atractylenolideII (BioDeep_00000859329)

Main id: BioDeep_00000000352

 

PANOMIX_OTCML-2023 Antitumor activity


代谢物信息卡片


Atractylenolide II

化学式: C15H20O2 (232.1463)
中文名称: 白术内酯II
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC1=C2CC3C(=C)CCCC3(CC2OC1=O)C
InChI: InChI=1S/C15H20O2/c1-9-5-4-6-15(3)8-13-11(7-12(9)15)10(2)14(16)17-13/h12-13H,1,4-8H2,2-3H3/t12-,13-,15+/m0/s1

描述信息

Atractylenolide II is a sesquiterpene compound isolated from the dried rhizome of Atractylodes macrocephala (Baizhu in Chinese); anti-proliferative activity. IC50 value: 82.3 μM(B16 melanoma cell, 48 h) [1] Target: anticancer natural compound in vitro: AT-II treatment for 48 h dose-dependently inhibited cell proliferation with an IC(50) of 82.3 μM, and induced G1 phase cell cycle arrest. Moreover, treatment with 75 μM AT-II induced apoptosis. These observations were associated with the decrease of the expression of Cdk2, phosphorylated-Akt, phosphorylated-ERK and Bcl-2, the increase of the expression of phosphorylated-p38, phosphorylated-p53, p21, p27, and activation of caspases-8, -9 and -3. In addition, a chemical inhibitor of p53, PFTα, significantly decreased AT-II-mediated growth inhibition and apoptosis [1]. In B16 and A375 cells, AT-II (20, 40 μm) treatment for 48 h dose-dependently reduced protein expression levels of phospho-STAT3, phospho-Src, as well as STAT3-regulated Mcl-1 and Bcl-xL. Overexpression of a constitutively active variant of STAT3, STAT3C in A375 cells diminished the antiproliferative and apoptotic effects of AT-II [2]. in vivo: Daily administration of AT-II (12.5, 25 mg/kg, i.g.) for 14 days significantly inhibited tumor growth in a B16 xenograft mouse model and inhibited the activation/phosphorylation of STAT3 and Src in the xenografts [2].
Atractylenolide II is a sesquiterpene compound isolated from the dried rhizome of Atractylodes macrocephala (Baizhu in Chinese); anti-proliferative activity. IC50 value: 82.3 μM(B16 melanoma cell, 48 h) [1] Target: anticancer natural compound in vitro: AT-II treatment for 48 h dose-dependently inhibited cell proliferation with an IC(50) of 82.3 μM, and induced G1 phase cell cycle arrest. Moreover, treatment with 75 μM AT-II induced apoptosis. These observations were associated with the decrease of the expression of Cdk2, phosphorylated-Akt, phosphorylated-ERK and Bcl-2, the increase of the expression of phosphorylated-p38, phosphorylated-p53, p21, p27, and activation of caspases-8, -9 and -3. In addition, a chemical inhibitor of p53, PFTα, significantly decreased AT-II-mediated growth inhibition and apoptosis [1]. In B16 and A375 cells, AT-II (20, 40 μm) treatment for 48 h dose-dependently reduced protein expression levels of phospho-STAT3, phospho-Src, as well as STAT3-regulated Mcl-1 and Bcl-xL. Overexpression of a constitutively active variant of STAT3, STAT3C in A375 cells diminished the antiproliferative and apoptotic effects of AT-II [2]. in vivo: Daily administration of AT-II (12.5, 25 mg/kg, i.g.) for 14 days significantly inhibited tumor growth in a B16 xenograft mouse model and inhibited the activation/phosphorylation of STAT3 and Src in the xenografts [2].

