone G(1-). Leachianone G is a natural product found in Morus alba, Sophora flavescens, and Lespedeza cyrtobotrya with data available. A tetrahydroxyflavanone having the hydroxy groups at the 2-, 4-, 5- and 7-positions and a prenyl group at 8-position.

   

Didrovaltrat

Butanoic acid, 3-methyl-, 6-(acetyloxy)-4a,5,6,7a-tetrahydro-4-((3-methyl-1-oxobutoxy)methyl)spiro(cyclopenta(c)pyran-7(1H),2-oxiran)-1-yl ester, (1S-(1-alpha,4a-alpha,6-alpha,7-beta,7a-alpha))-

C22H32O8 (424.2097)


Didrovaltratum is an iridoid monoterpenoid. Didrovaltrate is a natural product found in Valeriana pulchella, Fedia cornucopiae, and other organisms with data available. See also: Viburnum opulus bark (has part). C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic

   

chloral hydrate

chloral hydrate

C2H3Cl3O2 (163.9199)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CC - Aldehydes and derivatives C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2199 - Adjuvant Analgesic An organochlorine compound that is the hydrate of trichloroacetaldehyde.

   

CYCLOHEXYLAMINE

cyclohexanamine

C6H13N (99.1048)


A primary aliphatic amine consisting of cyclohexane carrying an amino substituent.

   

Dexpanthenol

DL-Pantothenyl alcohol

C9H19NO4 (205.1314)


D - Dermatologicals > D03 - Preparations for treatment of wounds and ulcers > D03A - Cicatrizants A - Alimentary tract and metabolism > A11 - Vitamins S - Sensory organs > S01 - Ophthalmologicals D-Panthenol is the biologically-active alcohol of pantothenic acid, which leads to an elevation in the amount of coenzyme A in the cell.

   

Ethylamine

ethanamine

C2H7N (45.0578)


A two-carbon primary aliphatic amine.

   

Pyridaben

2-tert-butyl-5-[(4-tert-butylphenyl)methylsulfanyl]-4-chloropyridazin-3-one

C19H25ClN2OS (364.1376)


   

Penicillamine

D-penicillamine

C5H11NO2S (149.051)


An alpha-amino acid having the structure of valine substituted at the beta position with a sulfanyl group. M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01C - Specific antirheumatic agents > M01CC - Penicillamine and similar agents C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor > C1971 - Angiogenesis Activator Inhibitor D064449 - Sequestering Agents > D002614 - Chelating Agents D020011 - Protective Agents > D000931 - Antidotes D018501 - Antirheumatic Agents Penicillamine (D-(-)-Penicillamine) is a penicillin metabolic degradation product, can be used as a heavy metal chelator. Penicillamine increases free copper and enhances oxidative stress. Penicillamine has effect of seizures through nitric oxide/NMDA pathways. Penicillamine is a potential immune modulator. Penicillamine can be used for the research of Wilson disease, rheumatoid arthritis, and cystinuria[1][2][3][4].

   

meclizine

1-[(4-chlorophenyl)-phenylmethyl]-4-[(3-methylphenyl)methyl]piperazine

C25H27ClN2 (390.1863)


R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AE - Piperazine derivatives D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics D002491 - Central Nervous System Agents D018926 - Anti-Allergic Agents

   

Cogentin

Benztropine

C21H25NO (307.1936)


N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AC - Ethers of tropine or tropine derivatives D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D049990 - Membrane Transport Modulators

   

Psilocybine

Psilocybine

C12H17N2O4P (284.0926)


D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Diethylpropion

(S)-diethylpropion

C13H19NO (205.1467)


A - Alimentary tract and metabolism > A08 - Antiobesity preparations, excl. diet products > A08A - Antiobesity preparations, excl. diet products > A08AA - Centrally acting antiobesity products C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D019440 - Anti-Obesity Agents > D001067 - Appetite Depressants C78272 - Agent Affecting Nervous System > C29728 - Anorexiant

   

Propulsid

Propulsid

C23H29ClFN3O4 (465.1831)


A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03F - Propulsives > A03FA - Propulsives D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents Cisapride (R 51619) is an orally active 5-HT4 receptor agonist with an EC50 value of 140 nM. Cisapride is a hERG blocker with an IC50 value of 9.4 nM. Cisapride is a gastroprokinetic agent that stimulates gastrointestinal motor activity[1][2][3][4].

