PE(16:0/18:1(9Z)) (BioDeep_00000004081)

Main id: BioDeep_00000410772

 

human metabolite Endogenous


代谢物信息卡片


(2-aminoethoxy)[(2R)-3-(hexadecanoyloxy)-2-[(9Z)-octadec-9-enoyloxy]propoxy]phosphinic acid

化学式: C39H76NO8P (717.5308266)
中文名称: 1-棕榈酰-2-油酰-SN-甘油-3-磷脂酰乙醇胺
谱图信息: 最多检出来源 Homo sapiens(lipidomics) 1.28%

分子结构信息

SMILES: CCCCCCCCC=CCCCCCCCC(=O)OC(COC(=O)CCCCCCCCCCCCCCC)COP(=O)(O)OCCN
InChI: InChI=1S/C39H76NO8P/c1-3-5-7-9-11-13-15-17-18-20-22-24-26-28-30-32-39(42)48-37(36-47-49(43,44)46-34-33-40)35-45-38(41)31-29-27-25-23-21-19-16-14-12-10-8-6-4-2/h17-18,37H,3-16,19-36,40H2,1-2H3,(H,43,44)/b18-17-/t37-/m1/s1

描述信息

PE(16:0/18:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(16:0/18:1(9Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of oleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.
PE(16:0/18:1(9Z)) is a phosphatidylethanolamine. It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms. PE(16:0/18:1(9Z)), in particular, consists of one hexadecanoyl chain to the C-1 atom, and one 9Z-octadecenoyl to the C-2 atom. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

同义名列表

47 个代谢物同义名

(2-aminoethoxy)[(2R)-3-(hexadecanoyloxy)-2-[(9Z)-octadec-9-enoyloxy]propoxy]phosphinic acid; 2-aminoethoxy((2R)-3-(hexadecanoyloxy)-2-[(9Z)-octadec-9-enoyloxy]propoxy)phosphinic acid; [1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] octadec-9-enoate; 1-hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine; 1-Hexadecanoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine zwitterion; 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine zwitterion; 2-Oleoyl-1-palmitoyl-sn-glycero-3-phosphatidylethanolamine; 1-Palmitoyl-2-oleoyl-sn-glyceryl-3-phosphorylethanolamine; 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphorylethanolamine; Alpha-palmitoyl-beta-oleoylglycerophosphorylethanolamine; 1-Palmitoyl-2-oleoyl-sn-glycero-phosphatidylethanolamine; L-alpha-1-Palmitoyl-2-oleoylglycerophosphoethanolamine; 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine; L-Α-1-palmitoyl-2-oleoylglycerophosphoethanolamine; Α’-palmitoyl-β-oleoylglycerophosphorylethanolamine; Α-palmitoyl-β-oleoylglycerophosphorylethanolamine; 1-Palmitoyl-2-oleoylphosphatidylethanolamine; Phosphatidylethanolamine(16:0/18:1(9Z)); Phosphatidylethanolamine(16:0/18:1n9); Phosphatidylethanolamine(16:0/18:1W9); Phosphatidylethanolamine (16:0/18:1); Phophatidylethanolamine(16:0/18:1W9); Phophatidylethanolamine(16:0/18:1n9); Phosphatidylethanolamine(16:0/18:1); Phophatidylethanolamine(16:0/18:1); Phosphatidylethanolamine(34:1); Phophatidylethanolamine(34:1); 1-Palmitoyl-2-oleoylcephalin; 1-Palmitoyl-2-oleoyl-gpe; GPEtn(16:0/18:1(9Z)); GPE(16:0/18:1(9Z)); GPEtn(16:0/18:1W9); GPEtn(16:0/18:1n9); PE(16:0/18:1(9Z)); GPE(16:0/18:1W9); GPE(16:0/18:1n9); GPEtn(16:0/18:1); PE(16:0/18:1N9); PE(16:0/18:1W9); GPE(16:0/18:1); PE(16:0/18:1); PE(16:0_18:1); GPEtn(34:1); GPE(34:1); PE(34:1); PE 34:1; POPE