同义名列表

4 个代谢物同义名

Atractylenolide II; atractylenolideII; 2-Atractylenolide; Asterolide



数据库引用编号

8 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 12 AR, BCL2, BCL2L1, IL13, JAK2, MAPK14, NFE2L2, PIK3CA, ROR1, STAT3, STAT6, VIM
Peripheral membrane protein 1 JAK2
Endosome membrane 1 MRC1
Endoplasmic reticulum membrane 2 BCL2, HMOX1
Mitochondrion membrane 1 BCL2L1
Nucleus 9 AR, BCL2, HMOX1, JAK2, MAPK14, NFE2L2, PIAS1, STAT3, STAT6
cytosol 11 AR, BCL2, BCL2L1, HMOX1, JAK2, MAPK14, NFE2L2, PIK3CA, STAT3, STAT6, VIM
phagocytic vesicle 1 VIM
centrosome 2 BCL2L1, NFE2L2
nucleoplasm 8 AR, HMOX1, JAK2, MAPK14, NFE2L2, PIAS1, STAT3, STAT6
RNA polymerase II transcription regulator complex 3 NFE2L2, STAT3, STAT6
Cell membrane 2 MRC1, VIM
Cytoplasmic side 2 BCL2L1, HMOX1
lamellipodium 1 PIK3CA
Cell projection, axon 1 ROR1
cell surface 2 MRC1, ROR1
glutamatergic synapse 3 JAK2, MAPK14, PIAS1
Golgi apparatus 1 NFE2L2
Golgi membrane 1 INS
mitochondrial inner membrane 1 BCL2L1
postsynapse 1 JAK2
Cytoplasm, cytosol 2 BCL2L1, NFE2L2
plasma membrane 8 AR, JAK2, MRC1, NFE2L2, PIK3CA, ROR1, STAT3, VIM
synaptic vesicle membrane 1 BCL2L1
Membrane 5 AR, BCL2, HMOX1, JAK2, ROR1
axon 2 CCK, VIM
caveola 1 JAK2
extracellular exosome 1 VIM
endoplasmic reticulum 3 BCL2, BCL2L1, HMOX1
extracellular space 6 CCK, HMOX1, IL10, IL13, IL4, INS
perinuclear region of cytoplasm 2 HMOX1, PIK3CA
intercalated disc 1 PIK3CA
mitochondrion 3 BCL2, BCL2L1, MAPK14
protein-containing complex 2 AR, BCL2
Single-pass type I membrane protein 2 MRC1, ROR1
Secreted 5 CCK, IL10, IL13, IL4, INS
extracellular region 6 CCK, IL10, IL13, IL4, INS, MAPK14
cytoplasmic side of plasma membrane 1 JAK2
Mitochondrion outer membrane 2 BCL2, BCL2L1
Single-pass membrane protein 2 BCL2, BCL2L1
mitochondrial outer membrane 3 BCL2, BCL2L1, HMOX1
Mitochondrion matrix 1 BCL2L1
mitochondrial matrix 1 BCL2L1
transcription regulator complex 1 STAT3
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 BCL2L1
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 BCL2L1
Nucleus membrane 2 BCL2, BCL2L1
Bcl-2 family protein complex 2 BCL2, BCL2L1
nuclear membrane 2 BCL2, BCL2L1
external side of plasma membrane 1 IL13
Membrane raft 1 JAK2
pore complex 1 BCL2
Cytoplasm, cytoskeleton 2 PIAS1, VIM
focal adhesion 2 JAK2, VIM
Peroxisome 1 VIM
Nucleus, PML body 1 PIAS1
PML body 1 PIAS1
intermediate filament 1 VIM
nuclear speck 3 AR, MAPK14, PIAS1
receptor complex 1 ROR1
neuron projection 1 VIM
chromatin 5 AR, NFE2L2, PIAS1, STAT3, STAT6
mediator complex 1 NFE2L2
cell leading edge 1 VIM
cytoskeleton 3 JAK2, PIAS1, VIM
spindle pole 1 MAPK14
Endomembrane system 1 JAK2
endosome lumen 2 INS, JAK2
microtubule organizing center 1 VIM
Nucleus speckle 1 PIAS1
euchromatin 1 JAK2
myelin sheath 1 BCL2
intermediate filament cytoskeleton 1 VIM
stress fiber 1 ROR1
ficolin-1-rich granule lumen 1 MAPK14
secretory granule lumen 2 INS, MAPK14
Golgi lumen 1 INS
endoplasmic reticulum lumen 1 INS
nuclear matrix 1 VIM
axon terminus 1 ROR1
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
Single-pass type IV membrane protein 1 HMOX1
Nucleus matrix 1 VIM
extrinsic component of cytoplasmic side of plasma membrane 1 JAK2
protein-DNA complex 1 NFE2L2
postsynaptic cytosol 1 PIAS1
extrinsic component of plasma membrane 1 JAK2
granulocyte macrophage colony-stimulating factor receptor complex 1 JAK2
interleukin-12 receptor complex 1 JAK2
interleukin-23 receptor complex 1 JAK2
nuclear periphery 1 PIAS1
presynaptic cytosol 1 PIAS1
BAD-BCL-2 complex 1 BCL2
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[Isoform Bcl-X(L)]: Mitochondrion inner membrane 1 BCL2L1