   

chlorоphentermine

chlorоphentermine

C10H14ClN (183.0815)


D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant

   

DL-Tryptophan

2-amino-3-(1H-indol-3-yl)propanoic acid

C11H12N2O2 (204.0899)


DL-Tryptophan is an endogenous metabolite.

   

m-Phenylenediamine

benzene-1,3-diamine

C6H8N2 (108.0687)


   

promazine

promazine

C17H20N2S (284.1347)


N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AA - Phenothiazines with aliphatic side-chain D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent > C740 - Phenothiazine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics

   

PSILOCIN

PSILOCIN

C12H16N2O (204.1263)


A tryptamine alkaloid that is N,N-dimethyltryptamine carrying an additional hydroxy substituent at position 4. A hallucinogenic alkaloid isolated in trace amounts from Psilocybe mushrooms (also known as Teonanacatl or "magic mushrooms"). D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens

   

PERILLALDEHYDE

dl-Perillaldehyde

C10H14O (150.1045)


   

bufotenin

Bufotenine

C12H16N2O (204.1263)


A tertiary amine that consists of N,N-dimethyltryptamine bearing an additional hydroxy substituent at position 5. D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens D009676 - Noxae > D011042 - Poisons > D014688 - Venoms

   

(1R)-2-phenylcyclopropan-1-amine

(1R)-2-phenylcyclopropan-1-amine

C9H11N (133.0891)


N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AF - Monoamine oxidase inhibitors, non-selective D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors

   

Phensuximide

Phensuximide

C11H11NO2 (189.079)


N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AD - Succinimide derivatives C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent

   

dyclonine

dyclonine

C18H27NO2 (289.2042)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations > R02AD - Anesthetics, local D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

proparacaine

proxymetacaine

C16H26N2O3 (294.1943)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics S - Sensory organs > S01 - Ophthalmologicals > S01H - Local anesthetics > S01HA - Local anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

guanabenz

2-[(E)-(2,6-dichlorophenyl)methylideneamino]guanidine

C8H8Cl2N4 (230.0126)


C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

Difenidol

DIPHENIDOL

C21H27NO (309.2093)


D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics D002491 - Central Nervous System Agents

   

Clorazepic acid

Clorazepic acid

C16H11ClN2O3 (314.0458)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants

   

Levacetylmethadol

Levomethadyl Acetate

C23H31NO2 (353.2355)


N - Nervous system > N07 - Other nervous system drugs > N07B - Drugs used in addictive disorders > N07BC - Drugs used in opioid dependence D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics

   

16α-Hydroxyestrone

16alpha-hydroxyestrone

C18H22O3 (286.1569)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones The 16alpha-hydroxy derivative of estrone; a minor estrogen metabolite.

   

L-BMAA

(S)-2-AMINO-3-(METHYLAMINO)PROPANOIC ACID

C4H10N2O2 (118.0742)


A non-proteinogenic L-alpha-amino acid that is L-alanine in which one of the methyl hydrogens is replaced by a methylamino group. A non-proteinogenic amino acid produced by cyanobacteria, it is a neurotoxin that has been postulated as a possible cause of neurodegenerative disorders of aging such as Alzheimers disease, amyotrophic lateral sclerosis, and the amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS-PDC) syndrome of Guam. D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists

   

Mivacurium

Mivacurium

C58H80N2O14+2 (1028.5609)


D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents M - Musculo-skeletal system > M03 - Muscle relaxants > M03A - Muscle relaxants, peripherally acting agents C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C66886 - Nicotinic Antagonist

   

2-Amino-3H-phenoxazin-3-one

2-aminophenoxazin-3-one

C12H8N2O2 (212.0586)


   

dezocine

dezocine

C16H23NO (245.178)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics N - Nervous system > N02 - Analgesics > N02A - Opioids