数据库引用编号

16 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

45 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(45)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Petra Maleš, Ivana Nikšić-Franjić, Anna Wang, Barbara Pem, Danijela Bakarić. Optical and molecular features of negatively curved surfaces created by POPE lipids: A crucial role of the initial conditions. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2024 Sep; 317(?):124462. doi: 10.1016/j.saa.2024.124462. [PMID: 38754204]
  • Alessandro Crnjar, Carla Molteni. Cholesterol content in the membrane promotes key lipid-protein interactions in a pentameric serotonin-gated ion channel. Biointerphases. 2021 01; 15(6):061018. doi: 10.1116/6.0000561. [PMID: 33397116]
  • Aml A Alnaas, Abena Watson-Siriboe, Sherleen Tran, Mikias Negussie, Jack A Henderson, J Ryan Osterberg, Nara L Chon, Beckston M Harrott, Julianna Oviedo, Tatyana Lyakhova, Cole Michel, Nichole Reisdorph, Richard Reisdorph, Colin T Shearn, Hai Lin, Jefferson D Knight. Multivalent lipid targeting by the calcium-independent C2A domain of synaptotagmin-like protein 4/granuphilin. The Journal of biological chemistry. 2021 Jan; 296(?):100159. doi: 10.1074/jbc.ra120.014618. [PMID: 33277360]
  • Mehdi Azouz, Alexandre Therrien, Corinne Buré, Caroline Tokarski, Sophie Lecomte, Michel Lafleur. Lipid selectivity in detergent extraction from bilayers. Biochemical and biophysical research communications. 2020 10; 531(2):140-143. doi: 10.1016/j.bbrc.2020.07.065. [PMID: 32782150]
  • Ming Li, William T Heller, Chung-Hao Liu, Carrie Y Gao, Yutian Cai, Yiming Hou, Mu-Ping Nieh. Effects of fluidity and charge density on the morphology of a bicellar mixture - A SANS study. Biochimica et biophysica acta. Biomembranes. 2020 09; 1862(9):183315. doi: 10.1016/j.bbamem.2020.183315. [PMID: 32304755]
  • Laura J Fox, Lauren Matthews, Holly Stockdale, Supakit Pichai, Tim Snow, Robert M Richardson, Wuge H Briscoe. Structural changes in lipid mesophases due to intercalation of dendritic polymer nanoparticles: Swollen lamellae, suppressed curvature, and augmented structural disorder. Acta biomaterialia. 2020 03; 104(?):198-209. doi: 10.1016/j.actbio.2019.12.036. [PMID: 31904557]
  • Yunhan Zhang, Tongwei Chen, Zhimeng Pan, Xianbao Sun, Xue Yin, Miao He, Shiyan Xiao, Haojun Liang. Theoretical Insights into the Interactions between Star-Shaped Antimicrobial Polypeptides and Bacterial Membranes. Langmuir : the ACS journal of surfaces and colloids. 2018 11; 34(44):13438-13448. doi: 10.1021/acs.langmuir.8b02677. [PMID: 30350688]
  • S C Lopes, G Ivanova, B de Castro, P Gameiro. Revealing cardiolipins influence in the construction of a significant mitochondrial membrane model. Biochimica et biophysica acta. Biomembranes. 2018 11; 1860(11):2465-2477. doi: 10.1016/j.bbamem.2018.07.006. [PMID: 30040925]
  • Simou Sun, Anne M Sendecki, Saranya Pullanchery, Da Huang, Tinglu Yang, Paul S Cremer. Multistep Interactions between Ibuprofen and Lipid Membranes. Langmuir : the ACS journal of surfaces and colloids. 2018 09; 34(36):10782-10792. doi: 10.1021/acs.langmuir.8b01878. [PMID: 30148644]
  • Dorottya Nagy-Szakal, Dinesh K Barupal, Bohyun Lee, Xiaoyu Che, Brent L Williams, Ellie J R Kahn, Joy E Ukaigwe, Lucinda Bateman, Nancy G Klimas, Anthony L Komaroff, Susan Levine, Jose G Montoya, Daniel L Peterson, Bruce Levin, Mady Hornig, Oliver Fiehn, W Ian Lipkin. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics. Scientific reports. 2018 07; 8(1):10056. doi: 10.1038/s41598-018-28477-9. [PMID: 29968805]
  • Marta Kolasinska-Sojka, Magdalena Wlodek, Michal Szuwarzynski, Sami Kereiche, Lubomir Kovacik, Piotr Warszynski. Properties of POPC/POPE supported lipid bilayers modified with hydrophobic quantum dots on polyelectrolyte cushions. Colloids and surfaces. B, Biointerfaces. 2017 Oct; 158(?):667-674. doi: 10.1016/j.colsurfb.2017.07.046. [PMID: 28763774]
  • Chun Shen, Minmin Xue, Hu Qiu, Wanlin Guo. Insertion of Neurotransmitters into a Lipid Bilayer Membrane and Its Implication on Membrane Stability: A Molecular Dynamics Study. Chemphyschem : a European journal of chemical physics and physical chemistry. 2017 Mar; 18(6):626-633. doi: 10.1002/cphc.201601184. [PMID: 28054433]
  • Jordi H Borrell, M Teresa Montero, Òscar Domènech. Mapping phase diagrams of supported lipid bilayers by atomic force microscopy. Microscopy research and technique. 2017 01; 80(1):4-10. doi: 10.1002/jemt.22655. [PMID: 27001606]
  • Oscar D Bello, Sarah M Auclair, James E Rothman, Shyam S Krishnakumar. Using ApoE Nanolipoprotein Particles To Analyze SNARE-Induced Fusion Pores. Langmuir : the ACS journal of surfaces and colloids. 2016 Mar; 32(12):3015-23. doi: 10.1021/acs.langmuir.6b00245. [PMID: 26972604]
  • Magdalena Wlodek, Michal Szuwarzynski, Marta Kolasinska-Sojka. Effect of Supporting Polyelectrolyte Multilayers and Deposition Conditions on the Formation of 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine Lipid Bilayers. Langmuir : the ACS journal of surfaces and colloids. 2015 Sep; 31(38):10484-92. doi: 10.1021/acs.langmuir.5b02560. [PMID: 26334376]
  • Maksym Golub, Dieter Lott, Vasil M Garamus, Daniel Laipple, Michael Stoermer, Erik B Watkins, Andreas Schreyer, Regine Willumeit-Römer. Neutron study of phospholipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-ethanolamine spray coating on titanium implants. Biointerphases. 2015 Mar; 11(1):011002. doi: 10.1116/1.4938556. [PMID: 26714450]
  • I P Kompiang, W R Gibson. Effect of hypophysectomy and insulin on lipogenesis in cockerels. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme. 1976 Sep; 8(5):340-5. doi: 10.1055/s-0028-1093629. [PMID: 10239]