文献列表

  • Shuang Tian, Lili Ren, Chao Liu, Zhe Wang. Atractylenolide II Suppresses Glycolysis and Induces Apoptosis by Blocking the PADI3-ERK Signaling Pathway in Endometrial Cancer Cells. Molecules (Basel, Switzerland). 2024 Feb; 29(5):. doi: 10.3390/molecules29050939. [PMID: 38474453]
  • Xiaolong Song, Lei Wang, Min Liu, Renyou Pan, Jun Song, Junhong Kong. Atractylenolide II ameliorates myocardial fibrosis and oxidative stress in spontaneous hypertension rats. Technology and health care : official journal of the European Society for Engineering and Medicine. 2023 Jul; ?(?):. doi: 10.3233/thc-220601. [PMID: 37483026]
  • Juan Zou, Yuanyuan Li, Jingyi Cai, Xiaotian Peng, Lincong Zhang, Tian Tian, Tianming Wang, Rong Shi, Jiasheng Wu, Yueming Ma. Identification of Yinchenwuling fang's active components and hepatoprotective effects against cholestatic liver damage induced by alpha-naphthyl isothiocyanate in mice. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2023 Jan; 1215(?):123570. doi: 10.1016/j.jchromb.2022.123570. [PMID: 36542898]
  • Yunting Zhang, Yuxi Liu, Jianguang Wang, Zongying Jiang, Lin Zhang, Yong Cui, Danyu Zhao, Yanjie Wang. Atractylenolide II inhibits tumor-associated macrophages (TAMs)-induced lung cancer cell metastasis. Immunopharmacology and immunotoxicology. 2022 Apr; 44(2):227-237. doi: 10.1080/08923973.2022.2037629. [PMID: 35166628]
  • Mao Deng, Huijuan Chen, Jiaying Long, Jiawen Song, Long Xie, Xiaofang Li. Atractylenolides (I, II, and III): a review of their pharmacology and pharmacokinetics. Archives of pharmacal research. 2021 Jul; 44(7):633-654. doi: 10.1007/s12272-021-01342-6. [PMID: 34269984]
  • Changyan Xiao, Chang Xu, Ningning He, Yang Liu, Yan Wang, Manman Zhang, Kaihua Ji, Liqing Du, Jinhan Wang, Qin Wang, Qiang Liu. Atractylenolide II prevents radiation damage via MAPKp38/Nrf2 signaling pathway. Biochemical pharmacology. 2020 07; 177(?):114007. doi: 10.1016/j.bcp.2020.114007. [PMID: 32360309]
  • Ruijuan Zhang, Zhijun Wang, Qianyun Yu, Jun Shen, Wenji He, Dongqing Zhou, Qingqing Yu, Jiawei Fan, Shurong Gao, Lihong Duan. Atractylenolide II reverses the influence of lncRNA XIST/miR-30a-5p/ROR1 axis on chemo-resistance of colorectal cancer cells. Journal of cellular and molecular medicine. 2019 05; 23(5):3151-3165. doi: 10.1111/jcmm.14148. [PMID: 30907503]
  • Shizhao Xu, Xiaojie Qi, Yuqiang Liu, Yuhan Liu, Xin Lv, Jianzhi Sun, Qian Cai. UPLC-MS/MS of Atractylenolide I, Atractylenolide II, Atractylenolide III, and Atractyloside A in Rat Plasma after Oral Administration of Raw and Wheat Bran-Processed Atractylodis Rhizoma. Molecules (Basel, Switzerland). 2018 Dec; 23(12):. doi: 10.3390/molecules23123234. [PMID: 30544552]
  • Yujie Yang, Yanran Wang, Ting Wang, Xuehua Jiang, Ling Wang. Screening active components of modified Xiaoyao powder as NRF2 agonists. Cell biochemistry and function. 2017 Dec; 35(8):518-526. doi: 10.1002/cbf.3309. [PMID: 29214656]
  • Yu-Jiao Zhao, Wen-Hui Xu, Xiao-Li Shen, Jun-Sheng Tian, Xue-Mei Qin. [Study on TLC identification and UPLC determination method of atractylenolide in Atractylodes macrocephala]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2017 Feb; 42(3):531-535. doi: 10.19540/j.cnki.cjcmm.20161222.074. [PMID: 28952260]