   

Isonicotinamide

pyridine-4-carboxamide

C6H6N2O (122.048)


   

Imidazolidine-2,4-dione

Imidazolidine-2,4-dione

C3H4N2O2 (100.0273)


COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

CANNABICHROMENE

CANNABICHROMENE

C21H30O2 (314.2246)


   

Cholest-5-ene

Cholest-5-ene

C27H46 (370.3599)


   

12S-HHTrE

12-Hydroxyheptadecatrienoic acid

C17H28O3 (280.2038)


A trienoic fatty acid that consists of (5Z,8E,10E)-heptadeca-5,8,10-trienoic acid bearing an additional 12S-hydroxy substituent.

   

4-quinolone

4-Hydroxyquinoline

C9H7NO (145.0528)


   

Cinnabarinic acid

Cinnabarinic acid

C14H8N2O6 (300.0382)


Cinnabarinic acid is a specific orthosteric agonist of mGlu4 by interacting with residues of the glutamate binding pocket of mGlu4, has no activity at other mGlu receptors. Cinnabarinic acid is an endogenous metabolite of the kynurenine pathway of tryptophan. Cinnabarinic acid induces cell apoptosis[1].

   

3,4-Dihydroxyphenylacetaldehyde

3,4-Dihydroxyphenylacetaldehyde

C8H8O3 (152.0473)


A phenylacetaldehyde in which the 3 and 4 positions of the phenyl group are substituted by hydroxy groups. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

5beta-cholestan-3-one

(5R,8R,9S,10S,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-1,2,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydrocyclopenta[a]phenanthren-3-one

C27H46O (386.3548)


A 3-oxo-5beta-steroid that is 5beta-cholestane substituted by an oxo group at position 3.

   

D-Arabinose 5-phosphate

aldehydo-D-arabinose 5-phosphate

C5H11O8P (230.0192)


The 5-phospho derivative of D-arabinose. It is an intermediate in the synthesis of lipopolysaccharides.

   

6,7-Dimethoxy-1,2,3,4-tetrahydroisoquinoline

6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline

C11H15NO2 (193.1103)


   

Nicotinate mononucleotide

Nicotinate mononucleotide

C11H15NO9P+ (336.0484)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

imetit

imetit

C6H10N4S (170.0626)


D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D017442 - Histamine Agonists

   

Ro 61-8048

3,4-Dimethoxy-N-(4-(3-nitrophenyl)thiazol-2-yl)benzenesulfonamide

C17H15N3O6S2 (421.0402)


   

N-Methylpyridinium

N-Methylpyridinium

C6H8N+ (94.0657)


   

Dopaminoquinone

Dopamine quinone

C8H9NO2 (151.0633)


A member of the class of 1,2-benzoquinones that is 1,2-benzoquinone in which a hydrogen at para to one of the oxo groups has been replaced by a 2-aminoethyl group.

   

(+)-Pronuciferine

(+)-Pronuciferine

C19H21NO3 (311.1521)


An isoquinoline alkaloid isolated from Berberis coletioides.

   

formyl CoA

Formyl-CoA

C22H36N7O17P3S (795.1101)


An acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of formic acid.

   

6-acetamido-2-oxohexanoic acid

6-acetamido-2-oxohexanoic acid

C8H13NO4 (187.0845)


A member of the class of acetamides that is the acetyl derivative of 6-amino-2-oxohexanoic acid.

   

Immepip

4-(1h-imidazol-4-ylmethyl)-piperidine

C9H15N3 (165.1266)


   

Histidylleucine

(2S)-2-[[(2S)-2-amino-3-(1H-imidazol-5-yl)propanoyl]amino]-4-methylpentanoic acid

C12H20N4O3 (268.1535)


   

3-deoxy-D-manno-octulosonate

3-deoxy-D-manno-octulosonate

C8H14O8 (238.0689)


   

(+)-Lysergic acid

6-Methyl-9,10-didehydroergoline-8-carboxylic acid

C16H16N2O2 (268.1212)


   
   

Arginine, ethyl ester

ethyl (2S)-2-amino-5-(diaminomethylideneamino)pentanoate

C8H18N4O2 (202.143)


   

Parnate

2-Phenyl cyclo propan-1-amine

C9H11N (133.0891)


N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AF - Monoamine oxidase inhibitors, non-selective D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors

   

Epothilone D

Desoxyepothilone b

C27H41NO5S (491.2705)


An epithilone that is epithilone C in which the hydrogen at position 13 of the oxacyclohexadec-13-ene-2,6-dione macrocycle has been replaced by a methyl group. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents

   

Ciclacillin

4-Thia-1-azabicyclo[3.2.0]heptane-2-carboxylicacid, 6-[[(1-aminocyclohexyl)carbonyl]amino]-3,3-dimethyl-7-oxo-, (2S,5R,6R)-

C15H23N3O4S (341.1409)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic Same as: D01334

   

Methyl tert-butyl ether

Methyl tert-butyl ether

C5H12O (88.0888)


An ether having methyl and tert-butyl as the two alkyl components. D004785 - Environmental Pollutants > D000393 - Air Pollutants D009676 - Noxae > D002273 - Carcinogens

   

acetochlor

2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl)acetamide

C14H20ClNO2 (269.1182)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

3-Hydroxyphenylpropanoate

3-(3-hydroxyphenyl)propanoic acid

C9H10O3 (166.063)


A monocarboxylic acid that is propionic acid carrying a 3-hydroxyphenyl substituent at C-3. 3-(3-Hydroxyphenyl)propionic acid is a flavonoid metabolite formed by human microflora. 3-(3-Hydroxyphenyl)propionic acid shows vasodilatory activity[1]. 3-(3-Hydroxyphenyl)propionic acid is a flavonoid metabolite formed by human microflora. 3-(3-Hydroxyphenyl)propionic acid shows vasodilatory activity[1].

   

Geranate

(2E)-3,7-di­methyl­octa-2,6-di­enoic acid

C10H16O2 (168.115)


A polyunsaturated fatty acid that is octa-2,6-dienoic acid bearing two methyl substituents at positions 3 and 7 (the 2E-isomer).

   

Sulfosalicylic Acid

2-Hydroxy-5-sulfobenzoic acid

C7H6O6S (217.9885)


D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic

   

gamma-L-Glutamylputrescine

gamma-L-Glutamylputrescine

C9H19N3O3 (217.1426)


   

CHLOROACETYL CHLORIDE

CHLOROACETYL CHLORIDE

C2H2Cl2O (111.9483)


   

Tetralin

1,2,3,4-Tetrahydronaphthalene

C10H12 (132.0939)


   

Aminomethyl propanediol

2-Amino-2-methyl-1,3-propanediol

C4H11NO2 (105.079)


   

L-Methyldopa

3-Hydroxy-alpha-methyl-DL-tyrosine

C10H13NO4 (211.0845)


C - Cardiovascular system > C02 - Antihypertensives > C02A - Antiadrenergic agents, centrally acting > C02AB - Methyldopa D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

(R)-2-(8,8-dimethyl-2,3,4,8-tetrahydropyrano[2,3-f]chromen-3-yl)-5-methoxyphenol

(R)-2-(8,8-dimethyl-2,3,4,8-tetrahydropyrano[2,3-f]chromen-3-yl)-5-methoxyphenol

C21H22O4 (338.1518)


   

Glycerophosphorylethanolamine

2-AMINOETHYL (2,3-DIHYDROXYPROPYL) HYDROGEN PHOSPHATE

C5H14NO6P (215.0559)


   

Devapamil

5-(N-(3-METHOXYPHENETHYL)-N-METHYLAMINO)-2-ISOPROPYL-2-(3,4-DIMETHOXYPHENYL)PENTANENITRILE

C26H36N2O3 (424.2726)


C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

(+)-Fargesin

(+)-Fargesin

C21H22O6 (370.1416)


   

D-Lysergic acid N,N-diethylamide

N,N-diethyl-7-methyl-6,6a,8,9-tetrahydro-4H-indolo[4,3-fg]quinoline-9-carboxamide

C20H25N3O (323.1998)