  • Na Zhang, Chao Liu, Tie-Min Sun, Xiao-Ku Ran, Ting-Guo Kang, De-Qiang Dou. Two new compounds from Atractylodes macrocephala with neuroprotective activity. Journal of Asian natural products research. 2017 Jan; 19(1):35-41. doi: 10.1080/10286020.2016.1247351. [PMID: 28027699]
  • Fengxia Lin, Sanlin Lei, Jin'an Ma, Li Shi, Dan Mao, Shaofan Zhang, Jianhua Huang, Xinyi Liu, Dengfeng Ding, Yingjin Zhang, Sifang Zhang. [Inhibitory effect of jianpi-jiedu prescription-contained serum on colorectal cancer SW48 cell proliferation by mTOR-P53-P21 signalling pathway]. Zhong nan da xue xue bao. Yi xue ban = Journal of Central South University. Medical sciences. 2016 Nov; 41(11):1128-1136. doi: 10.11817/j.issn.1672-7347.2016.11.003. [PMID: 27932756]
  • Chien-Liang Chao, Hui-Chi Huang, Hang-Ching Lin, Tsu-Chung Chang, Wen-Liang Chang. Sesquiterpenes from Baizhu Stimulate Glucose Uptake by Activating AMPK and PI3K. The American journal of Chinese medicine. 2016; 44(5):963-79. doi: 10.1142/s0192415x16500531. [PMID: 27430917]
  • Yao Gao, Li Gao, Xiao-xia Gao, Yu-zhi Zhou, Xue-mei Qin, Jun-sheng Tian. [An exploration in the action targets for antidepressant bioactive components of Xiaoyaosan based on network pharmacology]. Yao xue xue bao = Acta pharmaceutica Sinica. 2015 Dec; 50(12):1589-95. doi: . [PMID: 27169281]
  • Han Yan, Yuanyuan Sun, Qili Zhang, Mingjing Yang, Xiaorui Wang, Yang Wang, Zhiguo Yu, Yunli Zhao. Simultaneous determination and pharmacokinetic study of Atractylenolide I, II and III in rat plasma after intragastric administration of Baizhufuling extract and Atractylodis extract by UPLC-MS/MS. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2015 Jul; 993-994(?):86-92. doi: 10.1016/j.jchromb.2015.05.006. [PMID: 26001909]
  • Hai-Ping Chen, Li-Shi Zheng, Kai Yang, Ning Lei, Zhu-Feng Geng, Ping Ma, Qian Cai, Shu-Shan Du, Zhi-Wei Deng. Insecticidal and repellant activities of polyacetylenes and lactones derived from Atractylodes lancea rhizomes. Chemistry & biodiversity. 2015 Apr; 12(4):593-8. doi: 10.1002/cbdv.201400161. [PMID: 25879503]
  • Megumi Sumino, Yuko Saito, Fumio Ikegami, Takao Namiki. A simultaneous determination of principal compounds in tokishakuyakusan by high-performance liquid chromatography with diode array detector. Journal of chromatographic science. 2015 Feb; 53(2):320-4. doi: 10.1093/chromsci/bmu062. [PMID: 24981981]
  • Guo-Shun Shan, Liang-Xiao Zhang, Qi-Miao Zhao, Hong-Bin Xiao, Rong-Jie Zhuo, Gang Xu, Hong Jiang, Xian-Min You, Tian-Zhu Jia. Metabolomic study of raw and processed Atractylodes macrocephala Koidz by LC-MS. Journal of pharmaceutical and biomedical analysis. 2014 Sep; 98(?):74-84. doi: 10.1016/j.jpba.2014.05.010. [PMID: 24893211]
  • Yang-yang Shi, Shu-hong Guan, Ren-neng Tang, Si-jiao Tao, De-an Guo. Simultaneous determination of atractylenolide II and atractylenolide III by liquid chromatography-tandem mass spectrometry in rat plasma and its application in a pharmacokinetic study after oral administration of Atractylodes Macrocephala Rhizoma extract. Biomedical chromatography : BMC. 2012 Nov; 26(11):1386-92. doi: 10.1002/bmc.2709. [PMID: 22311612]
  • Yang-Yang Shi, Shu-Hong Guan, Ren-Neng Tang, Si-Jia Tao, De-An Guo. Simultaneous determination of four sesquiterpenoids in Atractylodes Macrocephala Rhizoma by GC-FID: optimisation of an ultrasound-assisted extraction by central composite design. Phytochemical analysis : PCA. 2012 Jul; 23(4):408-14. doi: 10.1002/pca.1373. [PMID: 22095585]
  • Yuzhi Zhou, Yanling Ren, Zhijie Ma, Guangcheng Jia, Xiaoxia Gao, Lizeng Zhang, Xuemei Qin. Identification and quantification of the major volatile constituents in antidepressant active fraction of xiaoyaosan by gas chromatography-mass spectrometry. Journal of ethnopharmacology. 2012 May; 141(1):187-92. doi: 10.1016/j.jep.2012.02.018. [PMID: 22366681]
  • Chia-Jui Tsai, Jui-Wei Liang, Hsiang-Ru Lin. Sesquiterpenoids from Atractylodes macrocephala act as farnesoid X receptor and progesterone receptor modulators. Bioorganic & medicinal chemistry letters. 2012 Mar; 22(6):2326-9. doi: 10.1016/j.bmcl.2012.01.048. [PMID: 22365756]
  • Judith Singhuber, Igor Baburin, Hanspeter Kählig, Ernst Urban, Brigitte Kopp, Steffen Hering. GABA(A) receptor modulators from Chinese herbal medicines traditionally applied against insomnia and anxiety. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2012 Feb; 19(3-4):334-40. doi: 10.1016/j.phymed.2011.10.009. [PMID: 22118921]
  • Yan Ye, Hui Wang, Jian-Hong Chu, Gui-Xin Chou, Si-Bao Chen, Huanbiao Mo, Wang-Fun Fong, Zhi-Ling Yu. Atractylenolide II induces G1 cell-cycle arrest and apoptosis in B16 melanoma cells. Journal of ethnopharmacology. 2011 Jun; 136(1):279-82. doi: 10.1016/j.jep.2011.04.020. [PMID: 21524699]
  • Suihar Rong, Hai Lin, Ni Gao. [Study on processing technology and processing principles of atractrylodis macrocephalae rhizoma]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2011 Apr; 36(8):1001-3. doi: ". [PMID: 21809571]
  • Yan Ye, Gui-Xin Chou, Hui Wang, Jian-Hong Chu, Wang-fun Fong, Zhi-Ling Yu. Effects of sesquiterpenes isolated from largehead atractylodes rhizome on growth, migration, and differentiation of B16 melanoma cells. Integrative cancer therapies. 2011 Mar; 10(1):92-100. doi: 10.1177/1534735410378660. [PMID: 20713377]
  • Jue Zhou, Fan Qu, Yongping Yu. Chemical and ecological evaluation of a genuine Chinese medicine: Atractylodes macrocephala Koidz. African journal of traditional, complementary, and alternative medicines : AJTCAM. 2011; 8(4):405-11. doi: 10.4314/ajtcam.v8i4.10. [PMID: 22654218]
  • Jian Ge, You-Wei Wang, Xiao-Cong Lu, Xiao-Hong Sun, Fu-Jun Gong. Determination of atractylenolide II in rat plasma by reversed-phase high-performance liquid chromatography. Biomedical chromatography : BMC. 2007 Mar; 21(3):299-303. doi: 10.1002/bmc.756. [PMID: 17236249]
  • Wei Li, Hong-Mei Wen, Xiao-Bing Cui, Ke-Wei Zhang. [Process mechanism of Atractylodes macrocephala and conversion of sesquiterpenes]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2006 Oct; 31(19):1600-3. doi: . [PMID: 17165584]
  • Ching-Chiung Wang, Lih-Geeng Chen, Ling-Ling Yang. Cytotoxic activity of sesquiterpenoids from Atractylodes ovata on leukemia cell lines. Planta medica. 2002 Mar; 68(3):204-8. doi: 10.1055/s-2002-23144. [PMID: 11914954]
  • M Resch, A Steigel, Z L Chen, R Bauer. 5-Lipoxygenase and cyclooxygenase-1 inhibitory active compounds from Atractylodes lancea. Journal of natural products. 1998 Mar; 61(3):347-50. doi: 10.1021/np970430b. [PMID: 9544564]
  • Y Kiso, M Tohkin, H Hikino. Antihepatotoxic principles of Atractylodes rhizomes. Journal of natural products. 1983 Sep; 46(5):651-4. doi: 10.1021/np50029a010. [PMID: 6418860]